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Introduction

Quantum cohomology originated from two sources, Gromov’s technique of pseudo-
holomorphic curves in symplectic geometry [Gv], and Witten’s topological sigma
models [Wi1][Wi2]. Mathematically it was given birth to late in 1993, when Ruan
and Tian established a large part of it for semipositive symplectic manifolds, in-
cluding the import classes of Calabi-Yau and Fano manifolds [RuTi]. More recently,
several people succeeded in establishing quantum cohomology in the generality sug-
gested in the system of axioms of Kontsevich and Manin [KoMa], both in the alge-
braic [Be1][LiTi1] and in the symplectic categories [FkOn][LiTi2][Ru2][Si2].

The purpose of this paper is to revisit some of the problems the author was able
to study during the last three years in the light of the new methods. The result is
a rather incomplete and personal view on quantum cohomology with an emphasis
on how to compute small quantum cohomology rings from a good knowledge of the
classical cohomology ring together with a minimal geometric input. This point of
view is almost complementary to the problem in mirror symmmetry where such
arguments do not help much. In view of the already vast literature I have only
included such references that are directly related to the topics discussed here. I
apologize to the many whose beautiful and deep contributions could not even be
mentioned without overly enlarging the perspective of this note.

The first chapter gives a (rather formal) presentation of the new formulation of
GW-theory, on which quantum cohomology is build. We do not comment on the
actual construction of the invariants, for which we refer the interested reader to the
forthcoming surveys [Be2] (algebraic) and [Si3] (symplectic). Rather we focus on
how one can actually compute GW-invariants. The point I want to make there (if
any) is that on one hand there is a closed formula for the invariants in the algebraic
setting, which can sometimes be applied directly, while on the other hand it is
occasionally easier and more instructive to argue symplectically. The latter point is
illustrated by certain projective bundles over Fano manifolds (Proposition 1.1). The
mentioned algebraic formula (Theorem 1.4) involves only the Chern class of an index
bundle and the scheme theoretic structure of the relevant moduli space via Fulton’s
canonical class cF . For future computations of GW-invariants it will be crucial to
control the behaviour of cF under basic geometric operations like decomposition into
irreducible components of a reduced space. A systematic study of Fulton’s canonical
class would thus be highly desirable.

In the second chapter we present various versions of quantum cohomology rings
and discuss them from the point of view of commutative algebra, i.e. as flat (analytic)
deformations of Gorenstein Artinian C-algebras. Applications include Gröbner basis
computations of GW-invariants from a presentation of quantum cohomology rings
(section 2.7) and residue formulas (Corollary 2.5) that in nice cases specialize to
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formulas of Vafa-Intriligator type (Proposition 2.6). For experts: The finer structure
on the total space of the deformation that comes from the WDVV-equation will not
be commented on here.

Chapter 3 outlines joint work with G. Tian on the (small) quantum cohomology
of Ng, the moduli space of stable 2-bundles of fixed determinant of odd degree
over a genus g Riemann surface. It is shown that the recursion for the quantum
relations proposed by physicists’ [BeJoSaVa] is equivalant to a quantum version
of Thaddeus’ intersection-theoretic recursion involving the γ-class (Proposition 3.2
and Lemma 3.3). We then present a method to prove this “quantum intersection
recursion” using an algebraic degeneration of Ng due to Gieseker. The proof is
complete up to a conjectural vanishing of contributions of curves with irreducible
components inside some bad locus.

Even before a rigorous definition of quantum cohomology was available, Batyrev
has studied the case of arbitrary toric manifolds. It seemed to be worthwile to
reconsider his arguments with the general theory at hand. The result that at least
in the non-Fano case the investigation of quantum cohomology of toric varieties is
still a rewarding and presumably treatable problem is presented in Chapter 4.

1 GW-invariants

1.1 Virtual fundamental classes

By the effort of several people we have now very satisfactory definitions of GW-
invariants at our disposal, both in the algebraic [BeFa][Be1][LiTi1] and in the sym-
plectic category [FkOn][LiTi2][Ru2][Si1]. Algebraically, the object under study is a
projective scheme M , smooth over a field K, not necessarily algebraically closed or
of characteristic zero. Symplectically, one looks at a compact symplectic manifold
(M,ω) with any fixed tame almost complex structure J (tame: ω(X, JX) > 0∀X ∈
TM \ {0}). A common feature of all approaches is the use of a compactification of
the space of pseudo-holomorphic maps from closed Riemann surfaces to M (respec-
tively, morphisms from connected algebraic curves, proper and smooth over the base
field K, to M) that has been proposed by Kontsevich under the name of “stable
maps” [KoMa]: A stable k-pointed (complex) curve in M is a tuple (C,x, ϕ) with

• C is a complete, connected, reduced algebraic curve over C (respectively, K)
with at most ordinary double points

• x = (x1, . . . , xk) with pairwise distinct xi ∈ Creg (respectively, Creg(K))

• ϕ : C →M is pseudo-holomorphic with respect to J (respectively, a morphism
of K-schemes)

• Aut(C,x, ϕ) = {σ : C → C biregular | σ(x) = x, ϕ ◦ σ = ϕ} is finite

The last condition is referred to as stability condition. Here ϕ being pseudo-holom-
orphic means that ϕ is continuous and for any irreducible component Ci ⊂ C, ϕ|Ci is
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a morphism of almost complex manifolds. The arithmetic genus g(C) = h1(C,OC)
of C is called genus of (C,x, ϕ).

The concept of stable curves in a manifold or K-variety should be viewed as
natural generalization of the notion of (Deligne-Mumford) stable curves [DeMu].
The only difference is that the base SpecK (or a parameter space T ) is now replaced
by M (respectively T ×M).

The set C(M) of stable curves in M modulo isomorphism wears a natural topol-
ogy, the Gromov-topology, making C(M) a Hausdorff topological space with com-
pact connected components. In the algebraic setting this set can be identified with
the K-rational points of an algebraic K-scheme, also denoted C(M), with proper
connected components. In any of the general approaches to GW-invariants cited
above one ends up with a homology class [[C(M)]] ∈ H∗(C(M),Q) (or rational Chow
class), the virtual fundamental class. The notation is motivated by the fact that if
for R ∈ H2(M ;Z), 2g + k ≥ 3, the part

CR,g,k(M) =
{

(C,x, ϕ) ∈ C(M)
∣∣∣ g(C) = g, ]x = k, ϕ∗[C] = R

}
of C(M) is a manifold of the minimal dimension allowed by the Riemann-Roch
theorem (the expected dimension)

d(M,R, g, k) := 2 dimMg,k + 2c1(M,ω) ·R + (1− g) · dimM ,

then [[C(M)]]|CR,g,k(M) = [CR,g,k(M)], the usual fundamental class with respect to the
natural orientation given by the ∂̄J -operator. HereMg,k = C0,g,k(point) denotes the
coarse moduli space of (Deligne-Mumford-) stable k-pointed curves of genus g. In
general one should think of [[C(M)]] as the limit of the fundamental classes (that
might or might not exist in reality) of a sufficiently generic perturbation of C(M).

In the algebraic setting we now restrict for simplicity to the case K = C. We can
then use singular homology theory. Fixing R, g, k there are two continuous maps
from CR,g,k(M): The evaluation map (k > 0)

ev : CR,g,k(M) −→Mk, (C,x, ϕ) 7−→ (ϕ(x1), . . . , ϕ(xk)) ,

and the forgetful map (2g + k ≥ 3)

p : CR,g,k(M) −→Mg,k, (C,x, ϕ) 7−→ (C,x)st ,

where (C,x)st is the unique stable curve won by successive contraction of unstable
components of (C,x). Given the virtual fundamental class one may define, for any
R ∈ H2(M ;Z), g ≥ 0, k > 0, 2g + k ≥ 3, a GW-correspondence

GWM,J
R,g,k : H∗(M ;Q)⊗k −→ H∗(Mg,k;Q)

α1 ⊗ . . .⊗ αk 7−→ p∗

(
[[CR,g,k(M,J)]] ∩ ev∗(α1 × . . .× αk)

)
.

It should be remarked here that the GW-correspondences can in principle be con-
structed from any compactification C̄ of a moduli space of maps from pointed stable
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curves to M dominated by CR,g,k(M,J), i.e. with a map σ : CR,g,k(M,J) → C̄ such
that ev and p factor over σ and ēv : C̄ → Mk, p̄ : C̄ → Mg,k. In fact, setting
[[C̄]] := σ∗[[CR,g,k(M,J)]] as a virtual fundamental class for C̄, we get

GWM,J
R,g,k(α1 ⊗ . . .⊗ αk) = p̄∗

(
[[C̄]] ∩ ēv∗(α1 × . . .× αk)

)
.

For instance, in the algebraic setting natural candidates for C̄ are Hilbert or Chow
scheme compactifications of graphs of maps (or rather k-fold fibered products of
the universal objects to account for the marked points), viewed as subschemes or
algebraic cycles on Cg,k ×M (in an orbifold sense, cf. 1.3 below). The reason why
stable curves are often preferable is their much easier deformation theory.

The whole point of the theory is invariance under deformations of J inside the
space of almost complex structures taming some symplectic form (or smooth pro-
jective deformations of M in the algebraic setting). The proof is by producing a
relative virtual fundamental class for the family of spaces of stable curves in M over
the parameter space (S = [0, 1] say) of the defomation, that restricts to the absolute
virtual fundamental class for any fixed J = Js (cap product with the pull-back of
the point class δs ∈ H0

{s}(S)). The (deformation class) of the symplectic structure

on M being understood we will thus write GWM
R,g,k.

How does this tie up with the original definition of GW-invariants in [Ru1],
[RuTi]? These were defined for semipositive symplectic manifolds or in dimensions
up to 6 by fixing a Riemann surface Σ of genus g, k pairwise distinct points xi ∈ Σ,
submanifolds A1, . . . , Ak, B1, . . . , Bl ⊂ M Poincaré-dual to α1, . . . , αk, β1, . . . , βl ∈
H∗(M) and a sufficiently generic J through

ΦM
R,g(α1, . . . , αk | β1, . . . , βl) := ]

{
ϕ : Σ→M

∣∣∣∣ ∂̄Jϕ = 0, ϕ∗[IP
1] = R

ϕ(xi) ∈ Ai, imϕ ∩Bj 6= ∅

}
,

if the dimensions match, and 0 otherwise. Here “]” means an algebraic sum taking
into account signs and multiplicities. In case g = 0 we will often drop the index g.
Let q :Mg,k+l →Mg,k be the morphism forgetting the last l points (and stabilizing)
and choose x1, . . . , xk ∈ Σ in such a way that Aut(Σ, (x1, . . . , xk)) is trivial. Then

Mg,k is smooth in P = (Σ, (x1, . . . , xk)). Let δ ∈ HdimMg,k

{P} (Mg,k;Z) be the positive
generator. It turns out that

ΦM
R,g(α1, . . . , αk | β1, . . . , βl) =

∫
GWM

R,g,k+l(α1 ⊗ . . .⊗ αk ⊗ β1 ⊗ . . .⊗ βl) ∩ q∗δ .

Note that for the purpose of the computation of these invariants it suffices to
know the push-forward class ev∗[[CR,g,k+l(M)]] ∈ H∗(M

k+l), that sometimes, espe-
cially if l = 0 and the cohomology of M is small in dimension d(M,R, g, k+ l), might
be easier to handle.
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1.2 Computation of GW-invariants I: The symplectic ap-
proach

To actually compute GW-invariants, according to the definition, one may take up
a symplectic or algebraic point of view. In fact, it can be shown that in cases
where both theories are applicable, i.e. for complex projective manifolds, the two
definitions yield the same result [Si4]1. Either approach has its virtues. In this and
the next section I want to illustrate this starting with a computation that is more
easily done by symplectic methods, even in the projective case.

Let (N,ω) be a positive sympletic manifold, i.e. c1(N, J) · ϕ∗[IP1] > 0 for any J-
holomorphic rational curve ϕ : IP1 → N , J some ω-tame almost complex structure
on N . A large class of such manifolds are provided by Fano-manifolds, which are
projective algebraic manifolds with ample anticanonical bundle. Examples will be
given below. Let E be a complex vector bundle on N of rank r. The associated
projective bundle (of lines) π : P = IP(E) → N has a distinguished deformation
class of symplectic structures. A symplectic form ω̃ on P can be constructed from
any hermitian metric on OP (1) by adding a sufficiently large multiple of π∗ω. Under
the assumptions

• c1(E) = 0

• there exists a section s : N → P with s∗c1(OP (1)) = 0

we want to relate certain GW-invariants on P to GW-invariants on N .

Proposition 1.1 Let R ∈ H2(N ;Z), α1, . . . , αk ∈ H∗(N) and let σ ∈ H∗(P ) be
Poincaré-dual to s∗[N ]. Then

ΦN
R (α1, . . . , αk) = ΦP

s∗R(π∗α1, . . . , π
∗αk, σ) .

This relation is the key to the computation of quantum cohomology rings of certain
moduli spaces of stable bundles, cf. Chapter 3.

Sketch of proof. Using c1(E) = 0 and s∗c1(OP (1)) = 0 one checks that the di-
mensions match on the left-hand side iff they do on the right-hand side. By
Ruan’s original definition [Ru1] we have the following recipe for the computa-
tion of ΦN

R (α1, . . . , αk): Choose oriented submanifolds A1, . . . , Ak ⊂ N Poincaré-
dual to α1, . . . , αk (replace αi by some multiple if necesary) and k generic points
x1, . . . , xk ∈ IP1. Then for a generic almost complex structure J on N

ΦN
R (α1, . . . , αk) = ]

{
ϕ : IP1 →M

∣∣ ∂̄Jϕ = 0, ϕ∗[IP
1] = R, ϕ(xi) ∈ Ai

}
,

where again “]” means counting with signs according to the natural orientations
involved (there is no multiplicity to be observed in case when no Bj’s are present).
For simplicity let us assume dimCN > 2. Then J can be chosen in such a way
that the finitely many relevant ϕ : IP1 → N are embeddings and pairwise disjoint.

1J. Li and G. Tian also seem to prepare a paper in that direction using their definitions
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By choosing a not necessarily integrable partial connection ∂̄E on E (i.e. (0, 1)-form
valued with respect to J) we get an ω̃-tamed almost complex structure J̃ on P
compatible with π : P → (N, J) and inducing the standard complex structure on
the fibres of π. The essential observation is that since c1(E) = 0 and since the
integrability condition is void over IP1, ϕ∗E is a holomorphic IPr−1-bundle over IP1

of degree zero. By slightly perturbing ∂̄E along the images of the finitely many ϕ
we may assume ϕ∗(P, J̃) ' IP1 × IPr−1 holomorphically, because any holomorphic
vector bundle over IP1 of degree zero can be infinitesimally deformed to the trivial
bundle. Now for any such ϕ : IP1 → N , ϕ(xi) ∈ Ai, i = 1, . . . , k, choose another
point xk+1 ∈ Σ sufficiently generic, put q := π−1(ϕ(xk+1)) ∩ ims, and define

ϕ̃ : IP1 → P

as the composition of the constant section IP1 → IP1 × {0} with the map of total
spaces ϕ∗P → P induced by ϕ. Observing c1(s∗E) = 0 we get

ϕ̃∗[IP
1] = s∗R, ϕ̃(xi) ∈ π−1(Ai) (i = 1, . . . , k), ϕ̃(xk+1) ∈ ims ,

and since π is (J̃ , J)-holomorphic any such ϕ̃ is of this form. It is not hard to
check that the deformation theory is unobstructed at the ϕ̃ if it was for the ϕ.
Unobstructedness means surjectivity of the linearization of the relevant Fredholm
operator ∂̄J . P being positive or not we thus get an enumerative description of
ΦP
s∗R(π∗α1, . . . , π

∗αk, σ) as

]
{
ϕ̃ : IP1 → P

∣∣ϕ̃∗[IP1] = s∗R, ϕ(xi) ∈ π̃−1(Ai) for i ≤ k, ϕ̃(xk+1) ∈ s(N)
}
.

A final check of orientations (thus signs) finishes the proof. �

In case of projective algebraic N one can probably modify the approach to give
a purely algebraic proof. But since one has to work with trees of rational curves and
higher dimensional families this will be much harder. And the symplectic point of
view shows clearly the geometric reason behind the formula, which is the possibility
of lifting rational curves on N to P by differentiable triviality of P along such curves.

1.3 Computation of GW-invariants II: Relation with Ful-
ton’s canonical class

In the algebraic setting one often has good computational control over a particu-
lar variety, e.g. by additional symmetries or special geometry, but the integrable
complex structure is not generic with regard to certain moduli spaces of rational (or
higher genus) curves. We begin this section with some remarks concerning genericity
in deformation theory, which might not be so well-known to non-experts.

It is a trivial but very remarkable and useful fact that in the algebraic category
one can check for genericity just by counting dimensions. We first give a somewhat
more general statement:
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Proposition 1.2 Let M be a projective algebraic manifold, R ∈ H2(M,Z), 2g+k ≥
3. The following statements are equivalent:

1. [[CR,g,k(M)]] = [CR,g,k(M)]

2. Any irreducible component of CR,g,k(M) has dimension d(M,R, g, k)

3. CR,g,k(M) is a locally complete intersection of dimension d(M,R, g, k).

Here [CR,g,k(M)] is the ordinary fundamental class defined for any algebraic variety
[Fu, 1.5]. In the situation of the proposition the Gromov-Witten invariants based on
(R, g, k) can thus be considered to be enumerative in the usual algebraic-geometric
manner.

Before turning to the simple proof of the proposition we want to recall some facts
on obstruction theory. An obstruction space for the deformation theory of the triple
(C,x, ϕ) is the complex vector space Ext1([ϕ∗ΩM → ΩC(|x|)],OC) classifying exten-
sions of the complex [ϕ∗ΩM → ΩC(|x|)] by the complex [0 → OC ] [Fl],[Ra],[LiTi2].
In the notation of [Fl] this space is written T 2(ι/M,OC), i.e. one thinks of deform-
ing the inclusion ι : |x| ↪→ C as a morphism over M . Since T 2(|x|/C) = 0 we have
T 2(ι/M,OC) = T 2(C/M) which fits into the exact sequence [Fl, I,2.25]

T 0(C)/T 0(C/M) −→ Ext0(ϕ∗ΩM ,OC) −→ T 1(C/M) −→ T 1(C)
‖ ‖ ‖ ‖
0 −→ Γ(C,ϕ∗TM) −→ T 1(C/M) −→ Ext1(ΩC ,OC)

−→ Ext1(ϕ∗ΩM ,OC) −→ T 2(C/M) −→ T 2(C)
‖ ‖ ‖

−→ H1(C,ϕ∗TM) −→ T 2(C/M) −→ 0

In particular, the obstructions vanish if H1(C,ϕ∗TM) = 0. T 1(C) is the Zariski tan-
gent space to the deformations of C which are unobstructed (T 2(C) = 0). I should
also remark that since we already have nice moduli spaces Mg,k for pointed curves
one can also consider an easier deformation problem, namely relativeMg,k, i.e. with
(C,x) fixed. The Zariski tangent and obstruction spaces to this deformation prob-
lem are just Γ(C,ϕ∗TM) and H1(C,ϕ∗TM). This has been used by Behrend in his
treatment of GW-invariants [Be1].

Proof (of proposition). Deformation theory exhibits a formal or analytic germ of
a semiuniversal deformation space by t2 = dimT 2(ι/M,OC) equations in a t1-
dimensional complex vector space, t1 = dimT 1(ι/M,OC). But by a Riemann-Roch
computation

t2 − t1 = d(M,R, g, k) .

This shows the equivalence of (2) and (3) and also with the fact that the virtual
fundamental class is top-dimensional on each irreducible component. The multiplic-
ities can then be checked at closed points lying in only one irreducible component.
�
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To actually conclude genericity of the integrable complex structure on M in
the sense of the symplectic approach we need generic smoothness of CR,g,k(M) or,
equivalently, generic vanishing of the obstruction spaces.

Proposition 1.3 Assume one of the equivalent conditions in Proposition 1.2 be
fulfilled. Then there are equivalent

1. [CR,g,k(M)] has no multiple components, i.e. any irreducible component of
CR,g,k(M) is generically reduced.

2. Any irreducible component of CR,g,k(M) contains some (C,x, ϕ) with T 2(ι :
|x| ↪→ C/M,OC) = 0 (sufficient: H1(C,ϕ∗TM) = 0)

3. Any irreducible component of CR,g,k(M) contains some (C,x, ϕ) with dimT 1(ι :
|x| ↪→ C/M,OC) = d(M,R, g, k) (sufficient: dimH0(C,ϕ∗TM) = c1(M) · R +
(1− g) dimM = d(M,R, g, k)− dimMg,k) �

Case 2 is applicable for instance if g = 0 and M is what is called convex, which
by definition means H1(IP1, ϕ∗TM) = 0 for any ϕ : IP1 → M . Examples include
manifolds with globally generated tangent bundles, like generalized flag varieties
G/P , P a parabolic subgroup of the semisimple Lie group G.

Unfortunately, it happens quite often that CR,g,k(M) has larger than expected
dimension, in the case of which one really has to deal with the somewhat non-explicit
virtual fundamental classes. There is however a closed formula for this class in terms
of Fulton’s canonical class and the associated index bundle [Si2]. Recall that if X
is an algebraic variety embeddable in a smooth scheme N (e.g. X projective) with
ideal sheaf I the normal cone of X in N is CX/N = SpecX ⊕d Id/Id+1. CX/N is
a closed subscheme of the normal bundle NX/N = SpecXS

•(I/I2), which is not a
vector bundle but the linear space over X associated to the conormal sheaf (the fiber
dimensions may jump). Such cones have a Segre class s(CX/N) ∈ A∗(X), a Chow
class on X. Fulton shows that the class

cF (X) := c(TN |X) ∩ s(CX/N) ∈ A∗(X)

does not depend on the choice of embedding X ↪→ N [Fu, Expl.4.2.6]. We will call
this class Fulton’s canonical class. For smooth X, cF (X) coincides with the total
Chern class c(TX) ∩ [X].

We apply this to X = CR,g,k(M) with g = 0. Fixing an embedding i : M ↪→ IPn

there is a canonical choice for the smooth space N into which X embeds, namely
Ci∗R,0,k(IPn). I purposely wrote “space” because as a scheme or projective variety
Ci∗R,0,k(IPn) is not in general smooth, no matter that the deformation theory is
always unobstructed.

This situation is familiar in the case ofMg,k = C0,g,k(IP
0), where the presence of

finite automorphism groups spoil both smoothness and the existence of a universal
family. A by-pass of this problem is to avoid taking quotients by finite groups and
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work in a category of algebraic or analytic orbifolds (smooth case) or orbispaces
(non-smooth case). An orbispace consists of a scheme (respectively complex space)
X together with a covering by affine schemes exhibited as quotients of affine schemes
by finite groups acting algebraically (respectively an open covering by finite group
quotients of complex spaces). The transition functions are required to admit liftings
to (open sets in) the uniformizing spaces.

This works in fact well in the analytic category: For a complex projective variety
M , CR,g,k(M) has the structure of an analytic orbispace. It is a fine moduli space
in the category of analytic orbispaces, the universal family and universal morphism
being the natural morphism of analytic orbispaces π : CR,g,k+1(M)→ CR,g,k(M) and
evk+1 : CR,g,k+1(M)→M given by forgetting the last marked point and stabilizing,
and by evaluating the map at the (k + 1)-st point.

In the algebraic category there might be a problem with this approach, because
liftings of the transition maps at (C,x, ϕ) with (C,x) having non-stable components
would require the use of the implicit function theorem, which does not hold in the
Zariski topology. Instead one uses a more general concept, called (Deligne-Mumford)
stacks. For this one defines the notion of (algebraic) family of stable curves in
M parametrized by a base scheme T and morphisms between such families. This
becomes a category F which has a forgetful functor p : F → Sch to the category
of schemes by sending a family to the base. This functor has the property that
“pull-backs” exist (which amounts to changing the base of a family) and that fixing
a scheme T the morphisms in F over IdT are all isomorphisms: p : F → Sch is a
fibered groupoid. Given a scheme X one can associate to X the fibered groupoid of
morphisms of another scheme T into X, the functor sending T → X to T . This
determines X uniquely. And by our fibered groupoid of (families of) stable curves
in M we just replace the often non-existent scheme-theoretic moduli space of such
curves by this functor.

To make fibered groupoids more scheme-like, one imposes various other condi-
tions: The analogs of the sheaf axioms for p (such that one can glue local con-
structions) — such fibered groupoids are called stacks; a couple of technical as-
sumptions on the diagonal morphism ∆F : F → F ×SpecK F (representability,
quasi-compactness, separatedness) plus the existence of a dominating scheme U , i.e.
a smooth (!) surjective morphism U → F — algebraic stacks (also called Artin
stacks). If U → F can be chosen with finite fibers we finally end up with the no-
tion of Deligne-Mumford stacks (DM-stacks for shortness). A nice introduction to
Deligne-Mumford stacks is in the appendix of [Vi], to which we refer for details.

Many DM-stacks have proper coverings, which is a proper surjective morphism
from a scheme X to F . In this case one can define Chow groups and an intersection
theory on F by doing intersection theory on X and pushing forward [Vi]. Stacks
of stable curves in a smooth projective variety M always have proper coverings.
The upshot of this is that for the purpose of GW-invariants one may work with the
DM-stack CR,g,k(M) as if it were a scheme, cf. [BeMa].

Whatever formulation we choose — analytic orbispaces or DM-stacks — we get
a closed embedding I : CR,0,k(M) ↪→ Ci∗R,0,k(IPn) =: N into a smooth space and
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hence a generalization of Fulton’s canonical class

cF (CR,0,k(M)) := c(I∗TN) ∩ s(CCR,0,k(M)/N) .

This is a Chow or homology class on the underlying variety or a Chow class on the
DM-stack CR,0,k(M) as defined in [Vi], always with coefficients in Q.

To state the closed formula for the virtual fundamental class we only need one
more ingredient: From the evaluation map ev = evk+1 : CR,g,k+1(M) → M one
gets two (orbi-) sheaves Riπ∗ev∗TM (i = 0, 1) on CR,g,k(M), π : CR,g,k+1(M) →
CR,g,k(M) the universal curve. π∗ev∗TM is nothing but the relative tangent sheaf
of CR,g,k(M) over Mg,k, and R1π∗ev∗TM is the relative obstruction sheaf (but the
comparison map to the actual relative obstruction spaces H1(C,ϕ∗TM) at some
(C,x, ϕ) ∈ CR,g,k(M) is not in general an isomorphism). By twisting ev∗TM with
a sufficiently ample line bundle one can show that the virtual sheaf [π∗ev∗TM ] −
[R1π∗ev∗TM ] ∈ K∗(CR,g,k(M)), the Grothendieck group of coherent sheaves, can
actually be represented by the difference of two vector bundles, i.e. [π∗ev∗TM ] −
[R1π∗ev∗TM ] ∈ K∗(CR,g,k(M)), and thus has a Chern class. Let us denote this
virtual bundle by indMR,g,k, the index bundle or virtual tangent bundle of CR,g,k(M).

The rank of indMR,g,k is constant and coincides with d(M,R, g, k)− dimMg,k.

Theorem 1.4 [Si2] Let M be a projective algebraic manifold, R ∈ H2(M ;Z). If
g = 0 or CR,g,k(M) is embeddable into a smooth space then

[[CR,g,k(M)]] =
{
c(indMR,g,k)

−1 ∩ cF (CR,g,k(M)/Mg,k)
}
d(M,R,g,k)

,

where cF (CR,g,k(M)/Mg,k) = p∗c(TMg,k
)−1 ∩ cF (CR,g,k(M) is the relative Fulton

Chern class and { . }d denotes the d-dimensional part. �

It is remarkable that the expression on the right-hand side depends only on the
scheme-theoretic structure of CR,g,k(M) and the total Chern class of a virtual vec-
tor bundle. It should thus be more accessible to computations than the original
definition by cones. Unfortunately, Fulton’s canonical class does not seem to show
nice functorial behaviour. Let us illustrate the situation at the following realistic
scenario: Assume given an explicit family of k-pointed stable curves in M containing
all the curves with given R ∈ H2(M ;Z) and genus g, with proper base T and such
that generically no two curves in the family coincide. In other words, the family is
induced by a birational morphism f : T → CR,g,k(M). f ∗indMR,g,k is nothing but the
index bundle indT of the family. Now for a birational morphism f∗(cF (T )) differs
from cF (CR,g,k(M)) only by classes in the exceptional locus. For instance, if we are
given the blow-up σ : X̃ → X of a smooth space in a smooth subvariety ι : Y ↪→ X
of codimension d, it follows from [Fu, Thm. 15.4] that

σ∗(cF (X̃)) = cF (X) + (d− 1)ι∗cF (Z) .

So one would expect the virtual fundamental class to be close to{
c(indT )−1 ∩ cF (T )

}
d(M,R,g,k)

.
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In special cases contributions from the exceptional locus might be controllable, or
ignorable for the computation of certain GW-invariants. For example,

Corollary 1.5 In the situation of Theorem 1.4 let Z ⊂ CR,g,k(M) be a subspace of
dimension less than d(M,R, g, k), Cgd := CR,g,k(M)\Z (the “good subspace”). Then
[[CR,g,k(M)]] is the unique Chow class extending{

c(indMR,g,k|Cgd
)−1 ∩ cF (Cgd/Mg,k)

}
d(M,R,g,k)

. �

In cases where CR,g,k(M) has sufficiently mild singularities away from Z we can get
away without computing Fulton’s canonical class at all:

Corollary 1.6 In the situation of Corollary 1.5 assume also that Cgd is a locally
complete intersection of dimension d(M,R, g, k) + r. Then the class of the obstruc-
tion sheaf obgd := R1π∗ev∗TM |Cgd

is in K∗(Cgd) and [[CR,g,k(M)]] is the unique Chow
class extending

cr(obgd) ∩ [Cgd] .

Proof. Let N be the smooth space into which Cgd embeds, I the corresponding ideal
sheaf. By going over to N ×Mg,k we may assume that p : Cgd →Mg,k extends to
N . Since Cgd is a complete intersection the cotangent sequence relative Mg,k reads

0 −→ I/I2 −→ ΩN/Mg,k
|Cgd
−→ ΩCgd/Mg,k

−→ 0

with I/I2 = N∨Cgd/N
locally free. Dualizing we see that TCgd/Mg,k

= Hom(ΩCgd/Mg,k
,

OCgd
) = π∗ev∗TM and in turn obgd are in K∗(Cgd). With CCgd/N = NCgd/N we get

c(indMR,g,k|Cgd
)−1 ∩ cF (Cgd/Mg,k)

=
(
c(TCgd/Mg,k

)−1 ∪ c(obgd) ∪ c(TN/Mg,k
) ∪ c(NCgd/N)−1

)
∩ [Cgd]

= c(obgd) ∩ [Cgd] .

�

Cf. also the recent paper [Al] for a comparison of Fulton’s canonical class with
the functorially much better behaved MacPherson Chern class of singular varieties
in the hypersurface case.

2 On the algebraic structure of quantum coho-

mology rings

2.1 Quantum cohomology rings

Quantum cohomology is based on the observation of Witten that by degenerating
the domain from a Riemann surface to a nodal curve one expects to observe many
relations between GW-invariants. These will be responsible for the fact that certain
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deformations of the multiplicative structure of the cohomology ring involving GW-
invariants will be associative.

Now that GW-invariants are based on virtual fundamental classes the relations
reduce to the simple statement that virtual fundamental classes are compatible with
restriction to the divisors Di ⊂ Mg,k of nodal curves. With the general technique
of virtual fundamental classes at hand the proof does not present much difficulty,
cf. the papers quoted at the beginning of Chapter 1.

Especially important is the case g = 0 where the relations can be cast in a
family of deformations of the ring structure on H∗(M), the quantum cohomology
rings. Let {γi} be a basis of H∗(M) and γ∨i ∈ H∗(M) be the Poincaré-dual basis.
The quantum product depends on the choice of another cohomology class η, which
we fix for the time being. For α, β ∈ H∗(M) one defines

α ∗η β :=
∑
i

∑
R∈H2(M ;Z)

(∑
r≥0

1

r!
ΦM
R (α, β, γi | η, . . . , η︸ ︷︷ ︸

r times

)γ∨i

)
[R] ,

which a priori takes values in H∗(M)⊗Z Z[[H2(M ;Z)]]. Unless η = 0, referred to as
small case (small quantum cohomology ring etc.), there is already one convergence
assumption to be made for the inner bracket. Namely,

For any R ∈ H2(M ;Z) and α, β, γ ∈ H∗(M)∑
r≥0

1
r!

ΦM
R (α, β, γ | η, . . . , η︸ ︷︷ ︸

r times

)

converges.

(conv 1)

(One could remedy this by introducing formal variables for η too, but this does not
help in producing a ring structure.) Conjecturally, this should alwas be true for η
suffciently small, but is already non-trivial to check for IP2, say.

Note that Z[[H2(M ;Z)]] contains copies of Z[[t, t−1]] and thus the multiplicative
structure on Z[H2(M ;Z)] does not extend. On the other hand, contributions to
α ∗η β are non-zero only if R can be represented by a rational curve (respectively,
pseudo-holomorphic rational curve). An even smaller but more intrinsically defined
set of classes is the monoid RC (M) ⊂ H2(M ;Z) generated by classes R such that
some GW-invariant ΦR does not vanish. Any symplectic form ω′ that tames J (or
ample Q-class in the algebraic setting) evaluates positively on RC (M) \ {0} by the
analog of the Wirtinger theorem. And tameness is an open condition. Letting | . |
be any norm on H2(M ;Q) we thus conclude the existence of a λ > 0 with

ω(R) ≥ λ · |R| ∀R ∈ RC (M) .

In other words, IP(RC (M)) is bounded away from IP(ω⊥) ⊂ IP(H2(M ;Q)). So
with the proviso of (conv 1), ∗η defines a product on H∗(M)⊗Z Z[[RC (M)]].2 The

2A similar way to get a sensible domain of definition for quantum multiplication is the use of
the so-called Novikov-ring, the partial completion of H∗(M) ⊗ Z[H2(M ;Z)] with respect to an
order on H2(M ;Z) defined by the symplectic from ω, cf. [McSa, 9.2]. And in the algebraic setting
it is often natural to admit coefficients in the nef cone NE (M) ⊃ RC (M), which by the Hodge
index theorem is also strongly convex
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degeneration relations show that ∗η is associative. The contribution to R = 0 is
nothing but the ordinary cup product.

To get an actual analytic deformation of the cup product ring structure on
H∗(M) one can try to replace [R] by e−ω(R) (or ei(B+iω)(R), B ∈ H∗(M), as one
should do in mirror symmetry). Stronger convergence assumptions are to be made:

For any α, β, γ ∈ H∗(M), ΦM
R (α, β, γ | η, . . . , η) is exponentially

bounded in ω(R) and∑
r≥0

1
r!

(∑
R∈RC (M) ΦM

R (α, β, γ | η, . . . , η︸ ︷︷ ︸
r times

)e−tω(R)
)

converges for t� 0.

(conv 2)

Then for ω sufficiently positive

α ∗η,ω β :=
∑
i

∑
r≥0

1

r!

∑
R∈RC (M)

ΦM
R (α, β, γi | η, . . . , η︸ ︷︷ ︸

r times

)e−ω(R)

defines a ring structure on H∗(M ;C) that for ω tending to infinity approaches the
cup product. To see this more explicitely and in a form appropriate for the study of
mirror symmetry choose integral smplectic forms ω1, . . . , ωb2 spanning H2(M) and
with convex hull lying inside the symplectic cone (classes of symplectic forms), and
a dual basis q1, . . . , qb2 of H2(M ;Q). A third variant of the quantum product lives
on H∗(M)⊗Q C{q1, . . . , qb2} by setting

α ∗η β :=
∑
i

∑
r≥0

1

r!

∑
R∈RC (M)

ΦM
R (α, β, γi | η, . . . , η)γ∨i q

ω1(R)
1 · · · qωb2 (R)

b2
.

This should be viewed as a family of ring structures on H∗(M) analytically paramet-
rized by an open neighbourhood of 0 ∈ Cb2q1,...,qb2 . For ω =

∑
i aiωi, a1, . . . , ab2 ≥ 0

one retrieves the previous form of the quantum product ∗η,ω by setting qi = e−ai .
And putting qi = 0 for any i we get the ordinary cohomology ring. Note that
RC (M) is a submonoid of N≥0q1 + . . .+N≥0qb2 and that the latter monoid depends
on the choice of ω1, . . . , ωb2 .

Allowing also changes of η one expects an analytic family of ring structures de-
fined on a neighbourhood of the origin in H∗(M ;C) × Cb2q . More precisely, since
Φ is skew-symmetric, the parameter space should be taken as complex superspace,
i.e. as complex space with Z2-graded structure sheaf. For simplicity we will ig-
nore such questions here, i.e. restruct to the even part H2∗(M ;Z). It is not hard
to see that moving η about some sufficiently small µ =

∑
i biωi ∈ H2(M,C) is

equivalent to the change of coordinates qi 7→ ebiqi. So we can eliminate any 2-
cohomology from η and a more natural parameter space would be an open neigh-
bourhood T of 0 ∈ H∗6=2(M ;C) × Cb2q . The second factor minus the coordinate
hyperplanes can then be identified with a neighbourhood of infinity of the tube
domain (H2(M ;R)/H2(M ; 2πiZ)) + iR≥0 · conv{ω1, . . . , ωb2} via∑

ν

(eν + i dν)ων 7−→
(
e−d1+ie1 , . . . , e−db2+ieb2

)
.
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As a matter of notation we will write ∗η,{q} for the quantum product with values
in C{q1, . . . , qb2} and ∗t = ∗η,q for the evaluation at a particular value of q. The
analogous notations in the small case are ∗{q} and ∗q. The corresponding quantum
cohomology rings will be denoted QH∗η,{q}(M) = (V, ∗η,{q}) etc. (For simplicity
we will occasionally ignore the Z2-grading in the sequel, i.e. consider the subring
generated by even classes; this is preserved by quantum multiplication.)

Particularly simple is the case of small quantum cohomology on manifolds M
with the property that the existence of a non-zero GW-invariant ΦM

R (α1, . . . , αk) for
R ∈ H2(M ;Z) \ {0} implies c1(M) ·R > 0. We propose the term rationally positive
for this property. Then the dimension count shows that only finitely many classes
R contribute to a quantum product α ∗q β, and that for R 6= 0 the degree of γ∨i
must be strictly less than degα + deg β to yield a non-trivial contribution. So in
this case the quantum products are just a family of inhomogeneous refinements of
the cup product, algebraically parametrized by a b2(M)-dimensional affine space.

2.2 Flatness

We have seen that under appropriate convergence assumptions quantum cohomology
is a family of ring structures on the complex vector space V = H∗(M ;C) with
structure coefficients depending analytically on the parameter space T . Being a
family of rings means that the sheaf of sections V of the complex vector bundle
V ×T → T has the structure of a (finite) OT -algebra. To V is associated a complex
subspace Z := SpecanT V ⊂ V × T with finite projection π : Z → T and such that
V = π∗Z, cf. e.g. [Fi, 1.15]. More explicitely, the equations defining Z are nothing
but the quadratic equations defining the family of algebra structures.

Now a finite morphism π : Z → T of complex spaces is flat iff π∗OZ is locally
free. This is obviously the case here. Conversely, given any identification π∗OZ '
O(V × T ), one can produce a flat family of ring structures on the complex vector
space V .

We thus see that the definition of quantum cohomology by an analytic variation
of the structure coefficients on a fixed vector space is equivalent to the flatness of
the associated sheaf V of OT -algebras, or the flatness of the associated finite map
π : Z → T .

As another consequence of flatness, Z does not have embedded components. This
follows by the unmixedness theorem (see e.g. [Ei, Cor. 18.14]) from the fact that
Z as finite cover of a smooth space is Cohen Macaulay (see e.g. [Ei, Cor. 18.17]).
In particular, Z is reduced iff Z is generically reduced iff Zt := π−1(t) is a disjoint
union of deg π simple points for some t ∈ T .

Note that from a computational point of view the family of quantum cohomology
rings is given by a dimV × dimV -matrix of analytic functions on T (multiplication
table).
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2.3 Grading, filtration

V decomposes according to the dimension, i.e. the grading ofH∗(M ;Z). The grading
is not in general respected by quantum multiplication for t 6= 0. An important
exception is the Calabi-Yau case at η = 0. More generally, if for any ϕ, c1(M)·ϕ∗[IP1]
is divisible by some index ν ∈ Z, then the small quantum cohomology rings QH∗q (M)
will be Z/2νZ-graded.

For rationally semi-positive symplectic manifolds at least the associated filtration

〈1〉 = V0 ⊂ V1 ⊂ . . . ⊂ VdimM = V, Vi = H≤i(M ;C) ,

is preserved in QH∗t (M).

2.4 Irreducible subalgebras, idempotents and eigenvalue
spectrum

The following holds for any finite dimensional k-algebra R, k a field. By finite-
dimensionality R is Artinian, hence (being also Noetherian) R has only finitely
many prime ideals m1, . . . ,mq, which are all maximal. In particular, dimR = 0.
The natural morphism

R −→
q∏
i=1

Ri, Ri = Rmi

is an isomorphism with a product of local Artinian rings (Ri, m̄i). If k is algebraically
closed then the inclusion k ↪→ R induces isomorphisms R/m̄i ' k. R =

∏
Ri means

SpecR =
∐

i SpecRi. Let ei ∈ Γ(SpecR,OSpecR) be defined to be 1 at SpecRi and
0 away from this point. The ei form a complete set of orthogonal idempotents, i.e.
e2
i = ei, eiej = 0 for i 6= j, and

∑
i ei = 1. Multiplication by ei corresponds to

projection onto the i-th component in
∏
Ri. The existence of such idempotents for

products also show that the Ri can not be further decomposed, they are irreducible
as algebras. In fact, if (R,m) is a local Artinian ring and e2 = e 6= 0 there exists a
unit λ with e− λ ∈ m, hence (e− λ)r = 0 for some r > 0 by the Artinian property.
Expanding and using e2 = e one sees e((−λ)r − (1− λ)r) = (−λ)r. Therefore e is a
unit and then e = 1.

Extending functions by 0, the Ri can also be viewed as subalgebras of R (Ri = R·
ei). Then R = ⊕Ri is also the simultaneous Jordan decomposition of multiplication
by elements of R, viewed as endomorphisms of the k-vector space R. For simplicity
let us assume k algebraically closed. For any x ∈ R and i ∈ {1, . . . , q} there exists
λi(x) ∈ k with ei · x − λi(x) ∈ mi, hence Ri ⊂ ker(x − λi(x))r. So the eigenvalue
spectrum of multiplication by x is {λ1(x), . . . , λq(x)}. Given a presentation R =
k[X1, . . . , Xn]/(f1, . . . , fr) there exist µij ∈ k with mi = (X1 − µi1, . . . , Xn − µin),
and so, writing x = F (X1, . . . , Xn), one obtains λi(x) = F (µi1, . . . , µin). We obtain:
The eigenvalues of quantum multiplication by some x is given by evaluation of x at
the maximal ideals.
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For quantum cohomology rings there is a subspace of elements Vferm ⊂ V =
H∗(M ;C) with completely degenerate eigenvalue spectrum 0. Vferm is the subring of
H∗(M ;C) generated by classes of odd degree, the “fermionic” subring. In fact, for
x ∈ H2∗+1(M ;C), ΦR(x, x, γ | η, . . . , η) = 0 for any γ, η by graded symmetry of ΦR,
i.e. x ∗ x = 0. So if x ∈ Vferm is the sum of κ elements of odd degree then xκ+1 = 0.

2.5 The Gorenstein property

From the point of view of commutative algebra cohomology rings have a very en-
joyable property, they are Gorenstein. We will see in this subsection that the same
holds true for quantum cohomology rings at least if η is sufficiently small.

Let (R,m) be a zero-dimensional local ring. If R is a finitely generated k-algebra
zero-dimensionality is equivalent to finite-dimensionality of R as k-vector space. R
being Artinian the chain of ideals R ⊃ m ⊃ m2 ⊃ . . . must eventually stabilize,
and by Nakayama’s lemma the stabilization must be the zero ideal. Let r be the
largest integer with mr 6= 0. Obviously, mr = Annm. This module is called the socle
of R. (R,m) is called Gorenstein iff Annm can be generated by one element. Ex-
ample: R = k[X]/(Xn) is Gorenstein with socle (Xn−1). More generally, complete
intersections are Gorenstein, but R = k[X, Y, Z]/I, I = (X2, Y 2, Z2−XY,XZ, Y Z)
is an example of a Gorenstein ring (socle (XY ) = (Z2)) that is not a complete
intersection. Other characterizations are (cf. e.g. [Ei])

• R has finite injective dimension (in fact, R is injective as R-module)

• the dualizing module ωR can be generated by one element (in fact,ωR ' R).

(Both these characterizations can be used to define higher dimensional Gorenstein
rings.) A more useful criterion for the case of quantum cohomology rings is by
“Poincaré-duality”:

Proposition 2.1 Let R be a local finite-dimensional k-algebra with k algebraically
closed. Then R is Gorenstein iff there exists a linear form λ : R → k such that the
bilinear form

Bλ : R×R −→ k, (a, b) 7−→ λ(a · b)

is non-degenerate.

Proof. Let x, y ∈ Annm. Then z = λ(x)y − λ(y)x ∈ Annm and λ(z) = 0. But any
a ∈ R may be written a = a0 + ā with a0 ∈ k, ā ∈ m, and so λ(a · z) = a0λ(z) = 0
for any a ∈ R. By non-degeneracy of Bλ this shows z = 0, i.e. dimk Annm = 1.

Conversely, choose any linear form that is nonzero on the socle. �

For cohomology rings of connected, oriented manifoldsM the socle isHdimM(M),
i.e. generated by the class of a normalized volume form Ω. There is a distinguished
choice λtop for the linear form by imposing kerλtop = H<dimM(M ; k) and λtop[Ω] = 1.
B0 := Bλtop is the classical Poincaré-duality pairing on the cohomology ring.
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Let R = QH∗t (M) for some t ∈ T , R =
∏

iRi the decomposition into local rings.
λtop induces the bilinear form

Bt : R×R −→ C, (x, y) 7−→ λtop(x ∗t y) .

We claim that in the small case t = (0, q), Bt coincides with B0 via the natural
identification of C-vector spaces R = V = H∗(M ;C). In fact, let {γi}, {γ∨i } be dual
homogeneous bases of H∗(M ;C) with γ0 = 1. Then λtop(γ∨i ) 6= 0 iff i = 0. For α,
β ∈ H∗(M ;C) we get

Bt(α, β) = λtop(α ∗q β) = Φ0(α, β, 1) = B0(α, β)

since ΦR(α, β, 1) = 0 for any R 6= 0. In particular, Bt is non-degenerate. And the
decomposition R =

∏
iRi into local rings makes Bt block-diagonal. Thus Bt|Ri is

non-degenerate for any i, hence Ri is Gorenstein.

Recall that a zero-dimensional scheme (complex space) Z is called Gorenstein iff
OZ,z is Gorenstein for any z ∈ Z.

Proposition 2.2 There exists an open neighbourhood V of 0 ∈ Cb2q ∩ T such that
Zt = SpecQH∗t (M) is Gorenstein for all t ∈ V .

Proof. For nonzero η we can rely on the general result that the property of a fiber
of a finite morphism π : Z → T to be Gorenstein is open. This follows from [Ha,
V.9.6] and [GrMa] (cf. also [BiFl]). �

2.6 Presentations

We have already noted that since we deal with ring structures on finite dimensional
vector spaces, quantum cohomology is in principle given by a n× n-matrix of holo-
morphic fundtions on T , n = dimCH

∗(M ;C). However, associativity in combination
with the classical relations in the cohomology ring impose strong conditions among
the entries of this matrix. A much more convenient way of describing quantum co-
homology rings, that (in the small case) clearly shows the independent information
contained in GW-invariants, is by generators and relations.

Proposition 2.3 [SiTi2][AsSa] Let H∗(M ;C) ' C[X1, . . . , Xn]/(f1, . . . , fr) be a
presentation with Xi corresponding to γi ∈ Hdi(M ;C) and fi homogeneous with
respect to weights di on Xi. Then the homomorphism

C[X1, . . . , Xn]⊗C C{q1, . . . , qb2} −→ QH∗{q}(M)

sending a monomial X i1
1 . . . X in

n to γ1 ∗ . . . ∗ γ1 ∗ . . . ∗ γn (γν occuring iν-times) is
surjective with kernel (f̂1, . . . , f̂r), f̂i ≡ fi modulo (q1, . . . , qb2).

In particular, there is a presentation

QH∗{q}(M) ' C[X1, . . . , Xn]⊗C C{q1, . . . , qb2}/(f̂1, . . . , f̂r) . �
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The proof is by an essentially trivial induction on powers of qi. Despite its simplicity
the theorem can be extremely powerful in applications by drastically reducing the
number of GW-invariants to be determined, cf. the cases of M = G(k, n) below and
Ng in Chapter 3.

There is one source of confusion in the application of the theorem: The meaning
of a monomial X i1

1 . . . X in
n , i1 + . . .+ in > 1, as element of the fixed complex vector

space V = H∗(M ;C) changes with q. Only linear terms correspond directly, while
higher degree monomials in the presentation of QH∗q (M) have to be interpreted as
quantum products.

For a non-trivial example consider the moduli space N2 to be studied in Chap-
ter 3. A subring H∗I (N2) ⊂ H∗(N2) has the presentation C[α, β, γ]/(α2 + β, αβ +
γ, αγ) ' C[α]/(α4) with degα = 2, deg β = 4, deg γ = 6. So up to a constant,
α3 ≡ γ both represent the volume form. H∗I (N2) is respected by quantum multipli-
cation. One obtains the presentation QH(N2)inv = C[α, β, γ]/(α2 +β−8q, αβ+γ+
8αq, αγ) ' C[α]/(α4 − 16α2q) (b2(N2) = 1). Now γ still corresponds to a multiple
of the volume form, but α3 = 16αq + γ differs from this by a quantum correction
involving α.

So while the coefficients of the quantum corrections to fi are completely inde-
pendent (any such will give a flat deformation of the cup product structure), a
single coefficient might involve several GW-invariants. It is usually non-trivial to
explicitely find this expression, cf. the case of Ng in Chapter 4.

As was pointed out to the author by F.-O. Schreyer, it is a standard fact in
deformation theory of singularities that deformations of the relations at t = 0 form
a complete set of relations at sufficiently small t 6= 0. This is just a reflection of
flatness of the family π : Z → T , cf. [Ar]. So as with the Gorenstein property, for
sufficiently small η there are presentations of QH∗η (M) of the form C[X1, . . . , Xn]⊗C
C{q1, . . . , qb2}/(f̂

η
1 , . . . , f̂

η
r ), but the f̂ηi modulo (q1, . . . , qb2) will only be arbitrary

perturbations of fi.

2.7 GW-invariants

If the (small) quantum cohomology ring QH∗q (M) is given by a multiplication table
with respect to a basis {γi}i=0,...,N of H∗(M) with γN the volume form and deg γi <
dimM for any i < N , one can easily determine any GW-invariant ΦR(α1, . . . , αk)

by taking the coefficient of q
ω1(R)
1 . . . q

ωb2 (R)

b2
· γN in α1 ∗ (α2 ∗ . . . ∗ (αk−1 ∗ αk) . . .)

(similarly for the large case η 6= 0). If QH∗q (M) is given in the form C[X1, . . . , Xn]⊗C
C{q1, . . . , qb2}/(f̂1, . . . , f̂r) of Proposition 2.3 more efficient methods are available at
least in two cases.

1) π−1(H2(M ;C)∩T ) ⊂ Z is reduced, i.e. for generic q = (q1, . . . , qb2) ∈ H2(M ;C)∩
T , QH∗q (M) is a semi-simple algebra, i.e. decomposes into a product of reduced
algebras. Write SpecQH∗q (M) = {P0, . . . , PN} ⊂ CnX1,...,Xn

. Then since any linear
form on QH∗q (M) is a linear combination of evaluations at Pν there are λν ∈ C,
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ν = 1, . . . , N , with

∑
R∈RC (M)

ΦR(γi1 , . . . , γik)q
ω1(R)
1 . . . q

ωb2 (R)

b2
=

N∑
ν=0

λνXi1(Pν) · . . . ·Xik(Pν) .

This formula depends only on the coordinates of the Pν !

2) The quantum corrections are all of lower degree. This is the case iff M is rationally
positive (cf. 2.1). Then at any q ∈ T ∩ Cb2q , (f̂ q1 , . . . , f̂

q
r ) form a Gröbner basis with

respect to the partial monomial order given by weights as follows:

X i1
1 . . . X in

n > Xj1
1 . . . Xjn

n iff
∑
ν

iν >
∑
ν

jν .

In fact, in(f̂ q1 , . . . , f̂
q
r ) = (f1, . . . , fr) = (in f̂ q1 , . . . , in f̂

q
r ). Let >m be any monomial

order refining >. Then there is a unique minimal monomial Ω = Xj1
1 . . . Xjn

n of

top degree. The GW-invariant
∑

R∈RC (M) ΦR(γi1 , . . . , γik)q
ω1(R)
1 . . . q

ωb2 (R)

b2
is the co-

efficient of Ω in the reduction of Xi1 . . . Xik modulo the Gröbner basis. This is an
effective method readily accessible to computer algebra programs.

2.8 Residue formulas

The projection λtop onto the top dimensional part is a trace map π∗OZ → OT , π :
Z → T the quantum deformation of SpecH∗(M ;C). If H∗(M ;C) has a presentation
as complete intersection C[X1, . . . , Xn]/(f1, . . . , fn) then Z is the fiber over 0 of a
holomorphic map f : T × Cn → C

n with π the restriction of the projection onto π.
In this case there is another trace map given by higher dimensional residues. For
a holomorphic map f : Cn → C

n with f−1(0) finite the residue at a ∈ f−1(0) of
F ∈ OCn,a is

resf (a;F ) :=
1

(2πi)k

∫
Γεa

F

f1 · . . . · fn
dX1 . . . dXn

with Γεa = {x ∈ U(a) | |fi(x)| = ε} for ε sufficiently small, U(a) a neighbourhood
of a with f−1(0) ∩ U(a) = {a}. The total residue of the germ F of a holomorphic
function along f−1(0) is

Resf (F ) :=
∑

a∈f−1(0)

resf (a;F ) .

Quite generally, Resf vanishes on the ideal generated by f1, . . . , fn. In a homoge-
neous situation more is true:

Proposition 2.4 [SiTi1][CaDiSt] 1) Let R = C[X1, . . . , Xn]/(f1, . . . , fn) be Ar-
tinian with fi homogeneous with respect to weights di on Xi. Put N :=

∑
i deg fi −∑

i di, J = det(∂fi/∂Xj). Then

R = R<N ⊕ C · J, R<N ⊂ ker Resf , Resf (J) = dimCR .
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2) The analogous conclusions hold true for R′ = C[X1, . . . , Xn]/(f1+g1, . . . , fn+gn)
with deg gi < deg fi. �

The reason for the vanishing on polynomials F of low degree is the vanishing of
the global residue of the associated meromorphic differential form σ on a convenient
compactification of Cn. The condition of regularity of σ along infinity bounds this
argument to polynomials with degF < N . Resf (J) counts the number of sheets of
f : CN → C

N near 0. And in the homogenous case (1) a theorem of Macaulay says
that a homogeneous F of degree > N is contained in (f1, . . . , fN).

The point of view of [CaDiSt] is to use the proposition in connection with Gröbner
bases as in the previous section to produce fast algorithms for the computation of
higher dimensional residues.

Applied to complete intersection cohomology rings H∗(M ;C) = C[X1, . . . , Xn]/
(f1, . . . , fn) with Xi, fi homogeneous we see that N =

∑
i deg fi −

∑
i di is top-

dimensional and HdimM(M ;C) is spanned by the Jacobian J of f1, . . . , fn. (2) of
the proposition may be applied to small quantum cohomology rings provided M is
rationally positive. In fact, the total residue coincides with λtop up to a constant.
We obtain

Corollary 2.5 Let M be rationally positive and assume the cohomology ring be
presented as H∗(M ;C) = C[X1, . . . , Xn]/(f1, . . . , fn) with Xi corresponding to γi ∈
Hdi(M ;C), fi homogeneous. Let f̂1, . . . , f̂n ∈ C[X1, . . . , Xn]⊗CC{q1, . . . , qb2} be the
quantum deformations of f1, . . . , fn as in Proposition 2.3.

Then there exists a constant c ∈ C such that for q = (q1, . . . , qb2) ∈ Cb2q ∩ T and
iν ∈ {1, . . . , n}, ν = 1, . . . , k∑

R∈RC (M)

ΦR(γi1 , . . . , γik)q
ω1(R)
1 . . . q

ωb2 (R)

b2
= Res f̂q(Xi1 · . . . ·Xik)

where f̂ q = (f̂ q1 , . . . , f̂
q
n) : Cn → C

n. �

The constant c can be fixed by evaluating a polynomial representing the class of a
normalized volume form.

2.9 The generalized Vafa-Intriligator formula

In the situation of Corollary 2.5 a more explicit formula can be derived if 0 is a
regular value of f̂ q. In fact, if f : Cn → C

n has a simple isolated zero in a ∈ Cn then

resf (a;F ) =
F (a)

J(a)
, J = det

(
∂fi
∂Xj

)
.

Therefore,
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Proposition 2.6 (Generalized Vafa-Intriligator formula) In the situation of Corol-
lary 2.5 assume 0 is a regular value of f̂ q, q = (q1, . . . , qb2) ∈ Cb2q ∩ T , i.e. the fiber
of π : Z → T over q is reduced. Write J = det(∂fi/∂Xj).

Then there exists a constant c ∈ C such that for any iν ∈ {1, . . . , n}, ν = 1, . . . , k∑
R∈RC (M)

ΦR(γi1 , . . . , γik)q
ω1(R)
1 . . . q

ωb2 (R)

b2
= c ·

∑
P∈(f̂q)−1(0)

J(P )−1 ·Xi1(P ) . . . Xik(P ) .

�

Note that this formula is a special case of the one given in 2.6,(1), but with the λν
explicitely determined up to one constant c.

I would also like to mention that a similar formula with Jg−1 replacing J−1

computes GW-invariants for genus g, cf. [SiTi1, Prop.4.4].

Example 2.7 Everything we have presented here works perfectly well for the Graß-
mannians G(k, n) and was actually developed in [SiTi1] to treat this case. The
cohomology ring has a presentation

H∗(G(k, n)) = C[X1, . . . , Xk]/(fn−k+1, . . . , fn)

with Xi corresponding to the i-th Chern class of the universal bundle S and fj
corresponding to the expression in Xi of the j-th Segre class of S. In particular
deg fj = j in agreement with the formula for the dimension in Proposition 2.4.
G(k, n) being Fano of index n, a dimension count shows that the only possible
quantum contributions are to fn, and these are just by lines, irreducible classes in
H2(M ;Z). The corresponding moduli space is smooth of the expected dimension
and the quantum contribution can actually be figured out by linear algebra to be
(−1)k. With q corresponding to the positive generator of H2(G(k, n);Z) ' Z we get

QH∗{q}(G(k, n)) = C[X1, . . . , Xk]/(fn−k+1, . . . , fn + (−1)kq) .

For any q 6= 0 the spectrum of QH∗q (G(k, n)) splits into
(
n
k

)
= dimH∗(G(k, n))

simple points. In this case Proposition 2.6 is the classical Vafa-Intriligator formula
[In], which is hereby established as a formula actually computing GW-invariants of
G(k, n). �

3 Quantum cohomology of Ng

A promising task, both in view of relations to gauge theory [Do] and in its own
right, is the computation of the (small for the time being) quantum cohomology
ring of N (Σ, 2, L), the moduli space of stable bundles E over a Riemann surface Σ
of genus g ≥ 2, rkE = 2, detE = L, L a line bundle of odd degree. N (Σ, 2, L) is a
compact Kähler manifold of dimension 3g−3 with c1(N (Σ, 2, L)) = 2α, α the ample
generator of PicN (Σ, 2, l) ' Z. In particular, N (Σ, 2, L) is a Fano manifold of index
2. The underlying symplectic manifold depends only on g and will be denoted Ng.
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As a differentiable manifold Ng can be identified via the Narasimhan-Seshadri
theorem with the space of isomorphism classes of representations

ρ : π1(Σ \ {P}) −→ SU(2), ρ(

g∏
i=1

AiBiA
−1
i B−1

i ) = −I ,

modulo the diagonal action of SU(2) by conjugation, P some fixed point on Σ. Here
Ai, Bi are a set of canonical generators of π1(Σ\{P}), a free group on 2g generators.
From this point of view one obtains a well-defined symplectic action of the mapping
class group of Σ on Ng.

3.1 The cohomology ring

H∗(Ng) is generated by α ∈ H2(Ng), ψi ∈ H3(Ng) (i = 1, . . . , 2g), β ∈ H4(Ng),
which can be obtained as Künneth components of c2(EndU), U ↓ Σ × Ng the
universal bundle. The subring H∗I (Ng) left invariant by the action of the mapping
class group, which factorizes over the action of Sp(2g,Z) on ψ1, . . . , ψ2g, is generated
by α, β and γ := −2

∑
i ψiψi+g. Another way to define H∗I (Ng) is as subring of

algebraic classes for generic choice of Σ [BaKiNe]. The ring structure on H∗(Ng)
is easily expressed in terms of the ring structure on H∗I (Ng′) for g′ ≤ g [KiNe,
Prop.2.5]. The action of the mapping class group being symplectic, H∗I (Ng) is
respected by quantum multiplication; the full quantum cohomology ring QH∗(Ng)
is determined by the invariant part QH∗I (Ng) as in the classical case. We may and
will thus concentrate on the subring generated by α, β, γ.

There is a beautiful recursive description of the relation ideal of H∗I (Ng), found
independently by several people [Za],[Br],[KiNe],[SiTi2].

Theorem 3.1 Set fr = 0 for r < 0, f0 = 1 and inductively for r > 0

fr+1 = αfr + r2βfr−1 + 2r(r − 1)γfr−2.

Then for g ≥ 2

H∗I (Ng) = Q[α, β, γ]/Ig, Ig = (fg, fg+1, fg+2) . �

It is also easy to determine the initial ideal of Ig with respect to the reverse lexico-
graphic order on α, β, γ with weights 1,2,3, namely [SiTi2, Prop.4.2]

inIg = {αaβbγc | a+ b+ c ≥ g} .

Thus a basis for V = H∗I (Ng;C) is given by the monomials αaβbγc with a+b+c < g.
The socle is spanned by γg−1.

It is amusing to see how how far one can get in a proof of the recursion formula
just from the fact that

Any f ∈ Ig of minimal degree is a multiple of the Mum-
ford relation fg, infg = αg

23



together with a simple geometric argument assuming some non-degeneracy. fg can
be obtained by a Grothendieck-Riemann-Roch computation of a 2g-th Chern class
of a (2g − 1)-bundle. For the geometric input note that contraction of the g-th
handle Σg → Σg−1 induces the differentiable embedding

ι : Ng−1 −→ Ng, (Ai, Bi)i=1,...,g−1 7−→ (Ai, Bi)i=1,...,g ,

with Ag = Bg = I. It turns out that ι∗[Ng−1] is Poincaré-dual to γg := −ψgψ2g

[Th2]. Under ι∗ : H∗(Ng) → H∗(Ng−1), α, β, γ map to the respective classes in
H∗(Ng−1) We get the following inclusions of ideals:

γIg−1 ⊂ Ig ⊂ Ig−1 . (∗)

The first inclusion is by Poincaré-duality using the action of the mapping class group
to make γg invariant, observing γ = −2

∑
i ψiψi+g.

Let us assume that inductively we know Ir = (fr, fr+1, fr+2) with

fr+1 = αfr + λrβfr−1 + µrγfr−2

for some λr, µr ∈ Q \ {0}, r ≤ g − 1. To set up an induction it is more convenient
to work with the unique set of generators f 1

r = fr, f
2
r , f

3
r of Ir with inf 1

r = αr,
inf 2

r = αr−1β, inf 3
r = αr−1γ. The recursion for fr as given above is then equivalent

to
f 1
r+1 = αf 1

r + λrf
2
r , f 2

r+1 = βf 1
r + νrf

3
r , f3

r+1 = γf 1
r ,

with νr = µr/λr. Let us assume we know these relations inductively for r < g with
some λr, νr ∈ Q \ {0}. Again as in [SiTi2, Prop. 4.2] one shows

inIr =
〈
αaβbγc

∣∣∣a+ b+ c ≥ r
〉
.

Now f 1
g+1 ∈ I

(g+1)
g = 〈αf 1

g , f
2
g 〉 (the (g + 1)-homogeneous part of Ig) and since

inf 1
g+1 = αg+1 we get f 1

g+1 = αf 1
g + λgf

2
g . Similarly, f 2

g+1 ∈ I
(g+2)
g = 〈α2f 1

g , βf
1
g , αf

2
g ,

f 3
g 〉, so eliminating α2f 1

g and assuming the coefficient of βf 1
g to be non-zero, f 2

g+1 =
βf 1

g + µgαf
2
g + νgf

3
g . Finally, γf 1

g ∈ Ig+1, and γf 1
g has the right initial term αgγ, so

f 3
g+1 = γf 1

g .

To summarize we see that the only thing really astonishing here is the vanishing
of µg. Note that non-zero µg would be compatible with our input as one sees by
taking a linear combination of β and α2 as generator in degree 2. β is distinguished
among such generators by the property that βg = 0, a fact directly related to the
vanishing of the g-th Chern class of Ng.

3.2 Quantum recursion relations

By heuristical comparison with the Donaldson series of T ×Σ, T a torus, a group of
physicists derived the eigenvalue spectrum of quantum multiplication by α, β, γ, the
last of which being completely degenerate by the remark at the end of section 2.4
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[BeJoSaVa]. From the eigenvalue spectrum they were able to show that the quantum
deformations q1

g , q
2
g , q

3
g of f 1

g , f 2
g , f 3

g obey a very similar recursion formula, only with
β replaced by β ± 8. The following convention will be used throughout the present
chapter: Since Pic(Ng) has rank 1 we only have one quantum parameter q, which in
this Fano case is nothing but a homogenizing parameter for the relation ideal and
may thus be set to 1. qig are then really inhomogeneous refinements of f ig.

The starting point for our approach was the following observation.

Proposition 3.2 Let Jg = (q1
g , q

2
g , q

3
g) ⊂ C[α, β, γ] with q1

g , q2
g , q3

g Z/2Z-graded
inhomogeneous refinements of f 1

g , f 2
g , f 3

g (degα = 1, deg β = 2, deg γ = 3). Then
the existence of a recursion

q1
g+1 = αq1

g + g2q2
g

q2
g+1 = (β + cg+1)q1

g +
2g

g + 1
q3
g

q3
g+1 = γq1

g

for some cg+1 ∈ Q is equivalent to the inclusions

γJg ⊂ Jg+1 ⊂ Jg . (q∗)

Proof. Let us first assume (q∗) given. By Jg+1 ⊂ Jg and since q1
g is a relation

of minimal degree, q1
g+1 ∈ 〈αq1

g , q
2
g〉. Looking at the homogeneous parts of top-

degree and comparing with the classical recursion yields q1
g+1 = αq1

g + g2q2
g . As for

q2
g+1, by the Z/2Z-grading, this must be a linear combination of α2q1

g , βq
1
g , αq

2
g , q

3
g

and q1
g . Of these only q1

g is of lower degree. Hence its coefficient cg+1 can not be
determined by comparison of the top-degree parts. Finally, γq1

g ∈ Jg and has the
same homogeneous part as f 3

g+1 = γf 1
g . Comparing initial terms this must be q3

g+1.
Finally, (q1

g+1, q
2
g+1, q

3
g+1) ⊂ Jg+1 and both these ideals have the same initial terms

and so must coincide.

For the converse, only γq2
g , γq

3
g ∈ Jg+1 require attention. But using the recursion,

both are multiples of γq1
g modulo Jg+1, and γq1

g = q3
g+1 ∈ Jg+1. �

In the next step we translate (q∗) into a recursion for GW-invariants. Let us
introduce the following notation: For a polynomial F =

∑
fabcα

aβbγc ∈ Q[α, β, γ]
we write

〈F 〉g :=
∑
R

fabcΦ
Ng
R

(
α, . . . , α︸ ︷︷ ︸

a

, β, . . . , β︸ ︷︷ ︸
b

, γ . . . , γ︸ ︷︷ ︸
c

)
for the “expectation value” of F .

Lemma 3.3 Let Jg ⊂ C[α, β, γ] be the kernel of C[α, β, γ] → QH∗I (Ng). Then the
following are equivalent:

1. γJg ⊂ Jg+1 ⊂ Jg

2. 〈F · γ〉g = 2g〈F 〉g−1 ∀F ∈ C[α, β, γ].
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3. For any R ∈ H2(Ng−1;Z), ϕ1, . . . , ϕk ∈ H∗I (Ng)

Φ
Ng
ι∗R

(ϕ1, . . . , ϕk, γi) = Φ
Ng−1

R (ι∗ϕ1, . . . , ι
∗ϕk)

where ι : Ng−1 ⊂ Ng is the embedding induced by contraction of a handle in
such a way that ι∗[Ng−1] is Poincaré-dual to γi = −ψiψi+g. �

We will establish (3) of this list up to some problem involving curves with compo-
nents in some bad locus in section 3.5, and express in section 3.3 the missing coeffi-
cients cg in terms of GW-invariants of lines (indecomposable classes R ∈ H2(Ng;Z)).
The case g = 2 has a description as complete intersection of two quadrics in IP5 and
can thus be treated directly, cf. [Do]. We obtain

Theorem 3.4 [SiTi3] Set qi = 0 for i < 0, q0 = 1 and define inductively for r > 0

qr+1 = αqr + r2(β + cr)qr−1 + 2r(r − 1)γqr−2

with

cr =
(−1)r

(r − 1)!4r−1
ΦNrl (α, . . . , α︸ ︷︷ ︸

r−1

, β, . . . , β︸ ︷︷ ︸
r

) ,

l ∈ H2(Ng;Z) the positive generator. Assume Conjeture 3.6 holds. Then for g ≥ 2

QH∗I (Ng) = C[α, β, γ]/Jg, Jg = (qg, qg+1, qg+2) . �

Note that to agree with the formula predicted in [BeJoSaVa] we would need

Φ
Ng
l (α, . . . , α︸ ︷︷ ︸

g−1

, β, . . . , β︸ ︷︷ ︸
g

) = (−1)g(g − 1)!4g−1 · 8 .

These GW-invariants are certainly computable by standard means to study moduli
spaces of stable sheaves over IP1×Σ, but I have not yet carried out the computations.
The verification of this number would also serve as an interesting check on the
connection to gauge theory.

3.3 The coefficients cr

To determine the coefficient cg+1 in the recursion we start from the equality

(β + cg+1)q1
q (α, β, γ) +

2g

g + 1
γq1

g(α, β, γ) = 0 (∗)

in QH∗I (Ng+1) (Prop. 3.2). Now recall that a vector space basis for QH∗I (Ng+1)
can be given by the monomials αaβbγc, a + b + c ≤ g (interpreted as (a+b+c)-fold
quantum product at q = 1!). The only monomial occuring in (∗) that is not of this
form is βαg in βq1

g . In other words, (∗) can also be interpreted as an expression
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for the quantum product β ∗ α ∗ . . . ∗ α (α occuring g-times) in terms of this basis.
Moreover, the monomial αg occurs only in the term cg+1q

1
g , with coefficient cg+1.

To determine cg+1 we may now use the diagonalization of the classical intersection
pairing of Zagier [Za, Thm.3]. He sets for r, s, t ≥ 0

ξr,s,t =

min{r,s}∑
l=0

(
r + s− l

r

)
βs−l

(2γ)l+t

l!t!

fr−l
(r − l)!

.

ξr,s,t has initial term αrβsγt and so {ξr,s,t | r+s+t ≤ g} form a basis for QH∗I (Ng+1).
Moreover, the ξr,s,t diagonalize the intersection pairing:

〈ξr,s,t · ξr′,s′,t′〉H∗(Ng+1) =

 (−1)r+s4g
(g + 1)!

(r + s+ a)r!s!t!t′!
,
r′ = s, s′ = r
t′ = g − r − s− t

0 , else

where 〈 . 〉H∗(Ng+1) = λtop( . ) is the classical projection to the normalized volume
form. But for polynomials of degree up to the dimension this is the same as our
quantum projection 〈 . 〉g+1. So ξr,s,t ∈ C[α, β, γ], r + s + t ≤ g, viewed as elements
of QH∗I (Ng+1), are a basis diagonalizing the quantum intersection product. And the
only ξr,s,t containing the monomial αg is ξg,0,0 = fg/g! = αg/g! + . . . . The dual basis
element to ξg,0,0 is

ξ0,g,0 · (−1)g4−g = (−1)g4−gβg .

Using the expansion of βαg from (∗) in terms of ξr,s,t we obtain

cg+1 = cg+1

〈
αg

g!
· (−1)g

4g
· βg
〉
g+1

=
(−1)g

g!4g
〈−βαgβg〉g+1

=
(−1)g+1

g!4g
Φ
Ng+1

l (α, . . . , α︸ ︷︷ ︸
g

, β, . . . , β︸ ︷︷ ︸
g+1

) .

3.4 A degeneration of Ng

To establish the decisive geometric input Lemma 3.3,3 for g ≥ 3 we use an algebraic
degeneration of Ng constructed by Gieseker [Gi]. For a family π : X → S of curves
of genus g with a 1-dimensional smooth parameter scheme S, X smooth, π smooth
away from 0 ∈ S and X0 = π−1(0) irreducible and smooth up to one node, he has
constructed a proper flat family W → S with

W smooth
for s 6= 0: Ws = N (Xs, 2, 1), the moduli space of

stable 2-bundles on Xs of degree 1
W0 ⊂ W an irreducible, reduced divisor with normal crossings.

W0 is also a moduli space of 2-bundles of degree 1, but the curve might have to be
changed. To explain this let C be the normalization of X0, a smooth curve of genus

27



g − 1, with P , Q ∈ C corresponding to the double point of X0. Write Ci, i ≥ 0, for
the nodal curve obtained from C by joining P and Q by a chain of rational curves
R1, . . . , Ri. In particular C0 = X0. For a vector bundle E over Ci write Ẽ for the
pull-back of E to C and ERi = E|Ri . W0 is the moduli space of 2-bundles E of
degree 1 on Ci for some i ≤ 2 subject to the stability condition

• i = 0: Ẽ is unstable or Ẽ has a line subbundle of degree 0 (type Is and Iu)

• i = 1: Ẽ is semistable and ER1 = O ⊕O(1) (type II1)
or Ẽ is stable and ER1 = O(1)⊕O(1) (type IIs)

• i = 2: Ẽ is stable and ER1 = ER2 = O ⊕O(1), but the O(1)
sub-line bundles of ER1 , ER2 are not glued together (type III)

W is a fine moduli space of this extended notion of stable bundles on the fibers of π:
A universal 2-bundle E is defined over a blow-up Y (the universal curve) ofW×SX .

There is an explicit description of W0 as modification of IP(Hom(ŨP , ŨQ)⊕O),
where Ũ ↓ C × N (C, 2, 1) is the universal bundle and ŨP = Ũ |{P}×N (C,2,1), ŨQ =

Ũ |{Q}×N (C,2,1). Under this correspondence a dense open set in W0 is identified with
bundles of type Iu by gluing a stable 2-bundle E on C at P and Q via a non-
degenerate homomorphism EP → EQ.

This is not quite the form appropriate for us because the determinant line bundle
has not been fixed so far. This has been carried out in an unpublished part of
Thaddeus’ thesis [Th1, §6,Thm.1]. The picture is as follows: Let L ∈ Pic(X ) be
of degree 1 on Xs for any s. Let V ⊂ W be the reduced subscheme having closed
points [E] ∈ Ws with H0(Y[E],Λ

2E∨ ⊗ L̂s) 6= 0 where L̂ is the pull-back of L to the
universal curve Y (V is expressable as the support of a sheaf). For s ∈ S \{0}, Vs =
N (Xs, 2, Ls), and V → S is flat. For an explicit description of V0 let U ↓ C ×Ng−1

be the universal bundle, where we wrote Ng−1 = N (C, 2, L̃0), L̃0 the pull-back of
L0 to C. One irreducible component of V0 is the IP3-bundle P := IPHom(UP ,UQ).
P parametrizes bundles of type II2 (generically) and III. The latter correspond to
the divisor Q ⊂ P corresponding to degenerate homomorphisms. Fiberwise this is a
quadric in IP3, so Q is a IP1×IP1-bundle. There is a 2-fold covering S → P branched
along Q. Note that S \Q can be identified with the SL2-bundle of homomorphisms
EP → EQ compatible with the gluing datum given on L̃0 by L0. Since the descent
of a stable bundle Ẽ on C to E on C0 is stable, S \Q parametrizes bundles of type
Is, while an open set in Q can be identified with bundles of type II2.

The set of bundles of type II2 being irreducible, S and P must be glued along
Q to build up a model for V0. But the identification map (Q ⊂ S) → (Q ⊂ P ) is
not the identity, and can actually not be globally defined. So we need to modify S
somewhere on Q. In fact, bundles of type Iu lie over the locus in Ng−1 of bundles Ẽ
that are extensions

0 −→M
i−→ Ẽ

q−→M−1 ⊗ L̃0 −→ 0 (∗)

for some M ∈ Pic0(C) =: Jg−1. There exists a vector bundle F over Jg−1 of rank
g − 1 with IP(F ) parametrizing such extensions modulo equivalence. And there is
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a closed embedding Z := IP(F ) ↪→ Q by sending an extension (∗) to the ray of
degenerate homomorphisms

ẼP
qP−→ (M−1 ⊗ L̃0) ' MQ

iQ−→ ẼQ .

Note that dimZ = 2g − 3, i.e. codim SZ = g ≥ 3. Let S̃ be the blow up of S in
Z, Z̃ ⊂ S̃ the strict transform. It turns out that Z̃ = IP(F ) ×Jg−1 IP(F ′) for some

(g − 1)-bundle F ′ over Jg−1 and that Z̃ can be partially contracted in S̃ along the
direction of IP(F ) to give a space S̄ with the image Z̄ of Z̃ of dimension 2g−2. The
birational transformation S ↔ S̄ is a flip along Z in the sense of Mori theory.

The attaching map (Q ⊂ S) → (Q ⊂ P ) now induces an isomorphism of the
strict transform of Q in S̄ with Q ⊂ P , and so this strict transform will also be
called Q.

Proposition 3.5 [Gi][Th1] V0 = S̄
∐

Q P . �

3.5 The recursive formula for GW-invariants

To compute Φ
Ng
ι∗R

(ϕ1, . . . , ϕk, γi) for ι : Ng−1 ↪→ Ng, R ∈ H2(Ng−1;Z), ϕ1, . . . , ϕk ∈
H∗I (Ng), γi Poincaré-dual to ι∗[Ng−1], we start with Φ

Ng−1

R (ι∗ϕ1, . . . , ι
∗ϕk) and try

to argue backwards. We keep the notations of the previous subsection.

Recall the universal bundle U ↓ Ng−1 × C. The choice of a differentiable iso-
morphism UP ' UQ induces a differentiable section s of P ′ = IPHom(UP ,UQ). We
proceed as in Proposition 1.1 and represent (multiples of) ι∗ϕi by submanifolds
Ai ⊂ Ng−1, choose compatible almost complex structures J on Ng−1 and J̃ on P ′ in
such a way that

Φ
Ng−1

R (ι∗ϕ1, . . . , ι
∗ϕk) = ]

{
ψ : IP1 → Ng−1

∣∣ ∂̄Jψ = 0, ψ∗[IP
1] = R, ψ(ti) ∈ Ai

}
for pairwise disjoint ti ∈ IP1, and such that there are unique J̃-holomorphic liftings
ψ̃ for ψ in the set of the right-hand side, ψ̃∗[IP

1] = s∗R, ψ(tk+1) ∈ s(Ng−1). Since
Q ·s∗R = 0, we also get, with a little more care, imψ̃∩Q 6= ∅ for any such lift. Since
S → P is branched only along Q and s naturally lifts to S the same statements
hold true with P replaced by S. We will keep the notation ψ̃ for the corresponding
unique lifts of the ψ. Let K ⊂ S be a compact neighbourhood of Q disjoint from
imψ̃ for any ψ̃. Extend J̃ to an almost complex structure on a desingularization Ṽ
of V keeping the map to the basis Ṽ → S holomorphic. One can check the following:

• There are submanifolds Ãi ⊂ Ṽ transversal to Ṽs = Vs for s 6= 0 and to S \K,
such that

– Ãi ∩ Vs is Poincaré-dual to ϕi

– Ãi ∩ (S \ K) = q−1(Ai) ∩ (S \ K) where q : S → Ng−1 is the bundle
projection
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• There exists an extension s̃ : S × Ng−1 ↪→ Ṽ of the embedding s : Ng−1 ↪→
S \K ⊂ V0. For any s 6= 0, s̃s is Poincaré-dual to γi ∈ H6(Vs ' Ng)

• The deformation problem ψs : IP1 → Ṽs with the incidence conditions ψs(ti) ∈
q−1(Ãi), ψ

s(tk+1) ∈ ims, imψs ⊂ Ṽs is unobstructed at the lifts ψ̃ of the ψ.

We thus see that we can produce, for any s ∈ S \ {0}, a finite subset of pseudoholo-
morphic maps ψ : IP1 → N (Xs, 2, Ls) contributing to the requested GW-invariant

Φ
Ng
ι∗R

(ϕ1, . . . , ϕk, γi) precisely Φ
Ng−1

R (ι∗ϕ1, . . . , ι
∗ϕk) curves (counted with signs).

Contrary to what we initially believed, there is no homological argument pro-
hibiting curves with components in Z̄ in the limit s → 0 of a sequence of pseudo-
holomorphic curves in N (Xs, 2, Ls) with the required incidence conditions. So we
can only prove the recursion formula under the additional input that

Conjecture 3.6 Trees of rational curves with components in Z̄ do not contribute
to the GW-invariant under study.

4 Quantum cohomology of toric manifolds (after

Batyrev)

We are going to discuss [Bt]. In preparing these notes [MoPl] has also been helpful.

4.1 Toric manifolds

It will be most convenient for us to describe a toric manifold M as quotient of
C
n \F , F an algebraic subset of the coordinate hyperplanes, by a diagonal action of

(C∗)n−d, d = dimM . The easiest example of this is of course IPd = (Cd+1 \ {0})/C∗.
How precisely F and the action are defined is encoded in a fan Σ, which is a

collection of cones {σ} in a d-dimensional vector space NR = N ⊗Z R, N ' Z
d

a lattice. One restricts to cones that are spanned by finitely many lattice vectors
(rational polyhedral cones) and that meet some hyperplane in N only at the origin
(strong convexity). We write σ = 〈v1, . . . , vk〉. It is also required that the cones fit
together, i.e. σ, σ′ ∈ Σ imply σ ∩ σ′ ∈ Σ, and that any face of some σ ∈ Σ is also an
element of Σ.

Many of the properties of the associated toric variety, the construction of which
we will give only in the smooth case below, are directly reflected in properties of the
fan. To produce a non-singular variety of dimension d, for example, the condition is
that the defining vectors of maximal cones (i.e. which are not faces of others) form
a lattice basis, while completeness is equivalent to NR =

⋃
σ∈Σ σ. We will fix such

a regular, complete fan Σ during the following duscussion. Let v1, . . . , vn be the
defining lattice vectors (generators of one-dimensional cones).

F = F (Σ) is now defined as union of all V (zi1 , . . . , zik) ⊂ Cn such that {vi1 , . . . ,
vik} is not contained in any cone σ ∈ Σ. Note that codimF ≥ 2. For the (C∗)n−d-
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action let R = R(Σ) ⊂ Zn be the kernel of the linear map

Z
n −→ N ' Zd, λ = (λ1, . . . , λn) 7−→

∑
i

λivi .

Being surjective by regularity, R is a free Z-module of rank n − d. Any λ ∈ R
generates a C∗-action on Cn \ F by

C
∗ × (Cn \ F ) −→ C

n \ F, (t; z1, . . . , zn) 7−→ (tλ1z1, . . . , t
λnzn) ,

and these commute among each other. Choosing a basis λ1, . . . , λn−d for R this
amounts to our (C∗)n−d-action on Cn \F . This action is free and there always exists
a good algebraic quotient, i.e. the quotient in the category of locally ringed spaces
is a scheme with closed points being the set of orbits. In fact, there is a covering of
C
n \ F by the (C∗)n−d-invariant affine open sets

Uσ = C
n \

⋃
vj 6∈σ

V (zj) ' Cd × (C∗)n−d, σ ∈ Σ a d-dimensional cone.

If σ = {v1, . . . , vd} and u1, . . . , ud ∈ N∨ is a dual basis to v1, . . . , vd then

w1 := z1 · z〈vd+1,u1〉
d+1 · . . . · z〈vn,u1〉

n , . . . , wd := zd · z〈vd+1,ud〉
d+1 · . . . · z〈vn,ud〉n

freely generate the invariant ring C[z1, . . . , zn, z
−1
d+1, . . . , z

−1
n ](C

∗)n−d . Therefore the
quotient

π : Cn \ F −→M = M(Σ) := (Cn \ F )/(C∗)n−d

exists and is a smooth algebraic variety. The quotient map π has the local sections

π(Uσ) −→ C
n \ F, (w1, . . . , wd) −→ z = (w1, . . . , wd, 1, . . . , 1)

(if σ = {v1, . . . , vd} as above) and is thus an algebraic principal (C∗)n−d-bundle.
Note also that the quotient of Cn \ V (z1 · . . . · zn) = (C∗)n gives a dense “big
cell” (C∗)d ⊂ M , a d-dimensional torus. Hence the name “toric variety” or “torus
embedding” for M . The complement of the big cell consists of n divisors Z1, . . . , Zn,
the images of the coordinate hyperplanes V (zi).

4.2 The cohomology ring, c1, H2, and the Kähler cone

The cohomology classes associated to the n divisors Zi (also denoted Zi) generate
the cohomology ring of M . These generators are subject to two kinds of relations:
Linear ones ∑

i

〈m, vi〉Zi = 0

coming from the (C∗)n−d-invariant global rational functions
∏

i z
〈m,vi〉
i for any m ∈

N∨ ' Zd, the dual lattice, and nonlinear ones

Zi1 . . . Zik = 0 ⇔ V (zi1) ∩ . . . ∩ V (zik) ⊂ F ⇔ {vi1 , . . . , vik} is not cont-
ained in a single σ ∈ Σ

,
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of evident geometric origin. (The number of generators of non-linear relations can
be reduced by restricting to so-called primitive sets {vi1 , . . . , vik} [Bt], but we won’t
need that.) Let us denote the ideals generated by the linear and nonlinear relations
Λ = Λ(Σ) and SR = SR(Σ) respectively (SR stands for Stanley-Reisner ideal).

Fact 1. H∗(M ;Z) = C[Z1, . . . , Zn]/(SR + Λ). �

It is often better not to reduce the set of generators by the linear relations. For
example,

c1(M) = Z1 + . . .+ Zn

is more easily expressed in terms of all Zi.

It can also be shown that intersections of the Zi as cycles or Chow classes
generate the integral homology or (what is the same here) Chow groups. For
our purposes a more convenient description of the second homology is however
as dual lattice of H2(M ;Z). For A ∈ H2(M ;Z) let λi = Zi · A ∈ Z. Since
H2(M ;Z) = CnZ1,...,Zn

/(
∑

i〈m, vi〉Zi | m ∈ N∨) we get

Fact 2. H2(M ;Z) = R = {λ ∈ Zn |
∑

i λivi = 0}. �

In this description the dual pairing evaluates λ on Zi to λi.

To describe the Kähler cone KM one uses the notion of piecewise linear functions
on Σ, which are continuous functions ω : NR → R with ω|σ linear for any σ ∈ Σ.
Notation: PL = PL(Σ). Obviously, PL ' R

n via ω 7→ (ω(v1), . . . , ω(vn)). By
the description of H2(M) the surjection PL → H2(M ;R) sending ω to

∑
i ω(vi)Zi

induces an isomorphism of H2(M ;R) with PL modulo linear forms, i.e. PL/N∨
R
'

H2(M ;R). By abuse of notation we write ω for both the piecewise linear function
and its class in H2.

Fact 3. Under this isomorphism ω ∈ PL corresponds to a class in KM iff ω is
convex, i.e.

ω(x+ y) ≤ ω(x) + ω(y) ∀ x, y ∈ NR ,
and ω is a Kähler class (i.e. ω ∈ KoM , the interior) iff ω|σ+σ′ is not linear for any
two different d-dimensional cones σ, σ′ ∈ Σ. �

4.3 Moduli spaces of maps IP1 →M

Let us now try to get our hands on the moduli spaces of stable rational curves in
M . Essential building blocks of these moduli spaces are spaces C0

λ(M) of morphisms

ϕ : IP1 −→M

with ϕ∗[IP
1] = λ for some fixed n-tuple λ ∈ R = H2(M ;Z), i.e. λi = degϕ∗OM(Zi).

By renumbering we may assume λ1, . . . , λl < 0 and λl+1, . . . , λn ≥ 0. In this subsec-
tion we will give a fairly explicit description of C0

λ(M) for any λ.
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We start with the following simple but crucial observation:

Lemma 4.1 Let π : IP1 → M and Zi1 , . . . , Zil be the maximal set of divisors with
imϕ ⊂ Zi1 ∩ . . . ∩ Zik . Then {Zi | i 6= iν ∀ν} spans H2(M) and ϕ∗[IP

1] ∈ H2(M ;Z)
is determined by degϕ−1(Zi), i 6= iν.

Proof. By assumption Zi1 ∩ . . . ∩ Zik 6= ∅. The definition of F ⊂ Cn thus implies
the existence of σ ∈ Σ with {vi1 , . . . , vik} ⊂ σ, whence vi1 , . . . , vik are linearly
independent. Letting m1, . . . ,md ∈M be a dual basis to vi1 , . . . , vik we may express
Zi1 , . . . , Zik by Zi, i 6= iν , since∑

i

〈mµ, vi〉 = Ziµ +
∑
i6=iν

〈mµ, vi〉

is in the linear relation ideal Λ. �

In other words, any irreducible curve C ⊂ M (rational or not) is transversal to
some divisors Zj1 , . . . , Zjn−k , the intersection numbers of which with C determine
the homology class [C].

We want to produce elements of C0
λ(M) as extensions ϕf of ϕ0

f = π ◦ f with

f = (0, . . . , 0, fl+1, . . . , fn) : A1 −→ C
n \ F

with fi ∈ C[t], deg fi ≤ λi, π : Cn \ F → M the quotient map. To make ϕ0
f well-

defined on all of A1 we restrict to such f with f−1(F ) = ∅. To discuss the extension
we change coordinates to u = t−1 and write

ϕ0
f = π ◦ (0, . . . , 0, uλl+1fl+1(u−1), . . . , uλnfn(u−1) ,

where we used the C∗-action on Cn \ F associated to λ. If deg fi = λi for all
i, the limit u → 0 is π(0, . . . , 0, al+1, . . . , an) with ai the leading coefficient of fi.
In particular, ϕf (∞) 6∈ Zl+1 ∪ . . . Zn and degϕ−1

f (Zi) = λi for i > l. So in view of
Lemma 4.1, ϕf ∈ C0

λ(M). If some fi have lower degree, one also expects intersections
with Zi at∞, but in nastier cases degϕ−1

f (Zi) might be less than λi, i.e. ϕf would not
have the right homology. Nevertheless one can show, using the local trivializations
of π over π(Uσ) (cf. section 4.1), that this happens only on an algebraic subset of
the space of f . Thus

V :=
{
f = (0, . . . , 0, fl+1, . . . , fn) | f−1(F ) 6= ∅, ϕf ∈ C0

λ(M)
}

is a Zariski-open subset of CΣi>l(λi+1). Note that V 6= ∅ iff there exists σ ∈ Σ with
v1, . . . , vl ∈ σ. We get a map

Φ : V −→ C0
λ(M), f 7−→ ϕf ,

which is clearly a morphism of complex schemes. There is a free action of (C∗)n−d on
V , coming from the diagonal action on Cn \ F , under which Φ is invariant. As free
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action of a reductive group on an affine variety V = SpecA, the geometric invariant
theory quotient V//(C∗)n−d = Spec(A(C∗)n−d) is an orbit quotient V/(C∗)n−d. Φ
induces a morphism

Φ̄ : V/(C∗)n−d −→ C0
λ(M) .

Lemma 4.2 Φ̄ is bijective.

Proof. Let ϕ ∈ C0
λ(M). Then either imϕ ⊂ Zi or ϕ−1(Zi) is a divisor on IP1 of

degree λi. ϕ
−1(Zi) ⊂ A1 = IP1 \ {∞} thus determines all zeros of fi. Moreover, the

leading coefficients can be determined by ϕ(t) uniquely up to the action of (C∗)n−d

for any t ∈ IP1. This shows that Φ̄ is injective.

Conversely, we have found f ∈ V with ϕ−1(Zi) = ϕ−1
f (Zi), ϕ(t) = ϕf (t), and

have to show ϕ = ϕf . We use the local section of π over π(Uσ) (cf. section 4.1)
with f(t) ∈ Uσ. Renumbering vl+1, . . . , vn we may assume σ = 〈v1, . . . , vd〉. Then
π(Uσ) = M \

⋃n
i=d+1 Zi has coordinates w1, . . . , wd and a section

Λ : π(Uσ) −→ C
n \ F, (w1, . . . , wd, 1, . . . , 1) .

From the expression of wi in terms of zi together with ϕ−1(Zi) = ϕ−1
f (Zi), we see

that for any i, zi(Λ ◦ϕ) and zi(Λ ◦ϕf ) are rational functions on IP1 that either both
vanish identically (imϕ ⊂ Zi), or have the same zero and polar divisor. Taking into
account ϕ(t) = ϕf (t) ∈ Uσ this shows Λ ◦ ϕ = Λ ◦ ϕf and hence ϕ = ϕf . �

We may also characterize now classes of rational curves.

Proposition 4.3 The nef cone of M (the dual cone of KM) is

NE (M) = {λ ∈ H2(M ;Z) | ∃σ ∈ Σ : λi < 0⇒ vi ∈ σ} ,

and such classes can be represented by irreducible rational curves.

Proof. This follows from the lemma together with the characterization of emptyness
of V . �

NE (M) is thus a union of ]{σ ∈ Σ | dimσ = d} quadrants (N≥0)n−d ⊂
H2(M ;Z) ' Zn−d, and in particular NE (M) is polyhedral. Extremal rays of NE (M)
are of the form: λi = 1 for some i, λj = 0 for j 6= i, j 6∈ σ = 〈vi1 , . . . , vid〉, and
λi1 , . . . , λid fixed by the requirement

∑
λivi = 0.

To determine the scheme-theoretic structure of C0
λ(M) we compute the embed-

ding dimension of C0
λ(M) at ϕ : IP1 → M , i.e. the dimension of the Zariski tangent

space H0(IP1, ϕ∗TM). Pulling back the generalized Euler sequence

0 −→ On−dM −→ OM(Z1)⊕ . . .⊕OM(Zn) −→ TM −→ 0

we obtain

0 −→ On−d
IP1 −→ OIP1(λ1)⊕ . . .⊕OIP1(λn) −→ ϕ∗TM −→ 0 .
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Recall our convention that λi < 0 precisely for i ≤ l. We get

h0(IP1, ϕ∗TM) =
n∑

i=l+1

(λi + 1)− (n− d) =
n∑

i=l+1

λi + d− k =: h0(λ)

h1(IP1, ϕ∗TM) =
l∑

i=1

(−λi − 1) =
l∑

i=1

|λi| − l =: h1(λ) ,

and for the expected dimension

d(M,λ, 0, 3) = d+
n∑
i=1

λi =: d(λ) .

It is remarkable that the embedding dimension of C0
λ(M) is constant. This is already

a strong hint towards smoothness of C0
λ(M). In fact,

Proposition 4.4 C0
λ(M) is either empty or a smooth rational variety of dimension

h0(λ). Moreover, Φ : V → C0
λ(M) is a (C∗)n−d-bundle.

Proof. By the lemma, C0
λ(M) is irreducible of dimension h0(λ), which being the

embedding dimension at any ϕ proves half of the claim. Rationality and local
triviality of Φ follow from the open embeddings of {ϕ ∈ C0

λ(M) | ϕ(t) ∈ Uσ} into
C
h0(λ) that one obtains from the construction of f in the lemma upon using the

section Λ : π(Uσ)→ Uσ to fix the leading coefficients. �

In concluding this section I would like to remark that by enlarging V one may
construct (not in general unique) toric varieties containing C0

λ(M), that do not have
an immediate interpretation as space of maps.

4.4 Moduli spaces of stable curves and GW-invariants

Moduli spaces Cλ,k(M) of stable k-pointed rational curves in M can be stratifed
according to their combinatorial type. The combinatorial type of a stable rational
curve (C,x, ϕ) is given by the number of irreducible components C1, . . . , Cm, their
intersection pattern, the homology classes ϕ∗[Ci] = λi, and by saying on which
components the various marked points lie, cf. [BeMa] for a description in terms of
associated trees.

Quite generally, easiest are cases of indecomposable classes λ ∈ NE (M), i.e.
extremal classes. Then no unstable components (bubbles) may occur and general
fibers of Cλ,k(M) → M0,k are isomorphic to the smooth h0(λ)-dimensional variety
C0
λ(M). C0

λ(M) now being compact it is its own toric compactification. In case all
λi are non-negative, h0(λ) = d(λ) and GW-invariants constructed from Cλ,k(M) are
enumerative in the strong sense of Proposition 1.3.

In other cases, say λ1, . . . , λl < 0, by Corollary 1.6, one just has to work out the
obstruction bundle. Let us do this over a fixed (IP1, (t1, . . . , tk)) ∈ M0,k without
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non-trivial automorphisms (this will suffice for small quantum cohomology). The
universal curve is simply p : IP1 × C0

λ(M)→ C0
λ(M) with evaluation map

ev : IP1 × C0
λ(M) −→M, (t, ϕ) 7−→ ϕ(t) .

In view of the generalized Euler sequence we just have to compute R1p∗ev∗O(Zi).

Let W 0
l+1, . . . ,W

λl+1

l+1 , . . . ,W
0
n , . . . ,W

λn
n be the toric divisors on C0

λ(M), i.e. W i
ν cor-

responds to the vanishing of the ν-th coefficient of fi. Note that Pic(C0
λ(M)) is

generated by n− d of W 0
l+1, . . . ,W

0
n . But Pic(IP1×C0

λ(M)) = Pic(IP1)×PicC0
λ(M),

so from
ev∗O(Zi)|{0}×C0

λ(M) = O(W 0
i ) , i > l ,

we deduce ev∗O(Zi) = pr∗1OIP1(λi) ⊗ p∗OC0
λ(M)(W

0
i ) for i > l. For i ≤ l we write

Zi =
∑

j>l a
j
iZj to get

R1p∗ev∗O(Zi) = OC0
λ(M)

(∑
j>l

ajiW
0
j

)⊕−λi−1

, i ≤ l .

Therefore,

[[C0
λ(M)]] = ch1(λ)

(⊕
i≤l

R1p∗ev∗O(Zi)
)
∩ [C0

λ(M)]

=
∑
J

a
j11
1 . . . a

j1−λ1−1

1 . . . a
jl1
l . . . a

jl−λl−1

1 W 0
j11
. . .W 0

jl−λl−1
.

So again, such GW-invariants are amenable to toric computations.

The situation gets more involved as soon as we drop the assumption of indecom-
posability of λ. Then the moduli space splits into several irreducible components
labeled by the generic combinatorial type they parametrize. If λ ∈ NE (M) is
such that for any decomposition λ = λ1 + . . . + λr in NE (M), λji ≥ 0, then any
irreducible component of C0

λ(M) will still have the expected dimension, and the asso-
ciated GW-invariants can be computed from (any) toric compactifications of C0

λ(M).
By Corollary 1.6 and the discussion above one can still get away with toric compu-
tations as long as the dimension of the “bad part” of Cλ,0,k(M), which is where the
combinatorial type is not locally constant, is of dimension less than d(M,λ, 0, k).
For the general case it will be necessary to work out the irreducible components of
Cλ,k(M), say over generic (IP1,x) ∈ M0,k (hope: smooth, toric), and the way they
intersect (hope: normal crossing of high codimension).

4.5 Batyrev’s quantum ideals

At the time of the writing of [Bt] there was no rigorous definition of quantum
cohomology available. In loc.cit. Batyrev mostly discussed the properties of a certain
deformation of the (non-linear) relation ideal SR and with hindsight justified his
choice by an intersection theoretic computation on space C0

λ(M) with all λi > 0.
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C0
λ(M) having the expected dimension in this case there was no need to discuss

a compactification. Here we want to make a statement of when his result really
computes the (small) quantum cohomology of M .

Batyrev fixes a Kähler class ω =
∑

i diZi and defines three quantum ideals:

1. A natural deformation of SR =
(∏

j∈J Zj

)
J

(over all J = {j1, . . . , jk} with

{vi1 , . . . , vik} 6⊂ σ ∀σ ∈ Σ): For any such J , let σ = 〈vi1 , . . . , vid〉 be a cone
containing vj1 +. . .+vjk . Then vj1 +. . .+vjk = c1vi1 +. . .+cdvid , cν ≥ 0 with the
non-vanishing terms on the right-hand side uniquely determined. Moreover,
RJ = vj1 + . . .+ vjk − c1vi1 − . . .− cdvid ∈ NE (M) (cf. Proposition 4.3). With
Eω(J) := exp(−ω(RJ)) Batyrev sets

SRω :=
(∏
j∈J

Zj − Zc1
i1
· . . . · Zcd

id
· Eω(J)

)
J
.

2. An auxiliary ideal

Qω :=
(
Za1

1 · . . . · Zan
n · Eω(a)− Zb1

1 · . . . · Zbn
n · Eω(b)

)
ai,bi∈Z≥0,

∑
(ai−bi)vi=0

,

where Eω(λ) :=
∑

i diai.

3. An ideal more amenable to computations of intersection numbers:

Bω :=
(
Zλ1

1 · . . . · Zλn
n − Eω(λ)

)
λi∈Z≥0,

∑
λivi=0

.

Note that SRω and Bω could alternatively be defined without a choice of ω by taking
coefficients in NE (M) (notation: SRNE , BNE ), but Qω could not.

Proposition 4.5 (Batyrev) SRω = Qω = Bω.

This is a little hidden in [Bt], so for the reader’s convenience let us include the proof
here.

Proof. The inclusions SRω ⊂ Qω ⊃ Bω are trivial. As for Qω ⊂ Bω, for a, b
with

∑
(ai − bi)vi = 0 choose λ, µ with λi, µi ≥ 0 such that a − b = λ − µ. Let

us abbreviate Za = Za1
1 · . . . · Zan

n etc. Then in C[Z1, . . . , Zn]/Bω, Zµ = Eω(µ),
Zλ = Eω(λ) and so

Eω(µ)
(
Za · E(a)− Zb · E(b)

)
= Za+µ · E(a)− Zb · E(b+ µ)

= Zb+λ · E(a)− Zb · E(b+ µ) = Zb
(
E(λ+ µ)− E(b+ µ)

)
= 0 .

It remains to be shown that Bω ⊂ SRω. To do this Batyrev introduces a weight
order on C[Z1, . . . , Zn] by setting wt(Zi) = di. Since ω is strongly convex

wt
(∏
j∈J

Zj

)
> wt

(
Zc1
i1
· . . . · Zcd

id

)
,
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which shows inSRω = SR. Trivially, inBω = (Zλ1
1 . . . Zλn

n )∑λivi=0. And if
∑
λivi = 0

then {vi | λi 6= 0} can not be contained in a single cone. Thus Zλ1
1 . . . Zλn

n ∈ SR, i.e.
inBω ⊂ SR = inSRω and hence Bω = SRω. �

In view of Proposition 2.3 it thus suffices to show

Zλ1
1 ∗ . . . ∗ Zλn

n = [λ] in QH∗RC (M)

for any λ ∈ H2(M ;Z), λi ≥ 0∀i. In terms of GW-invariants this means

Proposition 4.6

QH∗RC (M) = C[Z1, . . . , Zn]⊗Z Z[[RC (M)]]/
(

Λ(M) + SRNE (M)
)

iff for any λ ∈ H2(M ;Z), λi ≥ 0, i1, . . . , in ≥ 0 and µ ∈ NE (M)

Φµ(Z1, . . . , Z1︸ ︷︷ ︸
λ1

, . . . , Zn, . . . , Zn︸ ︷︷ ︸
λn

, Zi1
1 . . . Zin

n ) =

{
degZi1

1 . . . Zin
n , µ = λ,

∑
iν = d

0 , else.
�

If all µi ≥ 0 the contributions of irreducible curves are in fact easy to work out (this is
essentially Batyrev’s computation): Let ϕ : IP1 →M map distinct t1, . . . , tΣ(λi+1) ∈
IP1 to the cycles Z1, Z1, . . . in Φµ. By Lemma 4.1, ϕ is transversal to at least n− d
divisors, say Zd+1, . . . , Zn. Since at least µi distinct points map to Zi this shows
µi = degϕ∗O(Zi) ≥ λi for i > d. But from the dimension count∑

i

µi + d =
∑
i

λi +
∑
ν

iν ,

and hence µi = λi for all i and
∑
iν = d. Thus Zi1

1 . . . Zin
n is zero-dimensional. With

the description of C0
λ(M) the contribution is seen to be degZi1

1 . . . Zin
n .

Cases with some µi < 0 and contributions from reducible curves seem to be
much harder to control, as we saw in the last subsection. Nevertheless, according to
a recent paper of Givental, where he employed equivariant GW-invariants, Batyrev’s
prediction seems to be correct if M is Fano [Gl].

Finally, Batyrev points out that while SRω has finitely many generators but
Bω has infinitely many, only the latter manifestly shows that quantum cohomology
(at least in nice cases) is expected to depend on the generating vectors v1, . . . , vn
only, not on the specific structure of the fan. This is because different choices of fan
structures on v1, . . . , vn correspond to flips in the sense of Mori theory. Independence
under flips is not true for the ordinary cohomology ring !
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