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Introduction

Originally Gromov-Witten (GW-) invariants belonged to the realm of symplectic
rather than algebraic geometry. For a smooth projective variety X, GW-invariants
“count” algebraic curves with certain incidence conditions, but in a rather refined
way. Salient features are (1) in unobstructed situations, i.e. if the relevant moduli
spaces of algebraic curves are smooth of the expected dimension (“expected” by
looking at the Riemann-Roch theorem), one obtains the number that one would
naively expect from algebraic geometry. A typical such example is the number of
plane rational curves of degree d passing through 3d−1 generic closed points, which
is in fact a finite number. (2) GW-invariants are constant under (smooth projective)
deformations of the variety.

For the original definition one deforms X as almost complex manifold and re-
places algebraic by pseudo-holomorphic curves (i.e. holomorphic with respect to the
almost complex structure). For a generic choice of almost complex structure on
X the relevant moduli spaces of pseudo-holomorphic curves are oriented manifolds
of the expected dimension, and GW-invariants can be defined by naive counting.
Not every almost complex structure J is admitted though, but (for compactness re-
sults) only those that are tamed by a symplectic form ω, which by definition means
ω(v, Jv) > 0 for any nonzero tangent vector v ∈ TX . In the algebraic case, if J is
sufficiently close to the integrable structure, ω may be chosen as pull-back of the
Fubini-Study form. It turns out that GW-invariants really depend only on (the de-
formation class of) the symplectic structure, hence are symplectic in nature. Since
in the original definition singular curves are basically neglected, GW-invariants were
bound to projective manifolds with numerically effective anticanonical bundle.

More recently the situation has changed with the advent of a beautiful, purely
algebraic and completely general theory of GW-invariants based on an idea of Li
and Tian [Be1] [BeFa], [LiTi1]. This development is surveyed in [Be2].

Due to the independent effort of many there is now also a completely general
definition of symplectic GW-invariants available [FkOn] [LiTi2] [Ru2] [Si1]. The
purpose of the present paper is to supplement Behrend’s contribution to this volume
by the symplectic point of view. We will also sketch the author’s more recent proof
of equivalence of symplectic and algebraic GW-invariants for projective manifolds.

While it is perfect to have a purely algebraic theory, I believe that the sym-
plectic point of view is still rewarding, even if one is not interested in symplectic
questions: Apart from the aesthetic appeal, which the interplay between geometric
and algebraic methods usually has, it is sometimes easier and more instructive to
use symplectic techniques (if only as preparation for an algebraic treatment). In
[Si3, Prop. 1.1] I gave an example of GW-invariants of certain projective bundles,
that are much better accessible by symplectic techniques. I also find the proper-
ties of GW-invariants, most prominently deformation invariance, intuitively more
apparent from the symplectic side, cf. also Section 4.2 (but this might be a matter
of taste). More philosophically, the symplectic nature of enumerative invariants in
algebraic geometry should mean something, especially in view of their appearance in
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mirror symmmetry. Finally, it is important to establish algebraic techniques for the
computation of symplectic invariants. In fact, a closed formula for GW-invariants,
holding in even the most degenerate situations, can be easily derived from the def-
inition, cf. [Si2]. The formula involves only Fulton’s canonical class of the moduli
space and the Chern class of a virtual bundle.

Gromov-Witten (GW) invariants have a rather interesting and involved history,
with connections to gauge theory, quantum field theory, symplectic geometry and
algebraic geometry. One referee encouraged me to include some remarks on this.
I would like to point out that I concentrate only on the history of defining these
invariants rather than the many interesting applications and computations.

The story begins with Gromov’s seminal paper of 1985 [Gv]. In this paper Gro-
mov laid the foundations for a theory of (pseudo-) holomorphic curves in almost
complex manifolds. Of course, a notion of holomorphic maps between almost com-
plex manifolds existed already for a long time. Gromov’s points were however that
(1) while there might not exist higher dimensional almost complex submanifolds or
holomorphic functions even locally, there are always many local holomorphic curves
(2) the local theory of curves in almost complex manifolds largely parallels the the-
ory in the integrable case, i.e. on Cn with the standard complex structure (Riemann
removable singularities theorem, isolatedness of singular points and intersections,
identity theorem) (3) to get good global properties one should require the exis-
tence of a “taming ” symplectic form ω (a closed, non-degenerate two-form) with
ω(v, Jv) > 0 for any nonzero tangent vector v (J the almost complex structure).
In fact, in the tamed setting, Gromov proves a compactness result for spaces of
pseudo-holomorphic curves in a fixed homology class. At first sight the requirement
of a taming symplectic form seems to be merely a technical one. However, Gromov
turned this around and observed that given a symplectic manifold (M,ω), the space
of almost complex structures tamed by ω is always nonempty and connected. With
the ideas of gauge theory just having come up, Gromov studied moduli spaces of
pseudo-holomorphic curves in some simple cases for generic tamed almost complex
structures. One such case was pseudo-holomorphic curves homologous to IP1×{pt}
on IP1 × T with T an n-dimensional (compact) complex torus. He shows that for
any almost complex structure on IP1 × T tamed by the product symplectic struc-
ture there exists such a pseudo-holomorphic curves. In nowadays terms he shows
that the associated GW-invariant is nonzero. This can then be used to prove his
famous squeezing theorem: The symplectic ball of radius r can not be symplectically
embedded into the cylinder B2

R × Cn for R < r.

Several more applications of pseudo-holomorphic curves to the global structure
of symplectic manifolds were already given in Gromov’s paper, and many more have
been given in the meantime. The probably most striking one is however due to Floer
[Fl]. He interpreted the Cauchy-Riemann equation of pseudo-holomorphic curves as
flow lines of a functional on a space of maps from the circle S1 to the manifold. He
can then do Morse theory on this space of maps. The homology of the associated
Morse complex is the celebrated (symplectic) Floer homology, which has been used

3



to solve the Arnold conjecture on fixed points of nondegenerate Hamiltonian sym-
plectomorphisms. I mention Floer’s work also because it is in the (rather extended)
introduction to [Fl] that a (quantum) product structure on the cohomology of a
symplectic manifold makes its first appearance (and is worked out for IPn). As we
now (almost) know [RuTi2] [PiSaSc] this agrees with the product structure defined
via GW-invariants, i.e. quantum cohomology.

An entirely different, albeit related, development took place in physics. Witten
[Wi1] observed from Floer’s instanton homology, a homology theory developed by
Floer in analogy to the symplectic case for gauge theory on three manifolds, that
one can formulate supersymmetric gauge theory on closed four-manifolds, provided
one changes the definition of the fields in an appropriate way (“twisting procedure”).
The result is a physical theory that reproduces Donaldson’s polynomial invariants
as correlation functions. Because the latter are (differential-) topological invariants,
the twisted theory is referred to as topological quantum field theory. In [Wi2] Witten
applied the twisting procedure to non-linear sigma models instead of gauge theory.
Such a theory is modelled on maps from a Riemann surface to a closed, almost
complex manifold. The classical extrema of the action functional are then pseudo-
holomorphic maps. The correlation functions of the theory are physical analogs of
GW-invariants. Witten was the first to observe much of the rich algebraic struc-
ture that one expects for these correlation functions from degenerations of Riemann
surfaces [Wi3].

It is a curious fact that while simple versions of GW-invariants were used as a
tool in symplectic topology, and the technical prerequisites for a systematic treat-
ment along the lines of Donaldson theory were all available (notably through the
work of McDuff, the compactness theorem by Gromov, Pansu, Parker/Wolfson and
Ye), it was only in 1993 that Ruan tied up the loose ends [Ru1] and defined sym-
plectic invariants based on moduli spaces of pseudo-holomorphic (rational) curves,
mostly for positive symplectic manifolds. It was quickly pointed out to him that one
of his invariants was the mathematical analogue of correlation functions in Witten’s
topological sigma model. At the end of 1993 the breakthrough in the mathematical
development of GW-invariants and their relations was achieved by Ruan and Tian
in the important paper [RuTi1]. Apart from special cases (complex homogeneous
manifolds), up until recently the methods of Ruan and Tian were the only available
to make precise sense of GW-invariants for a large class of manifolds (semi-positive)
including Fano and Calabi-Yau manifolds, and to establish relations between them,
notably associativity of the quantum product and the WDVV equation. And many
of the deeper developments in GW-theory used these methods, including Taubes’
relationship between GW-invariants and Seiberg-Witten invariants of symplectic
four-manifolds [Ta], as well as Givental’s proof of the mirror conjecture for the quin-
tic via equivariant GW-invariants [Gi]. For the case of positive symplectic manifolds
proofs for the gluing theorem for two rational pseudo-holomorphic curves, which is
the reason for associativity of the quantum product, were also given by different
methods in the PhD thesis of G. Liu [Lu] and in the lecture notes [McSa].

Early in 1994 Kontsevich and Manin advanced the theory in a different direction
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[KoMa]: Rather than proving the relations among GW-invariants, they formulated
them as axioms and investigated their formal behaviour. They introduced a rather
big compactification of the moduli space of maps from a Riemann surface by “stable
maps” (cf. Def. 1.1 below). With this choice all relations coming from degenerations
of domains can be formulated in a rather regular and neat way. In the algebraic
setting spaces of stable maps have projective algebraic coarse moduli spaces [FuPa];
fine moduli spaces exist in the category of Deligne-Mumford stacks [BeMa]. Another
plus is the regular combinatorial structure that allows to employ methods of graph
theory to compute GW-invariants in certain cases. No suggestion was made however
of how to address the problem of degeneracy of moduli spaces, that in the Ruan/Tian
approach applied to projective algebraic manifolds forces the use of general almost
complex structures rather than the integrable one.

This problem was only solved in the more recent references given above, first in
the algebraic and finally in the symplectic category, by constructing virtual funda-
mental classes on spaces of stable maps.

Here is an outline of the paper: We start in the first chapter with a simple model
case to discuss both the traditional approach and the basic ideas of [Si1]. Chapter 2
is devoted to the most technical part of my approach, the construction of a Banach
orbifold containing the moduli space of pseudo-holomorphic curves. The ambient
Banach orbifold will be used in Chapter 3 to construct the virtual fundamental class
on the moduli space. The fourth chapter discusses the properties of GW-invariants,
that one obtains easily from the virtual fundamental class. We follow here the same
framework as in [Be2], so a comparison is easily possible. A fairly detailed sketch of
the equivalence with the algebraic definition is given in the last chapter. The proof
shows that the obstruction theory chosen in the algebraic context is natural also
from the symplectic point of view. For this chapter we assume some understanding
of the algebraic definition.

After this survey had been finished, the author received a similar survey by Li
and Tian [LiTi3], in which they also announce a proof of equivalence of symplectic
and algebraic Gromov-Witten invariants.

A little warning is in order: The symplectic definition of GW-invariants is more
involved than the algebraic one. Modulo checking the axioms and the formal appara-
tus needed to do things properly, the latter can be given a rather concise treatment,
cf. [Si2]. But as long as symplectic GW-invariants are based on pseudo-holomorphic
curves, even to find local embeddings of the moduli space into finite dimensional
manifolds (“Kuranishi model”) means a considerable amount of technical work. In
this survey I tried to emphasize ideas and the reasons for doing things in a particular
way, but at the same time keep the presentation as non-technical as possible. While
we do not assume any knowledge of symplectic geometry or GW-theory, the ideal
reader would have some basic acquaintance with the traditional approach, e.g. from
[McSa]. Whoever feels uneasy with symplectic manifolds is invited to replace the
word “symplectic” by “Kähler”.
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1 Setting up the problem

1.1 The traditional approach

The purpose of this section is to present the approach of Ruan to GW-invariants on
a simple example. We refer to the lecture note [McSa] for background information
and a more careful exposition. Let Σ be a closed Riemann surface with complex
structure j, (M,J) an almost complex manifold. We also fix some k ≥ 1 and
α ∈ ] 0, 1 [ . The space B := Ck,α(Σ;M) of k-times differentiable maps from Σ to M
with k-th derivative of Hölder class α is a Banach manifold. Charts at ϕ : Σ→ M
are for instance given by

Ck,α(Σ;ϕ∗TM) ⊃ V −→ Ck,α(Σ;M)

v 7−→
(
z 7→ expϕ(z) v(z)

)
.

The exponential map is with respect to some fixed connection on M and V is a
sufficiently small open neighbourhood of 0 where the map is injective. The equation
for ϕ to be J-holomorphic is

∂̄Jϕ = 0, ∂̄Jϕ =
1

2
(Dϕ+ J ◦Dϕ ◦ j) ∈ Ck−1,α(Σ;ϕ∗TM ⊗C Ω̄) .

Here we wrote Ω̄ = Λ0,1T ∗Σ for the bundle of (0, 1)-forms on Σ. The equation
∂̄Jϕ ◦ j = −ϕ∗J ◦ ∂̄Jϕ in the space of homomorphisms between the complex vector
bundles (TΣ, j) and (ϕ∗TM , ϕ

∗J) shows that, viewed as section of ϕ∗TM , ∂̄Jϕ is
indeed (0,1)-form valued. Intrinsically, these equations fit together to a section s∂̄,J
of the Banach bundle E ↓ B with fibers

Eϕ = Ck−1,α(Σ;ϕ∗TM ⊗ Ω̄) .

Local trivializations of E over the above charts can be easily constructed by (the
complex linear part of) parallel transport of vector fields along the family of closed
geodesics γz(t) with γz(0) = ϕ(z), γ̇z(0) = v(z).

Obviously, s∂̄,J is differentiable. As for any differentiable section of a vector
bundle, its linearization at a point of the zero locus, a linear map TB,ϕ → Eϕ, is
independent of the choice of local trivialization. Thus over the zero locus Z of
s∂̄,J the linearization induces a section σ of Hom(TB, E). One computes for the
linearization at J-holomorphic ϕ:

σϕ := Dϕs∂̄,J : TB,ϕ = Ck,α(Σ;ϕ∗TM) −→ Eϕ = Ck−1,α(Σ;ϕ∗TM ⊗ Ω̄)

v 7−→ ∂̄ϕJ v +NJ(v,Dϕ) .

NJ is the Nijenhuis tensor or almost complex torsion of (M,J), a certain tensor
on M depending only on J and vanishing identically iff J is integrable, cf. e.g.
[KoNo, Ch. IX,2]. And ∂̄ϕJ is the ∂̄-operator belonging to a natural holomorphic
structure on ϕ∗TM . Concerning the latter, one actually defines ∂̄ϕJ as (0, 1)-part of
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the linearization of s∂̄,J . The integrability condition being void in dimension one,
this complex linear partial connection defines a holomorphic structure on ϕ∗TM , cf.
Section 2.4.

We see that up to a differential operator of order zero, σϕ is just the Cauchy-
Riemann operator of a holomorphic vector bundle over Σ of rank n = dimCM .
But ∂̄ϕJ is a Fredholm operator on appropriate spaces of sections, i.e. it has finite
dimensional kernel and cokernel. It is crucial at this point to work with Hölder
spaces, the Fredholm property is wrong for α = 0. Alternatively, as we will do below,
one may work with Sobolev spaces. Now lower order perturbations are compact
operators by the Arzela-Ascoli compactness theorem, and Fredholm property and
index (dimension kernel minus dimension cokernel) do not change under adding a
compact operator. This shows that σϕ is a Fredholm operator whose index is given
by

1

2
indσϕ = indC∂̄

ϕ
J = χ(ϕ∗TM , ∂̄

ϕ
J ) ,

the holomorphic Euler characteristic of ϕ∗TM . The latter can be computed by the
ordinary Riemann-Roch theorem to be

deg(ϕ∗TM , ϕ
∗J) + (1− g) dimCM = c1(M,J) · ϕ∗[Σ] + (1− g)n .

If s∂̄,J is transverse at ϕ, which by definition means that σϕ is surjective, then an
application of the implicit function theorem shows that in a neighbourhood of ϕ,
the space Chol(Σ,M, J) of J-holomorphic maps Σ→ M is a differentiable manifold
of dimension indσϕ. Moreover, near such points, Chol(Σ,M, J) is naturally oriented
by complex linearity of ∂̄ϕJ . Ignoring questions of compactness for the moment, if
transversality is true everywhere, Chol(Σ,M, J) is a good moduli space for enumera-
tive purposes involving J-holomorphic curves, i.e. GW-invariants. In an integrable
situation (i.e. M a complex manifold) transversality at ϕ means that the deforma-
tion theory of ϕ is unobstructed: ϕ deforms both under deformations of J and j.
By the same token we see that the same statement holds even under deformations
of J as almost complex structure.

Using the Sard-Smale theorem one can make s∂̄,J transverse everywhere except
possibly at so-called multiple cover curves, simply by a generic choice of J . A
multiple cover curve is a ϕ : Σ → M that factors over a holomorphic map of
Riemann surfaces of higher degree. For J-holomorphic curves this is equivalent to
saying that ϕ is not generically injective. The reason is that the Sard-Smale theorem
requires that perturbations of J generate the tangent space of the ambient space,
and this may fail if ϕ is not generically injective. For certain (positive) manifolds the
bad locus of compactifying and multiple cover curves can be proved to be of lower
dimension for generic J and thus to be ignorable for enumerative questions. This
is the original, very successfull approach of Ruan to GW-theory [Ru1], following a
similar scheme in gauge theory.

In the general case there are two possibilities to proceed. If one wants to stick to
manifolds one can introduce an abstract perturbation term, which is just a section
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ν ∈ C1(B; E), and consider solutions of the perturbed equation

∂̄Jϕ = ν(ϕ) ,

i.e. look at the zero locus of the perturbed section s∂̄,J−ν. Again by the Sard-Smale
theorem, for generic choice of ν, Chol(Σ,M, J, ν) := Z(s∂̄,J − ν) will be a canonically
oriented manifold of dimension indσϕ. So one replaces the possibly singular, wrong-
dimensional Chol(Σ,M, J) by an approximating manifold inside B. In GW-theory
this has again been pioneered by Ruan to extend the range of the previous approach
to semi-positive manifolds by removing non-genericity of multiple cover curves (the
perturbation term unfortunately vanishes at “bubble components” of the domain,
cf. Section 1.3, that have to be included on the compactifying part; so this method
still does not work generally). The idea of associating (cobordism classes of) finite
dimensional submanifolds to Fredholm maps by perturbations goes back to (at least)
Smale though [Sm].

The other approach, that we will follow for the most part, is to replace the
manifold by a homology class located on Chol(Σ,M, J). The homology class should
be thought of as limit of the fundamental classes of the perturbed manifolds Z(s∂̄,J−
ν) as ν tends to zero. Because its image in H∗(B) will represent any of these
fundamental classes, the homology class will be called virtual fundamental class of
Chol(Σ,M, J). For conceptual clarity let us discuss this topic in an abstract setting.

1.2 Localized Euler classes in finite and infinite dimensions

First a note on homology theories. While cohomology has good properties on a large
class of spaces making it essentially unique, (singular) homology behaves well only
on compact spaces. Several extensions to non-compact spaces are possible. Since
we will need fundamental classes of non-compact oriented manifolds, the natural
choice will be singular homology of the second kind, i.e. with only locally finite
singular chains, or Borel-Moore homology with coefficients in the ring Z (or later
also Q). These two homology theories are isomorphic under fairly mild conditions
on the spaces, that are fulfilled in cases of our interest, cf. [Sk]. Note that this
homology theory has restriction homomorphisms to open sets, obeys invariance only
under proper homotopy, and pushes forward only under proper morphisms. General
references are [Br],[Iv] and [Sk].

Given a Hausdorff space X with a closed subspace Z the localized cap products
are homomorphisms

∩ : Hn(X)⊗Hk
Z(X) −→ Hn−k(Z) ,

where, as mostly in the sequel, we suppressed coefficient rings. If s is a section of an
oriented topological vector bundle E of finite rank r over X, the Euler class of E can
be localized on the zero locus Z of s. Namely, let ΘE ∈ Hr

X(E) be the Thom class
of E. Locally, ΘE is of the form π∗δ0, where π : E|U → R

r is a local trivialization
and δ0 ∈ Hr

{0}(R
r;Z) is the unique generator compatible with the orientation. Then
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s∗ΘE ∈ Hr
Z(X) represents the Euler class of E. And if X is an oriented topological

manifold one may pair s∗ΘE with the fundamental class [X] using the localized cap
product to arrive at a homology class on Z which is Poincaré-dual on X to the Euler
class of E.

In a differentiable situation, i.e. E a differentiable vector bundle over an oriented
differentiable manifold X, let si be (differentiable) transversal sections converging
to s. Then [X] ∩ s∗iΘE = [Z(si)], the fundamental class of the naturally oriented
manifold Z(si). These converge to [X] ∩ s∗ΘE ∈ Hn−r(Z), n = dimX, which
may thus be viewed as natural homological replacement for zero loci of generic
perturbations of s.

In our infinite dimensional setting of the previous section neither ΘE nor [B]
make sense. But if s is differentiable with Fredholm linearizations, if Z = Z(s) is
compact and if B admits differentiable bump functions, we may do the following: By
hypothesis it is possible to construct a homomorphism from a trivial vector bundle
τ : F = R

r → E so that for any x ∈ Z(s), τx + Dxs : Rr ⊕ TB,x → Ex is surjective.
Replace B by the total space of F (which is just B×Rr, but we will need nontrivial
bundles later), and consider the section s̃ := q∗s + τ of q∗E , where q : F → B is
the bundle projection. Note that if we identify B with the zero section of F then
s̃|B = s. τx + Dxs to be surjective means that s̃ is a transverse section, at least in
a neighbourhood of Z = Z̃ ∩ B, Z̃ = Z(s̃). So Z̃ ⊂ F is a manifold near the zero
section of F . And F being of finite rank it has a Thom class, no matter the base is
infinite dimensional. Ignoring questions of orientation we may then define

[E , s] := [Z̃] ∩ΘF ∈ H∗(Z) .

It is not hard to check independence of choices and coincidence with [Z] in transverse
situations. The dimension of [E , s] is locally constant and equals the index of the
linearization of s.

Similar ideas have been applied in certain cases for the computation of both
Donaldson and GW-invariants, notably if the dimension of the cokernel is constant.
In the presented generality this is due to Brussee who used it to study Seiberg-Witten
theory in degenerate situations [Bs].

I should also point out that, locally, [E , s] is uniquely determined by a Kuranishi
model for Z: Let s be given locally by a differentiable Fredholm map f : U → E =
Ex, U ⊂ B open. Let q : E → Q be a projection with finite dimensional kernel
C (“C” for cokernel) such that D(q ◦ f) : TB,x → Q is surjective. Possibly after
shrinking U , Z̃ = (q ◦ f)−1(0) is a manifold of dimension indf + r, r = dimC. Then
f |Z̃ : Z̃ → C is a differentiable map between finite dimensional manifolds. Again
ignoring questions of orientation, we observe

[E , s]
∣∣∣
U

= [Z̃] ∩ (f |Z̃)∗δ0 ∈ H∗(Z ∩ U) ,

δ0 ∈ Hr
{0}(C;Z) the positive generator. However, unless Z is of expected dimension

inds, the gluing of the local classes may not be unique. So the knowledge of Kuran-
ishi models covering Z(s) may not be enough to determine the class [E , s]. It would
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be interesting to understand precisely what additional datum is needed to globalize
these classes. In a sense this is the question how topological a theory of localized
Euler classes of differentiable Fredholm sections can be made.

1.3 The problem of compactification: Stable J-curves

Since we used compactness of Z for the construction of [E , s], the method of the
last section applies directly to our model in 1.1 only on compact components of the
space of J-holomorphic maps from Σ to M . This never holds for the important
case of Σ = IP1 because of non-compactness of Aut(IP1) = PGL(2), which acts on
these spaces by reparametrization. This trivial cause of non-compactness could be
avoided by moding out the connected component of the identity Aut0(Σ). More
fundamentally though, the space of J-holomorphic maps will not be compact if
so-called bubbles appear in limits of sequences of such maps. If ϕi : Σ → M
is a sequence of J-holomorphic maps, a bubble is a J-holomorphic rational curve
ψ : IP1 → M won as limit of rescalings of ϕi near a sequence of points Pi → P ∈ Σ
with |Dϕi(Pi)| unbounded. A simple example of bubbling off in algebraic geometry
is the degeneration of a family of plane quadrics to a pair of lines. It is the content
of the Gromov compactness theorem that this phenomenon is the precise reason
for non-compactness of moduli spaces of J-holomorphic curves of bounded volume,
cf. Theorem 1.2. As one knows from examples in algebraic geometry this happens
quite often unless (ϕi)∗[Σ] (constant on connected components of Chol(Σ,M, J) ) is
indecomposable in the cone in H2(M ;Z) spanned by classes representable by J-
holomorphic curves.

We are thus lead to the problem of introducing an appropriate compactification of
Chol(Σ,M, J).1 This is due to Gromov [Gv], and Parker and Wolfson from a different
point of view [PrWo], but has been put into its final form by Kontsevich through
the notion of stable map [KoMa]. It is convenient to also incorporate marked points
on Σ now.

Definition 1.1 (C,x, ϕ) is called stable J-holomorphic curve if

• C is a connected, reduced, complete complex algebraic curve with at most
ordinary double points (a “Riemann surface with nodes”)

• x = (x1, . . . , xk) with pairwise distinct xi ∈ Creg

• for any irreducible component D ⊂ C, ϕ|C is J-holomorphic

• Aut(C,x, ϕ) := {σ : C → C biregular | ϕ ◦ σ = ϕ} is finite. �

1Another reason for the neceesity of compactification is of course that we need a degree map to
extract well-defined numbers out of the homology class, cf. 4.1
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The first two conditions are sometimes summarized by saying that (C,x) is a
prestable (marked) curve. The condition on finiteness of the automorphism group
is the stability condition. It can be rephrased by saying that any rational compo-
nent of C that is contracted under ϕ, contains at least three special points (marked
points or nodes). Note that by putting M = {pt} one retrieves the definition of
stable algebraic curves with marked points due to Deligne and Mumford [DeMu]
and Knudson [Kn]. So the notion of stable J-holomorphic curve should be viewed
as natural extension of the concept of Deligne-Mumford stable curve to the situa-
tion relative M rather than the spectrum of a field. The genus g(C) of (C,x, ϕ)
is by definition the arithmetic genus h1(C,OC) of C. h1(C,OC) = 1 − χ(C,OC)
being constant in flat families, g(C) could alternatively be defined as the genus of
a smooth fiber of a deformation of C, i.e. the genus of the closed surface obtained
from C by replacing each double point x · y = 0 by a cylinder x · y = ε.

How does this concept incorporate bubble phenomena, say in our model of maps
ϕ : Σ → M? After rescaling at Pi in such a way that the differentials become
uniformly bounded at Pi, there might be another sequence of points with unbounded
differentials. So what we end up with at P in the limit might be a whole tree
ψ : B → M of J-holomorphic rational curves. To be a tree means that B is
simply connected and contains no more than ordinary double points. To achieve
the latter one might have to introduce more rational components than necessary to
make sense of a limiting map, i.e. ψ might be trivial on some irreducible components
D ⊂ B, but only if D contains at least three double points. Because the only marked
Riemann surface with infinitesimal automorphisms fixing one more point (a double
point making the whole curve connected) is IP1 with less than two marked points,
this is the stability condition! So in this case the domain of the limiting map will be
(C,x) = (Σ ∪P B, ∅), or more generally several trees B1, . . . , Bb of rational curves
attached to Σ at several points.

Conversely, if (C,x, ϕ) is a stable J-holomorphic curve there is always associ-
ated a stable curve (C,x)st = (Cst,xst) so that (C,x, ϕ) looks like obtained from a
sequence of J-holomorphic curves by bubbling off (in reality this deformation prob-
lem might be obstructed). (C,x)st is just the stabilization of the abstract curve
(C,x) won by successive contraction of (absolutely) unstable components. The lat-
ter are by definition rational components D ⊂ C with ]{xi ∈ D} + ]Csing ∩D < 3.
Equivalently, Aut0(C,x) acts non-trivially on D. After contraction of all unstable
components of (C,x) previously stable components may become unstable. The pro-
cess is then repeated until the result is a Deligne-Mumford stable curve (C,x)st.
Note that the genus does not change under this process.

By this picture it is natural to distinguish bubble and principal components of
the domain of stable J-holomorphic curves (C,x, ϕ), depending on whether or not
the component gets contracted under the stabilization map (C,x)→ (C,x)st. Note
that if (C,x)st is singular, there is also another type of bubbling off possible than
discussed above that introduces a chain of rational curves at a singular point.

One subtlety in the discussion of stable J-curves is that their domains are just
prestable curves, which do not in general possess decent moduli spaces. To ex-
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plain this, recall the local description ofMg,k, the coarse moduli space of (Deligne-
Mumford) stable curves of genus g with k marked points. For later use it is bet-
ter to work complex analytically now. If (C,x) ∈ Mg,k there is an open subset
S ⊂ Ext1(ΩC(x1 + . . .+ xk),OC) ' C3g−3, a flat family q : C → S (with C smooth)
of prestable curves with k sections x : S → C ×S . . . ×S C, such that the germ of
(C → S,x) at 0 ∈ S is an analytically universal deformation of (C,x). This means
that the germ of any flat family of marked stable curves with central fiber (C,x)
is (canonically isomorphic to) the pull-back of (C → S,x) under a map from the
parameter space to S. If (C,x) has non-trivial automorphisms the action on the
central fiber extends to an action on (the germ at 0 ∈ S of) C and S making q
and x equivariant. Possibly by shrinking S one may also assume that s and s′ ∈ S
parametrize isomorphic marked stable curves iff there exists an automorphism of
(C,x) carrying s to s′. Since Aut(C,x) is finite we may assume the action to be
indeed well-defined on all of C and S. The quotient S/Aut(C,x) exists as complex
space and is a neighbourhood of (C,x) in Mg,k.

If (C,x) is just prestable we still have a pair (C → S,x). But now Aut(C,x) is
higher dimensional and dimS = 3g − 3 + dim Aut(C,x). There is the germ of an
action of Aut0(C,x) on C → S, which is a map from a neighbourhood of {Id}×C in
Aut0(C,x)×C to C (respectively, from a neighbourhood of (Id , 0) ∈ Aut0(C,x)×S
to S). (C → S,x) is no longer a universal deformation, but only semiuniversal,
which means that uniqueness holds only on the level of tangent maps at 0 ∈ S. The
moduli “space” Mg,k of prestable curves of genus g = g(C) with k = ]x marked
points should locally around (C,x) be thought of as quotient of S by the analytic
equivalence relation generated by this action. Now Aut0(C,x) decomposes into
a product with factors C∗ for each bubble component with only two special (i.e.
marked or singular) points and CoC∗ for each bubble component with one special
point. In appropriate coordinates the restriction of the action to one such C∗ looks
like the standard C∗ action on C cross a trivial factor. So a quotient does not even
exist as Hausdorff topological space, not to speak of analytic spaces or schemes.

Nevertheless, Mg,k behaves in many respects like a scheme. It has a structure of
what is called an Artin stack. We will not go into detail with this, but instead keep in
mind the local description as quotient of the base S of a semiuniversal deformation
of (C,x) by the analytic equivalence relation generated by Aut(C,x).

It is also useful to observe that the seminuiversal deformation C → S of (C,x)
fibers over the universal deformation C̄ → S̄ of its stabilization (C,x)st. The map
S → S̄ is smooth (a linear projection in appropriate coordinates) unless (C,x) has
bubble chains (bubbles inserted at a double point of (C,x)st), in which case it is
only of complete intersection type (with factors of the form (x1, . . . , xr) 7→ x1 · . . . ·xr
in appropriate coordinates). This is important in the proof of the isogeny axiom of
GW-invariants in Section 4.2.

There is a natural topology on the set of stable J-holomorphic curves, the Gro-
mov topology [Gv, § 1.5], cf. also [Pn, Def. 2.12]. We will not give the definition
here because it will become evident once we introduce local charts for the ambient
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Banach manifold in Chapter 3. To state the compactness theorem let R ∈ H2(M ;Z)
and g, k ≥ 0.

Theorem 1.2 [Gv] [Pn] [PrWo] [RuTi1] [Ye] Assume that J is tamed by some
symplectic form ω on M , i.e. ω(X, JX) > 0 ∀X ∈ TM \ {0}. Then the space

Chol
R,g,k(M,J) :=

{
(C,x, ϕ)

stable J-holo-
morphic curve

∣∣∣∣ ϕ∗[C] = R, ]x = k
g(C) = g

}/
iso

with the Gromov topology is compact and Hausdorff. �

The taming condition allows to bound the volume of J-holomorphic curves in terms
of its homology class R by the analogue of the Wirtinger theorem. In fact, Ye’s
method of proof uses only a bound on the volume. That such a bound is crucial in
compactness results is well-known in complex analysis since [Bi].

The Hausdorff property is not proven in the given references but requires some
additional arguments as given in any of [FkOn] [LiTi2] [Ru2] [Si1].

We also need to enlarge the ambient Banach manifold. Since this involves a
number of subtleties we will discuss this in a separate chapter.

2 The ambient space

To carry out the program of Section 1.2 for spaces Chol
R,g,k(M,J) of stable J-holomor-

phic curves in an almost complex manifold tamed by some symplectic form ω, we
would like to construct a Banach manifold into which Chol

R,g,k(M,J) embeds. Obvious
choices are spaces of tuples (C,x, ϕ) with (C,x) a k-marked prestable curve of
genus g and ϕ : C → M just a continuous map with some kind of regularity,
ϕ∗[C] = R. We will see that requiring ϕ to be of Sobolev class Lp1 with 2 < p <∞,
i.e. with one distributional derivative in Lp, is a very natural condition. The measure
will be with respect to a metric on C with certain weights at the singular points.
Note that since the domain is two-dimensional, L2

1 is a critical case of the Sobolev
embedding theorem: There exist non-continuous L2

1-functions on R2, but functions
in Lp1 with p > 2 always have continuous representatives. Thus Lp1 with p > 2 is the
minimal possible regularity for a sensible formulation of the ∂̄J -equation. Conversely,
smoothness of the total space seems to be unlikely for maps of higher regularity, as
should become clear in Section 2.4.

2.1 Charts

To produce charts, observe that, intuitively, a small deformation of (C,x, ϕ) can
be split into (1) a deformation of the domain (C,x) as prestable curve, arriving
at a possibly less singular curve C ′, and (2) a deformation of a pull-back ϕ ◦ κ,
where κ : C ′ → C is some comparison map that is a diffeomorphism away from the
singularities of C.
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As in our discussion of the Artin stack Mg,k in Section 1.3 let (q : C → S,x) be an
analytically semiuniversal deformation of (C,x) = (q−1(0),x(0)). Let us write Cs for
q−1(s). If ϕ : C →M is Lp1 we want ϕ◦κ to be Lp1 too. Since

⋂
p>2 L

p
1 = L∞1 (Sobolev

space of functions with essentially bounded first derivative) and L∞1 = C0,1 is the
space of Lipschitz maps, a goody choice that works for all p should be Lipschitz.
Using an analytic description of q : C → S it is not hard to construct a retraction

κ : C −→ C0 = C ,

which, when restricted to Cs, is a diffeomorphism away from Csing, and which near
the smoothing zw = t of a node zw = 0 is given by a linear rescaling

(z = reiϕ) 7−→ z =
r − |t|1/2

1− |t|1/2
eiϕ

if |z| ≥ |w| and similarly for w if |w| ≥ |z|. In particular the circle |z| = |w| = |t|1/2
is contracted to the node and κ is Lipschitz (note that C is also smooth).

Next we define our weighted Sobolev spaces. The choice is distinguished by the
fact that we want κ to induce isomorphisms of Lp-spaces. Since ordinary Lebesgue
measure on a nonsingular Cs corresponds to the finite cylindrical measure dr dϕ =
r−1dx dy on each branch of C near a singular point (z = reiϕ = x+ iy), our measure
µ on C is required to be of this type near Csing and locally equivalent to Lebesgue
measure away from this set. We write

Ľp(C,R) := Lp(C,R;µ)

and Ľp1(C,R) ⊂ Lp1(C,R) for the functions possessing one weak derivative in Ľp(C,R)
(on each irreducible component of C). Since Ľp(C,R) ⊂ Lp(C,R), by the Sobolev
embedding theorem there is an embedding of Ľp1(C,R) into the space of continuous
functions C0(C,R) for p > 2. We adopt the usual abuse of notation and identify
Ľp1(C,R) with its image in the space of continuous functions, i.e. we take the unique
continuous representative of any class in Ľp1(C,R). Note that in general there is
no distinguished choice of metric on C, so these spaces are well-defined only as
topological vector spaces, not as normed spaces.

For vector bundles E over C one defines similarly Ľp(C,E) and Ľp1(C,E). And
as usual, spaces of maps Ľp1(C,M) can be defined either by embedding M into
some RN and requiring the Sobolev property componentwise, or by taking local
coordinates on M and require composition with the coordinate functions to be Ľp1.
This is well-defined for p > 2 by continuity.

Here is the definition of our ambient space. We fix once for all some p with
2 < p <∞.

Definition 2.1 (C,x, ϕ) is a stable complex curve in M of Sobolev class Lp1 iff

• (C,x) is a prestable marked curve
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• ϕ ∈ Ľp1(C;M)

• for any unstable component D of (C,x), ϕ|D is homotopically non-trivial. �

We use C(M ; p) to denote the set of isomorphism classes of such curves and

CR,g,k(M ; p) :=
{

(C,x, ϕ) ∈ C(M ; p)
∣∣∣ ϕ∗[C] = R, ]x = k, g(C) = g

}/
iso .

By abuse of notation, (C,x, ϕ) ∈ C(M ; p) means a representative for the isomor-
phism class.

By construction κ∗s : Ľp(C;R) → Ľp(Cs,R) is an isomorphism for any s ∈ S.
On Ľp1-spaces pull-back is also well-defined because κs is Lipschitz, but ϕ ◦ κs being
constant on the contracted circles, κ∗s is certainly not surjective. What we are
interested in for the construction of charts are identifications Πs : Ľp1(C;ϕ∗TM) →
Ľp1(Cs; (ϕ ◦ κs)∗TM), i.e. a structure of Banach bundle on

∐
s Ľ

p
1(Cs; (ϕ ◦ κs)∗TM).

The latter space will be denoted q1,p
∗ (κ∗ϕ∗TM), which captures the idea of being the

direct image of a sheaf of sections of (ϕ ◦ κ)∗TM that are fiberwise locally of class
Ľp1. We will show in Section 2.4:

Theorem 2.2 There exists a family of isomorphisms Πs in such a way that

(κ∗s)
−1 ◦ Πs : Ľp1(C;ϕ∗TM) −→ L∞(C;ϕ∗TM)

is uniformly continuous.

The stated property shows that small changes of s lead to small pointwise changes
of Πsv in an intuitive sense (the images in κ∗ϕ∗TM have small distance). More
regularity of Πs will be discussed later.

Given Πs we just need to write down the analogue of the charts for fixed domains
(cf. 1.1) to get charts for C(M ; p):

Φ : S × Ľp1(C;ϕ∗TM) ⊃ S × V −→ C(M ; p), (s, v) 7−→ ϕ(s, v)

ϕ(s, v)(z) := expϕ◦κs(z)

(
Πsv

)
(z) .

2.2 Automorphisms and differentiable structure

There are still two problems with our proposal for charts Φ as stated in the last
section. First, since S does not in general parametrize prestable curves near (C,x)
effectively, Φ need not be injective. Not every Ψ ∈ Aut(C,x) has im Φ∩im (Ψ∗◦Φ) 6=
∅, but this is certainly the case for Ψ close to Aut(C,x, ϕ) ⊂ Aut(C,x). Here we
write Ψ for both the automorphism of the central fibre of the deformation and for
the germ of the action on the total space C. So the best we can hope for is the
structure of a Banach orbifold on C(M ; p).

Orbifolds are a generalization of the notion of manifolds where as local models
open subsets of vector spaces are replaced by quotients of such by linear actions of
finite groups. More precisely, one defines
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Definition 2.3 A local uniformizing system (of Banach orbifolds) is a tuple (q :
Û → U,G, α) with

• α is a continuous linear action of the finite group G on some Banach space T

• Û is a G-invariant open subset of T

• q induces a homeomorphism Û/G→ U

For a more intuitive notation we often write U = Û/G instead of (q,G, α). �

Compatibility of local uniformizing systems is defined through the notion of open
embeddings : Let V = V̂ /G′, U = Û/G be two local uniformizing systems. An
open embedding V = V̂ /G′ ↪→ U = Û/G is a monomorphism γ : G′ → G and a
γ-equivariant open embedding f̂ : V̂ → Û . So this induces an open embedding of
the quotient spaces f : V ↪→ U . If the actions of the groups are not effective one
should also require a maximality condition for γ, namely

im (γ) = {g ∈ G | f̂(V̂ ) ∩ g · f̂(V̂ ) 6= ∅} .

This makes sure that for any x̂ ∈ V̂ , γ induces an isomorphism of stabilizers G′x̂ '
Gf̂(x̂).

2

Recall that a covering {Ui}i∈I of a set X is called fine if for any i, j ∈ I with
Ui ∩ Uj 6= ∅ there exists k ∈ I with Uk ⊂ Ui ∩ Uj. An atlas for the structure
of Banach orbifold on a Hausdorff space X is now a fine covering of X by local
uniformizing systems {Ui = Ûi/Gi}i∈I (i.e. {Ui} is an open covering of X) such that
for any i, j ∈ I there is a k ∈ I and open embeddings

Uk = Ûk/Gk ↪→ Ui = Ûi/Gi; Uk = Ûk/Gk ↪→ Uj = Ûj/Gj .

It is in general not possible to find an open embedding of the restriction of Ui = Ûi/Gi

to Ui ∩Uj into Uj = Ûj/Gj. Consider for instance the orbifold structure on S2 with
cyclic quotient singularities of orders 2 and 3 at the poles. This orbifold can be
covered by two local uniformizing systems R2 = C/Z2, R2 = C/Z3 via stereographic
projection from the poles. So unlike in the case of manifolds one has to restrict to
sufficiently small open sets to compare two local uniformizing systems.

As usual a (topological) Banach orbifold is defined as an equivalence class of
atlasses (or as a maximal atlas). If one requires all open embeddings f̂ to be dif-
ferentiable or holomorphic immersions, one arrives at differentiable and complex
Banach orbifolds. In the latter case the representations G → GL(T ) should of
course also be complex.

Quotients of manifolds by finite groups are examples of orbifolds, but the whole
point of the concept of orbifold is that not every orbifold is of this form. An easy

2Traditionally the actions of the groups are required to be effective. This is too restrictive for
our purposes: Any curve of genus 2 having a hyperelliptic involution, M2 is an instance of an
orbifold with Z2-kernel of the action everywhere, cf. below.
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example is S2 with a Zm-quotient singularity at one point P : If q : X → S2 is
a (wlog. connected) global cover, X \ q−1(P ) → S2 \ {P} is an unbranched cover,
hence trivial by simply connnectivity of the base, hence bijective. But any local
uniformizer at P is m to one. According to Thurston, orbifolds are called good or
bad depending on whether or not they are globally covered by manifolds.

Note that to build up an orbifold from a set of local uniformizing systems {Ui =
Ûi/Gi} through gluing by open embeddings, the cocycle condition has to be required
only on the level of the underlying sets Ui. On the level of uniformizers Ûi, the cocycle
condition may hold only up to action of the groups.

Note also that to any x ∈ X is associated a group Gx, the isomorphism class of
the stabilizer Gx̂ of a lift x̂ of x to any local uniformizing system containing x. It
is the smallest group of a local uniformizing system containing x. So the concept of
orbifold incorporates groups intrinsically associated to the points of X.

Natural examples of orbifolds are thus moduli spaces in complex analysis of
objects with finite automorphism groups and unobstructed deformation theory (the
latter for smoothness of local covers). As we saw in the last section, moduli spaces
Mg (or Mg,k) of Deligne-Mumford stable curves of fixed genus are such instances:
Local uniformizers at C are of the from S → S/Aut(C), S ⊂ Ext1(ΩC ,OC). What is
nice about viewingMg as orbifold is that unlike the underlying scheme or complex
space, the orbifold is a fine moduli space, i.e. wears a universal family of stable
curves. The latter is the orbifoldMg,1 of stable 1-pointed curves (C,x) fibered over
Mg via the forgetful and stabilization map (C, x) → Cst: Any family X → T of
stable curves of genus g over a complex manifold, say, is isomorphic to the pull-back
family T ×Mg Mg,1 → T for some morphism of orbifolds T → Mg (where T is
viewed as orbifold with trivial groups). Similarly for Mg,k.

Such a morphism of orbifolds is just a continuous map of the underlying topolog-
ical spaces with compatible lifts to local uniformizers. We will also need the notion
of orbi (vector) bundle. This is a morphism of orbifolds π : E → X that is locally
uniformized by projections E0 × Û → Û , E0 a Banach space. If the local groups
are GE and G for E|U and U then the action of GE on E0 × Û is required to be
diagonal via a linear representation of GE on E0 and an epimorphism GE → G.
Open embeddings of E have to be linear on the fibers E0. Note that the topological
fiber π−1(x) is isomorphic to E0/G

E
x and thus does not in general have an additive

structure. Tangent bundles of differentiable orbifolds are examples of orbibundles
(with GE = G everywhere).

Now let us proceed with our discussion of charts for C(M ; p). We will see that if
the domain (C,x) of (C,x, ϕ) is stable as abstract curve then the map Φ : S×V →
C(M ; p) from the end of Section 2.1 will indeed provide a local uniformizing system
at (C,x, ϕ). But if (C,x) is not stable as abstract curve, i.e. if (C,x, ϕ) has bubbles,
then dim Aut(C,x) > 0 and any η ∈ Lie Aut(C,x) induces a vector field vη on S
in such a way that the prestable curves are mutually isomorphic along any integral
curve of vη. We will see in the next section how to deal with this problem by taking a
slice to the induced equivalence relation on S×V . The slice will again be a family of
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Banach manifolds over S but with tangent space at (0, 0) ∈ S×V of the form S× V̄
and V̄ ⊂ Ľp1(C;ϕ∗TM) a linear subspace of codimension equal to the dimension of
Aut(C,x). Moreover, the slice can be taken Aut(C,x, ϕ)-invariant.

That the existence of the slice is not merely a simple application of the implicit
function theorem is related to the second problem that we face with our charts:
The action of the group of self-diffeomorphisms of C (and even of Aut0(C,x)) on
Ľp1(C;M) is only continuous, not differentiable. In fact, the differential with respect
to a one-parameter group of diffeomorphisms would mean applying the correspond-
ing vector field to the maps ϕ : C → M . This costs one derivative. So looking
at the simple case of nonsingular C, two choices of retraction κ, κ′ : C → C will
lead to two different structures of differentiable Banach orbifold near (C,x, ϕ): The
change of coordinates need not be differentiable. The solution to the problem is
that, locally, the differentiable structure relative S is well-defined. Since S is fi-
nite dimensional this will suffice to make the implicit function theorem work, albeit
locally in a version relative S.

From a categorical point of view we are thus led to a category of topological
Banach orbifolds that locally have a well-defined differentiable structure relative to
some finite dimensional spaces. From a point of view closer to algebraic geometry
one might alternatively view our Banach orbifold as “fibered in differentiable Banach
orbifolds over the Artin stack Mg,k”.

2.3 Slices

According to the discussion in the last section, under the presence of bubbles in
(C,x, ϕ), slices to the equivalence relation generated by the germ of the action of
Aut0(C,x) on S × V ⊂ S × Ľp1(C;ϕ∗TM) are needed. The usual method, applied
both in algebraic geometric and analytic approaches, is by rigidification. This means
inserting enough points y = (y1, . . . , yl) into (C,x) to make (C,x ∨ y) stable as
abstract curve. Here x∨y = (x1, . . . , xk, y1, . . . , yl) is the concatenation of x and y.
Explicitely, this means adding at least 3− i points to each rational component with
only i special points, i ∈ {1, 2}. By stability (!) the yi can be chosen in such a way
that ϕ is locally injective there. Choose locally closed submanifolds H1, . . . , Hl ⊂M
of real codimension two and transversal to ϕ through ϕ(y1), . . . , ϕ(yl). The slice is

γ =
{

(s, v) ∈ S × V
∣∣∣ ϕ(s, v)(yi) ∈ Hi } .

This will be a submanifold at (0, 0) ∈ S × V if transversality to Hi is an open
condition in the employed function spaces. This is indeed the case in function
spaces with at least one continuous derivative. So the idea of rigidification is to let
the map rule the deformation of the added points.

Unfortunately, this method does not work in our case, because local injectivity
is not an open condition in Lp1. The way out is an integral version of rigidification:
Let z : U → C restrict to holomorphic coordinates on Us = U ∩ Cs, where U ⊂ C
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is an open set with U0 contained in a bubble we want to rigidify. By stability, if
U0 is sufficiently large, there are differentiable bump functions ρ on M with ϕ∗ρ|U0

non-trivial and having compact support. Consider

λ(s, v) =

∫
Us

z · ϕ(s, v)∗ρ dµ(z)

/∫
Us

ϕ(s, v)∗ρ dµ(z) ,

which computes the center of gravity of ϕ∗ρ in the coordinate z(s) on Us. Assembling
one (respectively two different) such λ for each unstable component of (C,x) with
two (respectively one) special points into a vector valued function Λ : S × V → C

b,
b = dim Aut0(C,x), our candidate for a slice is

γ = Λ−1(λ0), λ0 = Λ(0, 0) .

Due to the lack of differentiability it seems hard to prove that this is in fact a slice,
i.e. induces a local homeomorphism Aut0(C,x)×γ → S×V on appropriate domains
of definition. However, this is easy if we choose z to be a linear coordinate, i.e. such
that the action of Aut0(C,x) is affine linear. Such coordinates can be constructed
explicitely, cf. [Si1]. Then the implicit function theorem allows to change coordinates
on S× V relative S in such a way that γ = S× V̄ , with V̄ ⊂ V a linear subspace of
codimension equal to dim Aut(C,x). Moreover, the slice can be chosen Aut(C,x, ϕ)-
invariant.

An alternative in the differentiable setting is to take directly linear slices of the
form S× V̄ , with V̄ ⊂ V complementary to the finite dimensional subspace spanned
by the action of Lie Aut(C,x). This is the approach of [FkOn]. Since we will finally
be only interested in the germ of C(M ; p) along Chol(M,J) we may assume the
centers (C,x, ϕ) of our charts to be J-holomorphic. The map ϕ is then smooth by
elliptic regularity. So Dϕ maps Lie Aut(C,x) to a finite dimensional subspace in
Ľp1(C;ϕ∗TM), to which we may choose a complementary subspace V̄ . Again, in our
setting, it seems hard to prove that S × V̄ is indeed a slice though.

2.4 Trivializing the relative tangent bundle

What is still missing is a structure of Banach bundle on

q1,p
∗ (κ∗ϕ∗TM) =

∐
s∈S

Ľp1(Cs; (ϕ ◦ κs)∗TM) ,

which should be viewed as tangent bundle of
∐

s Ľ
p
1(Cs;M) relative S, restricted to

{(Cs,xs, ϕ◦κs) | s ∈ S}. This problem is at the heart of our approach to symplectic
GW-invariants. Our solution has three ingredients:

1) For any ϕ ∈ Ľp1(C;M) there is a natural structure of holomorphic vector bundle
on the complex vector bundle (ϕ∗TM , ϕ

∗J), no matter ϕ is only Lp1. In particular,
we get a ϕ∗J-linear, first order linear differential operator

∂̄ϕJ : Ľp1(C;ϕ∗TM) −→ Ľp(C;ϕ∗TM ⊗C Ω̄) .
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Here Ω̄ = Λ0,1 is a bundle only away from Csing and the right-hand side is defined
by using frames of the form dz̄ on a branch of C near P ∈ Csing, z a holomorphic
coordinate of this branch at P .3

2) Prove the Poincaré-Lemma for the ∂̄-operator above. Then the sequence of
coherent sheaves on C

0 −→ O(ϕ∗TM) −→ Ľp1(ϕ∗TM)
∂̄ϕJ−→ Ľp(ϕ∗TM ⊗ Ω̄) −→ 0 (∗)

is exact (this is well-known for smooth C).

3) Use (2), plus the trivialization of Ľp-spaces via pull-back by κ, plus a Čech-
construction for the holomorphic part to exhibit the Banach bundle structure on
q1,p
∗ (κ∗ϕ∗TM).

Informally speaking, the ∂̄-operator is used to reduce the non-holomorphic part
to the simple case of Ľp-spaces, while the holomorphic part is taken care of by a
Čech construction. We should remark that this kind of argument does not work for
Ľpk with k > 1 because only a subspace of Ľpk is mapped to Ľpk−1 by ∂̄. This is due
to the continuity at the node imposed on sections of the latter sheaf. Restricting to
this subspace would mean a higher tangency condition of the two branches at the
nodes which is unwanted in the application to J-holomorphic curves. This dictates
the choice of Lp1 as modelling space in our approach.

The rest of this section is devoted to detailing the above steps.

Holomorphic structure on ϕ∗TM

The logic here is actually the other way around than presented above. Namely,
one first constructs the operator ∂̄ϕJ . There are various ways to do this, but at J-
holomorphic ϕ the choice should reduce to the ϕ∗J-linear part of the linearization of
the ∂̄J -operator (which is independent of choices of local trivialization). Letting ∇
be the Levi-Civitá connection on M with respect to some fixed Riemannian metric,
∇ϕ = ϕ∗∇ the induced connection on ϕ∗TM , our choice for (∂̄ϕJ )ξv is the ϕ∗J-linear
part of

1

2

(
∇ϕ
ξ v + J∇ϕ

j(ξ)v + (∇vJ)∂Jϕ(j(ξ))
)
,

where ξ ∈ Γ(TC), v ∈ Ľp1(C;ϕ∗TM), ∂Jϕ := 1
2
(Dϕ − J ◦ Dϕ ◦ j), j the complex

structure on C. Note that since we assumed ϕ to be only of class Ľp1, this expression
does not make pointwise sense, but only as Ľp-section of ϕ∗TM , itself only a complex
vector bundle of class Ľp1. Nevertheless, an application of the implicit function
theorem shows that local solutions of ∂̄ϕJ define a locally free coherent sheaf on C,
i.e. induce the structure of a holomorphic vector bundle on ϕ∗TM , cf. [HoLiSk] [IvSh].

3Equivalently, one may use the algebraically more natural relative dualizing bundle ωC/S . Local
frames near a singularity of C are now of the form dz/z, which requires insertion of the p-dependent
weight |z|p in the definition of the measure µ near Csing.
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Poincaré-Lemma for weighted Sobolev spaces

Away from the singularities of C, exactness of the stated sequence of sheaves is
well-known. What is left at a node is to prove surjectivity of the restriction of the
ordinary ∂̄-operator to each branch in non-standard Sobolev-spaces:

∂̄ : Ľp1(∆)→ Ľp(∆) .

These spaces can be identified with Sobolev-spaces on a half-infinite cylinder with
exponential weights e−µs by the identification

∆∗ −→ R>0 × S1, r eiϕ 7−→ (s, ψ) = (− log r, ϕ) ,

under which the ∂̄-operator transforms to an operator of the form e−s ·(∂s+i∂ψ). For
such linear elliptic differential operators on manifolds with cylindrical ends (R>0×N
with compact N) there does exist a general theory, which implies the needed result
[LcMc].

Alternatively, and maybe even more enlightening than invoking general theory,
one may employ the explicit right-inverse to the ∂̄-operator on the disk, given by
the Cauchy integral operator

T (g dz̄)(z) =
1

2πi

∫
∆

g(w)

w − z
dw ∧ dw̄ .

To show that T indeed maps Ľp to Ľp1 one just needs to estimate ∂ ◦ T . The latter
equals a singular integral operator

S(g dz̄)(z) =
1

2πi

(
lim
ε→0

∫
∆\Bε(z)

g(w)

(w − z)2
dw ∧ dw̄

)
dz .

The classical Calderon-Zygmund inequality says that S is a continuous endomor-
phism of Lp(∆). We claim that the same holds in Ľp(∆). With the classical
Calderon-Zygmund inequality at hand this can be done fairly easily, cf. the ap-
pendix to Chapter 2 in [Si1].

The Čech-construction

(∗) being a soft resolution of O(ϕ∗TM) the long exact cohomology sequence reads

0 −→ H0(ϕ∗TM) −→ Ľp1(ϕ∗TM)
∂̄ϕJ−→ Ľp(ϕ∗TM ⊗ Ω̄) −→ H1(ϕ∗TM) −→ 0 ,

where all sections are understood over the domain C of ϕ. Now let U = {Ui}i=0,...,d

be a finite open covering of C with (1) U0 has components conformally equivalent
to the unit disk minus a number of pairwise disjoint closed disks in its interior (so
this is an open Riemann surface of genus 0) (2) each Ui, i > 0, is conformally
equivalent to (possibly degenerate) cylinders Zt = {(z, w) ∈ ∆2 | zw = t}, and
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such that Ui ∩ Uj ∩ Uk = ∅ for any three pairwise different indices i, j, k. Write
Ci(U ;O(ϕ∗TM)) for the i-th (alternating) Čech cochains of holomorphic sections
extending continuously to the boundary. With the supremum norm these are Banach
spaces. U being a Stein (hence acyclic) cover there is a similar sequence

0 −→ H0(ϕ∗TM) −→ C0(U ;O(ϕ∗TM))
ď−→ C1(U ;O(ϕ∗TM)) −→ H1(ϕ∗TM) −→ 0 ,

where ď is the Čech coboundary operator. Note that C1(U ;O(ϕ∗TM)) consists of
cochains rather than cocycles, because by our choice of U triple intersections are
empty. To find an explicit quasi-isomorphism between the two middle arrows we
just need to go through standard constructions of cohomology theory: Define

Θ : Ľp1(ϕ∗TM) −→ C0(U ;O(ϕ∗TM)), f 7−→
(
f |Ui − T i(∂̄f |Ui)

)
i

Λ : Ľp(ϕ∗TM ⊗ Ω̄) −→ C1(U ;O(ϕ∗TM)), α 7−→
(
T j(α|Uj)− T i(α|Ui)

)
ij

where T i : Ľp(Ui;ϕ
∗TM ⊗ Ω̄)→ Ľp1(Ui;ϕ

∗TM) is a right inverse to ∂̄ϕJ as above. One
can show that Θ and Λ induce isomorphisms on kernels and cokernels of ∂̄ϕJ and ď.
This is equivalent to exactness of the associated mapping cone

0 −→ Ľp1(ϕ∗TM)
(∂̄
ϕ
J

Θ )
−→

Ľp(ϕ∗TM ⊗ Ω̄)
⊕

C0(U ;O(ϕ∗TM))

(Λ,−ď)−→ C1(U ;O(ϕ∗TM)) −→ 0 .

We have thus exhibited Ľp1-spaces as kernels of epimorphisms of Banach spaces that
we have good hope to trivialize in families. Alternatively, since all maps have right-
inverses, one may use a similar sequence with arrows reversed, cf. [Si1].

Introducing parameters

So far we have discussed the situation at a fixed curve (C,x, ϕ). For the purpose
of producing charts we wanted to identify Ľp1(Cs; (ϕ ◦ κs)∗TM) with Ľp1(C;ϕ∗TM),
where q : C → S (together with x : S → C×S . . .×S C, which is not of interest here)
is a semiuniversal deformation of (C,x), and κ : C → C is a Lipschitz retraction
to the central fiber as in 2.1, Cs = q−1(s), κs = κ|Cs . Using κs we may identify
Ľp(C;ϕ∗TM ⊗ Ω̄) with Ľp(Cs; (ϕ ◦ κs)∗TM ;⊗Ω̄). In view of (a parametrized version
of) the exact sequence of Banach spaces in the last paragraph, it remains to trivialize
spaces of Čech cochains. We choose an open covering U = {Ui}i=0,...,d of the total
space C in such a way that on Ui there are holomorphic functions z, w identifying
Ui(s) := Ui ∩ Cs, i > 0, with possibly degenerate cylinders Zti(s), ti ∈ O(S), while
on U0 there is just one holomorphic function z identifying U0(s) with a union of
plane open sets as above. (Holomorphic relative S would suffice for what follows.)
Together with continuously varying holomorphic trivializations of (ϕ ◦ κ)∗TM |Ui(s)
we are left to find isomorphisms between O(Zt)∩C0(Zt) for different t. This can be
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done by observing that these spaces are given (up to constants) by positive Fourier
series

∑
n>0 an e

inϕ on the two boundary circles |z| = 1 or |w| = 1 via

(an, bn) 7−→
∑
n>0

anz
n +

∑
n>0

bnw
n .

A similar method works for U0.

Summary

We summarize our discussion in the following

Theorem 2.4 Let (M,J) be an almost complex manifold. Then the space C(M ; p)
of stable complex curves in M of Sobolev class Ľp1 has the structure of a weakly
differentiable Banach orbifold with local group Aut(C,x, ϕ) at (C,x, ϕ).

Moreover, there is a weakly differentiable Banach orbibundle E over C(M ; p)
with fibers E(C,x,ϕ) uniformized by Ê(C,x,ϕ) = Ľp(C;ϕ∗TM ⊗ Ω̄). E has a weakly
differentiable orbibundle section s∂̄,J sending (C,x, ϕ) to ∂̄Jϕ. Its zero locus Z(s∂̄,J)
is the space Chol(M,J) of stable J-holomorphic curves with the Gromov-topology. �

Here “weak differentiability” means that the differentiable structure is well-defined
locally only relative to some finite-dimensional space. The differentiability proper-
ties of the section s∂̄,J will be further discussed in 3.1. The construction of E is
straightforward.

3 Construction of the virtual fundamental class

In this chapter we will outline our construction of the virtual fundamental class
along the lines of Chapter 1 inside the ambient space of Chapter 2.

3.1 Local transversality

We first show how to solve the problem locally, i.e. construct a manifold Z̃ con-
taining a neighbourhood of (C,x, ϕ) in Chol(M,J) as zero set of a map to a finite
dimensional space. In view of the analogy with the construction of germs of moduli
spaces of complex manifolds by Kuranishi [Ku] such datum is often called Kuranishi
model (here for Chol(M,J) at (C,x, ϕ)). Since the construction relies on the implicit
function theorem we will now have to discuss the regularity properties of s∂̄,J .

Recall that charts at (C,x, ϕ) are of the form S × V̄ ↪→ S × Ľp1(C;ϕ∗TM),
where V̄ is of finite codimension in Ľp1(C;ϕ∗TM) (of positive codimension whenever
(C,x, ϕ) has bubbles). Fixing s means fixing the domain (C,x), which implies
differentiability of all objects involved, including the local uniformizers Ê of E and
ŝ∂̄,J of s∂̄,J . However, due to the phenomenon discussed in Section 2.2, one can not
even expect the differential σ of ŝ∂̄,J relative S to be uniformly continuous. But
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since we used the ϕ∗J-linear part of σ as ∂̄-operator to trivialize q1,p
∗ (κ∗ϕ∗TM), σ

turns out to be uniformly continuous at the center of our charts. This is just enough
to apply the implicit function theorem in a version relative S.

Now let (C,x, ϕ) be J-holomorphic and let σ0 be the differential of ŝ∂̄,J relative
S at (0, 0) ∈ S × V̄ . Then

σ0(w) = ∂̄ϕJw + ϕ∗NJ(w,Dϕ)

for w ∈ T0V̄ ⊂ Ľp1(C;ϕ∗TM). So possibly up to a term of order zero and restriction to
a subspace of finite codimension in Ľp1(C;ϕ∗TM), σ0 is just the ∂̄-operator on ϕ∗TM .
By the results of Section 2.4 the latter is a Fredholm operator to Ľp(C;ϕ∗TM ⊗ Ω̄),
and so is σ0. Moreover, it is not hard to see that when restricted to sufficiently
small neighbourhoods of Csing, the corresponding operators are surjective. Therefore
we may choose α1, . . . , αc ∈ Ľp(C;ϕ∗TM ⊗ Ω̄) supported away from Csing, c =
dim cokerσ0, such that imσ0 +

∑
iCαi = Ľp(C;ϕ∗TM). We say that the αi span

cokerσ0. Define a morphism τ from a trivial bundle F = R
c over S × V̄ to Ê by

sending the i-th standard section to the parallel transport of αi. Then an application
of the implicit function theorem relative S to the section s̃ := q∗s + τ of q∗E (q :
F → S × V̄ the bundle projection), viewed as map from S × V̄ × Rc to Ê(C,x,ϕ) =

Ľp(C;ϕ∗TM⊗Ω̄), shows that Z̃ = Z(s̃) is a topological submanifold of F of expected
dimension plus rkF . The restriction of q∗F to Z̃ has a tautological section scan

(mapping f ∈ F to f). A germ of Chol(M,J) at (C,x, ϕ) is given by the zero locus
of scan.

If (C,x, ϕ) has non-trivial automorphisms we would like to make the Kuranishi-
model Aut(C,x, ϕ)-equivariant. Since it is not always possible to span cokerσ0 by
Aut(C,x, ϕ)-invariant sections (this is the notorious obstruction to transversality
under the presence of multiply covered components) this inevitably forces a non-
trivial action of G = Aut(C,x, ϕ) on the fibers of F . The easiest way to make τ
equivariant is then to replace F by FG (]G copies of F ) and define τG : FG → Ê on
the Ψ-th copy of F , Ψ ∈ Aut(C,x, ϕ), by (Ψ−1)∗ ◦ τ .

The choice of α to have support away from Csing will be convenient in going over
to other charts that we will need below.

3.2 Globalization

To globalize we would like to

• extend FG to an orbibundle over C(M ; p)

• extend τ by multiplication with a bump function that is differentiable relative
S in any chart S × V̄ .

Neither of these problems is immediate. On Banach orbifolds the existence of finite
rank orbibundles with effective actions of the local groups on the fibers, say on a
neighbourhood of a compact set, seems to be a non-trivial condition. The general
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solution to this question given in a previous version of [Si1] is insufficient, because
the cocycle condition can not be verified. Fortunately, such orbibundles do exist on
C(M ; p) by a method similar to the one given in [Be1, Prop.5].

To this end we now assume J tamed by some symplectic form ω. By slightly
deforming ω and taking a large multiple, we may assume ω to represent an integral
de Rham class. Then there exists a U(1)-bundle L over M with [ω] = c1(L). L is
the substitute for an ample line bundle in the algebraic setting. Let ∇ be a U(1)-
connection on L. Let π : Γ → C(M ; p) be the universal curve and ev : Γ → M
be the evaluation map sending p ∈ C over (C,x, ϕ) ∈ C(M ; p) to ϕ(p). So π is
a morphism of topological orbifolds with fiber over (C,x, ϕ) equal to the complex
analytic orbispace C/Aut(C,x, ϕ). As in Section 2.4 one shows that via ∇, ev∗L
has naturally the structure of a continuously varying family of holomorphic line
bundles over the fibers of π. And since [ω] evaluates positively on any non-constant
J-holomorphic curve, ϕ∗L is ample on any bubble component. To achieve ampleness
on the other components we just need to tensor with ωC(x1 + . . . + xk), which is
the sheaf of meromorphic 1-forms on C with at most simple poles at Csing and the
marked points xi. These sheaves fit again into a continuously varying family of
holomorphic line bundles ωπ(x) over the fibers of π. Then ev∗L⊗ ωπ(x) is π-ample
(i.e. ample on each fiber), hence has vanishing H1 on any fiber of π. Let N be a
sufficiently big natural number such that for any ]Aut(C,x, ϕ) points on C there
exist a section of (ϕL ⊗ ωC(x))⊗N vanishing at all but one point. We consider

π∗(ev∗L⊗ ωπ(x))⊗N :=
∐

(C,x,ϕ)∈C(M ;p)

Γ(C; ev∗L⊗N ⊗ ω⊗Nπ (x)) .

Using a Čech-construction as in Section 2.4 one shows that locally this is uniformized
by the kernel of a Fredholm epimorphism of Banach bundles (of Čech cocycles) over
C(M ; p) and hence glues to an orbibundle F of finite rank. Moreover, by the choice
of N , for any section α of Ľp(C;ϕ∗TM ⊗ Ω̄) with sufficiently small support there
exists a vector v of the fiber of F at (C,x, ϕ) such that the dimensions of the linear
subspace spanned by the Aut(C,x, ϕ)-orbits of v in F and of α in Ľp(C;ϕ∗TM ⊗ Ω̄)
coincide. Direct sums of bundles of this type allow to extend FG on a neighbourhood
of Chol(M,J) ⊂ C(M ; p).

As for extending the morphism τ , one might try to use parallel transports of
differentiable bump functions on Ľp1(C;ϕ∗TM), which do in fact exist provided p is
even. This will be insufficient for our purposes though. The problem is that if we
look at such bump functions constructed at a curve with bubbles (with deformation
space S say) from a chart centered at a curve without bubbles (with deformation
space S̄ say) then, locally, S fibers over S̄. Differentiability holds relative S but will
fail relative S̄. The way out is to take a “bump function” χ which regards only the
behaviour on an open set U ⊂ C \Csing. U has to be chosen in such a way that the
coordinates of S ruling the deformations of nodes belonging to the bubbles do not
influence the trivialization of q1,p

∗ (κ∗ϕ∗TM) over U . χ will not have bounded support
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on C(M ; p), but its restriction to Chol(M,J) does. This is enough for extending τ
along a neighbourhood of Chol(M,J) in C(M ; p). Note that by choosing suppαi
inside U , τ will be differentiable even relative Mg,k in any appropriately chosen
coordinate chart.

3.3 The Main Theorem

Since we need compactness (and for the construction of F ) we further assume J
tamed by some symplectic form ω. Fix R ∈ H2(M ;Z), g, k. Then Chol

R,g,k(M,J)
is compact. The direct sum of finitely many morphisms to E as in 3.2 yields a
morphism τ : F → E spanning the cokernels of the differentials of s∂̄,J relative

S in any chart S × V̄ centered at J-holomorphic (C,x, ϕ). Thus Z̃ = Z(s̃), s̃ =
q∗s + τ , q : F → C(M ; p), is a finite dimensional (topological) suborbifold of the
total space of F . It is also not hard to see that Z̃ can be naturally oriented by
complex linearity of ∂̄ϕJ , provided F is oriented too. The latter can be achieved by
taking F ⊕ F if necessary (this is just a matter of convenience; what one needs is a
relative orientation of q∗F over Z̃). Let ΘF be the Thom class of F . We set for the
virtual fundamental class of Chol

R,g,k(M,J)

GWM,J
R,g,k := [Z̃] ∩ΘF ∈ H2d(M,R,g,k)(Chol

R,g,k(M,J)) ,

where d(M,R, g, k) = dimCMg,k + c1(M,J) · R + (1 − g) dimCM is computed by
the Riemann-Roch theorem to be the index of ∂̄ϕJ plus dimMg,k (this needs to be
corrected if 2g + k < 3).

Theorem 3.1 The class GWM,J
R,g,k is independent of the choices made. Its image in

H∗(C(M ; p)) depends only on the symplectic deformation class of ω. �

Independence of choices (τ , the Sobolev index p) is easy to establish. The second
claim asserts independence under deformations of J inside the space of almost com-
plex structures tamed by some symplectic from. To this end one sets up a family
version of the approach with fixed J , from which independence of the image in
C(M ; p) follows immediately. For details we refer to [Si1].

3.4 Alternative approaches

The purpose of this section is to discuss, in a rather sketchy way, various other
approaches to the construction of virtual fundamental classes, as given by Fukaya
and Ono [FkOn], Li and Tian [LiTi2] and Ruan [Ru2]. Still another definition can
be extracted from a paper of Liu and Tian [LuTi] on a solution to the closely related
Arnold conjecture on non-degenerate exact symplectomorphisms (the latter is also
covered in [FkOn] and [Ru2]).

Recall that in formulating our problem as construction of a localized Euler class
of a section of a Banach orbibundle over a Banach orbifold we had to pay. The price
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consisted of

(1) working in spaces of maps with very weak differentiability (this caused problems
in the slice theorem, cf. 2.3)
(2) the loss of differentiability in a finite dimensional direction (which made the
construction of τ more subtle, cf. 3.1) and
(3) having to construct a finite dimensional orbibundle F with effective actions of
the local groups on the fibers, cf. 3.2.

But what we are finally interested in is the zero locus Z̃ ⊂ F of a perturbed section
s̃ = q∗s + τ . As a set, Z̃ consists of (isomorphism classes of) tuples (C,x, ϕ, f)
with (C,x, ϕ) ∈ C(M ; p), f ∈ F(C,x,ϕ), such that ∂̄Jϕ = τ(f). Thus if the sections
α ∈ Ľp(C ′; (ϕ′)∗TM ⊗ Ω̄) spanning the cokernel at various (C ′,x′, ϕ′) ∈ Chol(M,J),
that were used to construct τ , are chosen smooth, solutions ϕ of ∂̄Jϕ = τ(f) will be
smooth too by elliptic regularity. That is, in constructing Z̃ we may safely restrict
to spaces of smooth maps. A common feature of the other approaches to GW-theory
is that they work in ambient spaces of C∞-maps, and that Z̃ is first constructed
locally for any local, finite dimensional perturbation. The problem is then to find a
global object that matches up the local perturbations.

The local construction of Z̃ can be done by more or less straightforward mod-
ifications of the known gluing constructions for J-holomorphic curves in generic
situations (i.e. when the linearization of the relevant Fredholm operator is already
surjective), as given in [RuTi1] [Lu] [McSa]. “Gluing” means the following: Given
a nodal J-holomorphic curve ϕ : C → M and a family {Cs}s∈S of deformations of
C as prestable curve, one wants to deform ϕ to a family of J-holomorphic curves
ϕs : Cs →M . This is achieved by first constructing ϕs approximately by some kind
of differentiable gluing construction involving bump functions. The ∂̄J -operators
on the Cs set up a family of elliptic problems, albeit with varying Banach spaces
(here: versions of Lp1 and Lp). The basic analytic problem is to establish a uniform
estimate on the norm of the inverse of the linearized problem. Here one has to as-
sume that the linearization is invertible at s = 0, which is true for generic situations
as in op.cit. The inverse of the linearized problem enters into effective versions of
the implicit function theorem, which can then be applied to identify the solution
set as manifold. In the non-generic case one can consider a perturbed problem by
introducing abstract perturbation terms spanning the cokernel. A solution to the
latter problem will yield an ambient smooth space into which the original solution
set is embedded as zero set of finitely many functions, i.e. a Kuranishi model for
Chol(M,J) at (C,x, ϕ). Several choices of spaces, differentiable gluing and defor-
mation of abstract perturbation terms are possible, cf. op.cit. Notice that if the
perturbations are chosen smooth, then so will be the solutions of the perturbed
equation by elliptic regularity.

The problem of globalization of local transversality in this setting (in particular
in the presence of local automorphisms) is new. This is where the approaches differ
most.

1) Fukaya and Ono let the dimension of the perturbation space (rkF in our setting)
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and hence also the dimensions of the manifolds containing Z = Chol
R,g,k(M,J) locally

(dim Z̃ in our setting) vary along a finite open cover of Z. The result is a section
s′ with zero locus Z of a strange fiber space F → Z̃. Locally, the fiber space is
a finite union of orbibundles of finite ranks over finite dimensional orbifolds fitting
together nicely, but of jumping ranks and dimensions. In [FkOn] the basic obser-
vation is that while it is usually imposible to make orbifold sections transverse by
perturbation, one may do so by going over to sufficiently high multivalued sections
(“multisections”). These are sections of a symmetric product SlF that locally lift
to F⊕l. And transversality means transversality of each component of a lift, i.e. of
each branch of the multisection. The zero locus of a multisection is defined as the
union of the zero loci of its branches. A generic perturbation of s̃ will thus have a
zero locus which locally is the finite union of (oriented) orbifolds of the expected
dimension. The sums of the fundamental classes of these orbifolds, appropriately
normalized, glue to a homology class on the base. The same works for sections of the
strange fiber space F → Z̃. The homology class on Z̃ thus obtained is the virtual
fundamental class of Z. Note that if one insists on a class localized on Z one might
take a limit of these classes as the perturbations tend to zero. But since the maps
ev : Z →Mk, and q : Z →Mg,k extend to Z̃ this is not important for GW-theory.

2) Li and Tian also describe Z as zero locus of a section of a fiber space F → Z̃ with
jumping dimensions as in (1). But instead of trying to perturb the section, they
show how to glue cycles representing the Euler class and supported on Z̃ directly.

3) Ruan works inside the stratified Frechet orbifold of C∞-stable complex curves in
M . This is a topological space, but locally stratified into finitely many Frechet orb-
ifolds, depending on the combinatorial type of the curve. Nevertheless, by the gluing
construction, it suffices to work within this space. The argument proceeds analogous
to Section 1.2, i.e. one constructs the perturbation as morphism from a stratified or-
bibundle F of finite rank over the ambient space to a Banach bundle. Ruan claimed
that one may take a trivial orbibundle of the form (base space) × (RN/G), where
G is the product of the local groups of finitely many Kuranishi models covering
Z = Chol

R,g,k(M,J). This is not in general possible. The argument is however right if
one takes a non-trivial orbibundle e.g. as in Section 3.2.

4) Another method, due to Liu and Tian, uses a compatible system of perturbation
terms in the following sense: Z can be covered by finitely many local uniformizers
{VI = V̂I/ΓI}I , I = {i1, . . . , ik}, iν ∈ {1, . . . , n}, k ≤ m, with

• VI ∩ VJ = ∅ if ]I = ]J and I 6= J

• whenever I ⊂ J there are morphisms πIJ : VJ = V̂J/ΓJ → VI = V̂I/ΓI uni-
formizing open embeddings VJ ⊂ VI , and these are compatible in the obvious
way.

The VI = V̂I/ΓI are open sets in fibered products Ûi1 ×B . . .×B Ûik , and so are not
smooth for ]I > 1, but finite unions of manifolds. Using the πIJ one may compare
perturbation terms over different VI and thus define compatible systems {vI}I of
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perturbation terms. For a generic choice of {vI} the zero loci of the perturbed section
{(ŝ∂̄,J)I − νI} form a compatible system of finite dimensional oriented orbifolds

Ẑν
I ⊂ V̂I . This suffices to produce a homology class on the underlying space of the

expected dimension Zν ⊂ B.

While it might be somewhat tedious to do this in detail, it is rather obvious that
all these definitions lead to the same homology class in an appropriate common am-
bient space, say C(M ; p). In fact, in all these approaches one might take as Kuranishi
model the restriction of our embedding Z = Z(scan) ⊂ Z̃ to open sets, at least if
we choose our perturbations α sufficiently smooth. The problem is then essentially
reduced to comparing various constructions of Euler classes for orbibundles in finite
dimensions.

4 Axioms for GW-invariants

4.1 GW-invariants

There are several ways to extract symplectic invariants from the virtual fundamental
classes GWM,J

R,g,k ∈ H∗(Chol
R,g,k(M,J)). Assume that 2g + k ≥ 3. Then Mg,k exists as

orbifold and in particular obeys rational Poincaré-duality. There are diagrams

Chol
R,g,k(M,J)

ev−→ Mk

p ↓
Mg,k

with ev and p the evaluation respectively forgetful map sending (C,x, ϕ) to (ϕ(x1),
. . . , ϕ(xk)) and to the stabilization of (C,x) respectively. Note that both maps
extend to CR,g,k(M ; p). By Theorem 3.1 we conclude

Proposition 4.1 The associated GW-correspondence

GWM
R,g,k : H∗(M)⊗k −→ H∗(Mg,k),

α1 ⊗ . . .⊗ αk 7−→ p∗

(
GWM,J

R,g,k ∩ ev∗(α1 × . . .× αk)
)

is invariant under deformations of J inside the space of almost complex structures
tamed by some symplectic form. In particular, GWM

R,g,k is an invariant of the sym-
plectic deformation type of (M,ω). �

The following equivalent objects are also common:

• composition of GWM
R,g,k with Poincaré duality H∗(Mg,k)→ H∗(Mg,k)

• the associated homomorphism H∗(Mg,k)⊗H∗(M)k → Q

• the cycle (p× ev)∗GWM
R,g,k ∈ H∗(Mg,k ×Mk).

29



Of these the second one is probably the most intuitive. For cycles K ⊂ Mg,k,
A1, . . . , Ak ⊂ M it counts the “ideal” number of k-marked stable J-holomorphic
curves (C,x, ϕ) in M of genus g with (C,x)st ∈ K and the i-th point mapping to
Ai. “Ideal” means that this agrees with the actual (signed) number only in nice
situations, say when Chol

R,g,k(M,J) is indeed an orbifold of the expected dimension
which is transversal to K×A1× . . .×Ak under p× ev. I prefer to reserve the name
GW-invariant for such numbers, i.e. by applying the second map to a product of
cycles.

As already pointed out in [RuTi1, Rem.7.1] one can also define invariants by
restricting the domain to certain singular curves and requiring homological condi-
tions for the restriction of the maps to subcurves. The full perspective of this point
of view has been given in [BeMa], where marked modular graphs τ are introduced
as book-keeping device for the combinatorial data, cf. Definition 1.2 in [Be2] (we
adopt the abuse of notation and use τ both for the marked modular graph and the
associated stable modular graph, i.e. with the marking omitted). If τ has n vertices
and l edges the corresponding moduli spaces Cτ (M) = Chol

τ (M,J) (this corresponds
to M(M, τ) in [Be2]) are constructed as fiber over a product of diagonals ∆l ⊂M2l

of a partial evaluation map

pev :
n∏
i=1

Chol
Ri,gi,ki

(M,J) −→ MΣki −→M2l .

The meaning of this is that any edge of τ implements the requirement that the two
marked points of the subcurves (=̂ vertices of τ) bounding the edge, map to the
same point in M . We refer to [Be2] for details of this concept.

To define virtual fundamental classes on these more general moduli spaces let
δ∆l ∈ H∗∆l(M

2l) be Poincaré dual to ∆l. We may then set

GWM
τ :=

(∏
i

GWM
Ri,gi,ki

)
∩ pev∗δ∆l ∈ H∗(Cτ (M))

as virtual fundamental class of Cτ (M) (this corresponds to J(M, τ) in [Be2]). As
above we get an associated GW-correspondence

GWM
τ : H∗(M)⊗]Sτ −→ H∗

(
Mτ :=

∏
i

Mgi,ki

)
,

where Sτ is the set of tails of τ (which encode the positions of marked points).

4.2 Properties

From the intuitive geometric meaning one expects GW-invariants to have a number
of properties. These turned up as proven identities for a restricted class of varieties
[RuTi1], Thm.A and Prop. 2.5, and in [RuTi3], or as axioms for GWM

R,g,k in [KoMa].
The corresponding axioms for the system of GW-correspondences parametrized by
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marked modular graphs are given in [BeMa], cf. also [Be2]. As the presentation there
is quite appropriate we just indicate what is to be added to establish axioms I–V in
op. cit. in the symplectic context. For statement and geometric explanation of the
axioms we mostly refer to op. cit.

One should probably add to the axioms the important property of invariance
under deformations of the (tamed) almost complex structure (respectively, under
smooth projective deformations in the algebraic setting) that we have already com-
mented on.

I. Mapping to point

This is the case R = 0. Since by the Wirtinger inequality, ω(ϕ∗[C]) = 0 for a
connected J-holomorphic curve ϕ : C →M implies ϕ ≡ const, we get

Chol
0,g,k = Mg,k ×M

with universal curve π = p× Id :Mg,k+1×M →Mg,k×M . This is an orbifold, but
possibly of the wrong dimension. In fact, the cokernels of the linearization of s∂̄,J glue
to R1π∗ev∗TM = R1p∗O�TM (that we view as orbibundle rather than its orbisheaf of
sections). We set F = R1π̃∗ẽv∗TM and define τ : F → E = π̃p∗(ẽv∗TM ⊗ Ω̄) in such a
way that it restricts to a lift of this identification. For clarity we wrote this time π̃, ẽv
for the extensions of π, ev to C0,g,k(M ; p). Then Z̃ = Z(s̃ = q∗s+ τ) ⊂ F is nothing
but Chol

0,g,k(M,J), and [Z̃]∩ΘF computes the Euler class of R1π∗ev∗TM = R1p∗O�TM
as claimed in the axiom “mapping to point”.

II. Products

This axiom forced our definition of the virtual fundamental class for non-connected
τ .

III. Gluing tails/cutting edges

Again, this axiom follows directly from our definition of virtual fundamental classes,
now for connected components of τ with more than one vertex.

IV. Forgetting tails

Forgetting tails in a marked modular graph means omitting marked points from a
stable complex curve and stabilizing (as complex curve in M). Let us restrict to
τ = (R, g, k), from which the general case follows easily. In view of the analogous
fact forMg,k and our construction of charts for CR,g,k(M ; p), the corresponding map

Φ : CR,g,k+1(M ; p) −→ CR,g,k(M ; p)

is easily checked to be the universal curve. If Ek and sk = s∂̄,J are the Banach
bundle and section over CR,g,k(M ; p), then Φ∗Ek, Φ∗sk can be identified with the
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bundle and section Ek+1, sk+1 over CR,g,k+1(M ; p). Let τ : F → Ek span the cokernel
of the (relative) linearization of sk. Then Φ∗τ will span the cokernel of the (relative)
linearization of sk+1. We obtain

Z̃k+1 = Z(s̃k+1 = Φ∗s̃k) = Φ−1
(
Z(s̃k = q∗sk + τ)

)
= Φ−1(Z̃k) ,

and hence

GWM
R,g,k+1 = [Z̃k+1] ∩ΘΦ∗F = Φ!

(
[Z̃k] ∩ΘF

)
= Φ!GWM

R,g,k .

V. Isogenies

Among the axioms this is the most interesting, having as consequence for instance
the associativity of quantum products. The axiom comprises those modifications of
marked modular graphs that do not change its genus. There are four basic cases:

1. (Contraction of a loop) Omitting a loop, i.e. an edge connecting a vertex
with itself, from a modular graph corresponds to dropping the requirement
that a certain subcurve has a non-disconnecting double point. In a sense this
case says something about potential smoothings of such double points of the
domain.

2. (Contraction of a non-looping edge) Non-looping edges correspond to discon-
necting double points of the curve. Contraction of such an edge means that
we consider two adjacent subcurves of genera g1, g2 as one subcurve of genus
g1 + g2. So here we deal with potential smoothings of disconnecting double
points.

3. (Forgetting a tail) As in axiom IV, but the conclusion will be different.

4. (Relabelling) This treats isomorphisms of marked modular graphs, which in
particular covers renumberings of the set of marked points.

Let τ be the marked modular graph obtained from σ by any of the operations (1)–
(4). There is an embedding Cσ(M) ↪→ Cτ (M) over the closed embedding of moduli
spaces of curves Mσ ↪→ Mτ . The latter is divisorial in the first three cases and
an isomorphism in the last case. Except possibly in (2) the choice of τ and the
underlying modular graph of σ determine the marking of σ and the diagram

Cσ(M) −→ Cτ (M)

qσ ↓ ↓ qτ
Mσ −→ Mτ
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is cartesian. Let δMσ ∈ H∗Mσ
(Mτ ) be Poincaré dual to Mσ. The axiom can then

be formulated by requiring

GWM
σ = GWM

τ ∩ q∗τδMσ .

In case (2) the homology class R of the joined subcurve of τ can be arbitrarily
distributed to the two adjacent subcurves of σ. We get a proper surjection

h :
∐

R=R1+R2

Cσ=σ(R1,R2)(M) −→ q−1
τ (Mσ) = Mσ ×Mτ Cτ (M) .

Note that h is not injective if there are J-holomorphic curves with bubbles inserted
at the double points. The claim is∑

R=R1+R2

h∗

(
GWM

σ

)
= GWM

τ ∩ q∗τδMσ .

Except in the evident case (4) the proof runs as follows. We again restrict to the
basic case τ = (R, g, k). The embedding Mσ ↪→ Mτ identifies Mσ with a divisor
parametrizing singular curves or curves with two infinitely near marked points. By
the form of our charts it is not hard to see that the Kuranishi space Z̃τ ⊂ F for
Cτ (M) intersected with q−1

τ (Mσ) is a union of suborbifolds Z̃σ that can be identified
with Kuranishi spaces for the components of q−1

τ (Mσ). Capping with the Thom
class of F yields the result.

5 Comparison with algebraic GW-invariants

For a smooth complex projective variety M ⊂ IPN we have now two definitions of
virtual fundamental classes fulfilling the list of axioms plus deformation invariance:
The symplectic ones GWM

σ discussed so far (where J = I is the integrable complex
structure tamed by the Fubini-Study form), and algebraic ones J(M,σ) discussed
in [Be2]. The latter are taken here in H∗(Cσ(M)) by sending the analogous Chow
class in the Deligne-Mumford stack M(M, τ) to its homology class on the underlying
complex space. It is natural to expect

Theorem 5.1 [Si4] For any marked modular graph σ

GWM
σ = J(M,σ) . �

It suffices of course to treat the case σ = (R, g, k). To compare the two definitions it
is most convenient to work in the category of complex orbispaces, which are defined
analogous to complex orbifolds, but with local models taken as finite group quotients
of complex spaces (the underlying space will also be a complex space, but we want
to keep in mind the group actions).

We first present an argument that does not work as stated, but where the basic
reason for this equivalence is apparent, and then outline the actual proof.

33



5.1 A model argument

Let us pretend that we can find τ : F → E in such a way that

• Z̃ = Z(s̃ = q∗s + τ) ⊂ F is a complex suborbifold and F̃ = q∗F |Z̃ is a
holomorphic vector bundle with holomorphic tautological section scan : Z̃ →
F̃ .

• The induced structure of complex orbispace on Cσ(M) = Z = Z(scan) is the
right one (coming from the notion of holomorphic families of stable holomor-
phic curves in M).

According to [Fu, §14.1] the Euler class of F̃ can be expressed in terms of the normal
cone CZ|Z̃ of Z in Z̃ and the total Chern class of F̃ |Z by{

c(F̃ ) ∩ s(CZ|Z̃)
}
d
.

Here d = dim Z̃ − rkF̃ = d(M,R, g, k) is the expected dimension of Z and s(CZ|Z̃)

is the Segre class of CZ|Z̃ . By construction, Z̃ is smooth over the Artin stack Mg,k of
prestable curves (we should work with the analytic analogue here). Let TZ̃|Mg,k

be the

relative tangent bundle, which is in fact an ordinary vector bundle over Z̃, cf. below
for an explicit construction. Next observe that cF (Z/Mg,k) := c(TZ̃/Mg,k

) ∩ s(CZ|Z̃)
is a class intrinsically associated to Z → Mg,k, i.e. does not depend on the choice
of embedding into a space smooth over Mg,k. This is a relative version of Fulton’s
canonical class [Fu, Expl.4.2.6]. We may thus write

GWM
σ =

{
c(F̃ − TZ̃/Mg,k

) ∩ cF (Z/Mg,k)
}
d
.

There is a quasi-isomorphism

TZ̃/Mg,k

q∗−→ TCσ(M)/Mg,k
= π1,p

∗ ev∗TM

Dscan ↓ ↓ ∂̄=DMg,k
s∂̄,I

F̃
τ−→ E = πp∗(ev∗TM ⊗ Ω̄)

where q∗ and the tangent bundle and differential relative Mg,k are only meant for-
mally, but are defined directly. The right-hand vertical arrow in turn is quasi-
isomorphic to Rπ∗ev∗TM (to make this precise one should represent Rπ∗ev∗TM by
a morphism of vector bundles, cf. below). We obtain

GWM
σ =

{
c(Rπ∗ev∗TM) ∩ cF (Z/Mg,k)

}
d
.

This is exactly the formula that one can derive for J(M,σ) [Si3], for Behrend’s
relative obstruction theory is of the form (Rπ∗ev∗TM)∨ → L•Cσ(M)/Mg,k

.

This argument is of course somewhat ad hoc and does not work as stated, because
a τ with the required properties does not in general exist. But it shows already
the basic reason behind the equivalence of the two theories: Rπ∗ev∗TM can be
interpreted as virtual tangent bundle of Cσ(M) relative Mg,k when viewed either as
zero locus of s∂̄,I or as equipped with an obstruction theory relative Mg,k.
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5.2 Sketch of proof by comparison of cones

Recall that the construction of J(M,σ) worked by writing R1π∗ev∗TM as homomor-
phism of vector bundles [G→ H], constructing a cone CH ⊂ H invariant under the
additive action of G and intersecting [CH ] with the zero section of H. Our proof
that this class coincides with the symplectic virtual fundamental class is divided into
three steps: (1) Local construction of complex analytic Kuranishi models (2) a limit
construction to obtain a (bundle of) cone(s) C(τ) ⊂ F |Z of dimension d+ rkF and
supporting a homology class [C(τ)] of the same dimension (3) finding a monomor-
phism of vector bundles µ : H ↪→ F |Z with µ![C(τ)] = [CH ]. µ! is defined as cap
product with the pull-back of the Thom class of (F |Z)/H. The theorem then follows
from

GWσ(M) = [Z̃] ∩ΘF = [C(τ)] ∩ΘF = [CH ] ∩ΘH = J(M,σ) .

Analytic Kuranishi models

Finding Kuranishi models in an integrable situation is actually easier than generally,
because we may restrict to holomorphic maps near the double points. Let (C,x, ϕ)
be a stable holomorphic curve, i.e. the map ϕ : C → M be holomorphic. As in
Section 2.4 let (q : C → S,x) be a semiuniversal deformation of (C,x). If Ci are the
irreducible components of C, we choose this time an open covering U = {Ui}i=0,...,d

of C with the following properties:

• for i > 0 there are holomorphic maps

zi : Ui −→ ∆

extending holomorphically to Ui and inducing isomorphisms Ui(s) := Ui ∩
q−1(s)→ ∆ for any s ∈ S

• Ui(0) ⊂ Ci and Ui ∩ Uj = ∅ for i, j > 0

• U0 = C \
⋃
i>0 z

−1
i (∆1/2), ∆1/2 = {z ∈ C | |z| < 1/2}

• for i > 0 there are holomorphic charts

M ⊃ Wi
γi−→ C

n

with ϕ(Ui(0)) ⊂ Wi.

The part over U0 is dealt with by the space HomS(U0;M), that as a set consists of
holomorphic maps U0(s)→M extending continuously to U0(s). Using a Čech con-
struction together with the fact that open Riemann surfaces have vanishing higher
coherent cohomology (they are Stein), one can show

Proposition 5.2 HomS(U0;M) is a complex Banach manifold submerging onto S.
�
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By this we mean of course that this complex Banach manifold represents a certain
functor. The functor associates to a morphism ϕ : T → S the set of holomorphic
maps from T ×S U0 to M that extend continuously to T ×S U0.

For i > 0 we may identify (an open set in) Lp1(Ui(s);M) with Lp1(∆;Wi) via zi
and γi, and Lp1(U0(s) ∩ Ui(s);M) with Lp1(A1/2;Wi), A1/2 = ∆ \∆1/2. Consider the
differentiable map of complex Banach manifolds

H : HomS(U0;M)×
∏
i>0

Lp1(∆; γi(Wi)) −→
∏
i>0

Lp1(A1/2;Cn)(
ψ0 : U0(s)→M ;ψi

)
7−→

(
ψi − γi ◦ ψ0 ◦ z−1

i

)
.

H−1(0) can be identified with an open neighbourhood of ϕ in the space of Lp1-maps
ψ : Cs → M , some s ∈ S, that are holomorphic on U0(s). H is a split submersion
along H−1(0). Hence

Proposition 5.3 B := H−1(0) is a complex Banach manifold. �

The ∂̄-operator can now be viewed as holomorphic map

G : B −→
∏
i>0

Lp(A1/2;Cn) ,

and this induces the complex analytic structure on HomS(C;M) = G−1(0). An
embedding of HomS(C;M) into a finite dimensional complex manifold submerging
onto S can be found as follows: Let Q ⊂

∏
i>0 L

p(A1/2;Cn) be a finite-dimensional
linear subspace spanning the cokernel of the linearization of G at some holomorphic
ϕ. Q exists by the Stein property of U0(0). Then G−1(Q) is the desired finite-
dimensional complex manifold containing (an open part of) HomS(C;M) as closed
complex subspace.

Note that by taking a basis of Q as perturbation terms α and a trivialization
of E compatible with the complex analytic structure over Wi in the construction of
τ : F → E (Section 3.2) we may achieve:

Let (C,x, ϕ) ∈ Cσ(M). Then, locally, there is a complex subbundle F h ⊂
F such that τh := τ |Fh spans the cokernel of the linearization of s∂̄
relative Mg,k and Z̃h := Z̃ ∩ F h is a complex orbifold.

For this purpose let B̄ be the image of B in C(M ; p). Then by the choice of τ , Z̃h

must be a subset of F h|B̄, while over B̄ a uniformizer of s̃h factorizes over G. Note
that Z̃h is Z(s̃h) with s̃h = (qh)∗s+ τh, qh = q|Fh .

The limit cone

The next step concerns the construction of the cone C(τ) ⊂ F |Z that we will get as
limit of t · Z̃ ⊂ F as t tends to infinity. This has nothing to do with holomorphicity.
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We start with any τ : F → E over our Banach orbifold Cσ(M ; p) spanning the
cokernel of σ and write as usual q : F → Cσ(M ; p) for the bundle projection. For
any l > 0

F × Rl 3 (f, v) 7−→ s∂̄(q(f)) + |v|2 · τ(f) ∈ E

defines a section s̃l of q∗l E , ql = q ◦ pr1 the projection from F × Rl to Cσ(M ; p). s̃l
is constant on spheres {f} × Sl−1

t (0). For t 6= 0 the zero locus Z̃l of s̃l restricted to
F × Sl−1

t (0) is just (t · Z̃)× Sl−1
t (0), while Z̃l ∩ (F × {0}) = F |Cσ(M).

Definition 5.4 Let A = Z̃l ∩ (F × (Rl \ {0})) and A its closure in F × Rl. The
limit cone C(τ) ⊂ F of s∂̄ with respect to τ is defined as A ∩ (F × {0}). �

C(τ) is the set-theoretic limit of t · Z̃ as t tends to infinity. As such it (1) does
not depend on l and (2) lies over the zero locus Cσ(M) of s∂̄. The reason for
introducing l is the exact sequence of (second kind) homology groups

Hl+d+r(C(τ)) −→ Hl+d+r(A) −→ Hl+d+r(A) −→ Hl+d+r−1(C(τ)) .

Here r = rkF , d = d(M,R, g, k). The fundamental class [A] of the oriented manifold
A will extend uniquely to a (l+ d+ r)-homology class (conveniently denoted [A] by
abuse of notation) on A, provided l + d + r − 1 > dimC(τ). This uses the general
vanishing theorem for homology, cf. [Iv, IX.1,Prop. 1.6]. But from C(τ) ⊂ F |Cσ(M),
dimC(τ) < r + dim Cσ(M) is always finite, so the inequality can be fulfilled by
choosing l large enough. We can now define a homology class on C(τ) that is the
limit of [t · Z̃].

Proposition 5.5 Let δ0 ∈ H l
{0}(R

l) be Poincaré dual to {0} ⊂ Rl. Then

[C(τ)] := [A] ∩ δ0 ∈ Hd+r(C(τ))

is independent of l and homologous to [Z̃] as class on F . �

Note that the construction of C(τ) and [C(τ)] actually happens in finite dimensions.
This is more apparent if we work in q∗F over the fixed finite dimensional orbifold
Z̃. Let scan be the tautological section of q∗F . The natural map q∗F → F identifies
the graph Γt·scan of t · scan with t · Z̃, and we may as well work with these graphs.

In a holomorphic situation we retrieve the following familiar picture [Fu, § 14.1]:
Let E be a holomorphic vector bundle over a complex manifold N (the following
construction works for singular spaces too), and let Z be the zero locus of a holomor-
phic section s of E. The differential of s induces a closed embedding of the normal
bundle NZ|N of Z in N into E. NZ|N is the linear fiber space over Z associated
to the conormal sheaf I/I2 (the analytic analogue of SpecZS

•I/I2 in the algebraic
situation), I the ideal sheaf of Z in N . The normal cone CZ|N (the analytic ana-
logue of SpecZ⊕d≥0 Id/Id+1) is a closed subspace of NZ|N . Let ι : CZ|N ↪→ E be the
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induced closed embedding. Take the identity morphism E → E for τ . Then t · Z̃ is
the graph of t · s. One can show [Fu, Rem.5.1.1]

C(τ) = ι(CZ|N) (as spaces) and [C(τ)] = ι∗[CZ|N ] = [ι(CZ|N)] .

This will be used below to identify C(τh) with the image in F h of the normal cone
of Z = Cσ(M) in Z̃h. The use of shcan will be equivalent to the present use of the
identity morphism.

The other ingredient will be the following method to get rid of a non-holomorphic
part of τ locally.

Proposition 5.6 Let F = F h ⊕ F̄ be a decomposition such that

• τh := τ |Fh spans the cokernel of the linearization σ along Z = Z(s) and has
the regularity properties of τ

• τ̄ := τ |F̄ maps to imσ along Z.

Then C(τ) = C(τh)⊕ F̄ and [C(τ)] = [C(τh)]⊕ [F̄ ]. �

The proof runs by considering the two-parameter family s̃t,u := q∗s + t · τh + u · τ̄
of perturbed sections with |u| ≤ |t|. This interpolates between the original family
s̃t = s̃t,t and the family s̃t,0 having F̄ added as trivial factor. As long as t 6= 0,
Z̃t,u = Z(s̃t,u) is a suborbifold of F . Essential is:

Lemma 5.7 The set-theoretic limit of Z̃t,u as t, u→ 0, |u| ≤ |t|, equals C(τh)⊕ F̄ .
More precisely,

cl
( ⋃

t6=0
|u|≤|t|

Z̃t,u × (t, u)
)
∩ (F × (0, 0)) =

{
(f, g) ∈ F h ⊕ F̄

∣∣∣ f ∈ C(τh)
}
.

�

Let us write, in a slightly imprecise but intuitive way, [C(τ)] = limt→0[Z̃t], to indicate
both set-theoretical and homological convergence. The proposition follows from

[C(τ)] = lim
t→0

[Z̃t,t] = lim
t,u→0
|u|≤|t|

[Z̃t,u]

= lim
t→0

[Z̃t,0] = lim
t→0

[Z̃h
t ]⊕ [F̄ ] = [C(τh)]⊕ [F̄ ] .

As for the lemma we may restrict attention to a fixed fiber Fz over z ∈ Cσ(M).
One may then use uniform continuity of the relative differential σ at centers of local
uniformizing systems in connection with the implicit function theorem to modify
sequences (fν , gν) ∈ Z̃tν ,uν with limit (f, g) ∈ C(τ) to (f ′ν , g

′
ν) ∈ Z̃tν ⊕ F̄ with the

same limit. This shows C(τ) ⊂ C(τh)⊕ F̄ . The converse inclusion is evident.

The following will also be used.
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Lemma 5.8 Let χ be a continuous function on Cσ(M ; p) without zeros on an open
set U . Then

C(τ)|U = C(χ · τ |U), [C(τ)]|U = [C(χ · τ |U)] . �

This is because multiplication by χ on the fibers of F induces an isomorphism from
Z(q∗s+ t · χ · τ) to Z(q∗s+ t · τ).

Global comparison

We begin by recalling the global free resolution of Rπ∗ev∗TM used by Behrend [Be1,
Prop. 5]. Let π : Γ → Cσ(M) be the universal family, ev : Γ → M the universal
morphism. By a twisting procedure with a relatively ample line bundle one obtains
a sequence of holomorphic vector bundles

0 −→ K −→ N −→ ev∗TM −→ 0

with π∗K = π∗N = 0. Then Rπ∗ev∗TM is (up to unique isomorphism) given by the
homomorphism of vector bundles G := R1π∗K → H := R1π∗N viewed as complex
in degrees 0 and 1, as element of the derived category. The latter vector bundles
can be described as cokernels of ∂̄-operators that one obtains by resolving the above
sequence by sheaves of fiberwise Sobolev sections and pushing forward. We get a
diagram of complex (rather than holomorphic) Banach bundles

0 0
↓ ↓

0 −→ π1,p
∗ K −→ π1,p

∗ N −→ π1,p
∗ ev∗TM =: T −→ 0

∂̄K ↓ ↓ ∂̄N ↓ ∂̄
0 −→ πp∗(K ⊗ Ω̄) −→ πp∗(N ⊗ Ω̄) −→ πp∗(ev∗TM ⊗ Ω̄) = E −→ 0

↓ ↓
G

d−→ H
↓ ↓
0 0

As we will occassionally do in the sequel, we omitted to indicate some restrictions
to Cσ(M). Similarly to the construction of τh above we may now construct local
homomorphisms τi : H → E that come from lifts to πp∗(N ⊗ Ω̄) of local holomorphic
sections of H with support away from the singular locus of π. τi is easily seen to
span the cokernel of σ = ∂̄. In fact, locally, we even obtain a cartesian diagram of
vector bundles

G −→ T
d ↓ ↓ ∂̄

H
τi−→ E .
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K andN extend naturally to Cσ(M ; p), and so doH, G and τi. Keeping the notations
H, G and τi for the extended objects we may set

F := H⊕l, τ =
∑
i

χiτ
i : F −→ E ,

where we now insist on the bump functions χi to form a partition of unity along
Cσ(M) (this can be done by going over to χi/

∑
j χj). Then τ composed with the

diagonal embedding H ↪→ F spans the cokernel of σ along all of Cσ(M). To compare
Behrend’s cone CH ⊂ H and C(τ) we embed H in F diagonally:

µ : H −→ F, h 7−→ (h, . . . , h) .

Over an open set where τi spans the cokernel, put F h := Fi and ιi : Fi ↪→ F the
embedding. Then τ |Fi = χiτi is, up to a harmless scaling factor, of the form as
given in the construction of analytic Kuranishi models. Put τh := τi. To find the
complementary subbundle F̄ , let T̃ := F ⊕τ T = {(f, v) | τ(f) = σ(v)}. T̃ should
be viewed as tangent bundle of Z̃ relative Mg,k. Both Fi and imµ span the cokernel
of the projection T̃ → F . A linear algebra argument gives:

Lemma 5.9 Over the open set under consideration there exists a (continuous) sub-
orbibundle P ⊂ T̃ with F̄ := σ(P ) complementary to both µ(H) and ιi(Fi). �

Proposition 5.6, applied to F = F h ⊕ F̄ , now shows

C(τ) = C(χiτi)⊕ F̄ and [C(τ)] = [C(χiτi)]⊕ [F̄ ] .

By Lemma 5.8 we may also replace χiτi by τh = τi. Let ρ : F → Q be the cokernel
of µ. By transversality of F̄ to imµ we may identify F̄ with Q via ρ. Let ΘQ be the
Thom class of Q. Then

µ![C(τ)] = [C(τ)] ∩ ρ∗ΘQ = [C(τh)] .

It thus remains to show that C(τh) coincides with CH ⊂ H. To this end note
that the morphism

ϕ• : [Fi → ΩZ̃h/M|Z ] −→ [I/I2 → ΩZ̃h/M|Z ] ,

that we obtain from the description of Z as zero locus of shcan in Z̃h (with ideal sheaf
I), is a (global resolution of a perfect) obstruction theory as defined in [BeFa], or a
free global normal space in the language of [Si2]. Note that the right-hand side of
ϕ• is isomorphic to the truncated cotangent complex τ≥−1L

•
Z of Z. And C(τh) is

exactly the closed subcone of F h|Z obtained from this obstruction theory.

Let G = O(G∨), H = O(H∨) be the sheaves corresponding to G and H. Then
H = Fi and G can be identified with ΩZ̃h/M|Z . Let

ψ• : [H → G] −→ [I/I2 → ΩZ̃h/M|Z ]

be the obstruction theory used for algebraic GW-invariants in [Be1], cf. [BeFa] before
Prop. 6.2. The central result is
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Proposition 5.10 With the identifications H = Fi, G = ΩZ̃h/M|Z, ϕ• and ψ• are
locally homotopic, i.e. equal as morphisms in the derived category. �

Since the cone belonging to an obstruction theory depends only on the morphism
in the derived category, this shows CH = C(τh) as complex subspaces of H. So the
proposition will finish the proof of Theorem 5.1.

To prove the proposition it suffices to check equality of the maps in cohomology,
because we are dealing with locally split two-term complexes here [Si2, Lemma 2.4].
ψ• is constructed from the morphisms of the universal curve over Chol

σ (M) to M
(evaluation map) and to Chol

σ (M) (projection) by constructions in the derived cate-
gory. The difficulty in proving the proposition is to make the abstract constructions
in derived categories explicit in a way suitable for comparison with the ∂̄ operator.
Let us just briefly indicate here how the ∂̄ operator shows up, which is the key part.

First note that it suffices to work with truncated cotangent complexes τ≥−1L
•. By

embedding into smooth spaces these can always be expressed in the form “conormal
sheaf maps to restriction of cotangent sheaf of ambient smooth space”. The smooth
spaces we take are of course Z̃h and the universal curve Γ̃ over Z̃h. The holomor-
phic evaluation map from the universal curve Γ over Z does not in general extend
holomorphically to Γ̃. The point is that ẽv provides a differentiable extension. The
defect to holomorphicity leads to the ∂̄-operator in the following explicit description
of the map

ker(H → G) ' π∗(ev∗ΩM ⊗ ω) −→ I/I2 .

Namely, to α ∈ (ev∗ΩM ⊗ ω)(π−1U), U ⊂ Z̃ open, we associate fα ∈ I(U) by

U 3 z 7−→
∫

Γ̃z

α(∂̄ϕ̃z) ,

where ϕ̃z : Γ̃z → M is the curve parametrized by z, and where we apply the
dual pairing ΩM ⊗ TM → C to make α(∂̄ϕ̃z) a (1,1)-form on Γ̃z. Note that ϕ̃z is
holomorphic near the singularities, so this form is smooth (in contrast to α, which
may have poles at the singularities of Γ̃z). It should be more or less clear and can
be checked easily, that this is exactly H−1(φ•), the map induced by shcan. Similarly
for the cokernels of ϕ•, ψ•.

One final remark concerning rigidification: The limit cones that one obtains over
an unrigidified chart S×V is invariant under the automorphism group of (C,x) and
hence restricts to the limit cone uniformizing C(τ) on the actual, rigidified chart
S × V̄ . A similar statement holds for the algebraic cones.
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