Prof. Dr. Bernd Siebert

Complex Geometry WS 16/17

Exercises 2

1. Discuss uniqueness of the decomposition in the Weierstrass preparation theorem.

2. Decompose $f(z_1, z_2) = z_1^3 z_2 + z_1 z_2 + z_1^2 z_2^2 + z_2^2 + z_1 z_2^3$ according to the Weierstrass preparation theorem.

3. Let $U \subset \mathbb{C}^m$ be open, $P \in U$ and $f : U \to \mathbb{C}^n$ holomorphic with J(f)(P) of maximal rank.

a) (Holomorphic submersion) Let $m \ge n$, that is, J(f)(P) surjective.

Show: There exists a biholomorphic map $\Phi: V \longrightarrow U', U \subset U$ an open neighbourhood of P, and $V \subset \mathbb{C}^m$, such that

$$(f \circ \Phi)(z_1,\ldots,z_m) = (z_1,\ldots,z_n).$$

(Interpretation: If J(f) is surjective, in appropriate holomorphic coordinates, f is a linear projection.)

b) (Holomorphic immersions) Let $m \leq n$, that is, J(f)(P) injective.

Show: There exists a biholomorphic map $\Psi: V \longrightarrow V', V \subset \mathbb{C}^n$ an open neighbourhood of f(P), and $V' \subset \mathbb{C}^n$ with

 $(\Psi \circ f)(z_1,\ldots,z_m) = (z_1,\ldots,z_m,0,\ldots,0).$

(Interpretation: If J(f) is injective, in appropriate holomorphic coordinates f is the inclusion of a linear subspace.)

4. Let $U \subset \mathbb{C}^n$ be open and connected and $f \in \mathcal{O}(U)$. Show that $U \setminus Z(f) \subset U$ is connected and dense. [Hu, Ex. 1.1.8]