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CHAPTER 1

Introduction

1.1. A motivating example

Consider the linear differential equation{
ẋ(t) = Ax(t), t > 0,
x(0) = x0,

(1.1)

with A ∈ CN×N being a matrix of dimension N and x(t), x0 ∈ CN. Clearly, the
solution is given by the matrix exponential

etA =

∞∑
n=0

tn

n!
An,

through x(t) = etAx0. By using Jordan’s normal form for A, it follows that the
boundedness of the solution in t and the stability w.r.t. the initial condition can be
‘read off’ from the eigenvalues of A. For example, it can be shown that

sup
t>0
‖x(t)‖ <∞, for all initial conditions x0,

if and only if the spectrum of A, σ(A), is a subset of the closed left half-plane C− and
for λ ∈ σ(A) ∩ iR the geometric and algebraic multiplicities coincide.

However, for a large dimensionN it can be difficult to actually compute etA and the
spectrum σ(A) correctly. Therefore, one may drop the idea of deriving the solution
exactly, and instead make use of a numerical method to determine an approximation
for x.
Let us fix a uniform stepsize h > 0 and let xn denote an approximation to x at point
nh, n ∈ N. One of the most simple numerical methods is derived when replacing
(1.1) by 

xn+1 − xn
h

= A

(
xn+1 + xn

2

)
, n > 0,

x0 = x(0),
(1.2)

which is known as the Crank–Nicolson scheme1 [CN47].

1For this special equation withA being a matrix, the method can also be seen as the implicit midpoint rule
or the trapezoidal rule.

1



2 1. INTRODUCTION

By rearranging terms, (1.2) yields

xn+1 = Tnx0 :=
((

I + h
2A
) (

I − h
2A
)−1
)n
x0, n > 0, (1.3)

where I denotes the identity matrix and we assume that I − h
2A is invertible. Hence,

we have an explicit formula for the numerical solution xn.

Naturally, one might ask whether xn is a ‘good approximation’ for x. There are vari-
ous aspects of what a ‘good approximation’ means. We are particularly interested in
the following questions concerning the asymptotic behavior: Is the numerical solution
xn bounded in n for any initial condition x0, if we know that for all initial conditions the
exact solution is bounded in t? and if so: How do these bounds depend on each other? Since
T and etA are linear, these questions are equivalent to the following:

(Q1) Is T power-bounded, i.e., supn∈N ‖Tn‖ <∞, if supt>0 ‖etA‖ <∞?

(Q2) How does Pb(T) = supn∈N ‖Tn‖ depend onMA = supt>0 ‖etA‖?

In both these questions the matrix norms are the induced norms. As our situation is
finite-dimensional, question (Q1) has an affirmative answer. To see this, we observe
that by (1.3), T can be written as T = τ

(
h
2A
)

for the function

τ : z 7→ 1 + z

1 − z
,

which is called the Cayley transform. Here, the definition

τ
(
h
2A
)
=
(
I + h

2A
) (

I − h
2A
)−1

is formally ‘clear’ as τ is rational and we assumed that I − h
2A is invertible. Let us

remark that in general ‘inserting an operator in a scalar function’ is less obvious and
in fact, crucial (see Section 1.2).
Since the Cayley transform maps the closed left half-plane C− onto the closed unit
disc D, one can show that the spectral conditions on A for bounded etA (see above)
translate into corresponding conditions for T . This fully answers (Q1).

As for (Q2), relating the bounds Pb(T) and MA is not as simple. This question can
actually be traced back to Kreiss [Kre62] who gave a first estimate. Finally Spijker
[Spi91] proved that

Pb(T) 6 e · (N+ 1) ·MA, (1.4)

where e is the Euler constant and N the dimension of the space. For a discussion
about the sharpness of this estimate we refer to Chapter 4.

We remark that studying supt>0 ‖etA‖ and supn∈N ‖Tn‖ is also crucial for stability
in terms of the evolution of errors in the initial conditions.



1.1. A MOTIVATING EXAMPLE 3

Let us now leave the finite-dimensional setting, and ask about corresponding results
for infinite-dimensional spaces, where matrices get replaced by, possibly unbounded,
operators A. In other words, (1.1) becomes a p.d.e. This comes with some difficul-
ties. First of all the solution theory of (1.1) is not clear a priori. To obtain existence
and uniqueness of solutions of (1.1), we assume that A generates a C0-semigroup of
operators, which we also denote by etA, on a Banach space X. Such a semigroup can
be seen as the infinite dimensional analog of the matrix exponential.
As well as for matrices, boundedness of the solutions x, independent of the initial
conditions, can be characterized by supt>0 ‖etA‖ < ∞. However, the characteriza-
tion in terms of the eigenvalues of A does not hold any more. If supt>0 ‖etA‖ < ∞,
it can be shown that T = (I − h

2A)(I −
h
2A)

−1 is a bounded operator. Hence, we can
pose question (Q1) again.
It is well-known that in general the answer to (Q1) is ‘no’ (which is not surprising
in the view of estimate (1.4) which depends on the dimension N). However, under
certain additional assumptions the answer is ‘yes’. For instance, if the semigroup is
analytic, or if the space X is a Hilbert space andMA = 1. In such cases, we can study
(Q2) and search for the optimal bound of Pb(T).

In this general infinite dimensional setting, Question (Q1) has also become known
as Cayley Transform problem or the question of Stability of the Crank-Nicolson scheme.
Despite the negative answer for general Banach spaces, it remains a notoriously open
problem for bounded semigroups on Hilbert spaces. In this thesis (Chapter 5) it
is shown that the latter is equivalent to the same question for exponentially stable
semigroups on Hilbert spaces. We recall that etA is exponentially stable if there exist
constantsMA > 1,ω > 0 such that ‖etA‖ 6MAe

−ωt for all t > 0.

Taking a general viewpoint once more, we can understand T = τ
(
h
2A
)

as f(A), i.e., a
scalar function f ‘applied’ toA. For example, different functions f could describe dif-
ferent numerical schemes. Like for τ, the definition of f(A) is ‘straight-forward’ if f is
a rational function bounded on C−. Besides, we have already seen examples of f(A)
for a more complicated f, when we (formally) defined etA. In the view of A-stability
for numerical schemes, it is natural to consider functions f which are bounded and
analytic on C−, with supz∈C−

|f(z)| 6 1. Let us assume that for such f we are able to
define f(A) in a certain way and that there exists a constant K > 0 (independent of f)
such that

‖f(A)‖ 6 K sup
z∈C−

|f(z)|. (1.5)

Then, in particular, it follows that ‖Tn‖ = ‖τ(h2A)
n‖ 6 K · supz∈C−

|τ(z)n| = K.
Therefore, (Q1) has an affirmative answer whenever an estimate of the form (1.5)
holds.
Although in general we cannot expect such estimates to hold, this property provides
another class of examples with a positive answer to (Q1).
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This discussion leads us to the general study of ‘making sense of f(A)’, which is
known under the term functional calculus. In this thesis, estimates of the form (1.5)
will be called functional calculus estimates. These notions are the subject of the follow-
ing section.

1.2. Functional calculus estimates

Functional calculus is, loosely speaking, the procedure of defining a new operator
f(A) as the ‘evaluation’ of an operator A in a function f.
Probably, the simplest example of inserting an operator into a function is the square
A2 of a square matrix A with f(z) = z2. Clearly, this definition can be extended to
general powers An and polynomials p(A) of a matrix. Other examples, which we
have already seen in Section 1.1, are matrices

(I −A)−1, τ(A), etA.

However, the work of von Neumann [vN96] and Stone [Sto90] for self-adjoint oper-
ators on Hilbert spaces more than 80 years ago is actually considered as the begin-
nings of the theory of functional calculus. The word calcul fonctionnel is a little bit
older and can be traced back to Frèchet [Fré06], see also [Haa05] and [Haa06a] for
more detailed historical remarks.
Since then, many different types of functional calculi2 have been studied, all of them
sharing some basic intuition what a functional calculus should be. In this section, we
give a more precise explanation of how this notion can be generally defined. The
structure of our presentation in this introduction shares the spirit of defining func-
tional calculus as

.. a purely algebraic concept
and regard continuity properties as being accidental.3

Somewhat in contrast to the above viewpoint, we will not abandon continuity prop-
erties from this section, but instead divide the presentation into ‘Algebra’ and ‘Anal-
ysis’. In short, the former deals with the definition of a functional calculus and the
latter contains functional calculus estimates.

Algebra. In the following we try to make the intuitive understanding of a func-
tional calculus rigorous. However, as a precise definition strongly depends on the
various situations, this attempt can only succeed partially. We distinguish three
steps.

2The plural of the latin word calculus is calculi. Therefore, although the word calculuses might be a possible
plural form in the English language, we will, as in the majority of the literature, use the latin version.
3citation from M. HAASE, The Functional Calculus for Sectorial Operators, volume 169 of Operator Theory:
Advances and Applications. Birkhäuser Verlag, Basel, 2006, page 125.
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First of all, functional calculus aims for defining objects of the form

f(A), (1.6)

for functions f and some operatorA. At this point let us make the following assump-
tions. Throughout this thesis, A will always be a linear operator from a linear space
D(A) ⊂ X to X and f is assumed to be scalar-valued, i.e., a mapping from (a subset of)
the complex numbers C to C.4

However, the term functional calculus does not only concern the definition of f(A). It
also covers some properties of the mapping f 7→ f(A), which intuitively should be
satisfied. This brings us to an important point in the comprehension of functional
calculus. The operator A is fixed, while the function f is variable in a certain class.
Hence, as a second step towards a definition, we see functional calculus as a mapping

Φ : F→ operators on X, f 7→ f(A), (1.7)

for a class5 of functions F and a given operator A. Therefore, ‘an F-calculus’ always
refers to a fixed operator A and a class of functions F’ in the following. This also
means that Φ depends on A.

Without making more assumptions on Φ, F and A, which can depend on specific
situations, it seems impossible to get a ‘more rigorous’ definition of a functional cal-
culus. Typically, the class of functions has some algebraic structure, mostly a group
or an algebra (over C), which we want to preserve by the mappingΦ. In the above ex-
ample of matrix polynomials, F is the algebra of polynomials C[z] and Φ : p 7→ p(A)

is linear and multiplicative, i.e., a homomorphism from C[z] to the algebra of square
matrices on the space X.
Therefore, the ultimate goal is to obtain a homomorphism from the functions F to the
operators on X. If we assume that F is an algebra of functions with operations +, ·
and that Op with +Op, ◦ is an algebra of operators, then we symbolize such a homo-
morphism by

Φ : (F,+, ·)→ (Op,+Op, ◦), f 7→ f(A). (1.8)

This represents the third step of the approach to define a functional calculus.
If we further assume that F is a vector space, a functional calculus is a mapping
f 7→ f(A) such that

• f 7→ f(A) is linear,

• for f = f1 · f2 ∈ Fwe have f(A) = f1(A) ◦ f2(A),

• if there exist unity elements 1 ∈ F and I ∈ Op , then Φ(1) = I.

4In the view of applications, these requirements are already quite strict. We observe that, for instance,
there exists powerful theory for operator-valued functional calculus.
5The word class is not really precise. In general, this is nothing more than a set. However, we use the
word class to indicate that this set may have some algebraic or topological structure.
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Some examples. An example we have already seen in Section 1.1 is given by the
matrix exponentials etA of a square matrix A. In fact, it can be shown that (z 7→
etz) 7→ etA is a group homomorphism mapping F = {ft(z) = etz : t ∈ R} (equipped
with pointwise multiplication) to the square matrices etA, t > 0.
Furthermore, it is well-known that self-adjoint (or unitary operators) on a Hilbert
space have a functional calculus with A being the set of continuous functions from R
(or the torus T respectively) to C, (von Neumann [vN96]). Further examples are the
Hille-Phillips calculus [HP57] and the Riesz-Dunford calculus [DS88], which will both
be discussed in this thesis, see Chapters 2 and 3.

Extending the homomorphism. Sometimes a homomorphism is not possible for the
chosen pair of functions F and the operator A. In this case, one can try to weaken
the homomorphism property by considering a subalgebra E of F first, on which a
homomorphismΦ is possible, and extendΦ to F in an algebraic way.
In this thesis the homomorphisms Φ will mostly map to (the algebra of) bounded
operators on some Banach space X. The mentioned extension ofΦwill then typically
map to unbounded operators. As the domains of the operators f(A) may differ then,
the above-listed properties have to be seen formally, and, in general, need to be made
rigorous. Next, we introduce such an extension argument for a particular class of
functions. See e.g. [Haa06a, Chapter 1] and the references therein.

Holomorphic calculus - some background. The following is a brief overview on the
construction of the holomorphic functional calculus, which was abstractly done by
Haase [Haa05, Haa06a]6. Let Ω be an open set in the complex plane, and F be an
algebra (including the 1-function) of holomorphic functions on Ω, equipped with
pointwise multiplication. Further, let E be a subalgebra of F and let B(X) denote the
algebra of bounded operators on some Banach space X (with unity I). Assume that
Φ is an algebra homomorphism from E to B(X). Following Haase, we callΦ primary
calculus and the tuple (E, F,Φ) abstract functional calculus.
To extend the primary calculus to a larger set of functions in Fwe use a regularization
argument, which can be sketched as follows. The set of regularizers is defined as

Reg = {e ∈ E : Φ(e) is injective} ,

and the functions f ∈ Fwhich are regularizable by elements in Reg are denoted by

Mreg = {f ∈ F : ∃e ∈ Reg with (ef) ∈ E} .

If Reg is not empty, then for any f ∈Mreg, we can define

Φext(f) = [Φ(e)]−1
Φ(ef),

6The construction for sectorial operators already appeared in [McI86]. See also [deL95] for the first more
general approach.
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which can be shown to be independent of the choice of e ∈ Reg. By construction,
Φext is a mapping from Mreg to the closed (not necessarily bounded) operators7 on
X, which extends Φ. Sometimes we will identify Φ with its extension Φext. There-
fore, if Mreg = F, i.e., every element in F is regularizable, then Φ can be seen as a
mapping from F to the closed operators on X.

We remark that at this moment the operator A for which we want to define the
calculus is not present. This is ‘hidden’ in the definition of Φ, see also [Haa06a,
Chapter 1.3]. Since we see Φ as a mapping f 7→ f(A), we ‘define’ f(A) := Φext(f) for
f ∈ Mreg. Furthermore, the above extension procedure works for any commutative
unital algebra F, not necessarily holomorphic functions.

Analysis. So far, we have not considered any topological properties of a func-
tional calculus, which, by (1.7) and (1.8), we have defined as a mapping/homomor-
phism Φ : F→ Op. However, in the examples we can see that typically the function
algebra and the operator algebra have a norm. In this case we can for instance study
whetherΦ is continuous. Let us from now on assume that the algebras F and Op are
normed. By linearity of Φ, it follows that Φ : F → Op is continuous if and only if
there exists a constant c > 0 such that

‖Φ(f)‖Op 6 c‖f‖F, ∀f ∈ F. (1.9)

In this case, the functional calculus (defined byΦ) is called bounded.

We want to see inequality (1.9) as an example for more general functional calculus
estimates of the form

‖ [K(f)] (A)‖Op 6 ‖M(f)‖F, ∀f ∈ F. (1.10)

for mappings K,M : F0 ⊂ F → F and a set F0. Obviously, for F0 = F, K(f) = f and
M(f) = cfwe arrive at the case above.
We admit that this definition may sound like abstract nonsense and, due to its gen-
erality, it does not seem to add deeper understanding in unifying concepts for func-
tional calculus. In fact, there are even ‘other’ estimates for functional calculi which
do not fit into this definition8. We rather see it as a notion to cover several estimates
we can consider for functional calculi in this thesis.

We finish this section with the following comment about the boundedness of func-
tional calculi derived by the extension procedure above. Let Φ = Φext be an exten-
sion of a homomorphism as derived in 1.2, and assume (for simplicity) that Mreg = F.
Thus, Φ maps F to the closed operators on a Banach space X. We say that the func-
tional calculus Φ is bounded, if (1.9) holds with Op = B(X), which is the algebra of

7Note that the closed operators on a Banach space X, with the usual productAB = A ◦ B, do not form
an algebra.
8We refer to [CEP15b]. where Lower estimates near the origin for functional calculus are considered.
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bounded operators on X (equipped with the induced operator norm). However, we
remark that this definition implicitly requires thatΦ(f) is in B(X) for every f ∈ F.
Likewise, we say that a functional calculus is unbounded, if there exists an f ∈ F such
that f(A) is not bounded.

1.3. Functional calculus estimates for cosine families

It is easy to see that if the (maximal) distance between a cosine function cos(t
√
−a),

with a 6 09, and the constant function 1 is less than 2, i.e, if

sup
t∈R

| cos(t
√
−a) − 1| < 2, (1.11)

then cos(t
√
−a) = 1 for all t ∈ R, or equivalently, a = 0. In other words, 1 is an

isolated point in the set {cos(t
√
−a) : a > 0} equipped with the metric induced by

the supremum norm. We also observe that the implication fails if the number 2 in
(1.11) is replaced by any larger number. For a square matrix or, more general, for a
bounded operator A on a Banach space X, we can define

Cos(t) =
∞∑
n=0

(−1)nt2n

(2n)!
(−A)n, t ∈ R. (1.12)

It is easily seen that the norm of the sum can be majorized by cosh(t
√
‖A‖). Hence,

Cos defines an X-valued function on R. It can be shown that the function Cos ‘be-
haves as one would expect from the scalar cosine’. For instance, Cos(0) = I (where I
denotes the identity), and d’Alembert’s identity holds, i.e.,

Cos(s+ t) + Cos(s− t) = 2Cos(s)Cos(t), ∀s, t ∈ R. (1.13)

Furthermore, d
2

dt2C(t) = AC(t). Hence, Cos can be seen as the natural analog to the
scalar cosine function for matrices or bounded operators. Coming back to the initial
implication about the distance between cos(t

√
−a) and 1, we can study a similar

question for Cos. It can be shown that the corresponding implication,

if sup
t∈R
‖Cos(t) − I‖ < 2, then Cos(t) = I for all t ∈ R, (1.14)

holds as well.
Looking at (1.12), we can view Cos in terms of a functional calculus for fixed A.
Namely, by interpreting Cos(t) as ft(A) for ft(z) = cos(t

√
−z), z 6 0, and using the

power series of the cosine to define a mapping f 7→ f(A) for f ∈ F1 = {ft : t ∈ R}.
Obviously, F1 is not closed under (pointwise) summation. However, we can extend
the mapping f 7→ f(A) to the linear combinations F of F1. Clearly, gt(z) = ft(z) − 1
defines a function in F.

9Of course, by setting b =
√
−a, we could write cos(tb) instead of cos(t

√
−a) here. The reason for

our notation is that a equals the second derivative of cos
√
−at at 0. This notation will be useful later on.
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From this viewpoint the premise in (1.14) becomes

sup
t∈R
‖gt(A)‖ < 2,

and can thus be seen as a functional calculus estimate of the form (1.10) for F0 = {gt :

t > 0}, K(f) = f and M(f) ≡ 2.

Our goal is to study the implication in (1.14) for general operator-valued cosine fami-
lies (or cosine functions) C.
A cosine family t 7→ C(t) is defined as a function from R to the algebra of bounded
linear operators on X such that C(0) equals the identity I and d’Alembert’s identity,
C(s+ t) + C(s− t) = 2C(s)C(t) for s, t ∈ R, is satisfied, cf. (1.13).
Furthermore, if the trajectories cx : t 7→ C(t)x are continuous for all x ∈ X, then the
cosine family is called strongly continuous. For such C one can define its generator
A as, roughly speaking, the operator mapping x to the second derivative of cx at 0,
∂2

∂t2 cx
∣∣
t=0. As this derivative need not exist for every x, A can be unbounded. For a

class of examples for cosine families with unbounded generator, see, e.g., [BE04].
It can be shown that d2

dt2C(t)x = AC(t)x for x in the domain of A. Hence, strongly
continuous cosine families occur naturally in the solution of abstract second order
differential equations of the form

ẍ(t) = Ax(t), t > 0,

ẋ(0) = x1,

x(0) = x0,

(1.15)

where x0, x1 ∈ X.

In this thesis, we show that for strongly continuous cosine families C,

sup
t∈R
‖C(t) − I‖ < 2 implies that C(t) = I for all t ∈ R, (1.16)

which confirms the intuition we got from the special cases above. This implication
had been open so far. In prior work, Bobrowski and Chojnacki [BCG15] derived a
weaker form of (1.16), where the number 2 was replaced by 1

2 .
Furthermore, we also prove scaled versions of the form

sup
t∈R
‖C(t) − cos(t)I‖ < 1 =⇒ C(t) = cos(t)I.

Another question within this scope is whether the weaker condition

lim sup
t→0+

‖C(t) − I‖ < 2, (1.17)

implies that lim supt→0+ ‖C(t) − I‖ = 0. In other words, does (1.17) cause C(·) to be
continuous at 0 in the operator norm? Whereas for the examples cos and Cos above
the answer is clearly ‘yes’, the situation becomes much more difficult for general
cosine families with unbounded generator A. So far, only partial results have been
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known; for special classes of Banach spaces (more precisely, UMD spaces), such as
Hilbert spaces, an affirmative answer was recently given by Fackler [Fac13], using
that a cosine family can be represented by a strongly continuous group in that case.
On the other hand, Arendt [Are12] proved with a beautifully simple argument that
for general cosine families, the implication holds if the number 2 in (1.17) is replaced
by 3

2 .
We will show that (1.17) indeed implies that lim supt→0+ ‖C(t) − I‖ = 0 for strongly
continuous cosine families and relate this result to (1.16).

Such assertions, originating from corresponding questions in semigroup theory, have
become known as Zero-two-laws. Very recently, our results have been generalized by
Chojnacki [Cho15a] and Esterle [Est15b] independently, dropping the strong con-
tinuity assumption on C. In turn, using techniques from Esterle, we show in this
thesis that the supt∈R can be weakened to lim supt→∞ in the assumption of (1.16).

1.4. Notation and some mathematical background

Let us describe the notation used throughout this thesis. We will use standard no-
tation C, Z, N for the complex, integer and positive integer numbers, respectively.
Further, let N0 = N ∪ {0}. For a set Ω ⊂ C, let Ω be its closure and ∂Ω its boundary
in C. By D we denote the open unit disc in C and by T = ∂D the unit circle. For
K ∈ {C, R}, we set K− = {z ∈ K : Re z < 0}, K+ = {z ∈ K : Re z > 0}. For θ ∈ (0, 2π),
we define the open sector Σθ = {z ∈ C : z 6= 0, | arg z| < θ}, and set Σ0 = (0,∞). The
‘mirrored’ sector C \ Σπ−θ is denoted by Σθ. By Br(z0) we denote the open ball in C
with radius r and centre z0.
When we write E(z) . F(z), where E, F are expressions depending on the variable
z, we mean that there exists a universal constant K not depending on z such that
E(z) 6 KF(z) for all z. By E(z) ∼ F(z), we mean that F(z) . E(z) and E(z) . F(z). For
example, ‖f(A)‖ . ‖f‖∞ means that there exists a constant C, which may depend on
A but not on f, such that ‖f(A)‖ 6 C‖f‖∞.

Functions. For an interval I ⊂ R, a Banach space X and p ∈ [1,∞], Lp(I,X) is the
usual vector-valued Lp-space, where integrals are understood in the Bochner sense.
For an open setΩ ⊂ C, letH(Ω) denote the (complex-valued) holomorphic functions
on Ω. Let H∞(Ω) be the Banach algebra of bounded holomorphic functions on Ω
equipped with the supremum norm ‖ ·‖∞,Ω. Typical choices will beΩ ∈ {C−, C+, D}.
For such Ω, the norm of an element f ∈ H∞(Ω) is attained at the boundary, see the
Appendix for details and its vector-valued analog. Moreover, the theory of Hardy
spaces allows for an isometric embedding of H∞(Ω) into L∞(∂Ω) via the limit func-
tion at the boundary. We will use this identification without stating it explicitly. We
refer to [Gar07, Dur70, Nik02a] for details about Hardy spaces (on the disc as well
as on half-planes).
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Operators and spaces. The operator theory we are dealing with will mostly be
on Banach spaces, which in most of the cases will be denoted by X (with norm
‖ · ‖ = ‖ · ‖X). Sometimes, we will restrict ourselves to Hilbert spaces. Operators
between Banach spaces are always understood to be linear (and single-valued), but
not necessarily bounded. We say thatA is an operator onX, ifAmaps from the Banach
space X to X. D(A) will denote the domain and R(A) the range of A. For closed A,
we write ρ(A) for the resolvent set of A and σ(A) for the spectrum. If λ ∈ ρ(A), the
resolvent (λI − A)−1 = (λ − A)−1 will be abbreviated by R(λ,A). For Banach spaces
X, Y, let B(X, Y) (or B(X) if Y = X) denote the Banach algebra of bounded operators
from X to Y. For a Banach space X, we denote by X ′ its (continuous) dual and the
duality brackets are denoted by

〈y, x〉X′,X = 〈x,y〉X,X′ = y(x), x ∈ X,y ∈ X ′.

For an operator B in B(X, Y), B ′ denotes the adjoint, which then lies in B(Y ′,X ′). The
Hilbert space adjoint will sometimes be denoted by B∗.

A main framework of this thesis is the theory of operator semigroups. Let us recall
the most important facts. For a Banach space X, a function T : [0,∞)→ B(X) is called
a semigroup of operators if the following properties hold.

(i) T(0) = I,

(ii) T(s+ t) = T(s)T(t) for all s, t > 0.

T is said to be strongly continuous if the trajectories T(·)x are continuous for every
x ∈ X. Strongly continuous semigroups are also called C0-semigroups. One can show
that for every C0-semigroup T , there exist constantsM > 1 andω ∈ R such that

‖T(t)‖ 6Metω, ∀t > 0. (1.18)

If a negativeω can be chosen, then T is called exponentially stable. For aC0-semigroup
the generator A is the operator defined by

Ax = lim
h→0+

1
h
(T(h)x− x) on D(A) = {x ∈ X : x such that the limit exists}.

The Hille-Yosida theorem gives a characterization of semigroup generators A.

THEOREM 1.1 (Hille-Yosida). LetA be an operator on Banach space and letM > 1
andω ∈ R. Then,A is the generator of aC0-semigroup T satisfying (1.18) if and only
if A is closed, densely defined, and for any λ with Re λ > ω, it holds that λ ∈ ρ(A)
and

‖R(λ,A)n‖ 6 M

(Re λ−ω)n
, ∀n ∈ N, .

If A is the generator of a C0-semigroup T = (T(t))t>0, we will also use the ‘notation’
etA = T(t) (which is sometimes even justified by the considered functional calculus).
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The Banach space D(A) equipped with the graph norm of A will be referred to by
(X1, ‖.‖1) . Unless stated otherwise, all the semigroups we are considering in this
thesis are strongly continuous.
A C0-semigroup T : [0,∞) → B(X) is called analytic if for some θ ∈ (0, π2 ] T can be
extended to a sector Σθ ∪ {0} ⊂ C such that T(s+ t) = T(s)T(t) holds for all s, t ∈ Σθ,
T is analytic on Σθ and

lim
z→0,z∈Σθ′

T(z)x = x, ∀x ∈ X, θ ′ ∈ (0, θ).

We say that T is a bounded analytic semigroup if T : Σθ → B(X) is an analytic semi-
group and supz∈Σθ ‖T(z)‖ <∞. We have the following characterization. For a linear
operatorA on X, T = etA is a bounded analytic semigroup if and only ifA is densely
defined, and there exists a δ ∈ [0, π2 ) such that

ρ(A) ⊃ Σδ and sup {‖zR(z,A)‖ : z ∈ Σδ} <∞.

This equivalence shows the relation to sectorial operators, which we will introduce in
Chapter 3. Another characterization for T being an analytic semigroup is that

T(t)X ⊂ D(A) ∀t > 0, and sup
t>0
‖tAT(t)‖ <∞.

For an extensive introduction to semigroups we refer to the book by Engel and
Nagel, [EN00], see also [Gol85, HP57, Paz83].

Furthermore, a nomenclature of the most important notions which will be defined
in each chapter, can be found at end of the thesis.

1.5. Outline of the thesis and main contributions

In this section we collect some short overviews of the chapters in the two parts of
this thesis. This also summarizes the main contributions. To make the chapters more
self-contained, versions of the following summaries also appear as abstracts at the
beginning of each chapter. Moreover, we remark that the style of this thesis allows
for a study à la carte, which means that the chapters can be read independently. As
Chapters 2 to 5 have the H∞-functional calculus as common theme, they are merged
into Part I. Part II only consists of Chapter 6 which deals with zero-two laws for cosine
families.

Chapter 2. We show that, given a generator of an exponentially stable semigroup
on a Banach space, a weakly admissible operator g(A) can be defined for any bounded,
analytic function g on the left half-plane C−. This yields an (unbounded) functional
calculus. The construction uses a Toeplitz operator and is motivated by system the-
ory. In Hilbert spaces, we even obtain admissibility. Furthermore, it is investigated
when a bounded calculus can be guaranteed. For this we introduce the new no-
tion of exact observability by direction. As an application of the approach we show
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an estimate characterizing the boundedness of the calculus for analytic semigroups
on Hilbert spaces. Finally, it is shown that the calculus coincides with the (classi-
cal) holomorphic functional calculus derived by an algebraic extension procedure of
the Hille-Phillips calculus. Thus, the approach can be seen as an alternate route for
introducing the classical H∞-calculus for strongly continuous semigroups.

Chapter 3. We investigate the boundedness of theH∞-calculus by estimating the
bound b(ε) of the mapping H∞ → B(X): f 7→ f(A)T(ε) for ε near zero. Here, −A
generates the analytic semigroup T on a Banach space X and H∞ is the space of
bounded analytic functions on a domain strictly containing the spectrum of A.
In the view of (1.10), this estimate can be seen as a functional calculus estimate for
F0 = F = H∞, K(f) = (z 7→ e−εzf(z)) and M(f) = f.
We show that b(ε) = O(| log ε|) in general, whereas b(ε) = O(1) for bounded calculi.
This generalizes a result by Vitse and complements work by Haase and Rozendaal
for non-analytic semigroups. We discuss the sharpness of our bounds and show that
single square function estimates yield b(ε) = O(

√
| log ε|).

Chapter 4. We proveH∞-functional calculus estimates for Tadmor-Ritt operators
T . These generalize and improve results by Vitse and are in conformity with the
best known power-bounds for Tadmor-Ritt operators in terms of the constant de-
pendence. In particular, we show estimates of the form ‖p(T)‖ 6 c(m,n, T) · ‖p‖∞,D

for polynomials p(z) =
∑n
j=m ajz

j.
With F0 = F = C[z], the algebra of polynomials, equipped with the supremum norm,
K(
∑
i aiz

i) =
∑n
j=m ajz

j and M(f) = f, this estimate can be seen in terms of (1.10).
We furthermore show the effect of having discrete square function estimates on these
estimates.

Chapter 5. In the previous chapters we have seen some analogy between func-
tional calculus results in continuous and discrete time. This chapter deals with the
transformation from the continuous to the discrete setting via the Cayley transform.
This leads to the prominent Inverse Generator problem and the Cayley Transform prob-
lem for C0-semigroups. We show the equivalence of these two problems and the fact
that we can even reduce these problems to the case where the semigroup is exponen-
tially stable. Furthermore, we give an overview on existing results in the literature
and state some open questions.

Chapter 6. We show that for (C(t))t>0 being a strongly continuous cosine fam-
ily on a Banach space, the estimate lim supt→0+ ‖C(t) − I‖ < 2 implies that C(t)
converges to I in the operator norm. This implication has become known as the zero-
two law. We further prove that the stronger assumption of supt>0 ‖C(t) − I‖ < 2
yields that C(t) = I for all t > 0. For discrete cosine families the assumption
supn∈N ‖C(n) − I‖ 6 r < 3

2 yields that C(n) = I for all n ∈ N. For r > 3
2 this

assertion does no longer hold. More general and using different techniques, we
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show that, for (C(t))t∈R being a cosine family on a unital Banach algebra, the es-
timate lim supt→∞+ ‖C(t) − I‖ < 2 implies that C(t) = I for all t ∈ R. We also
state the corresponding result for discrete cosine families and for semigroups. In the
last part we consider scaled versions of above laws. We show that from the esti-
mate supt>0 ‖C(t) − cos(at)I‖ < 1 we can conclude that C(t) equals cos(at)I. Here
(C(t))t>0 is again a strongly continuous cosine family on a Banach space.



Part I

H∞-calculus for semigroups





CHAPTER 2

Weakly admissible H∞-calculus

Abstract. We show that, given a generator of an exponentially stable semigroup
on a Banach space, a weakly admissible operator g(A) can be defined for any bounded,
analytic function g on the left half-plane. This yields an (unbounded) functional cal-
culus. The construction uses a Toeplitz operator and is motivated by system theory.
In Hilbert spaces, we even obtain admissibility. Furthermore, it is investigated when
a bounded calculus can be guaranteed. For this we introduce the new notion of exact
observability by direction. As an application of the approach we show an estimate
characterizing the boundedness of the calculus for analytic semigroups on Hilbert
spaces.
Finally, it is shown that the calculus coincides with the (classical) holomorphic func-
tional calculus derived by an algebraic extension procedure of the Hille-Phillips cal-
culus. Thus, the approach can be seen as an alternate route for introducing the clas-
sical H∞-calculus for strongly continuous semigroups. 1

2.1. Introduction

As we have seen in the Chapter 1, in various fields of mathematics (e.g., numerical
analysis, operator theory), we encounter the task of ‘evaluating’ a function f where
the argument is the operator A. Simple examples are polynomials, or rational func-
tions, such as (αI −A)−1 with α ∈ C.
Functional calculus is the notion that covers the assignment f 7→ f(A) for a fixed (pos-
sibly unbounded) operator A on a Banach space X and functions F. If F has some
algebraic structure (e.g., F is an algebra), one ultimately strives for a functional cal-
culus such that the mapping f 7→ f(A) is a homomorphism from F to the bounded
operators on X. As this is sometimes not possible, we aim for a mapping f 7→ f(A)

which extends a homomorphism on a subalgebra of F, see Section 1.2 for more de-
tails.

1Parts of this chapter are adapted from the articles
F.L. SCHWENNINGER, H. ZWART, Weakly admissible H−∞-calculus on reflexive Banach spaces, Indag. Math.
23, p. 796-815, 2012.
F.L. SCHWENNINGER, H. ZWART, Functional calculus for C0-semigroups using infinite-dimensional systems
theory, Semigroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics. Eds. Arendt,
Chill and Tomilov, vol. 250 of Op. Theory: Adv. Appl., Birkhäuser, to appear 2015.

17
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In this chapter, our goal is to construct a functional calculus for functions inH∞(C−),
i.e., functions which are bounded and analytic on the left half-plane of C. For the op-
erator A, we take a generator of an exponentially stable C0-semigroup. The interest
for this class lies e.g., in numerical analysis (as we have seen in Section 1.1) and sys-
tem theory. In addition to the above-mentioned properties of a calculus, we want the
mapping f 7→ f(A) to be consistent with the common definition of rational functions.

Let us consider the Toeplitz operatorMg with symbol g ∈ H∞(C−) defined by

Mg : L2(R+)→ L2(R+), f 7→Mgf = L−1Π(g · L(f)),

where L is the Laplace transform and Π denotes the projection onto H2, the Hardy
space on the right half-plane, see Section 2.1.2 for details. Since for fixed a < 0,

g(s) · L(eat)(s) = g(s)

s− a
=
g(a)

s− a
+
g(s) − g(a)

s− a
,

where the last sum is an orthogonal decomposition in H2 and H2
⊥, we conclude that

Mg(e
at) = g(a)eat. (2.1)

In system theoretical words, ‘exponential input yields exponential output’. Obvi-
ously, g 7→ g(a) is a homomorphism from H∞(C−) to C. Our idea is to replace the
exponential by the semigroup eAt = T(t). In fact, we show that the formally defined
function

y(t) =Mg(T(·)x0)(t)

can be seen as the output of the linear system{
ẋ(t) = Ax(t), x(0) = x0

y(t) = Cx(t)
(2.2)

for some (unbounded) operator C. Thus, formally y(t) = CT(t)x0. This means that
C takes the role of g(a) in (2.1). Hence, the task is to find C given the output mapping
x0 7→ y(t). By G. Weiss, [Wei89], this can be done uniquely, incorporating the notion
of admissibility, see Lemma 2.3.

The work for (separable) Hilbert spaces by Zwart, [Zwa12], serves as the main mo-
tivation. The aim of this chapter is to give a general approach for Banach spaces.
The lack of the Hilbert space structure leads to a weak formulation which will be
introduced in Section 2.2. In general, this yields a calculus of weakly admissible oper-
ators. Then, we turn to the task of giving sufficient conditions on A that guarantee
bounded g(A) for all g ∈ H∞(C−), Section 2.3. In Section 2.3.2 a connection to the
results for the ‘strong’ calculus from [Zwa12] is established and we see that the weak
approach extends the Hilbert space case.
We use the approach to show that ‖g(A)T(ε)‖ can be bounded by | log ε| for ε→ 0 if
A is an analytic semigroup on a Hilbert space, Section 2.4.
In Section 2.5 it is shown that the derived weakly admissible calculus coincides with the
classical approach to H∞-calculus based on the abstract axiomatics of holomorphic
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function calculi, see [Haa06a, Chapter 1]. This is mainly due to the fact that the cal-
culi coincide on the primary calculus, which in this case is the Hille-Phillips calculus,
i.e., the assignment of f(A) for f being the Laplace transform of a Borel measure with
bounded total variation, see Lemma 2.20 and Theorem 2.40.

2.1.1. Classical approaches to H∞(C−)-calculus. The class of bounded analytic
functions has attracted much interest in functional calculus in the last decades. Early
work was done by McIntosh, [McI86], or can be found for instance in [CDMY96].
There, the considered operators are sectorial and the main idea is to extend the Riesz–
Dunford-calculus by the abstract regularization argument seen in Section 1.2. We refer
to Chapter 3 for a brief introduction and, for an extensive overview, to the book by
Haase [Haa06a].
For the generator A of an exponentially stable semigroup, −A is sectorial of angle
π/2. Hence, there exists a sectorial calculus for A for bounded, analytic functions
on a larger sector (containing the left half plane). However, since the spectrum of A
lies in a half-plane bounded away from the imaginary axis, the more appropriate no-
tion (rather than sectorial operator) is the one of a half-plane operator which has been
studied in [BHM13], [Haa06b] and [Mub11]. Moreover, as A generates a strongly
continuous semigroup, the operator defined by

Ψ(µ)x =

∫∞
0
T(t)xdµ(t), x ∈ X,

is bounded for any Borel measure µwith bounded variation. Denoting by fµ = L(µ)

the Laplace transform of µ, it follows that fµ 7→ Ψ(µ) is a homomorphism from a sub-
algebra of H∞(C−) to B(X), see Section 2.5. Using this homomorphism as primary
calculus, by means of the regularization argument seen in Section 1.2, there exists an
extension of Ψ to H∞(C−). A brief introduction will be given in Section 2.5.1.
In general, it is not clear whether an H∞(C−)-calculus is unique. At least if it is
bounded and shares some continuity property, this can be guaranteed, see page 116
in [Haa06a]. However, if the calculi coincide on the primary calculus, and share some
fundamental properties for abstract functional calculus as defined by Haase, then they
also coincide, [Haa05, Haa06a]. See [Haa06a, Chapter 1] for a detailed discussion.

2.1.2. Admissibility and Toeplitz operators. For a Hilbert space Y, we intro-
duce the vector-valued Hardy spaces H2(C+, Y) = H2(Y) and H2

⊥(C−, Y) = H2
⊥(Y)

on the half-planes C−, C+. A function f : C+ → Y lies in H2(Y) if f is holomorphic
and

‖f‖2
H2(Y) := sup

x>0

∫
R
‖f(x+ iy)‖2

Ydy <∞.

With the norm ‖ · ‖H2(Y), H2(Y) becomes a Banach space. Analogously, g : C− → Y

lies in H2
⊥(Y) if g(− ·) ∈ H2(Y). An element f in H2(Y) or H2

⊥(Y) has a (non-
tangential-limit) boundary function f(i·) (which exists a.e.) on the imaginary axis.
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The function f(i·) lies in L2(iR, Y) and ‖f‖H2(Y) = ‖f(i·)‖L2 or ‖f‖H2
⊥(Y)

= ‖f(i·)‖L2 ,
respectively. Hence, we can identify elements of the Hardy spaces with their bound-
ary functions. We will often use this fact without stating it explicitly. Therefore,
H2(Y) and H2

⊥(Y) are even Hilbert spaces equipped with the inner product

〈f,g〉 :=
∫

R
f(it)g(it)dt.

Moreover, by the Paley Wiener theorem, the (two-sided) Laplace transform

L(f)(z) =

∫
R
f(t)e−ztdt, z ∈ C,

is an isomorphism from L2(R+, Y) to H2(Y) and from L2(R−, Y) to H2
⊥(Y), respec-

tively (here, we identify f with its ‘zero-extension’ on R). This yields the orthogonal
decomposition H2(Y)⊕H2

⊥(Y) = L
2(iR, Y). LetΠY : L2(iR, Y)→ H2(Y) denote the or-

thogonal projection onto H2(Y) with kernel H2
⊥(Y). For Y = C we write H2 = H2(C),

Π = ΠC and so on.

The Fourier transform, defined for f ∈ L1(R, Y) by

(Ff)(s) =

∫
R
e−itsf(t) dt,

extends to an isomorphism from L2(R, Y) to L2(R, Y) with ‖Ff‖L2 =
√

2π‖f‖L2 for
all f ∈ L2(R, Y). For f ∈ L2(R+, Y), we denote by fext the extension of f to R by
f
∣∣
R−

= 0. We will often use the following relation between the Fourier transform
and the Laplace transform,

(Lf)(i·) = (Ffext)(·), f ∈ L2(R+, Y), (2.3)

where Lf ∈ H2(Y) gets identified with its boundary function on iR.
We refer to the book by Rosenblum and Rovnyak [RR97] for a detailed treatment of
Hilbert-space valued Hardy spaces, see also [CZ95] and [ABHN11].
In the following let στ : L2(R+, Y)→ L2(R+, Y), τ > 0, denote the left shift,

στf = f(. + τ). (2.4)

DEFINITION 2.1. Let Y be a Banach space. A linear function D : X → L2(R+, Y) is
called an output mapping for the C0-semigroup T(·) if

• D is bounded, and

• shift-invariant, i.e., for all τ > 0 and x ∈ X,

στ(Dx) = D(T(τ)x). (2.5)

All output mappings that we are going to use correspond to the considered semi-
group T(·) with generator A. In system theory this notion is often named well-posed
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infinite-time output mapping. Considering a system like (2.2), the intuitive candidate
for an output mapping is an extension of the densely defined mapping x1 7→ Dx1 =

CT(·)x1, x1 ∈ D(A). Therefore, let us introduce operators C which indeed yield that
this D is an output mapping. Recall that X1 denotes the domainD(A) equipped with
the graph norm.

DEFINITION 2.2. Let Y be a Banach space. An operator C ∈ B(X1, Y) is called ad-
missible for the semigroup T(·) if there exists a constantm1 such that

‖CT(·)x1‖L2(R+,X) 6 m1‖x1‖ ∀x1 ∈ D(A).

It is easy to see that if C is admissible, then the mapping x 7→ CT(·)x can be extended
uniquely to an output mapping.
Conversely, the following result due to G. Weiss [Wei89] states that every output
mapping can be derived by an admissible operator C. This fact is fundamental for
the construction of our functional calculus.

LEMMA 2.3 (G. Weiss). Let Y be a Banach space and D : X→ L2(R+, Y) an output
mapping for the semigroup T(·). Then there exists a unique C ∈ B(X1, Y) such that

Dx1 = CT(·)x1 ∀x1 ∈ D(A),

(where the equality holds in L2-sense). This implies that C is admissible, see Def. 2.2.

In order to use the previous lemma, we will define an output mapping via a Toeplitz
operator. Therefore, we need the following notions and results which can already be
found in [Zwa12].

Before we introduce Toeplitz operators, we observe that for g ∈ H∞(C−) and h ∈
H2(H) for some Hilbert space H, we can multiply g and h by means of their bound-
ary functions on iR. Therefore, because (up to identification) g ∈ L∞(iR) and h ∈
L2(iR,H), we get that gh ∈ L2(iR,H) = H2(H) ⊕H2

⊥(H). Thus, for f ∈ L2(R+,H), it
follows that g · Lf ∈ H2(H)⊕H2

⊥(H).

DEFINITION 2.4. Let H be a Hilbert space. For a function g ∈ H∞(C−), we define
the Toeplitz operator

Mg : L2(R+,H)→ L2(R+,H), f 7→ L−1ΠH(g · Lf),

where L−1 denotes the inverse Laplace transform and ΠH is the orthogonal projec-
tion onto H2(H) (see above).

Let M− denote the Borel measures supported in (−∞, 0] with bounded variation
‖ · ‖M. Recall that the convolution of such a measure νwith a function f is given by

ν ∗ f =
∫ 0

−∞ f(t− s)dν(s)
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LEMMA 2.5. Let H be a Hilbert space, f ∈ L2(R+,H) and g1,g2 ∈ H∞(C−). Then,
the following properties hold:

(i) Mg ∈ B(L2(R+,H)) and ‖Mg‖ 6 ‖g‖∞.

(ii) στMg =Mgστ for all τ > 0.

(iii) MgB = BMg for all B ∈ B(H), i.e., for all f ∈ L2(R+,H)

Mg(Bf) = B(Mgf),

where (Bf)(t) = B(f(t)) for all t > 0.

(iv) Mg1·g2 =Mg1Mg2 .

(v) If g is either
(a) L(ν) for ν ∈M−, or
(b) an element of H∞(C−) ∩H2

⊥,
then,

Mgf = (L−1(g) ∗ fext)|R+

where fext denotes the extension of the function f to R by fext|R−
= 0.

PROOF. For (i) to (iv), see [Zwa12]. (v) follows by the following consequence of
the convolution theorem and (2.3). Consider first case (a). It holds that

(g · L(f))(i·) = (F(ν) · F(fext)) (·) = F(ν ∗ fext)(·)

= L((ν ∗ fext)
∣∣
(0,∞)

)(i·) + L((ν ∗ fext)
∣∣
(−∞,0)))(i·), (2.6)

where the Fourier transform of ν is defined by F(ν)(s) =
∫

R e
−itsdν(t). Since

ν ∗ fext ∈ L2(R,H) by Young’s inequality (for the vector-valued version, see e.g.,
[Haa06a, Appendix E.3]), Eq. (2.6) yields

Mgf = L−1ΠH2(H)(g · Lf) = (ν ∗ fext)
∣∣
(0,∞)

. (2.7)

This shows the assertion.

As for (b), it follows that L−1(g) ∈ L2(R−) since g ∈ H2
⊥. Since g lies also in

H∞(C−), we have that g · L(f) ∈ L2(iR). Then, the proof follows analogously as
for (a). �

2.2. H∞(C−)-calculus on Banach spaces

Unless stated otherwise, the following convention holds for the rest of the chapter.
Let X be a Banach space and let T = T(·) be an exponentially stable C0-semigroup
on X with generator A, see Section 1.4 for a short overview on semigroups. Further-
more, gwill always denote a function in H∞(C−).
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2.2.1. General weak approach.

DEFINITION 2.6. Let Z be a Banach space. A bilinear map B : X × Z → L2(R+) is
called a weakly admissible output form for T(·) if the following holds.

• B is bounded, i.e., there exists b > 0 such that

‖B(x, z)‖L2(R+) 6 b‖x‖‖z‖Z ∀x ∈ X, z ∈ Z, (2.8)

• and B(., z) is shift-invariant, i.e.,

στB(x, z) = B(T(τ)x, z) ∀τ > 0, x ∈ X, z ∈ Z. (2.9)

Clearly, if B is a weakly admissible output form, then B(·, z) : X → L2(R+) is an out-
put mapping for all z ∈ Z, cf. Definition 2.1. An example for such B is given by
B(x, z) = 〈z, T(·)x〉X′,X with Z = X ′. This choice fulfills the assumptions of Definition
2.6 because T(·) is exponentially stable.

DEFINITION 2.7. Let B : X × Z → L2(R+) be a weakly admissible output form,
g ∈ H∞(C−) and y ∈ Z. Define

DBg,y : X→ L2(R+), x 7→Mg(B(x,y)), (2.10)

whereMg denotes the Toeplitz operator on L2(R+) with symbol g (see Definition 2.4
with H = C).

LEMMA 2.8. Let B : X × Z → L2(R+) be a weakly admissible output form, g ∈
H∞(C−) and y ∈ Z. Then,

DBg,y : X→ L2(R+), x 7→Mg(B(x,y))

is an output mapping for T(·) and there exists a b only depending on B such that

‖DBg,yx‖L2(R+) 6 b‖g‖∞‖y‖Z‖x‖. (2.11)

Furthermore, there exists a unique operator LBg,y ∈ B(X1, C) such that

DBg,yx1 = LBg,yT(·)x1, x1 ∈ D(A), (2.12)

and for x0 ∈ X, x1 ∈ D(A), and s ∈ C+, the following two identities hold.

L[DBg,yx0](s) = L
B
g,y(sI −A)

−1x0, (2.13)

LBg,yx1 =

∫∞
0
[DBg,y(sI −A)x1](t)e

−st dt

= L[DBg,y(sI −A)x1](s). (2.14)

PROOF. By Lemma 2.5 (ii), and (2.9), for x ∈ X,

στD
B
g,yx = στMg(B(x,y))
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=Mg(στ(B(x,y)))

=Mg(B(T(τ)x,y))

= DBg,yT(τ)x.

Thus DBg,y is shift-invariant. By Lemma 2.5 (i), Mg is bounded on L2(R+,H) with
bound less than ‖g‖∞. Since B(·,y) : X → L2(R+) is bounded by (2.8), it follows
that DBg,y is bounded and that (2.11) holds. Thus, DBg,y is an output mapping.
Now that we know that DBg,y is an output mapping, Lemma 2.3 yields the exis-
tence of an operator LBg,y ∈ B(X1, C) such that (2.12) holds. Taking the Laplace
transform of (2.12), which exists for s ∈ C+ since DBg,y ∈ L2(R+), and, using that
the integrals exist in X1, we deduce

L[DBg,yx1](s) = L
B
g,y(sI −A)

−1x1

for x1 ∈ D(A). Since D(A) is dense and by boundedness of the operators x1 7→
L[DBg,yx1](s), LBg,y(sI − A)−1, (2.13) follows. Taking x0 = (sI − A)x1 yields (2.14).

�

Using the lemma above, we can deduce properties of the mapping y 7→ LBg,yx.

LEMMA 2.9. Under the assumptions of Lemma 2.8, the following assertions hold.
(i) There exists b2 > 0 such that

|LBg,yx1| 6 b2‖g‖∞‖y‖Z‖x1‖1 x1 ∈ D(A),y ∈ Z. (2.15)

(ii) For fixed x1 ∈ D(A) the mapping

LBg,.x1 : Z→ C, y 7→ LBg,yx1

is linear and bounded, hence, LBg,.x1 ∈ Z ′, i.e., there exists a unique element
fx1 in Z ′ such that

LBg,yx1 = 〈y, fx1〉Z,Z′ ∀y ∈ Z. (2.16)

PROOF. For (i), fix an s ∈ C+. Note that by Cauchy-Schwarz and (2.11),∣∣∣∣∫∞
0
[DBg,y(sI −A)x1](t)e

−st dt

∣∣∣∣ 6 (Re s)−
1
2 ‖DBg,y(sI −A)x1‖L2(R+)

6 (Re s)−
1
2b‖g‖∞‖y‖Z‖(sI −A)x1‖.

By (2.13), the left-hand side equals |LBg,yx1| and we obtain (2.15) because (sI−A) ∈
B(X1,X).
Having (i), for (ii), it remains to show the linearity of Lg,.x1 for fixed x1 ∈ D(A).
By the linearity of B(x0, ·) and Mg it is clear that Dg,.x0 is linear, for fixed x0 ∈ X.
Hence, using (2.14) again for some fixed s ∈ C+, we have for y, z ∈ Z and λ ∈ C

Lg,y+λzx1 = L[DBg,y+λz(sI −A)x1](s)
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= L[DBg,y(sI −A)x1](s) + λL[D
B
g,z(sI −A)x1](s)

= Lg,yx1 + λLg,zx1.

�

Motivated by the previous lemma, we can consider the map

gB(A) : D(A)→ Z ′, x1 7→ fx1 =
(
y 7→ LBg,yx1

)
. (2.17)

The mapping gB(A) is linear since LBg,yx1 is linear in x1 and by (2.15) it is bounded,
i.e., gB(A) ∈ B(X1,Z ′). Moreover, by Lemma 2.9 (ii) for all x1 ∈ D(A), y ∈ Z,

〈y,gB(A)x1〉Z,Z′ = L
B
g,y(A)x1. (2.18)

Now, we are able to state the main result of the general weak approach.

THEOREM 2.10. Let A be the generator of an exponentially stable C0-semigroup T
and B : X× Z→ L2(R+) be a weakly admissible output form for T (see Def. 2.6).
For g ∈ H∞(C−), let DBg,yx =Mg(B(x,y)), see (2.10).

Then there exists a unique operator gB(A) ∈ B(X1,Z ′) such that

DBg,yx1 = 〈y,gB(A)T(·)x1〉Z,Z′ (2.19)

for all y ∈ Z and x1 ∈ D(A).
Furthermore, the following assertions hold.

(i) There exists a constant α > 0 such that for all x ∈ X, s ∈ C+,∥∥gB(A)(sI −A)−1x
∥∥
Z′
6

α√
Re(s)

‖g‖∞‖x‖. (2.20)

(ii) If Z = X ′ and for all t > 0, x ∈ X,y ∈ X ′,

B(T(t)x,y) = B(x, T(t) ′y), (2.21)

then, for t > 0, x1 ∈ D(A), y ∈ X ′,

〈y,gB(A)T(t)x1〉X′,X′′ = 〈T(t) ′y,gB(A)x1〉X′,X′′ . (2.22)

(iii) If Z = X ′ and B(x,y) = 〈y, T(·)x〉, then gB(A) ∈ B(X1,X) and

〈y,gB(A)T(·)x1〉X′,X =Mg(〈y, T(·)x1〉X′,X), (2.23)

for all x1 ∈ D(A).

PROOF. Let gB(A) ∈ B(X1,Z) be defined by (2.17) (see considerations above
Theorem 2.10). Then (2.19) follows by the following chain of identities. For t > 0,

〈y,gB(A)T(t)x〉Z,Z′
(2.18)
= LBg,yT(t)x1

(2.12)
=
(
DBg,yx1

)
(t),

where the last equality holds for a.e. t > 0. The uniqueness of gB(A) follows
from (2.19) and the fact that T(t)x1 → x1 in X1 for t→ 0+.
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Item (i): This is a consequence of (2.13). In fact, by Cauchy-Schwarz,∣∣〈y,gB(A)(sI −A)−1x〉Z,Z′
∣∣ (2.18)

= LBg,y(sI −A)
−1x

(2.13)
=

∣∣L[DBg,yx](s)
∣∣

C.S.
6

1√
Re(2s)

∥∥DBg,yx
∥∥
L2(R+,X)

(2.11)
6

α√
Re(s)

‖g‖∞‖x‖‖y‖Z.

In the last step we used the boundedness of the output mapping.

Item (ii): We use (2.14). Let t > 0, s ∈ C+, y ∈ X ′ and x1 ∈ D(A). Then,

〈y,gB(A)T(t)x1〉X′,X′′
(2.18)
= LBg,yT(t)x1

(2.14)
= L[DBg,y(sI −A)T(t)x1](s)

(2.10)
= L[MgB((sI −A)T(t)x1,y)](s). (2.24)

By exploiting the additional assumption on B, (2.21), we further deduce

L[MgB((sI −A)T(t)x1,y)](s) = L[MgB((sI −A)x1, T ′(t)y)](s)

= L[Dg,T ′(t)y(sI −A)x1](s)

= Lg,T ′(t)yx1

= 〈T(t) ′y,gB(A)x1〉X′,X′′ .

Together with (2.24), this gives (2.22).

Item (iii): Since X is isometrically embedded into X ′′, we have to show that gB(A)
indeed maps into X. Then, gB(A) ∈ B(X1,X) and (2.23) follows from (2.19). By
(2.18) and (2.13), for s = 1, x1 ∈ D(A),

〈y,gB(A)x1〉X′,X′′ = LBg,yx1 =

∫∞
0
e−t[DBg,y(I −A)x1](t)dt

= (h ∗ fext) (0+), (2.25)

where h(t) = et1R−
(t) and f = DBg,y(I − A)x1. Since h ∈ L1(R−), we get by

Lemma 2.5 (v) (with assumption (a)) that

(h ∗ fext)|R+
=ML(h)f

=ML(h)D
B
g,y(I −A)x1

=ML(h)MgB((I −A)x1,y)

=ML(h)gB((I −A)x1,y), (2.26)

where we used the definition of DBg,y and Lemma 2.5 (iv). It is easy to see that
(L(h)g)(z) = g(z)

1−z . Hence, L(h)g ∈ H∞(C−) ∩ H2
⊥ and by Lemma 2.5 (v) (with
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assumption (b)), we conclude in (2.26) that

(h ∗ fext)|R+
= L−1(L(h) · g) ∗ 〈y, T(·)(I −A)x1〉X′,X|R+

= 〈y,L−1(L(h) · g) ∗ T(·)(I −A)x1〉X′,X|R+
,

where the last equality follows since the vector-valued convolution exists. With
(2.25) this yields, by continuity of the dual brackets,

〈y,gB(A)x1〉X′,X′′ = 〈y,
(
L−1(L(h) · g) ∗ T(·)(I −A)x1

)
(0+)〉X′,X.

Thus, we conclude that gB(A)x1 ∈ X for x1 ∈ D(A). �

Theorem 2.10 and estimate (2.11) motivate the introduction of the following notion.

DEFINITION 2.11. Let Y be a Banach space. An operator C ∈ B(X1, Y) is called
weakly admissible if there existsm > 0 such that for all x ∈ D(A) and y ′ ∈ Y ′

• 〈y ′,CT(.)x〉 ∈ L2(R+) and

• ‖〈y ′,CT(.)x〉‖L2(R+) 6 m‖y ′‖Y ′‖x‖.

REMARK 2.12.

• From this definition we get immediately that if C ∈ B(X1, Y) is weakly
admissible, then B̃(x,y) = 〈y,CT(.)x〉Y ′,Y defined on D(A) × Y ′ can be
uniquely extended to a bilinear mapping B on X× Y ′. This B fulfills the as-
sumptions in Definition 2.6 (Z = Y ′) and because of this, DCg,y,LCg,y,gC(A)
will denote DBg,y,LBg,y,gB(A) respectively. Note that this B does not satisfy
(2.21) in general even if Y = X ′.

• From Theorem 2.10 and (2.11), it follows that gB(A) is weakly admissible.

REMARK 2.13. The notion of weak admissibility and its connection to admissibil-
ity are well-studied. Obviously, if C ∈ B(X1, Y) is admissible, then C is also weakly
admissible. In [Wei91], G. Weiss conjectured that both notions are equivalent2. Al-
though the Weiss conjecture is known to be true under certain assumption on the
semigroup and the space Y, see e.g., [Wei91, JP01], it fails in general. In [ZJS03],
Zwart, Jacob and Staffans gave a first counterexample, even for bounded A and C.
Subsequently, Jacob, Partington and Pott [JPP02] showed that the conjecture also
fails in general for contraction semigroups. We refer to [JPP02] for an overview about
the various results. In [LM03], Le Merdy gave a characterization of the problem for
analytic semigroups and in [Zwa05], Zwart presented sufficient conditions on C im-
plying admissibility.
Over the years, the Weiss conjecture has remained an active field of study. We refer
to [LM14a, Wyn10] for general α-admissibility and discrete-time analogs. Recently, a
stochastic version of the conjecture was studied in [AHvN13].

2Actually, he conjectured that the condition supλ∈C+

√
Reλ‖CR(λ,A)‖ < ∞ implies that C is admis-

sible. It is easy to see that a weakly admissible operatorC satisfies this condition
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2.2.2. The calculus. In the following we will set Z = X ′.

DEFINITION 2.14. Let g(A) denote the operator gB(A) from Theorem 2.10 for the
weakly admissible output form B(x,y) = 〈y, T(·)x〉X′,X.
Consistently, we will write Dg,y for DBg,y (see (2.10)) when this specific B is meant.

We are going to need the following lemmata several times. Recall that we say that
an operator B : D(B) ⊂ X→ X commutes with an operator P ∈ B(X), if

D(B) ⊂ D(BP) and PBx = BPx ∀x ∈ D(B).

We denote this by PB ⊂ BP.

LEMMA 2.15. The operator g(A) is a bounded operator from X1 to X which com-
mutes with the semigroup, i.e.,

g(A)T(t) = T(t)g(A) (2.27)

on D(A) for all t > 0. Therefore, for λ ∈ ρ(A)

g(A)R(λ,A)x1 = R(λ,A)g(A)x1 ∀x1 ∈ D(A). (2.28)

In particular, g(A)D(A2) ⊂ D(A).

PROOF. The first assertions follow all directly from Theorem 2.10. (2.28) follows
from the identity (2.27) applied to an element x1 ∈ D(A) by taking the Laplace
transform. �

LEMMA 2.16. Let Y be a Banach space and C ∈ B(X1, Y).
(i) If C is weakly admissible, then

Cg(A)x2 = gC(A)x2, x2 ∈ D(A2), (2.29)

where gC(A) is the operator from Theorem 2.10 with
B(x,y) = 〈y,CT(·)x〉Y ′,Y (see Remark 2.12). Hence, Cg(A) can be
extended uniquely to a weakly admissible operator.

(ii) If Y = X and if C commutes with T(·) on D(A), then,

Cg(A)x2 = g(A)Cx2, x2 ∈ D(A2). (2.30)

If C is even in B(X), then (2.30) holds for x ∈ D(A).

PROOF. Let x2 ∈ D(A2) and y ∈ Y ′. Then Ax2 ∈ D(A). Using (2.28) and that
CA−1 ∈ B(X, Y), we obtain

〈y,Cg(A)T(t)x2〉Y ′,Y = 〈y,CA−1g(A)T(t)Ax2〉Y ′,Y
= 〈(CA−1) ′y,g(A)T(t)Ax2〉X′,X
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(2.23)
=
(
Mg(〈(CA−1) ′y, T(·)Ax2〉X′,X)

)
(t)

=
(
Mg(〈y,CT(·)x2〉Y ′,Y)

)
(t), (2.31)

for a.e. t > 0.
Item (i). Since C is weakly admissible, we get by Remark 2.12 that
Mg(〈y,CT(·)x2〉 = DCg,y which further equals 〈y,gC(A)T(·)x2〉Y ′,Y ′′ by (2.19).
Hence,

〈y,Cg(A)T(t)x2〉Y ′,Y = 〈y,gC(A)T(t)x2〉Y ′,Y ′′ .
The equality holds for all t > 0 point-wise since both the right and the left hand-
side are continuous functions for x ∈ D(A2). Thus (2.29) follows.
Item (ii). If C ∈ B(X1,X) commutes with T(·), we can apply this to (2.31), and
derive Cg(A)x = g(A)C onD(A2). If C is bounded, this even holds forD(A). �

As pointed out in Remark 2.12, gC(A) will not commute with the semigroup in gen-
eral. However, if C ∈ B(X1,X) commutes with T(·), then

B(T(t)x,y) = 〈y,CT(·)T(t)x〉X′,X = 〈T ′(t)y,CT(·)x〉X′,X = B(x, T ′(t)y)

for all t > 0 and x ∈ X. Hence, by Theorem 2.10 (ii), we conclude that gC(A)T(t) =
T(t)gC(A) for all t > 0 in this case.

It may happen that g(A) is bounded in the norm of X. However, by construction it is
only defined on D(A). In this case, we would like to identify g(A) with its bounded
extension to X. Moreover, even when g(A) is not bounded in X, we can extend it to
a closed operator as we will see in the following.

DEFINITION 2.17. For a Banach space Y and C ∈ B(X1, Y), the operator given by

CΛx = lim
λ→∞ λCR(λ,A)x,

D(CΛ) = {x ∈ X : the above limit exists}

is called the Lambda extension of C.

LEMMA 2.18 (Properties of the Lambda extension). Let C ∈ B(X1, Y). The
following assertions hold for CΛ defined in Definition 2.17.

(i) C ⊂ CΛ.

(ii) If C is bounded in X, then CΛ ∈ B(X, Y).

(iii) If Y = X, P ∈ B(X) and PCR(λ,A) = CR(λ,A)P for all λ ∈ ρ(A), then
PCΛ ⊂ CΛP.

(iv) If Y = X and C commutes with some (any) R(µ,A) = (µI − A)−1, then
CΛ is closed. Moreover, CΛ equals the closure C of C.
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PROOF. Recall the following property of aC0-semigroup ([EN00, Lemma II.3.4])

lim
λ→∞ λR(λ,A)x = x ∀x ∈ X. (2.32)

Item (i). Let x ∈ D(C) = D(A). Then (2.32) implies that λR(λ,A)x converges to x
even in X1. Since C ∈ B(X1, Y), we concluded that λCR(λ,A) → Cx as λ → ∞.
Thus, CΛ is an extension of C.

Item (ii). If C is bounded in X, then there exists a unique extension C ∈ B(X, Y),
C ⊂ C. By (2.32), it follows that CΛ = C.

Item (iii). Let x ∈ D(CΛ). If P ∈ B(X) commutes with CR(λ,A), then

PCΛx = lim
λ→∞ λPCR(λ,A)x = CΛPx. (2.33)

Hence, CΛ commutes with P.

Item (iv). We show that CΛ is a closed operator first. Let {xn} be a sequence in
D(CΛ) such that xn → x and CΛxn → z for n → ∞. Since C commutes with the
resolvent, we have by (iii) that for all n ∈ N,

R(µ,A)CΛxn = CΛR(µ,A)xn = CR(µ,A)xn,

where the last equality holds since R(µ,A)xn ∈ D(A). Since CR(µ,A) ∈ B(X), we
deduce for the limit n→∞

R(µ,A)z = CR(µ,A)x.

Multiply by µ and let µ→∞. By (2.32) the limit exists and

z = lim
µ→∞µCR(µ,A)x

holds. Thus, x ∈ D(CΛ) and CΛx = z.
Seeing the operatorsC andCΛ as graphs in the space X×X, it is clear thatC ⊂ CΛ.
Conversely, let (x,y) ∈ CΛ, i.e., x ∈ D(CΛ),y = CΛx. Define

xn = nR(n,A)x ∈ D(C) = D(A).

Observe that for n → ∞, xn → x by (2.32) and Cxn → y by the definition of CΛ.
Hence, (x,y) ∈ C and thus, C = CΛ. �

In the following let gΛ(A) = (g(A))Λ denote the Lambda extension of g(A). We
make the convention that for (unbounded) operators F,G the domain of F + G is
D(F) ∩D(G).
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THEOREM 2.19. g 7→ gΛ(A) fulfills the properties of an (unbounded) functional
calculus, i.e.,

(i) g ≡ 1⇒ g(A) = I,

(ii) (g1 + g2)Λ(A) ⊃ g1,Λ(A) + g2,Λ(A),

(iii) (g1g2)Λ(A) ⊃ g1,Λ(A)g2,Λ(A) and

D
(
g1,Λ(A)g2,Λ(A)

)
= D

(
(g1g2)Λ(A)

)
∩D

(
g2,Λ(A)

)
. (2.34)

If g2(A) is bounded, then equality holds in (ii) and (iii).

PROOF. Obviously, for g ≡ 1 ∈ H∞(C−), Dg,yf = f and thus, g(A) = I. Since the
Toeplitz operatorMg is linear in the symbol g, it follows that

(g1 + g2)(A) = g1(A) + g2(A)

defined on D(A). For x ∈ D(g1,Λ(A) + g2,Λ(A)) = D(g1,Λ(A)) ∩ D(g2,Λ(A)) it
follows that

lim
λ→∞ λ(g1(A) + g2(A))R(λ,A)x (2.35)

exists. Hence, x lies in the domain of (g1 + g2)Λ(A). If g2(A) is bounded, then
D(g2,Λ(A)) = X. Thus, the existence of (2.35) implies that x ∈ D(g1,Λ(A)).

Item (iii). We verify (g1 ·g2)(A) = g1(A)g2(A) onD(A2) first. According to Lemma
2.16, it suffices to prove gC1 (A) = (g1 · g2)(A) for C = g2(A). Let y ∈ X ′ and
x ∈ D(A2). Then,

〈y, (g1g2)(A)T(t)x〉 =
(
Mg1g2(〈y, T(.)x〉)

)
(t)

=
(
Mg1Mg2(〈y, T(.)x〉)

)
(t)

=
(
Mg1(〈y,g2(A)T(.)x〉)

)
(t)

= 〈y,gC1 (A)T(t)x〉,

where we used (2.23) several times as well as the fact that Mg1g2 =Mg1Mg2 (see
Lemma 2.5). Since x ∈ D(A2), the equality holds point-wise for t > 0. Thus,

(g1 · g2)(A)x2 = g1(A)g2(A)x2 ∀x2 ∈ D(A2). (2.36)

Now, let x ∈ D(g1,Λ(A)g2,Λ(A)). This means that

lim
µ→∞µg2(A)R(µ,A)x = g2,Λ(A)x exists as well as

lim
λ→∞ λg1(A)R(λ,A)g2,Λ(A)x = g1,Λ(A)g2,Λ(A)x.

Since g1(A)R(λ,A) ∈ B(X) and since R(λ,A) commutes with g2(A) on D(A),
(2.28), we obtain that

g1,Λ(A)g2,Λ(A)x = lim
λ→∞ lim

µ→∞(λµ)g1(A)g2(A)R(λ,A)R(µ,A)x
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Clearly, R(λ,A)R(µ,A)x ∈ D(A2). Thus, by (2.36),

g1,Λ(A)g2,Λ(A)x = lim
λ→∞ lim

µ→∞(λµ)(g1g2)(A)R(λ,A)R(µ,A)x.

Using the resolvent identity, this can be written as

g1,Λ(A)g2,Λ(A)x = lim
λ→∞ lim

µ→∞ λµ

µ− λ
(g1g2)(A)

[
R(λ,A)x− R(µ,A)x

]
. (2.37)

By (2.20), we have that (g1g2)(A)R(µ,A)x→ 0 as µ→∞. Therefore,

lim
µ→∞ λµ

µ− λ
(g1g2)(A)R(µ,A)x = 0.

Furthermore,

lim
µ→∞ λµ

µ− λ
(g1g2)(A)R(λ,A)x = λ(g1g2)(A)R(λ,A)x.

Together, this yields the limit in (2.37),

g1,Λ(A)g2,Λ(A)x = lim
λ→∞ λ(g1g2)(A)R(λ,A)x

which means that x ∈ D((g1g2)Λ(A)) and (g1g2)Λ(A)x = g1,Λ(A)g2,Λ(A)x. This
also shows the inclusion ‘⊆’ in (2.34) since x ∈ D(g2,Λ(A)) by assumption. To
show the other inclusion, we observe that for x ∈ X and µ ∈ ρ(A)

(g1g2)(A)R(µ,A)x = lim
λ→∞ λ(g1g2)(A)R(λ,A)R(µ,A)x

= lim
λ→∞ λg1(A)g2(A)R(λ,A)R(µ,A)x

= lim
λ→∞ λg1(A)R(λ,A)g2(A)R(µ,A)x,

where we used (2.36) and that R(λ,A)R(µ,A)x, R(µ,A)x lie in D(A2) and D(A),
respectively. This gives that g2(A)R(µ,A)x ∈ D(g1,Λ(A)) and

(g1g2)(A)R(µ,A)x = g1,Λ(A)g2(A)R(µ,A)x.

For x ∈ D((g1g2)Λ(A)) ∩D(g2,Λ(A)) this yields that the limit

lim
µ→∞µ(g1g2)(A)R(µ,A)x = lim

µ→∞g1,Λ(A)µg2(A)R(µ,A)x

exists. Since µg2(A)R(µ,A)x→ g2,Λ(A) for µ→∞ and the closedness of g1,Λ(A)

we deduce

g2,Λ(A)x ∈ D(g1,Λ(A)) and g1,Λ(A)g2,Λ(A)x = (g1g2)Λ(A)x.

This shows that x ∈ D
(
g1,Λ(A)g2,Λ(A)

)
. For bounded g2(A), (2.34) directly shows

the equality. �

Since for any g ∈ H∞(C−), g(A) is weakly admissible, see Remark 2.12, we will call
the mapping g 7→ g(A) the weakly admissible calculus for A.

Next, we see that our calculus is an extension of the Hille-Phillips calculus, see e.g.,
[Haa06a, HP57] and Section 2.5.1.
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PROPOSITION 2.20. If g ∈ H∞(C−) is such that either
(a) g = L(ν) for ν ∈M−, or

(b) g = L(ν) for ν ∈ L2(R−) (⇐⇒ g ∈ H2
⊥),

then gΛ(A) ∈ B(X) and for x ∈ X,

gΛ(A)x =

∫∞
0
T(s)x dν(−s). (2.38)

Here, we identify dν(s) with ν(s)ds in the case of (b).

PROOF. Since D(A) is dense and the operator x 7→
∫∞

0 T(s)xdν(−s) is bounded,
it suffices to show (2.38) for x ∈ D(A) only. Let y ∈ X ′, x ∈ D(A). By equation
(2.23) of Theorem 2.10,

〈y,g(A)T(·)x1〉X′,X =Mg〈y, T(·)x1〉X′,X.

Lemma 2.5(v), with f = 〈y, T(·)x1〉X′,X, yields

Mgf = (ν ∗ fext)
∣∣
R+

= 〈y,ν ∗ T(·)x1
∣∣
R+
〉X′,X.

Together, we conclude

〈y,g(A)T(t)x1〉X′,X = 〈y,
∫ 0

−∞ T(t− s)x1dν(s)〉X′,X,

which yields the assertion by the strong continuity of T(·). �

Note that L(ν) ∈ H2
⊥ implies that dν(s) = h(s)ds for some h ∈ L2(R−) in condition

(b) in Proposition 2.20.
We collect some basic results of our calculus.

THEOREM 2.21. The functional calculus has the following properties.
(i) Define HB = {g ∈ H∞(C−) : gΛ(A) ∈ B(X)}. Then,

Φ : HB → B(X), g 7→ gΛ(A)

is an algebra homomorphism.

(ii) If P ∈ B(X) commutes with A, PA ⊂ AP, then P commutes with gΛ(A)
for any g ∈ H∞(C−). In particular, T(t)gΛ(A) ⊂ gΛ(A)T(t).

(iii) For µ ∈ C+, g(z) = 1
µ−z we have gΛ(A) = R(µ,A).

(iv) For t > 0, g(z) = etz we have gΛ(A) = T(t).

PROOF. (i) Let g1,g2 be in HB. By Theorem 2.19 (iii), (g1g2)Λ(A) is an exten-
sion of g1,Λ(A)g2,Λ(A). Since the latter is a bounded operator defined on X, also
(g1g2)Λ(A) ∈ B(X). Thus, (g1g2)Λ(A) ∈ HB. The rest is clear from Theorem 2.19.
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(ii) Using the Laplace transform, it is easy to see that PA ⊂ AP implies that
PT(t) = T(t)P for any t > 0. By Lemma 2.16(ii), Pg(A) ⊂ g(A)P and hence,
PgΛ(A) ⊂ gΛ(A)P, see Lemma 2.18.
(iii) and (iv) follow directly from Proposition 2.20 using that 1

µ−z = L(eµ·|R−
)(z)

and etz = L(δ−t)(z), where δ−t denotes the Dirac measure at −t. �

We conclude the construction of theH∞(C−)-calculus by proving that the main iden-
tity of the construction, (2.23), can be extended for the Lambda extension.

PROPOSITION 2.22. For g ∈ H∞(C−) we have that for all x ∈ D(gΛ(A)), y ∈ X ′,

〈y,gΛ(A)T(·)x〉 = [Dg,yx](·)
Def.
= Mg〈y, T(·)x〉X′,X. (2.39)

PROOF. For x ∈ D(A), (2.39) holds by Theorem 2.10 (iii).
Let now x ∈ D(gΛ(A)) and define xn := nR(n,A)x. It follows that xn ∈ D(A)

and that xn → x for n→∞ (the latter holds by [EN00, Lemma II.3.4]). Hence, we
have that (2.39) holds for xn, n ∈ N, and since Dg,y is a bounded operator from X

to L2, we conclude that

〈y,gΛ(A)T(·)xn〉 = [Dg,yxn](·)
L2

→ [Dg,yx](·) as n→∞, (2.40)

we have that Dg,yxn → Dg,yx in L2(R+). Furthermore, by the definition of the
Lambda extension, it follows that gΛ(A)xn = g(A)xn → gΛ(A)x asn→∞. Since
T(t) commutes with gΛ(A) by Theorem 2.21 (ii), this implies that the left hand
side of (2.40) goes to 〈y,gΛ(A)T(·)x〉 pointwise. This yields the assertion. �

2.2.3. Admissible H∞-calculus on Hilbert spaces. In this section we compare
our weakly admissible H∞-calculus with the calculus for exponentially stable semi-
groups on separable Hilbert spaces derived in [Zwa12]. First, we remark that the as-
sumption of separability is actually not needed in [Zwa12] (the proofs of the results
remain completely the same)3, therefore, we state the following for general Hilbert
spaces. To be consistent with our notation of the duality brackets, the inner product
of a Hilbert space is assumed to be linear in the second component.

For the ease of presentation, we will call the functional calculus derived in [Zwa12]
the strong calculus and denote it by g 7→ gs(A).

The strong calculus is constructed by choosing the output mapping

Dg : X→ L2(R+,X) : x 7→Mg(T(·)x).

Note thatMg = L−1ΠX(g ·L) is now defined via the Laplace transform on L2(R+,X)
and the projection ΠX, which is well-defined since X is a Hilbert space.

3The assumption of considering separable Hilbert spaces appears when studying general Toeplitz op-
erators Mg with operator-valued symbol g : C− → B(H), g ∈ H∞(C−,B(X)), see [Mik08, RR97].
Whereas we only consider scalar-valued g.



2.2. H∞(C−)-CALCULUS ON BANACH SPACES 35

Let gs(A) ∈ B(X1,X) be defined as the admissible operator from Lemma 2.3 such that

Dgx =Mg(T(·)x) = gs(A)T(·)x, (2.41)

for x ∈ D(A).

Since gs(A) is admissible, it follows that gs(A) is weakly admissible. Of course, a
weakly admissible need not be admissible in general, see Remark 2.13. However, we
will see that the weak and strong calculus coincide when the considered space is a
Hilbert space. To prove this, we make use of the following elementary result.

LEMMA 2.23. Let X be a Hilbert space, f ∈ L2(R+,X), g ∈ H2(X) and h ∈
L2(iR,X). Then, for y ∈ X

(i) 〈y,Lf〉 = L〈y, f〉 and 〈y,L−1g〉 = L−1〈y,g〉,

(ii) 〈y,ΠXh〉 = Π〈y,h〉.

PROOF. The first assertion holds because Lf and L−1g exist strongly and by
the continuity of the inner product. To see the second assertion, we use that
L2(iR,X) = H2(X) ⊕ H2

⊥(X). Hence, we can find h1 ∈ H2(X) and h2 ∈ H2
⊥(X)

such that h = h1 +h2. From the first part of this lemma we have that 〈y,h1〉 ∈ H2

and 〈y,h2〉 ∈ H2
⊥ which yields

〈y,ΠXh〉 = 〈y,h1〉 = Π〈y,h1〉 = Π〈y,h〉.

�

THEOREM 2.24. Let X be a Hilbert space and let A generate an exponentially stable
semigroup on X. Then, for g ∈ H∞(C−), g(A) = gs(A), thus, gΛ(A) = (gs(A))Λ.

PROOF. It suffices to show that

〈y,g(A)T(t)x〉 = 〈y,gs(A)T(t)x〉 (2.42)

for t > 0,y ∈ X ′ and x ∈ D(A). By Theorem 2.10 and its counterpart for the
strong calculus (see (2.41)), we have that

〈y,g(A)T(.)x〉 = Dg,yx,

〈y,gs(A)T(.)x〉 = 〈y,Dgx〉.

where Dgx = Mg(T(.)x) with Mg ∈ B(L2(R+,X)). By the definition of Mg and
Lemma 2.23 we see that

〈y,Dgx〉 = 〈y,L−1ΠX(g · L[T(.)x)]〉

= L−1Π(g · L[〈y, T(.)x〉])
=Mg(〈y, T(.)x〉)
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= Dg,yx,

where this lastMg is an element in B(L2(R+)). Hence, the equality in (2.42) holds
for almost every t > 0. Since both functions are continuous in t, it holds even
point-wise and in particular for t = 0. �

REMARK 2.25. As a consequence of Theorem 2.24, it follows that the weakly admis-
sible calculus of Section 2 is automatically admissible in the Hilbert space case.

2.3. Sufficient conditions for a bounded calculus

2.3.1. Exact Observability by Direction. In order to give a sufficient condition
for a bounded functional calculus, we introduce a refined notion of observability.

DEFINITION 2.26. For an operator C ∈ B(X1, Y), the pair (C,A) is called exactly
observable by direction if there exist m,K > 0 such that for every x ∈ D(A) there is
a yx ∈ Y ′ with ‖yx‖Y ′ = 1 such that

K‖x‖ 6 ‖〈yx,CT(·)x〉Y ′,Y‖L2(R+) 6 m‖x‖. (2.43)

THEOREM 2.27. If there exists an operatorC ∈ B(X1, Y), where Y is a Banach space,
such that (C,A) is exactly observable by direction, then g 7→ gΛ(A) is a bounded
H∞(C−)-calculus with

‖gΛ(A)‖ 6
m

K
‖g‖∞, (2.44)

wherem,K are the constants from (2.43).

PROOF. Let x ∈ D(A2). Then, there exists a yx ∈ X ′ with norm 1 such that

K‖g(A)x‖ 6 ‖〈yx,CT(·)g(A)x〉Y ′,Y‖L2(R+)

= ‖〈yx,Cg(A)T(·)x〉Y ′,Y‖L2(R+),

where we used that g(A) commutes with the semigroup. Since
〈yx,Cg(A)T(·)x〉 = 〈(CA−1) ′yx,g(A)T(·)Ax〉 =Mg〈yx,CT(·)x〉,

‖〈yx,Cg(A)T(·)x〉Y ′,Y‖L2(R+) = ‖Mg〈yx,CT(·)x〉Y ′,Y‖L2(R+).

We can further estimate by the norm of the Toeplitz operator, Lemma 2.5 (i), and
by using the assumption. Hence,

‖Mg〈yx,CT(·)x〉Y ′,Y‖L2(R+) 6 m‖g‖∞‖x‖.
Altogether, we have for x ∈ D(A2)

‖g(A)x‖ 6 m
K
‖g‖∞‖x‖, (2.45)

which proves the assertion, since D(A2) is dense in X. �
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REMARK 2.28. Of course, one should ask for examples of operators C such that
(C,A) is exactly observable by direction. Since, in particular, the lower inequality in
(2.43) is hard to check, this is a difficult question in general.
We refer to [CDMY96] and [KW10] for other ‘weak’ estimates implying a bounded
calculus. In particular, it is an interesting question whether Theorem 2.27 and the
result in [KW10, Theorem 5.2] can be related.

2.3.2. Exact Observability vs. Exact Observability by Direction. Let us con-
sider the strong calculus g 7→ gs(A) for Hilbert space operators A from Section 2.2.3.
In [Zwa12], the following notion is used to guarantee a bounded H∞(C−)-calculus.

DEFINITION 2.29. Let Y be a Hilbert space. For an operator C ∈ B(X1, Y), the pair
(C,A) is called exactly observable if there existm,K > 0 satisfying

K‖x‖ 6 ‖CT(·)x‖L2(R+,Y) 6 m‖x‖ (2.46)

for all x ∈ D(A).

In the following we study the relation between exact observability and exact observabil-
ity by direction.

REMARK 2.30.

(i) Since for ‖y‖Y = 1 and x ∈ D(A)

|〈y,CT(t)x〉Y | 6 ‖CT(t)x‖,

there is a relation between exact observability (2.46), and exact observability by
direction (2.43), as indicated in the following scheme.

K‖x‖ 6 ‖〈yx,CT(.)x〉‖L2(R+,Y) 6 m‖x‖ (Ex. Obs. by dir.)
⇓ ⇑

K‖x‖ 6 ‖CT(.)x‖L2(R+,Y) 6 m‖x‖ (Ex. Obs.)

The implication arrows denote which inequalities follow from each other.

(ii) If the ‘right-hand’ estimate in the definition of exact observability by direc-
tion is assumed to hold, i.e., if

∃m > 0 ∀x ∈ D(A) ∃yx, ‖yx‖ = 1, 〈yx,CT(.)x〉‖L2(R+,Y) 6 m‖x‖,

then, the pair (C,A) is not exactly observable by direction iff there exists a
sequence {xk} ⊂ D(A) with ‖xk‖ = 1, k ∈ N such that

‖〈y,CT(t)xk〉‖L2(R+) <
1
k

for all y ∈ Y with ‖y‖Y = 1.
We will use this characterization later.
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(iii) Exact observability can be defined for general Banach spaces X, Y since the
definition does not need the Hilbert space structure.

The following result is the Hilbert space counterpart of Theorem 2.27 for the strong
calculus, see [Zwa12].

THEOREM 2.31. If there exists an operator C ∈ B(X1, Y) such that (C,A) is exactly
observable, then gs(A) is bounded for all g ∈ H∞(C−).
Hence, the strong calculus, g 7→ (gs(A))Λ (where (gs(A))Λ denotes the Lambda
extension of g(A)) is bounded.

PROPOSITION 2.32. For finite dimensional Y and weakly admissible C ∈ B(X1, Y),
exact observability and exact observability by direction of (C,A) are equivalent.

PROOF. Since for finite dimensional Y the notions of admissibility and weak
admissibility coincide, in the view of Remark 2.30 it remains to show that (2.46)
implies (2.43). Assume that (C,A) is not exactly observable by direction. Hence,
there exists a sequence xn in D(A) with ‖xn‖ = 1 such that

‖〈y,CT(.)xn〉Y‖L2(R+) <
1
n

∀y ∈ Y ′, ‖y‖Y = 1, (2.47)

for all n ∈ N. Let {φk : k = 1, ..,N} and {φ ′k : k = 1, ..,N} be bases of Y and Y ′,
respectively, such that ‖φk‖ = 1 and 〈φ ′k,φj〉 = δkj for k, j = 1, ..,N. Then, for
t > 0

CT(t)xn =

N∑
k=1

〈φ ′k,CT(t)xn〉φk

⇒ ‖CT(t)xn‖2
Y 6 N

N∑
k=1

|〈φ ′k,CT(t)xn〉|2.

Integrating and using (2.47), this yields ‖CT(.)xn‖L2(R+,Y) → 0 for n → ∞. This
contradicts the exact observability of (C,A). �

Note that if (C,A) is exactly observable by direction, then C need not be weakly
admissible. Therefore, this is additionally required in the proposition above. Finally,
we give an example that, even given admissibility, in general exact observability
does not imply observability by direction,

EXAMPLE 2.33. We consider a Hilbert space Xwith orthonormal basis {φn}n∈N and
a set {λn,n ∈ N} ⊂ R−. If sup{λn} < 0, then the operators

T(t)

N∑
n=1

xnφn :=

N∑
n=1

eλntxnφn, N ∈ N, t > 0.
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define an exponentially stable semigroup, see e.g., [ZJS03] or Section 3.3.1 in Chapter
3. It can be shown that the generator of T is given by

Ax =

∞∑
n=1

λnxnφn,

with D(A) =
{
x ∈ X :

∑∞
n=1 |λnxn|

2 <∞}. For C, we take the square root of (−A),
which is given by

C

N∑
n=1

xnφn =

N∑
n=1

√
−λnxnφn,

and domain D(C) =
{
x ∈ X :

∑∞
n=1 |
√
−λnxn|

2 <∞} .

Define fn(.) =
√
−2λneλn. and choose λn = −2n. By [Nik02b] Theorem D.4.2.2. (and

the appropriate version for the left half-plane), it follows that fn is a Riesz sequence
in L2(R+), i.e., there exist constantsm,M > 0 such that

m

N∑
n=1

|cn|
2 6

∥∥∥∥∥
N∑
n=1

cnfn

∥∥∥∥∥
2

L2(R+)

6M
N∑
n=1

|cn|
2, (2.48)

for all finite sequences of complex numbers (c1, ..., cN).

Let us apply these results to our situation. Define

xN =

N∑
n=1

1√
N
φn.

Then, ‖xN‖ = 1 and for all y ∈ Xwith ‖y‖2 =
∑∞
n=1 |yn|

2 = 1 there holds

‖〈y,CT(.)xN〉‖2
L2(R+) = ‖

N∑
n=1

√
−λne

λn.xN,nyn‖2
L2(R+)

=
1
2
‖
N∑
n=1

xN,nynfn‖2
L2(R+)

6
M

2

N∑
n=1

1
N
|yn|

2

6
M

2N
,

where we used (2.48). Hence, (C,A) is not exactly observable by direction (see Re-
mark 2.30).
However, by

‖CT(t)x‖2
L2(R+,X) =

1
2

∫∞
0
‖
N∑
n=1

xnfn(t)φn‖2dt
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=
1
2

∫∞
0

N∑
n=1

|xn|
2|fn(t)|

2dt =
1
2
‖x‖2,

we see that (C,A) is exactly observable and, therefore, by Theorem 2.31, we obtain a
bounded functional calculus.

REMARK 2.34. Let us consider the situation of Example 2.33, but now with λn =

λ0 < 0 for all n. Then, for x ∈ D(A),

‖〈y,CT(.)x〉‖2
L2(R+) =

∫∞
0

|〈y,
√
−λ0e

λ0tx〉|2 dt = 1
2
|〈y, x〉|2.

If we choose yx = x
‖x‖ , we get

‖〈yx,CT(.)x〉‖2
L2(R+) =

1
2
‖x‖2,

hence, (C,A) is exactly observable by direction.

2.4. An application for analytic semigroups on Hilbert spaces

We are going to show how our approach can be applied to derive results about the
boundedness of the functional calculus. Here, we will deal with the Hilbert space
case only. In Chapter 3, the results will be proved for general Banach spaces using
different techniques and in more generality. First we state the admissible version of
Lemma 2.16. In Section 2.2.3, we have seen that the strong calculus g 7→ gs(A)

for Hilbert spaces coincides with our weakly admissible calculus. Therefore, in the
following let g(A) = gs(A).

THEOREM 2.35 (Lemma 2.1 in [Zwa12]). Let X, Y be Hilbert spaces and let A
be the generator of an exponentially stable semigroup T on X. If C ∈ B(X1, Y) is
admissible, then

(Mg(CT(·)x0)) (t) = Cg(A)T(t)x0, x0 ∈ D(A2).

Moreover, Cg(A) extends to an admissible output operator.

For rest of the section we restrict to exponentially stable, analytic semigroups and
and show that the norm of g(A)T(ε) behaves like | log(ε)| for ε close to zero. Re-
call that for an analytic semigroup T , for any x ∈ X and t > 0, T(t)x lies in D(A).
Therefore, since g(A) ∈ B(X1,X), g(A)T(t) ∈ B(X) for t > 0. We recall that for an
exponentially stable, analytic semigroup T(t), there exists aM,ω > 0 such that

‖(−A)
1
2 T(t)‖ 6 M√

t
e−ωt, t > 0, (2.49)
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see [Paz83, Theorem 2.6.13]. Here (−A)
1
2 is defined as fractional power of semigroup

generators (by a Riesz-Dunford integral for the inverse (−A)−
1
2 , see [EN00]). Using

this inequality, we prove the following estimate.

THEOREM 2.36. Let A generate an exponentially stable, analytic semigroup T on
a Hilbert space X. Then there exists m, ε0 > 0 such that for every g ∈ H∞(C−),
ε ∈ (0, ε0)

‖g(A)T(ε)‖ 6 m‖g‖∞| log(ε)|. (2.50)

If we assume that (−A∗)
1
2 or (−A)

1
2 is admissible, then

‖g(A)T(ε)‖ 6 m‖g‖∞
√
| log(ε)| for ε ∈ (0, ε0). (2.51)

If both (−A∗)
1
2 and (−A)

1
2 are admissible, then g(A) is bounded.

PROOF. For y ∈ D(A∗), x ∈ D(A2) we have

1
2
〈y,g(A)T(2ε)x〉 =

∫∞
0
〈y, (−A)T(2t)g(A)T(2ε)x〉dt

=

∫∞
0
〈(−A∗)

1
2 T(ε)∗T(t)∗y,g(A)T(t)(−A)

1
2 T(ε)x〉dt,

where we used that g(A) commutes with the semigroup and (−A)
1
2 . Using

Cauchy-Schwarz’s inequality, we find

1
2
|〈y,g(A)T(2ε)x〉| 6 ‖(−A∗)

1
2 T(ε)∗T(·)∗y‖L2 · ‖g(A)T(·)(−A)

1
2 T(ε)x‖L2

= ‖(−A∗)
1
2 T(ε)∗T(·)∗y‖L2 · ‖Mg

(
T(·)(−A)

1
2 T(ε)x

)
‖L2

6 ‖(−A∗)
1
2 T(ε)∗T(·)∗y‖L2 · ‖g‖∞ · ‖T(·)(−A) 1

2 T(ε)x‖L2 ,
(2.52)

where we used Theorem 2.35 and Lemma 2.5. Hence it remains to estimate the
two L2-norms. Since X is a Hilbert space,

(
eA
∗t
)
t>0 is an analytic semigroup as

well. Hence both L2-norms behave similarly. We do the estimate for eAt. For
ωε < 1

4 ,

‖T(·)(−A)
1
2 T(ε)x‖2

L2 =

∫∞
0
‖(−A)

1
2 T(t)T(ε)x‖2dt

=

∫∞
ε

‖(−A)
1
2 T(t)x‖2dt

6M2
∫∞
ε

e−2ωt

t
‖x‖2dt

=M2‖x‖2
∫∞

1

e−2εωt

t
dt

6M2‖x‖2m1| log(εω)|,
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where we used (2.49) and where m1 > 0 is an absolute constant (the function
s 7→

∫∞
1
e−ts

t
dt is known as Exponential integral, see also (3.6) and (3.8) in Chapter

3).
Combining the estimates we find that there exists a constant m3 > 0 depending
onω such that for all x ∈ D(A2) and y ∈ D(A∗) there holds

|〈y,g(A)T(2ε)x〉| 6 2‖(−A∗)
1
2 T(ε)∗T(·)∗y‖L2 · ‖g‖∞ · ‖T(·)(−A) 1

2 T(ε)x‖L2 ,

6 m3| log(ε)|‖g‖∞‖x‖‖y‖. (2.53)

Since D(A2) and D(A∗) are dense in X, we have proved the estimate (2.50).
We continue with the proof of inequality (2.51). If (−A∗)

1
2 is admissible, then

‖(−A∗)
1
2 T(ε)∗T(·)∗y‖L2 6 ‖(−A∗)

1
2 T(·)∗y‖L2 6 m2‖y‖.

Therefore, in (2.53), the logarithmic term gets replaced by
√
| log ε|. The case for

(−A)
1
2 is admissible follows analogously. In particular, if (−A)

1
2 and (−A∗)

1
2 are

both admissible, then we see that the epsilon disappears from the estimate, and
since the semigroup is strongly continuous, g(A) extends to a bounded operator.

�

In Chapter 3, it is shown that for any δ ∈ (0, 1) there exists an analytic, exponentially
stable semigroup on a Hilbert space, and a g ∈ H∞(C−) such that (−A)

1
2 is admis-

sible and ‖g(A)eAε‖ ∼ (
√
| log(ε)|)1−δ. Similarly, the sharpness of (2.50) is shown.

The fact that the calculus is bounded for analytic semigroups when both (−A)
1
2 and

(−A∗)
1
2 are admissible, can already be found in [LM03], see also [BDEM10]. How-

ever, as the admissibility of (−A)
1
2 is equivalent to A satisfying square function esti-

mates, the result is much older and goes back to McIntosh, [McI86], see also Section
3.4.
In Chapter 3, we will prove a much more general version of Theorem 2.36, see The-
orems 3.11 and 3.24, allowing for general Banach spaces and functions g bounded
and holomorphic on a sector larger than the sectorality sector of the operator A.

2.5. Relation to holomorphic functional calculus and discussion

2.5.1. Compatibility with holomorphic H∞(C−)-calculus. In this section we
study the relation of our functional calculus with the holomorphic calculus derived
by the ‘standard’ technique when extending a homomorphism (see Section 1.2). In
Proposition 2.20 we have already seen a close connection to the Hille-Phillips calculus,
which we now want to introduce formally.

It is not hard to show that A1 = L(M−) (which is the Laplace transforms of measures
in M−) and A2 = H2

⊥∩H∞(C−) are sub-algebras ofH∞(C−). Therefore, it follows by
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Proposition 2.20 and Theorem 2.21 that for i = 1, 2 the mappings

Ψi : Ai → B(X) : f = L(ν) 7→
∫∞

0
T(s)dν(−s),

where the integral has to be understood in the strong sense, are homomorphisms.
The mapping Ψ1 is known as the Hille-Phillips calculus [HP57].

REMARK 2.37. We remark that Ψ1 is still well-defined if the semigroup T is only
bounded rather than exponentially stable. Moreover, for a semigroup T such that
‖T(t)‖ 6Metω for all t > 0 for someM > 1 andω ∈ R, we can consider

Ψ3 : L(e−ω·M−)→ B(X) : f = L(ν) 7→
∫∞

0
T(s)dν(−s),

for L(e−ω·M−) being the algebra of Laplace transforms of measures µ(s) = e−ωsν(s),
ν ∈ M−. It clearly follows by rescaling (consider the bounded semigroup e−tωT(t))
that Ψ3 is also homomorphism.

Next, we want to extend Ψ2 to all functions in H∞(C−) using the regularization ar-
gument as explained in Section 1.2. Thus, we regard (A2,H∞(C−),Ψ2) as abstract
functional calculus with primary calculus Ψ2. The following lemma shows that in-
deed every function in H∞(C−) can be regularised by an element in A2.

LEMMA 2.38. Let r(z) = 1
1−z . Then r ∈ A2 := H2

⊥ ∩ H∞(C−) and for any
f ∈ H∞(C−) it follows that r · f ∈ A2.

PROOF. Obviously, r ∈ H∞(C−). Since r is the Laplace transform of t 7→
et1R−

(t) ∈ L2(R−), it follows that r ∈ H2
⊥ by Paley Wiener’s theorem. For

f ∈ H∞(C−), the product r · f is holomorphic and bounded on C−, and by

‖(rf)(x+ i·)‖L2(R) 6 ‖r‖∞‖f(x+ i·)‖L2(R),

for all x < 0, we conclude that r · f ∈ H2
⊥ ∩ H∞, as ‖h‖H2

⊥
= supx<0 ‖h(x +

i·)‖L2(R). �

For r(z) = 1
1−z we have that (r(A))−1 = (I − A) is injective. Therefore, by the exten-

sion procedure of holomorphic functional calculus (see Section 1.2),

f 7→ fHP(A) := r(A)
−1(rf)(A) = (I −A)Ψ2(ef), f ∈ H∞(C−), (2.54)

defines a functional calculus of closed operators, which extends Ψ2. Thus, the do-
main of the operator fHP(A) equals {x ∈ X : Ψ2(ef)x ∈ D(A)}.

As mentioned before, the uniqueness of a functional calculus is not clear a-priori, see
[Haa06a, Sections 2.8, 5.3 and 5.7.]. Our goal for the rest of the section is to show that
fHP(A) = fΛ(A) for all f ∈ H∞(C−). We will need the following elementary result.
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LEMMA 2.39. LetA generate a semigroup T on X and let B be a closed operator such
that D(A) ⊂ D(B) and R(λ,A)B ⊂ BR(λ,A) for some λ ∈ ρ(A). Then,

B = (λI −A)BR(λ,A).

PROOF. By R(λ,A)B ⊂ BR(λ,A), it follows that B ⊂ (λ − A)BR(λ,A). To show
the other inclusion, let x be in the domain of (λ − A)BR(λ,A), which means that
BR(λ,A)x ∈ D(A). For n ∈ N define

Dn = λI − n
(
T

(
1
n

)
− I
)
∈ B(X)

and let y ∈ D(A). Since B is closed and commutes with some resolvent, it fol-
lows by the injectivity of the Laplace transform that T(t)By = BT(t)y for all
t > 0. Thus, DnBy = BDny. Furthermore, by the definition of the generator
A, limn→∞Dny = (λ − A)y. Since R(λ,A)x and BR(λ,A)x are in D(A), we can
apply the above facts to the choices y = R(λ,A)x and y = BR(λ,A)x. Hence,

zn := DnR(λ,A)x → (λ−A)R(λ,A)x = x, and
Bzn = DnBR(λ,A)x → (λ−A)BR(λ,A)x,

(2.55)

for n → ∞. Therefore, closedness of B yields that x ∈ D(B) and that Bx =

(λ−A)BR(λ,A)x. This shows that B ⊃ (λ−A)BR(λ,A). �

Now, we are able to compare our weakly admissible calculus with the holomorphic
calculus derived from Ψ2.

THEOREM 2.40 (Coincidence of Calculi). Let A generate an exponentially stable
semigroup. For all f ∈ H∞(C−),

fΛ(A) = fHP(A),

where fΛ(A) is the weakly admissible calculus and fHP(A) denotes the calculus de-
rived from the Hille-Phillips calculus via (2.54).

PROOF. By Proposition 2.20, we know that the calculi coincide on H2
⊥∩H∞(C−),

fΛ(A) = Ψ(f) = fHP(A), f ∈ H2
⊥ ∩H∞(C−)). (2.56)

Therefore, by definition (2.54), we get for general f ∈ H∞(C−),

fHP(A) = (I −A)Ψ(fe)

= (I −A)(fe)Λ(A)

= (I −A)fΛ(A)eΛ(A)

= (I −A)fΛ(A)R(1,A),

where we used that (fe)Λ(A) = fΛ(A)eΛ(A) since eΛ(A) = R(1,A) is bounded,
see Theorems 2.19 and 2.21(iii). By the properties of the Lambda extension, fΛ(A)
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commutes with R(1,A), hence, by Lemma 2.39 with B = fΛ(A), we conclude that

(I −A)fΛ(A)R(1,A) = fΛ(A),

which finishes the proof. �

REMARK 2.41. By Theorem 2.40, we see that our construction of an H∞(C−) calcu-
lus is actually an alternate way to the classical definition of a holomorphic calculus
via an extension procedure of a primary calculus. Let us point out the main differ-
ence in the approaches. Schematically speaking, the classical set-up is:

Define a homomorphism from a sub-algebra of H∞(C−) to B(X) and
then extend this map (purely algebraically) via regularization.

Whereas our approach can be described as:

For general f ∈ H∞(C−), define operators f(A) with domain D(A) and
then extend the operators (take the closure of each operator).

However, as eventually both approaches yield the same calculus, it is not surprising
that similarities are already observable in the construction. In fact, in the proof of
Theorem 2.10 (iii), we encountered already a type of regularization, when consider-
ing the operatorML(h)g instead ofMg.

From the coincidence of the calculi the following characterization of the domain of
fHP(A) by the restriction fHP(A)

∣∣
D(A)

is clear from the definition of fΛ(A).

COROLLARY 2.42. Let A generate an exponentially stable semigroup on X. Then,
for any f ∈ H∞(C−),

D(fHP(A)) =

{
x ∈ X : lim

λ→∞ λfHP(A)
∣∣
D(A)

R(λ,A)x exists
}

,

and for all x ∈ D(fHP(A)), fHP(A)x = limλ→∞ λfHP(A)∣∣D(A)
R(λ,A)x.

2.5.2. Concluding remarks. Next, we prove that fΛ(. − ε)(A + εI)(A) indeed
equals fΛ(A), as one could expect.

LEMMA 2.43. Let T be an exponentially stable semigroup with generator A. Let
ε > 0 and Tε(t) = eεtT(t) denote the rescaled semigroup with generator A + εI. If
Tε is also exponentially stable, then for all f ∈ H∞(C−), it holds that

gΛ(A+ εI) = fΛ(A), where g(z) = f(z− ε) ∀z ∈ C−.
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PROOF. The proof relies on the fact that the projection Π onto H2 ⊂ L2(iR) is
translation-invariant. In fact, for h ∈ L2(R),(

ΠF(h)
)
(. − ε) = F(h|(0,∞))(. − ε) = F

(
eiεxh(x)|(0,∞)

)
(.)

= Π
(
F(eiεx · h(x))

)
(.) = Π

(
F(h)(. − ε)

)
(.).

Using this and L(h)(. − ε) = L
(
eε.h(.)

)
, we see that for x ∈ X,y ∈ X ′, t > 0[

Mg〈y, Tε(.)x〉
]
(t) = L−1Π

(
〈y, f(i. − ε) · L(T(.)x)(i. − ε)〉

)
(t)

= L−1
[
Π
(
〈y, f(i.) · L(T(.)x)(i.)〉

)
(. − ε)

]
(t)

= eεt
[
Mf〈y, T(.)x〉

]
(t).

By (2.23), and letting t→ 0+ yields the assertion. �

Although we have only considered exponentially stable semigroups in this chapter,
Lemma 2.43 indicates how to define our calculus for more general (strongly contin-
uous) semigroups.

DEFINITION 2.44. Let A generate a semigroup T such that supt>0 ‖eωtT(t)‖ < ∞,
and let v > ω. For f ∈ H∞(Lv), where Lv = {z ∈ C : Re z < v}, we define

f(A) := f(·+ v)(A− vI),

where the right-hand-side is defined since f(· + v) ∈ H∞(C−) and A − vI generates
the exponentially stable semigroup e−vtT(t).

Theorem 2.40 gives rise to some comments. First of all, we can immediately make
use of known consequences of a holomorphic calculus as for instance the following
important continuity result.

THEOREM 2.45 (Convergence Lemma, [BHM13, Thm. 3.1], [Mub11]). Let
A generate a semigroup T such that supt>0 ‖eωtT(t)‖ < ∞. Let v > ω and
(fn)n∈N ⊂ H∞(Lv), where Lv = {z ∈ C : Re z < v}, such that

fn(z)→ f(z) ∀z ∈ Lv as n→∞, and sup
n∈N
‖fn‖∞ <∞. (2.57)

Then, f ∈ H∞(Lv) and

fn(A)x→ f(A)x for all x ∈ D(A).

REMARK 2.46 (to Theorem 2.45).

(i) The Convergence Lemma is not surprising in the view of the Toeplitz opera-
tor: By rescaling, we can assume w.l.o.g. that v > 0. Therefore, the functions
fn converge pointwise on iR and by Dominated Convergence one can see
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that
Mfnh→Mfh in L2(R+) as n→∞,

for h ∈ L2(R+).

(ii) It is well-known, see [Haa06a, Prop.F.4], that for any f ∈ H∞(Lv) there exists
a sequence of rational functions rn from

R∞(Lv) :=
{
p

q
: p,q ∈ C[z],deg(p) 6 deg(q), poles of q are in C \ Lv

}
,

such that rn → f pointwise on Lv and ‖rn‖∞ 6 ‖f‖∞.

By Theorem 2.45 and Remark 2.46 we observe that the calculus can be built of ap-
proximations by simple operators. Thus, it often suffices to restrict to functions in
R∞ (for v 6 0, these are Laplace transforms of L1 functions), to show a property of
the calculus.
Finally, let us mention the following representation of the Toeplitz operatorMg,

Mgh =
(
F−1(g(i·)Fh))∣∣∣

(0,∞)
, h ∈ L2(R+),g ∈ H∞(C−), (2.58)

which, implicitly, has been used a couple of times in the present chapter. This fact
shows the relation to (analytic) Fourier multipliers, which recently were used in the
study of the H∞(C−)-calculus estimates for semigroups by Haase and Rozendaal,
[Haa11, HR13], see also Chapter 3. Moreover, Fourier multipliers play an important
role in the study of maximal regularity, see e.g., [KW04].

REMARK 2.47. In the view of the applications of the H∞-calculus, primarily maxi-
mal regularity, it can be argued that the notion of Fourier multiplier operator may be
more natural to use than the one of Toeplitz operator. As both terms coincide in our
situation, this is rather a matter of taste. The use of Toeplitz operators is mainly moti-
vated by systems theory, which served as the starting idea for the work presented in
this Chapter. However, seeingMg as Fourier multiplier operator (see, e.g., [Haa06a,
Appendix E] for an introduction) has some advantages, as it naturally leads to an
extension of the strong admissible calculus for Hilbert spaces, see Section 2.3.2. In fact,
we can consider those g ∈ H∞(C−), for which the mapping

mg : h 7→
(
F−1(g(i·)Fh))|(0,∞), h ∈ S(R+,X),

where S(R+,X) denotes the Schwartz space of rapidly decreasing X-valued functions,
extends to a bounded operator on L2(R+,X). The space of such functions g, equipped
with the norm ‖mg‖L2(R,X)→L2(R,X), is called the analytic (Fourier) multiplier algebra
AM2(X). Obviously, this space depends on the Banach space X. If X is a Hilbert
space, by Plancherel’s theorem, it follows that AM2(X) = H

∞(C−). In general, how-
ever, AM2(X) ⊂ H∞(C−).
In other words, if g ∈ AM2(X), then the Toeplitz operator Mg exists in some strong
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sense. Therefore, it is not difficult to see that for such g, the operator g(A) is even ad-
missible (not only weakly admissible) and the Hilbert space situation from [Zwa12]
and Section 2.3.2 carries over to more general Banach spacesX if one replacesH∞(C−)

by the algebra AM2(X).
Even more general, considering Lp-Fourier multipliers, one can extend the results to
Lp-admissibility (note also that Lemma 2.3 generalizes to output mappings D : X →
Lp(R+,X) for p > 1, see [Wei89]).



CHAPTER 3

On measuring unboundedness of the H∞-calculus for
generators of analytic semigroups

Abstract. We investigate the boundedness of the H∞-calculus by estimating the
bound b(ε) of the mapping H∞ → B(X): f 7→ f(A)T(ε) for ε near zero. Here, −A
generates the analytic semigroup T on Banach space andH∞ is the space of bounded
analytic functions on a domain strictly containing the spectrum of A. We show that
b(ε) = O(| log ε|) in general, whereas b(ε) = O(1) for bounded calculi. This gen-
eralizes a result by Vitse and complements work by Haase and Rozendaal for non-
analytic semigroups. We discuss the sharpness of our bounds and show that single
square function estimates yield b(ε) = O(

√
| log ε|).1

3.1. Introduction

Note to the reader: In this chapter, the operator −A (rather thanA) will denote the generator
of a strongly continuous semigroup. Although this is in contrast to the other chapters in this
thesis, this seems to be more natural as we consider sectorial operators.

As we have seen before, a functional calculus can be seen as a pair of operators
and (scalar-valued) functions which we want to assign to each other. In this chapter
we consider the pair of sectorial operators A and functions f which are bounded and
analytic on a sector that is containing the spectrum of A.

For δ ∈ (0,π) define the sector Σδ = {z ∈ C : z 6= 0, | arg(z)| < δ} and set Σ0 = (0,∞).
A linear operator A is called sectorial of angle ω ∈ [0,π), if σ(A) ⊂ Σω and for all
δ ∈ (ω,π)

M(A, δ) := sup
{
‖λ(λ−A)−1‖ : λ ∈ C \ Σδ

}
<∞. (3.1)

The minimalω such thatA is sectorial of angleωwill be denoted byωA. By Sect(ω)

we denote the set of sectorial operators of angleω.

1This chapter is slightly adapted from the article:
F.L. SCHWENNINGER, On measuring unboundedness of theH∞-calculus for generators of analytic semigroups,
submitted to Journal of Functional Analysis, 2015, arXiv: 1502.01535.
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The functional calculus for sectorial operators is based on extending the Riesz–
Dunford calculus, which can be seen as an operator-valued version for the Cauchy
formula, see Section 3.1.1 for a brief introduction.
From the very beginnings of this calculus 30 years ago, [McI86], it has been known
that we cannot expect theH∞-calculus to be bounded, i.e., that f(A) is a bounded op-
erator for every f ∈ H∞, [MY90]. Starting with the work by McIntosh, [McI86], for
sectorial operators on Hilbert spaces, theH∞-calculus turned out to be very useful in
various situations, in particular studying maximal regularity, see [Haa06a, Chapter
9], [KW04] and the references therein. For a recent survey and open problems of the
H∞-calculus for sectorial operators we refer to [Fac15].

The question of boundedness of the calculus in a particular situation remains crucial
in the applications and has been subject to research over the last decades, see e.g.
[CDMY96, KW01, KW04] and [Haa06a, Chapter 5] for an overview.
The main goal of this chapter is to investigate and ‘measure’ the (un)boundedness of
the H∞-calculus.

Functional calculus for subalgebras ofH∞ is of own interest. For instance, in [Vit05b]
Vitse proves estimates for a Besov space functional calculus for analytic semigroups,
(see [Haa11] for the case of C0-semigroup generators on Hilbert spaces). We will
discuss this result in Section 3.5 and give a slight improvement. Furthermore, the
corresponding framework ofH∞-calculus for C0-semigroup generators was recently
developed in [BHM13, Haa06b, Mub11] where half-plane operators take over the role
of sectorial operators.
Let us state a first observation which can be seen as the starting point for the results
to come.

PROPOSITION 3.1. Let A be a densely defined, invertible, sectorial operator of angle
ω < π

2 on the Banach space X. Then, for φ ∈ (ω,π) the H∞(Σφ)-calculus is
bounded if and only if

∀f ∈ H∞(Σφ) lim sup
ε→0+

‖(f · eε)(A)‖ =: Cf <∞, (3.2)

where eε(z) = e−εz.

In Example 3.2 we show that the assumption of A being invertible cannot be weak-
ened in general. Neither can we allow for ω = π

2 . In fact, for ω = π
2 , (feε)(A) need

not be a bounded operator. However, it is a remarkable result that by incorporating
the geometry of the Banach space, one indeed gets that (feε)(A) is bounded for, not
necessarily analytic, C0-semigroup generators −A (which are sectorial operators of
angle π2 ). Precisely, on Hilbert spaces (feε)(A) always defines a bounded operator if
−A generates an exponentially stable semigroup and if f is bounded and analytic on
the right half-plane. This was first proved by Zwart in [Zwa12, Theorem 2.5]. Using
powerful transference principles from [Haa11], Haase and Rozendaal generalized this
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to arbitrary Banach spaces for f in the analytic multiplier algebra AMp(X) ⊂ H∞(C+),
p > 1, see [HR13]. Note that the latter inclusion is even a strict embedding unless
p = 2 and X is a Hilbert space (in which case equality holds by Plancherel’s theorem).
They also showed that, alternatively, one can make additional assumptions on the
semigroup rather than on the function space. Namely, by requiring that the (shifted)
semigroup is γ-bounded, see [HR13, Theorem 6.2]. Again, this result generalizes
the Hilbert space case as γ-boundedness coincides with classical boundedness then.
Moreover, although norm bounds in terms of ε were already present in [Zwa12],
they were significantly improved in [HR13], see also below. We remark that the
definition of functional calculus for non-analytic C0-semigroups differs by nature
from the one for sectorial operators. Using the axiomatics of holomorphic calculus
in [Haa06a, Chapter 1], this can be done by either directly extending the well-known
Hille-Phillips calculus, see [HR13], or the above mentioned calculus for half-plane
operators, [BHM13, Haa06b, Mub11]. In Chapter 2 an alternative definition using
notions from systems theory is introduced, see also [SZ12, Zwa12]. However, as all
these techniques are extensions of the Hille-Phillips calculus, the notions are consis-
tent in the considered situation, see Section 2.5.1.

From Proposition 3.1 we see that the behavior of the norm ‖(feε)(A)‖ for ε near zero
characterizes the boundedness of the H∞-calculus for a sectorial operator A of angle
less than π

2 that has 0 in its resolvent set. The negative, −A, of such an operator
corresponds precisely to the generator of an analytic and exponentially stable C0-
semigroup. Denoting this semigroup by T(t) = e−tA, we have (feε)(A) = f(A)T(ε).
As the H∞-calculus need not be bounded, in general, we cannot bound ‖(feε)(A)‖
uniformly in ε. Therefore, our goal is to establish estimates of the form

‖(f · eε)(A)‖ 6 b(ε) · ‖f‖∞, (3.3)

for all f ∈ H∞ on a sector larger than the sector of sectorality of A. In general, b(ε)
will become unbounded for ε→ 0+.

In Theorem 3.11 we show that b(ε) = O(| log ε|) as ε→ 0+ on general Banach spaces.
For 0 /∈ ρ(A), we derive a similar result for functions f ∈ H∞ which are holomorphic
at 0, see Theorem 3.4. It turns out that the latter result generalizes a result by Vitse
in [Vit05b] and improves the dependence on the sectorality constantM(A,φ) signif-
icantly, see Section 3.2.2. Moreover, our techniques seem to be more elementary as
we do not employ the Hille-Phillips calculus.
For Hilbert spaces and general exponentially stable C0-semigroup generators −A

an estimate of the form (3.3) b(ε) = O(ε−
1
2 ) was derived in [Zwa12]. It was subse-

quently improved to b(ε) = O(| log ε|) by Haase and Rozendaal, [HR13, Theorem
3.3], using an adaption of a lemma due to Haase and Hytönen, [Haa11, Lemma A.1].
As mentioned in the lines following Proposition 3.1 above, the techniques rely on
the geometry of the Hilbert space and cannot be extended to general Banach spaces
without either changing to another function space, [HR13, Theorems 3.3 and 5.1], or
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strengthening the assumption on the semigroup using γ-boundedness, [HR13, The-
orem 6.2]. Hence, our results can be seen as additionally requiring analyticity of the
semigroup, but dropping any additional assumption on the Banach space. As will
be visible in the proofs of Theorems 3.4 and 3.11, in our case the logarithmic depen-
dence on ε is much easier to derive than for general semigroups.
Let us remark that estimates of the form (3.3) reveal information about the domain
of f(A). In particular, b(ε) = O(| log ε|) implies that D(Aα) ⊂ D(f(A)) for α > 0, see
[HR13, Theorem 3.7]. For instance, this can be used to derive convergence results for
numerical schemes, see, e.g., [ER13].

In Section 3.3.1 it is shown that the logarithmic behavior is essentially optimal on
Hilbert spaces by means of a scale of examples of Schauder basis multipliers. More
precisely, in Theorem 3.19, we see that for any γ < 1 we can find a suitable sectorial
operator on L2(−π,π) such that b(ε) grows like | log(ε)|γ. Moreover, in the examples
we also focus on tracking the dependence on the sectorality constant.

Square function estimates or quadratic estimates play a crucial role in characterizing
bounded H∞-calculi for sectorial operators, see [CDMY96, GMY11, KW01, KW04,
McI86]. On Hilbert spaces this means that an estimate of the form∫∞

0
‖f(tA)x‖2dt

t
6 K2‖x‖2, ∀x ∈ X,

and an analogous one for the adjoint A∗ have to hold for some f . By an example of
Le Merdy [LM03], it is known that the validity of such an estimate for only one of A
or A∗ is not sufficient for a bounded calculus. However, we show in Section 3.4 that
a single estimate does improve the situation in the way that b(ε) = O(

√
| log ε|) then.

Again, by means of an example it is shown that this behavior is essentially sharp.
In Section 3.5 we compare our result with the one by Haase and Rozendaal in the
case of an analytic semigroup on a Hilbert space. Furthermore, using the results of
Section 3.2, we derive a slightly improved estimate for the Besov space functional
calculus introduced by Vitse in [Vit05b].

3.1.1. The functional calculus for sectorial operators. For a C0-semigroup T on
X, −A denotes its generator. T is called an analyticC0-semigroup if it can be extended
to a sector in the complex plane, see Section 1.4 for the definition.
We recall that there is a one-to-one correspondence between densely-defined secto-
rial operators of angle strictly less than π

2 and generators of bounded analytic C0-
semigroups, namely, A ∈ Sect (ω) with ω < π

2 and D(A) = X if and only if −A

generates a bounded analytic C0-semigroup, see e.g., [EN00, Theorem II.4.6].

We will now briefly introduce the holomorphic functional calculus for sectorial operators.
Recall that H∞(Ω) denotes the Banach algebra of bounded analytic functions on the
open set Ω, equipped with ‖f‖∞,Ω := supz∈Ω |f(z)|. As we will mainly use sectors
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Ω = Σδ, we abbreviate ‖f‖∞,Σδ by ‖f‖∞,δ or write ‖f‖∞ if the set is clear from the
context. For δ = π

2 we will write H∞(Σδ) = H∞(C+). Furthermore, let us define

H∞(0)(Σδ) =
{
f ∈ H∞(Σδ) : |f(z)| 6 C|z|−s for some C, s > 0

}
,

H∞0 (Σδ) =
{
f ∈ H∞(Σδ) : |f(z)| 6 C |z|s

1+|z|2s
for some C, s > 0

}
,

which are the bounded analytic functions which decay polynomially at∞ (and 0).

Let A be a sectorial operator of angleω. Then, the Riesz-Dunford integral

f(A) =
1

2πi

∫
Γ

f(z)R(z,A) dz, (3.4)

is well-defined in B(X) in each of the following situations, withω < δ ′ < δ < π,

(i) f ∈ H∞0 (Σδ) and Γ = ∂Σδ′ , where ∂Σδ denotes the boundary of Σδ,

(ii) f ∈ H∞(0)(Σδ) ∩ H(Br′(0)) for some r > 0 and Γ = ∂ (Br′(0) ∪ Σδ′) for r ∈
(0, r ′) ,

(iii) f ∈ H∞(0)(Σδ), 0 ∈ ρ(A) and Γ = ∂ (Br(0)c ∩ Σδ′) for r > 0 sufficiently small,

where Br(0) = {z ∈ C : |z| < r}. The above paths Γ are orientated positively and by
Cauchy’s theorem it follows that the definitions are consistent and independent of
the choice of δ ′ and r ′.
The mapping f 7→ f(A) is an algebra homomorphism from H∞0 (Σδ) to B(X). It is
straight-forward to extend it to a homomorphismΦ from E = H∞0 (Σδ)⊕〈1〉⊕〈 1

1+z 〉 to
B(X). The abstract functional calculus (E,H(Σδ),Φ) has primary calculus Φ, which, by
the regularization argument shown in Section 1.2, can be extended to more general f ∈
H(Σδ). This algebraic procedure yields an, in general unbounded, calculus of closed
operators. For the ease of the presentation, we recap the sketch of the regularization
argument. The set of regularizers is defined as

RegA = {e ∈ E : e(A) is injective}

and the functions that can be regularized by elements in RegA are

MA = {f ∈ H(Σδ) : ∃e ∈ Reg with (ef) ∈ E} ,

where H(Ω) denotes the analytic functions on Ω. Then, for any f ∈ MA, we can
define f(A) = e(A)−1(ef)(A) which turns out to be independent of the choice of e. If
A is injective, it holds that H∞(Σδ) ⊂ MA and that e(z) = z

(1+z)2 is a regularizer for
every f ∈ H∞(Σδ). One can show that the extension procedure is in conformity with
the Riesz-Dunford integral definition in items 2 and 3 above. Clearly, for invertible
A one can do the analogous construction with a primary calculus onH∞(0)(Σδ), which
extends the previous calculus. For more details about the construction of the calculus
for sectorial operators we refer to Chapter 1 and 2 in [Haa06a].
Let (F, ‖·‖F) be a Banach algebra such that F is a subalgebra ofH∞(Σδ) and that f(A)
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is defined by the above calculus for all f ∈ F. Following Haase [Haa06a, Chapter 5.3],
we say that the F-calculus is bounded if f(A) is bounded for all f ∈ F and

∃C > 0 : ‖f(A)‖ 6 C‖f‖F, ∀f ∈ F. (3.5)

The infimum over all possible C is called the bound of the calculus. Note that for F
closed in H∞(Σδ) with ‖ · ‖F = ‖ · ‖∞,δ and A injective, (3.5) follows already if f(A) is
bounded for all F by the Convergence Lemma, [Haa06a, Proposition 5.1.4] and the
Closed Graph Theorem.

By eε we denote the function z 7→ e−εz which lies in H∞(0)(Σδ) for δ < π
2 and ε > 0.

In the following the exponential integral function

Ei(x) =
∫∞

1

e−xt

t
dt, x > 0, (3.6)

will be used several times. It is clear that Ei(x) is decreasing. The asymptotic behav-
ior of Ei(x) is reflected in the estimates

1
2e

−x log
(
1 + 2

x

)
< Ei(x) < e−x log

(
1 + 1

x

)
, x > 0, (3.7)

which go back to Gautschi [Gau60] and can also be found in [AS64, 5.1.20]. More-
over, it is easy to prove that

Ei(x) < log
( 1
x

)
, x ∈

(
0, 1

2

)
. (3.8)

Thus, by (3.7), Ei(x) ∼ | log x| for x < 1
2 .

3.2. Main results

Unless explicitely stated, the space Xwill always denote a general Banach space.

3.2.1. Sectorial operators and functions holomorphic at 0. We first give a proof
for Proposition 3.1

PROOF (Proof of Proposition 3.1). Since A is invertible, f(A) is defined as a
closed operator for every f ∈ H∞(Σφ) and D(A) ⊂ D(f(A)) because z

(1+z)2

is a regularizer for f. Since for every δ < π/2, eε ∈ H∞(0)(Σδ) we have that
(feε) ∈ H∞(0)(Σδ) for some δ < π/2. Hence eε(A) and (feε)(A) are bounded
operators. If the calculus is bounded, (3.5) holds with F = H∞(Σφ). Thus,

‖(feε)(A)‖ = ‖f(A)eε(A)‖ 6 C‖eε(A)‖ · ‖f‖∞,φ 6 C̃‖f‖∞,φ,

where the last inequality follows by [Haa06a, Proposition 3.4.1c] (or, also by our
Corollary 3.13) and C̃ does not depend on ε. Therefore, (3.2) holds.Conversely, let
(3.2) be satisfied. Since eε(A) ∈ B(X) we have for x ∈ D(A) that

‖f(A)x‖ 6 ‖f(A)x− eε(A)f(A)x‖+ ‖eε(A)f(A)x‖.
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For ε → 0+, the first term on the right-hand-side tends to zero as (e−ε·)(A)

converges to I strongly on D(A) = X, see [Haa06a, Proposition 3.4.1.f)]. Since
eε(A)f(A)x = (eεf)(A)x for x ∈ D(A), see [Haa06a, Theorem 1.3.2.c)], the second
term can be estimated by the assumption of (3.2). Thus, we get f(A) ∈ B(X) for
all f ∈ H∞(Σφ) becauseD(A) is dense. Hence, the calculus is bounded. The norm
inequality then follows automatically, see the remark after (3.5). �

The following example shows that the assumption on the invertibility of A cannot
be neglected, if we restrict to functions on H∞(C+).

EXAMPLE 3.2. Let −B be the generator of the bounded analytic semigroup S with
0 ∈ ρ(B). Assume that the H∞(C+)-caclulus is not bounded, thus, there exists f ∈
H∞(C+) such that f(B) is unbounded. Such examples exist even on Hilbert spaces,
see e.g., [BC91] or Section 3.3.1. Then, A = B−1 is bounded, sectorial of the same
angle as B, see [Haa06a], and has dense range. Thus g(A) is defined by the H∞-
calculus for sectorial operators for g ∈ H∞ in some sector. Furthermore, by the
composition rule, see [Haa06a, Proposition 2.4.1], we have that for h = (z 7→ z−1),

(f ◦ h)(A) = f(B),

where (f ◦ h) ∈ H∞(C+). Since A is bounded, it even generates a group T . Hence,
(f ◦ h)(A)T(t) = f(B)T(t) cannot be bounded for any t > 0.

The reason why we cannot expect (f · eε)(A) to be a bounded operator if 0 /∈ ρ(A) is
that the integrand in (3.4) may have a singularity at 0. However, instead of making
the resolvent exist at 0, we can pass over to functions that are holomorphic at 0.

PROPOSITION 3.3. Let A be a densely defined, sectorial operator of angleω < π
2 on

the Banach space X with dense range. Then, for φ ∈ (ω,π) the H∞(Σφ)-calculus is
bounded if and only if

∃C > 0 ∀g ∈ H∞(Σφ),g hol. at 0 : lim sup
ε→0+

‖(geε)(A)‖ < C‖g‖∞,φ. (3.9)

PROOF. The proof is essentially the same as for Proposition 3.1 with the follow-
ing adaptions: Note that A is injective as it is a sectorial operator with dense
range, see [Haa06a, Proposition 2.1.1]. Thus, the calculus is defined for H∞(Σφ).
For g holomorphic at 0, (g(z)1+z )(A) is defined by (3.4), and hence bounded. Thus,
D(A) ⊂ D(g(A)). Because D(A) is dense, it follows analogously to the proof of
Proposition 3.1 that

‖g(A)‖ 6 lim sup
ε→0+

‖(geε)(A)‖ 6 C‖g‖∞,φ, (3.10)

where the last inequality holds if (3.9) holds. For arbitrary f ∈ H∞(Σφ) take a
sequence gn ∈ H∞(Σφ) which are holomorphic at 0 and converge to f pointwise
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in Σφ with supn ‖gn‖∞,φ < ∞. Applying the Convergence Lemma [Haa06a,
Proposition 5.1.4b)], using (3.10) and the fact that D(A) ∩ R(A) is dense, yields
that f(A) is bounded. �

In the following theorem we estimate ‖(f · eε)(A)‖. In Section 3 we show that this
estimate is sharp.

THEOREM 3.4. Let A ∈ Sect(ω), 0 < ω < φ < π
2 and ε, r0 > 0. Further, let

f ∈ H∞(Ωφ,r0) withΩφ,r0 := Σφ ∪ Br0(0). Then (feε)(A) is bounded and

‖(f · eε)(A)‖ 6
M(A,φ)

π
· b(ε, r0,φ) · ‖f‖∞,Ωφ,r0

, (3.11)

with

b(ε, r0,φ) =

Ei(εr0 cosφ) + eεr0(π− φ), 2εr0 6 1,

Ei
(

cosφ
2

)
+
√
e(π− φ), 2εr0 > 1.

(3.12)

Here, Ei(x) is the the exponential integral, see (3.6)–(3.8), therefore,

b(ε, r0,φ) ∼

{
| log(εr0 cosφ)|, εr0 <

1
2 ,

| log cosφ
2 |, εr0 > 1

2 .
(3.13)

PROOF. Since feε ∈ H∞(0)(Σφ) ∩H
∞(Ωφ,r0), we get (see (3.4))

(feε)(A) =
1

2πi

∫
Γr

f(z)e−εzR(z,A) dz ∈ B(X), (3.14)

where the integration path is Γr = Γ1,r ∪ Γ2,r ∪ Γ3,r with

Γ1,r =
{
r̃eiδ, r̃ > r

}
, Γ2,r =

{
reis, |s| > δ

}
, Γ3,r =

{
r̃e−iδ, r̃ > r

}
,

r ∈ (0, r0), δ ∈ (ω,φ), orientated counter-clockwise. Since f ∈ H∞(Ωφ,r0), we can
estimate

‖(feε)(A)‖ 6
‖f‖∞,Ωφ,r0

2π

∫
Γr

‖e−εzR(z,A)‖ |dz|. (3.15)

The rest of the proof is similar to a standard argument to show that sectorial
operators of angle < π

2 are generators of bounded analytic semigroup, see e.g.
[EN00, Paz83, Vit05b]. Splitting up the integral, for z ∈ Γ1,r,

‖e−εzR(z,A)‖ 6 e−εRez · M(A, δ)
|z|

=
e−ε|z| cosδ

|z|
M(A, δ).

On Γ3,r the same estimate holds.
For z ∈ Γ2,r,

‖e−εzR(z,A)‖ 6 e−εrRez · M(A, δ)
r

6 eεr · M(A, δ)
r

.
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Therefore,∫
Γr

‖e−εzR(z,A)‖|dz| 6M(A, δ)
(

2
∫∞
r

e−εr̃ cosδ

r̃
dr̃+

eεr

r

∫
Γ2,r

|dz|

)
6 2M(A, δ)(Ei(εr cos δ) + eεr(π− δ)). (3.16)

Next, for n ∈ N we choose r as

r =

{
rn = r0(1 − 2−n), 2εr0 6 1,
1

2ε , 2εr0 > 1.

Clearly, this choice satisfies r ∈ (0, r0). Hence, by (3.15) and (3.16),

‖(feε)(A)‖ 6
M(A, δ)
π

{
Ei(εrn cos δ) + eεrn(π− δ), 2εr0 6 1,
Ei
( cosδ

2

)
+
√
e(π− δ), 2εr0 > 1

}
‖f‖∞,Ωφ,r0

.

Letting n→∞ and δ→ φ− shows the assertion. �

AsH∞(Ωπ
2 ,r0) is continuously embedded inH∞(C+), and since ‖f‖∞,C+

= ‖eεf‖∞,C+

we have the following direct consequence of Theorem 3.4.

COROLLARY 3.5. Let A ∈ Sect(ω) on the Banach space X and ω < π
2 . Then,

for any r > 0 and ε > 0, A has a bounded eεH∞(Ωπ
2 ,r)-calculus with Ωπ

2 ,r =

C+ ∪ Br(0).

Note that eεH∞(Ωπ
2

, r) is a closed ideal in H∞(C+).

3.2.2. The spaceH∞[ε,σ] and Vitse’s result. In this subsection we show that the
result in Theorem 3.4 generalizes Theorem 1.6 in [Vit05b].

For ε,σ ∈ R with 0 6 ε < σ 6 ∞ let H∞[ε,σ] denote the space of functions which
are in H∞(C+) and are the Laplace-Fourier transform of a distribution supported in
[ε,σ]. Recall that an entire function g is of exponential type σ > 0 if for any ε > 0 there
exists Cε > 0 such that |g(z)| 6 Cεe(σ+ε)|z| for all z ∈ C.

For σ <∞, the following Paley-Wiener-Schwartz type result holds,

g ∈ H∞[ε,σ] ⇐⇒ g is entire of exponential type σ and geε· ∈ H∞(C+). (3.17)

For σ = ∞, we get H∞[ε,∞] = e−εzH∞(C+). For more details about H∞[ε,σ], we
refer to [Vit05b] and the references therein.
The following lemma is a consequence of the Phragmén-Lindelöf principle, see The-
orem A.2, and can be found in Boas [Boa54, Theorem 6.2.4, p.82].

LEMMA 3.6. Let g be an entire function of exponential type σ such that ‖g‖∞,iR :=

supy∈R |g(iy)| <∞. Then, for all x,y ∈ R,

|g(x+ iy)| 6 eσ|y| ‖g‖∞,iR.
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Using Lemma 3.6, Theorem 3.4 yields an estimate in the H∞(C+)-norm.

THEOREM 3.7. Let A ∈ Sect(ω) with ω < π
2 , and let 0 < ε < σ < ∞. For

g ∈ H∞[ε,σ],
‖g(A)‖ 6 ‖g‖∞,C+

· inf
φ∈(ω,π2 ),k>1

M(A,φ)
π

b
(
ε, 1
kσ

,φ
)
e
σ−ε
kσ . (3.18)

where b(ε, r,φ) is defined in (3.12).

PROOF. Let f(z) = eεzg(z). By (3.17), f lies in H∞(C+) and is entire of exponen-
tial type σ − ε. Let k > 1. Since f is entire, and bounded on C+, we can apply
Theorem 3.4 with r0 = 1

kσ
. Thus, for φ ∈ (ω, π2 ),

‖g(A)‖ = ‖(feε)(A)‖ 6 inf
φ∈(ω,π2 )

M(A,φ)
π

· b
(
ε, 1
kσ

,φ
)
· ‖f‖∞,Ω

φ, 1
kσ

,

where Ωφ, 1
kσ

= Σφ ∪ B 1
kσ

(0). Clearly, ‖f‖∞,Ω
φ, 1
kσ

6 ‖f‖∞,C+∪B 1
kσ

(0). Moreover,

as f is entire of exponential type σ−ε and supy∈R |f(iy)| = ‖f‖∞,C+
, we can apply

Lemma 3.6 to conclude that

‖f‖∞,Ω
φ, 1
kσ

6 e
σ−ε
kσ ‖f‖∞,C+

.

Since ‖g‖∞,C+
= ‖f‖∞,C+

, the assertion follows. �

Now we write Theorem 3.7 in the terminology used in [Vit05b]. This will reveal
that the dependence on M(A,φ) of our approach is improving the corresponding
estimate in [Vit05b].
In [Vit05b], for θ ∈ (0,π], a densely defined closed operator is called θ-sectorial, if
σ(A) is contained in Σθ ∪ {0} (note that in our definition of Sect(θ), σ(A) is contained
in Σθ) and

M̃(A, θ) = sup
z∈C\(Σθ∪{0})

‖zR(z,A)‖ <∞.

By S(θ) let us denote the θ-sectorial operators on X. As pointed out in [Vit05b, Sec-
tion 1.1], S(θ) ⊂ Sect(θ) ⊂ S(θ + ε) for all ε > 0 and S(θ) =

⋃
0<θ′<θ Sect(θ ′).

Moreover, for A ∈ S(π2 ) there exists a θ < π
2 such that A ∈ S(θ), see Lemma 3.8

below. Hence, A ∈ Sect(θ) for some θ < π
2 if and only if A ∈ S(π2 ). Furthermore, for

A ∈ S(θ), it is a simple consequence of continuity that

M̃(A, θ) = sup
z∈C\(Σθ∪{0})

‖zR(z,A)‖ = sup
z∈C\Σθ

‖zR(z,A)‖ =M(A, θ). (3.19)

The following lemma can be found in [Vit05b, Lemma 1.1].
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LEMMA 3.8. Let A ∈ S(π2 ) andM = M̃(A, π2 ). Then, A ∈ S(θ) for

θ = arccos
1

2M
and M̃(A, θ) =M(A, θ) 6 2M. (3.20)

Note that S(θ) =
⋃

0<η<θ
Sect(η). SinceM > 1 ([Haa06a, Prop.2.1.1]), θ ∈ (π3 , π2 ).

THEOREM 3.9. Let A ∈ Sect(ω) with ω < π
2 , which is equivalent to A ∈ S(π2 )

(see above). Then, withM =M(A, π2 ),
(i) For all t > 0,

‖e−tA‖ 6 2M
π

(log(M) + 5). (3.21)

(ii) For 0 < ε < σ <∞ and g ∈ H∞[ε,σ],
‖g(A)‖ 6

(
C1 + C2 log

(σ
ε

))
‖g‖∞,C+

6 C3 log
(σe
ε

)
‖g‖∞,C+

, (3.22)

with C1 = c1M+ c2M log(M), C2 = c2M and C3 = c1M+ c2M log(M) and

c1 = 2e
1
5

π

(
log(10) + 2π

3

)
≈ 3.42, c2 = 2e

1
5

π
≈ 0.78.

PROOF. Let θ be the defined as in Lemma 3.8, hence, θ ∈ (π3 , π2 ), cos θ = 1
2M ,

andM(A, θ) 6 2M. Using Theorem 3.7, we get

‖g(A)‖ 6 2M
π
· ‖g‖∞,C+

· inf
k>1

b(ε, 1
kσ

, θ)e
σ−ε
kσ . (3.23)

It remains to estimate the infimum. For k > 2, ε
2Mkσ <

ε
kσ
< 1

2 and thus, by (3.12)
and (3.8), we get for b = b(ε, 1

kσ
, θ) that

b · e
σ−ε
kσ =

[
Ei
( ε

2Mkσ

)
e
σ−ε
kσ + e

1
k

2π
3

]
6

[
log
(

2Mkσ
ε

)
e
σ−ε
kσ + e

1
k

2π
3

]
.

(3.24)

To prove (ii), let t = ε and set g = et ∈ H∞[t,σ]. Then, let σ → ε+ = t+ in
(3.24) and choose k = 5 (alternatively, apply Theorem 3.4 with f(z) = 1, ε = t and
r0 = 1

5ε ).
To show (i), observe that, using e

σ−ε
kσ < e

1
k , the right-hand-side of (3.24) can be

further estimated,

b · e
σ−ε
kσ 6

[
log(M) + log

(σ
ε

)
+ log(2k) +

2π
3

]
· e

1
k .

Setting k = 5, we get the result. �
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REMARK 3.10.

(i) In [Vit05b, Lemma 1.2 and Theorem 1.6] Vitse derives similar estimates as
in Theorem 3.9. However, she uses the Hille-Phillips calculus and considers
elements of H∞[ε,σ] that are Laplace transforms of L1(ε,σ)-functions first.
The approach moreover relies on estimates of derivatives of the (analytic)
semigroup. This results in a similar estimate as in (3.22), but with the fol-
lowing constants

C̃1 =
30
π
M2, C̃2 =

16
π
M3, C̃3 =

30
π
M3.

The dependence on M is strongly improved by our approach, as M3 gets
replaced byM(1+ logM). Moreover, a more careful study even shows that
Ci 6 C̃i, i ∈ {1, 2, 3}, for everyM > 1.

(ii) We point out that Vitse uses an estimate for the semigroup, [Vit05b, Lemma
1.2] (which is slightly improved by (3.21)), to get an estimate for H∞[ε,σ]
functions. Whereas our estimates all follow directly from Theorem 3.7. In
other words, (the estimate for) the dependence on M is the same for any
H∞[ε,σ] function, including eε.

(iii) The constants c1 and c2 in Theorem 3.9 can possibly be further improved
by optimizing the choice of k in the proof.

3.2.3. Invertible A - exponentially stable semigroups. Theorems 3.4 and 3.7
deal with the situation of bounded analytic semigroups and functions f which are
holomorphic at 0. As might be expected, a similar result holds for functions f not
necessarily holomorphic at 0, but with a sectorial operator A having 0 ∈ ρ(A).

THEOREM 3.11. Let A ∈ Sect(ω), ω < φ < π/2, and 0 ∈ ρ(A). Then, for ε > 0,
f ∈ H∞(Σφ) the operator (feε)(A) is bounded and for all κ ∈ (0, 1),

‖(f · eε)(A)‖ 6
M(A,φ)

π
· bκ

(
ε, 1
‖A−1‖ ,φ

)
· ‖f‖∞,φ. (3.25)

Here,
bκ(ε,R,φ) = Ei (εκR cosφ) +

κ

1 − κ
e−εκR cosφ, (3.26)

Hence, bκ(ε,R,φ) ∼ Cκ| log(εR cosφ)| for εR < 1
2 and ‖(feε)(A)‖ goes to zero

exponentially as ε→∞ by the properties of Ei, see (3.7) and (3.8).

PROOF. Since 0 ∈ ρ(A) and feε ∈ H∞(0)(Σφ), (feε)(A) is well-defined by (3.4),

(f · eε)(A) =
1

2πi

∫
∂Σθ

f(z)eεzR(z,A) dz,
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for θ ∈ (ω,φ) and where ∂Σθ denotes the boundary (orientated positively) of Σθ.
Because 0 ∈ ρ(A), we have that the ball B 1

‖A−1‖
(0) lies in ρ(A). For κ ∈ (0, 1)

set r = κ
‖A−1‖ . By Cauchy’s theorem, we can replace the integration path ∂Σθ by

Γ = Γ1 ∪ Γ2 ∪ Γ3 with

Γ1 =
{
seiθ, s > r

}
, Γ2 =

{
reiθ − it, t ∈ (0, 2=(reiθ))

}
, Γ3 =

{
−se−iθ, s 6 −r

}
.

Thus,

‖(feε)(A)‖ 6
‖f‖∞,φ

2π

∫
Γ

e−εRez‖R(z,A)‖ |dz|. (3.27)

By the resolvent identity, ‖R(z,A)‖ 6 ‖A−1‖
1−|z|‖A−1‖ , and thus, for κ ∈ (0, 1),

‖R(z,A)‖ 6 ‖A
−1‖

1 − κ
for |z| 6 r =

κ

‖A−1‖
.

This yields, since Γ2 ⊂ Br(0),∫
Γ

e−εRez‖R(z,A)‖ |dz| 6 ‖A
−1‖

1−κ

∫
Γ2

e−εr cosθ dt+ 2M(A, θ)
∫∞
r

e−εs cosθ

s
ds

= 2‖A−1‖
1−κ r sin θ e−εr cosθ + 2M(A, θ)Ei(εr cos θ),

6 2M(A, θ)
(
κ

1−κe
−εr cosθ + Ei(εr cos θ)

)
,

as M(A, θ) > 1, see e.g. [Haa06a, Proposition 2.1.1]. Letting θ → φ− yields the
assertion. �

REMARK 3.12. IfA is sectorial and R > 0, then clearly RA is sectorial of the same an-
gle. Since f 7→ fR = f(R·) is an isometric isomorphism on H∞(Σφ), and (feε)(RA) =

(fReεR)(A) by the composition rule of holomorphic functional calculus [Haa06a,
Theorem 2.4.2], we see that it is sufficient to consider 1

‖A−1‖ = 1 in the proof of
Theorem 3.11.

Applying Theorem 3.11 to f ≡ 1 shows that ‖eε(A)‖ decays exponentially for ε→∞.
This behavior is natural as the condition that 0 ∈ ρ(A) implies that the analytic
semigroup is exponentially stable. However, for ε→ 0, the theorem gives no bound
for the norm. This can be derived by Theorem 3.4 as we will see in the following
result.

COROLLARY 3.13. Let A ∈ Sect(ω) and 0 < ω < φ < π
2 . If A is invertible, then

we define R = 1
‖A−1‖ , otherwise we set R to be zero. Then, for any κ ∈ [0, 1), there

exists a C > 0 such that

‖eε(A)‖ 6 Ce−εκR cosφ, ε > 0, (3.28)

with C 6 CκM(A,φ)Ei(cosφ).
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PROOF. Let f ≡ 1. If εκR > 1, by (3.7),

Ei(εκR cosφ) < e−εκR cosφ log
(

1 + 1
cosφ

)
< 2e2e−εκR cosφEi(cosφ),

where we used that Ei(2 cosφ) < Ei(cosφ) in the last inequality. Using this,
Theorem 3.11 yields

‖eε(A)‖ 6 C̃κM(A,φ)Ei(cosφ)e−εκR cosφ, εκR > 1, (3.29)

where C̃κ > 0 only depends on κ.
Now, let εκR 6 1. We apply Theorem 3.4 with r0 = 1

ε
. It implies that there exists

an absolute constant C2 such that ‖eε(A)‖ 6 C2M(A,φ)Ei(cosφ). Together with
(3.29) the assertion follows. �

Let us point out that the corollary is interesting in terms of the dependence on the
constants M(A,φ), ‖A−1‖ and φ, whereas the exponential decay is clear for expo-
nentially stable semigroups.
Further note that the use of the scaling variable κ is not so artificial as it might seem:
By B 1

‖A−1‖
(0) ⊂ ρ(A), we have that the growth bound ω0 of the semigroup satisfies

ω0 6 − cosφ
‖A−1‖ . It is well-known that, even in the case of a spectrum-determined growth

bound, as we have it for analytic semigroups, this rate need not be attained, see e.g.,
[EN00, Example I.5.7]. The κ encodes that we can achieve any exponential decay of
rate ω̃ ∈ (− cosφ

‖A−1‖ , 0].

3.3. Sharpness of the result

3.3.1. Diagonal operators on Schauder bases (Schauder multiplier). A typical
construction of an unbounded calculus goes back to Baillon and Clement [BC91]
and has been used extensively since then, see [Fac15] and the references therein. The
situation is as follows.

Let {φn}n∈N be a Schauder basis of the Banach space X. For the sequence
µ = (µn)n∈N define the multiplication operator Mµ by its action on the basis,
i.e. Mµφn = µnφn, n ∈ N, with maximal domain. The choice λn = 2n yields
a sectorial operator A = Mλ ∈ Sect(0) with 0 ∈ ρ(Mλ), and for f ∈ H∞(C+),

f(A) = f(Mλ) = Mf(λ),
D(Mf(λ)) =

{
x =
∑
n∈N xnφn ∈ X :

∑
n∈N f(λn)xnφn converges

}
.

(3.30)

See e.g., [Haa06a, Chapter 9] and [Fac15].
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Because of (3.30), a way of constructing unbounded calculi consists of the following
two steps:

(i) Find a sequence µ ∈ `∞(N, C) such that Mµ /∈ B(X).

(ii) Find f ∈ H∞(C+) such that f(λn) = µn for all n ∈ N.

Since {λn} is interpolating, see [Gar07], the second step is always possible. Note that
the first step follows if we can

find x ∈ X such that x =
∑

n∈N
xnφn does NOT converge unconditionally. (3.31)

In fact, then there exists a sequence µn ⊂ {−1, 1} such that
∑
n∈N µnxnφn does not

converge. Thus, x /∈ D(Mµ), and so Mµ /∈ B(X).
Conversely, this indicates that a boundedH∞-calculus implies a large amount of uncondi-
tionality, [Haa06a, p.124], which can be made rigorous, see [Haa06a, Section 5.6] and
[KW04]. For more information about unboundedH∞-calculi via diagonal operators,
see [Haa06a, Chapter 9].
Let {φn}n∈I, I ⊂ N, be a Schauder basis of a Banach space X. For finite σ ⊂ I, Pσ
denotes the projection onto Xσ := {φn}n∈σ. Let us introduce the following constants,

mφ = sup
n∈I
‖P{n}‖, κφ = sup

k6`

∥∥P[k,`]∩I
∥∥ , ubφ = sup

σ⊂I,|σ|<∞ ‖Pσ‖. (3.32)

The constant κφ is called the basis constant of {φn}n∈N and ubφ the uniform basis
constant. Clearly,

mφ 6 κφ 6 ubφ. (3.33)

THEOREM 3.14. Let {φn}n∈N be a Schauder basis on a Banach space X with mφ <∞. Let λn = cn, n ∈ N for c > 1.
Then A := Mλ is sectorial of angle 0, i.e., A ∈ Sect(0) and the following holds.

(i) M(A,ψ) 6 κφM(ψ) for all ψ ∈ (0,π], whereM(ψ) only depends on ψ.

(ii) 0 ∈ ρ(A) and dist(σ(A), 0) = c.

(iii) For ε > 0 and Nε = b 2Ei(ε)
logc c, there holds

‖(f · eε)(A)‖ 6
(
π · ub

{φn}
Nε
n=1

+mφe
−kε

(
K1

logc + 1
))
‖f‖∞,ψ, (3.34)

for all f ∈ H∞(Σψ), ψ ∈ (0, π2 ) and ε > 0 and

kε =

{
K0 ε 6 εc,
max {K0, cε} ε > εc,

(3.35)

with absolute constants K0, K1 > 0 and εc such that 2Ei(εc) < log c.

Here,mφ, κφ and ub
{φn}

Nε
n=1

are defined in (3.32).
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PROOF. By [Haa06a, Lemma 9.1.2 and its proof], A ∈ Sect(0) with M(A,φ) 6
κφM(ψ), where M(ψ) only depends on ψ ∈ (0,π]. Clearly, σ(A) ⊂ [λ1,∞). This
shows (i) and (ii).
To show (iii), note that for Nε = b 2Ei(ε)

logc c,

h(ε) := cNε+1ε > c
2Ei(ε)

logc ε = e2Ei(ε)ε
(3.7)
>
(
1 + 1

ε

)e−ε
ε > K0,

for some constant K0 ∈ (0, 1) and all ε > 0. If Nε = 0, which means that 2Ei(ε) <
log c, then h(ε) = cε. Since Ei is bijective and decreasing on (0,∞), this yields
that there exists an εc > 0 such that h(ε) > kε, with kε defined in (3.35).
Now,∥∥∥∥∥∑

n∈N

f(λn)e
−cnεP{n}

∥∥∥∥∥ 6
∥∥∥∥∥
Nε∑
n=1

f(cn)e−c
nεP{n}

∥∥∥∥∥+
∥∥∥∥∥

∞∑
n=Nε+1

f(cn)e−c
nεP{n}

∥∥∥∥∥
6 π · ub

{φn}
Nε
n=1
· ‖feε‖∞ +

+

∞∑
k=0

∣∣∣f(ck+Nε+1)e−h(ε)c
k
∣∣∣ ∥∥P{k+Nε+1}

∥∥
6 π · ub

{φn}
Nε
n=1
· ‖f‖∞ +mφ‖f‖∞

∞∑
k=0

e−kεc
k

,

where we used [Nik13, Lemma 2.9.1] to estimate the first term in the second line.
It remains to estimate the sum. By (3.69),

∞∑
k=0

e−kεc
k

6 e−kε +
Ei(kε)
log c

(3.7)
6 e−kε

(
1 +

log(1 + 1
kε

)

log c

)
.

Since kε > K0, we can bound log(1 + 1
kε

) by K1 = log
(

1 + 1
K0

)
. �

REMARK 3.15.

(i) We point out that (3.34) shows that for ε → ∞, ‖(feε)(A)‖ goes to 0 expo-
nentially.

(ii) Using (3.7) it is easy to show that in Theorem 3.14, εc can be chosen to be
1√
c−1 .

In (3.34) the ε-dependence for small ε of the right hand side appears only in the
term ub

{φn}
Nε
n=1

. The following result shows that this indeed exhibits a logarithmic
behavior for ε → 0, which confirms the result from Theorem 3.4. We also show that
on Hilbert spaces the behavior is slightly better.
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THEOREM 3.16. Let {φn}n∈N, X, c, A be as in Theorem 3.14. Then, the following
assertions hold for all ψ ∈ (0,π), f ∈ H∞(Σψ), ε > 0.
If X is a Banach space, then

‖(f · eε)(A)‖ 6
(
K2

log c
+ 1
)
·mφ · Ei(ε) · ‖f‖∞,ψ. (3.36)

If X is a Hilbert space, then

‖(f · eε)(A)‖ 6
(
K3

log c
+ 1
)
·mφ · Ei(ε)

1− 0.32
κ2
φ · ‖f‖∞,ψ. (3.37)

Here the K2 and K3 are absolute constants.

PROOF. By (3.34), it remains to estimate ub
{φn}

Nε
n=1

. For a basis φ̃ of a generalN-

dimensional Banach space, it is easy to see that ubφ̃ 6 Nmφ̃. SinceNε = b 2Ei(ε)
logc c,

andm
{φn}

Nε
n=1
6 mφ, this implies (3.36).

For a basis φ̃ of an N-dimensional Hilbert space, we have that

ubφ̃ 6 2mφ̃ ·N
1− 0.32
κ2
φ̃ . (3.38)

This is due to a recent result by Nikolski, [Nik13, Theorem 3.1], which is a slight
generalization of a classic theorem by McCarthy-Schwartz, [MS65]. Hence, be-
causem

{φn}
Nε
n=1
6 mφ and κ

{φn}
Nε
n=1
6 κφ,

ub
{φn}

Nε
n=1
6 2mφN

1− 0.32
κ2
φ

ε .

By the definition of Nε, this yields (3.37). �

REMARK 3.17. The key ingredient of the proof of (3.37) in Theorem 3.16 is the
McCarthy-Schwartz-type result, (3.38). For general Banach spaces this does not hold.
However, there exists a version of McCarthy-Schwartz’s result for uniformly convex
spaces by Gurarii and Gurarii [GG71], see also [Nik13, Theorem 3.6.1 and Corol-
lary 3.6.8]. In particular, this enables us to deduce an estimate similar to (3.37) for
Lp-spaces with p > 1.

3.3.2. A particular example. Apart from functional calculus, the following type
of example has been used to construct Schauder multipliers in various situations,
e.g., [BN99, EZ06, Haa12, JPP09, ZJS03].

DEFINITION 3.18. Let X = L2 = L2(−π,π), β ∈ ( 1
4 , 1

2 ). Define {φn}n∈N by

φ2k(t) = wβ(t)e
ikt, φ2k+1(t) = wβ(t)e

−ikt,
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where k ∈ N ∪ {0}, t ∈ (−π,π) and

wβ(t) =

{
|t|β, |t| ∈ (0, π2 ),
(π− |t|)−β, |t| ∈ [π2 ,π).

{φn}n∈N forms a Schauder basis of L2, see Lemma 3.32.

THEOREM 3.19. There exists g ∈ H∞(C+) such that the following holds. For every
δ ∈

(
0, 1

2

)
there exists A ∈ Sect(0) on H = L2(−π,π) with

(i) 0 ∈ ρ(A) and dist(σ(A), 0) = 2,

(ii) M(A,φ) 6 1
δ
M(φ) for all φ ∈ (0,π], whereM(φ) only depends on φ.

(iii) For all ε > 0, f ∈ H∞(C+), and some absolute constant K0,

‖(f · eε)(A)‖ . 1
δ
· Ei(ε)1−K0δ

2 · ‖f‖∞. (3.39)

(iv) For ε ∈ (0, 1
2 ),

‖(g · eε)(A)‖ & 1
δ
· | log(ε)|1−δ. (3.40)

PROOF. Let β = 1
2 −

δ
4 ∈ ( 3

8 , 1
2 ) and let {φn}n∈N denote the basis from Definition

3.18 and {φ∗n}n∈N its dual basis, see Lemma 3.32. By Lemma 3.32 (i), κφ . 1
1−2β =

2
δ

. W.r.t. {φn}n∈N, we consider the multiplication operator A = Mλ on L2(−π,π),
where λn = 2n. By Theorem 3.14, (i) and (ii) follow.
(iii) follows by (3.37) from Theorem 3.16.

To show (iv) we choose x(t) = |t|−β1(0,π2 )(|t|) and y(t) = (π − |t|)−β1(π2 ,π)(|t|).
By Lemma 3.32 (iii), we have that for x =

∑
n xnφn and y =

∑
n ynφ

∗
n, the

coefficients xn and yn are real and that

x2k = x2k+1 ∼ k−1+2β

1−2β and y2k = y2k+1 = (−1)k2π · x2k. (3.41)

Thus, by setting µ2n = µ2n+1 = (−1)n for all n ∈ N, we conclude by using that
〈φn,φ∗m〉 = δnm,

|〈MµMe−λnεx,y〉| = 2π
∑
n∈N

e−λnε|xn|
2

& 1
(1−2β)2

∑
k∈N

(eλ2kε + eλ2k+1ε)k−2+4β

& 1
(1−2β)2 | log(ε)|−1+4β, (3.42)

for ε < 1
2 , where we have used (3.41) and Lemma 3.30. Since ‖x‖ · ‖y‖ ∼ 1

1−2β ,
and 2 − 4β = δ,

‖MµMe−λnε‖ &
1
δ
| log(ε)|1−δ, ε ∈ (0, 1

2 ). (3.43)
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Since (λn) is an interpolating sequence, we can find g ∈ H∞(C−) such that
g(λn) = µn for all n ∈ N. Thus, g(A) = Mµ and (3.40) follows. �

The example shows that estimate (3.25) in Theorem 3.11 is sharp in M(A,φ) and ε
as δ→ 0+.

COROLLARY 3.20. Let X be a Banach space, 0 < ω < φ < π
2 . Then, there exists K

depending only on φ such that

sup
{
‖(feε)(A)‖
M(A,φ)‖f‖∞ : A ∈ SectX(ω), dist(σ(A), 0) > 1, 0 6= f ∈ H∞

}
> K| log ε|,

for all ε < 1
2 . Here, H∞ = H∞(C+) and SectX(ω) denotes all A ∈ Sect(ω) on X.

REMARK 3.21. (i) As the examples are on Hilbert spaces, the sharpness from
Corollary 3.20 even holds on Hilbert spaces. However, we point out that
in Theorem 3.19 M(A,φ) → ∞ as δ → 0+. Therefore, for fixed M(A,φ),
the behavior in ε → 0+ could be better than | log ε|. For a similar effect
we refer to the question of the sharpness of Spijker’s result on the Kreiss-
Matrix-Theorem, see [Spi91, STW03] and the recent contribution by Nikolski
[Nik13].

(ii) In [Vit05b, Theorem 2.1, Remark 2.2], it is shown that estimate (3.22) is
indeed sharp in ε and σ on general Banach spaces. Furthermore, Vitse
[Vit05b, Theorem 2.3 and Remark 2.4] states that for every Hilbert space
and every δ ∈ (0, 1), one can find a sectorial operatorAwith angle less than
π
2 such that

sup {‖g(A)‖ : g ∈ H∞[ε,σ], ‖g‖∞,C+
6 1} > a log

(eσ
ε

)δ
, (3.44)

where a depends only on M(A, π2 ). Therefore, item (iii) of Theorem 3.19
and Corollary 3.20 can be seen as a version for 0 ∈ ρ(A) and σ = ∞.
However, Theorem 3.19(iv) shows that the behavior of ‖(feε)(A)‖ is indeed
better than | log(ε)|. We remark that Vitse’s result, [Vit05b, Theorem 2.3]
is stated for Banach spaces which uniformly contain uniformly complemented
copies of `2, which is more general than for Hilbert spaces.

3.4. Square function estimates improve the situation

The following notion characterizes bounded H∞-calculus on Hilbert spaces. It was
already used in the early work of McIntosh, [McI86] and has been investigated in-
tensively since then.
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DEFINITION 3.22. Let A ∈ Sect(ω) on the Banach space X. We say that A satisfies
square function estimates if there exists ψ ∈ H∞0 (Σφ) \ {0}, φ > ω and Kψ > 0 such that∫∞

0
‖ψ(tA)x‖2 dt

t
6 K2

ψ‖x‖2, ∀x ∈ X. (3.45)

The property of satisfying square functions estimates does not rely on the particular
function ψ. In fact, for ψ, ψ̃ ∈ H∞0 (Σφ) \ {0}

∃K > 0 ∀h ∈ H∞(Σφ) :
∫∞

0
‖(ψth)(A)x‖2 dt

t
6 K2‖h‖2∞,φ

∫∞
0
‖ψ̃t(A)x‖2 dt

t
, (3.46)

where ψt(z) = ψ(tz) and ψ̃t(z) = ψ̃(tz). We remark that for K can be chosen only
depending on ψ, ψ̃ and M(A,φ). The result can be found in [ADM96, Proposition
E] for Hilbert spaces, but also holds for general Banach spaces as pointed out in
[Haa05, Satz 2.1.5], see also [Haa06a, Theorem 6.4.2]. The following result goes back
to McIntosh in his early work on H∞-calculus, [McI86] and can also be found in
[Haa06a, Theorem 7.3.1].

THEOREM 3.23 (McIntosh ’86). Let X be a Hilbert space, A ∈ Sect(ω), densely
defined and with dense range. Then, the following assertions are equivalent.

(i) The H∞(Σµ)-calculus for A is bounded for some (all) µ ∈ (ω,π).

(ii) A and A∗ satisfy square function estimates.

Note that on a Hilbert space,D(A) = X follows from sectorality, see [Haa06a, Propo-
sition 2.1.1].
Le Merdy showed in [LM03, Theorem 5.2] that having square function estimates for
only A or A∗ is not sufficient to get a bounded calculus. However, we will show that
the validity of single square function estimates always yields an improved growth of
‖(feε)(A)‖ near zero. Roughly speaking, having ‘half of the assumptions’ in McIn-
tosh’s result indeed interpolates the general logarithmic behavior of ‖(feε)(A)‖.

THEOREM 3.24. Letω < φ < π
2 andA ∈ Sect(ω) be densely defined on the Banach

space X. Assume that
• 0 ∈ ρ(A) and that

• A satisfies square function estimates.
Then for every κ ∈ (0, 1) there exists C = C(κ,M(A,φ), cos(φ)) > 0 such that for
all ε > 0 and for f ∈ H∞(Σφ),

‖(feε)(A)‖ 6 CKψ ·
[

Ei
(
κε cosφ
‖A−1‖

)] 1
2

· ‖f‖∞,φ, (3.47)

where Kψ denotes the constant in (3.45) for ψ(z) = z
1
2 e−

z
2 .
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PROOF. Let η(z) = ze−z. Since
√
η ∈ H∞0 (Σφ), we have by (3.46) that∫∞

0
‖(feε

√
ηt)(A)x‖2 dt

t
6 K2 ‖feε‖2∞,φ ·

∫∞
0
‖(
√
ηt)(A)x‖2 dt

t
, (3.48)

where K > 0 only depends onM(A,φ) and η. The integral on the right-hand side
is finite because A satisfies square function estimates (for

√
η). It is easy to see

that
∫∞

0 ηt(z)
dt
t

= 1 for z ∈ Σφ, and applying the Convergence Lemma, [Haa06a,
Proposition 5.1.4], yields y =

∫∞
0 ηt(A)y

dt
t

for y ∈ X. Thus,

‖(feε)(A)x‖ =
∥∥∥∥∫∞

0
(feεηt)(A)x

dt

t

∥∥∥∥
6
∫∞

0

∥∥(e ε
2

√
ηt
)
(A)

(
fe ε

2

√
ηt
)
(A)x

∥∥ dt
t

6

(∫∞
0
‖
(
e ε

2

√
ηt
)
(A)‖2dt

t

) 1
2
(∫∞

0
‖
(
fe ε

2

√
ηt
)
(A)x‖2dt

t

) 1
2

. (3.49)

In the last step we used that t 7→ (e ε
2

√
ηt)(A) is continuous in the operator

norm which makes the first integral exist. In fact, e−
εz

2
√
ηt(z) = (zt)

1
2 e−z

t+ε
2 ∈

H∞0 (Σφ), and hence by the functional calculus for sectorial operators,[
e−

εz
2
√
ηt(z)

]
(A) = t

1
2A

1
2 T

(
t+ ε

2

)
. (3.50)

For s > 0 we have that A
1
2 T(s) = A− 1

2AT(s) = A− 1
2 ∂
∂s
T(s). Since s 7→ T(s)

is C∞(R+,B(X)) for analytic semigroups and A− 1
2 ∈ B(X) as 0 ∈ ρ(A), we get

indeed that t 7→ (e ε
2

√
ηt)(A) is continuous in the operator norm.

By (3.48) we can estimate the second integral in (3.49) and find

‖(feε)(A)x‖ 6
(∫∞

0
‖
(
e ε

2

√
ηt
)
(A)‖2dt

t

) 1
2

· K · ‖f‖∞,φ · K√η‖x‖. (3.51)

Hence, it remains to study the first term in (3.51). By (3.50) and Lemma 3.34∫∞
0
‖
(
e−

ε
2 ·
√
θt

)
(A)‖2dt

t
=

∫∞
ε
2

‖A
1
2 T(t)‖2 dt

6 C̃2
∫∞
ε
2

t−1e−2tRκ cosω dt

= C̃2 · Ei (κεR cosφ) , (3.52)

for κ ∈ (0, 1), R = 1
‖A−1‖ and C̃ = C 1

2 ,κM(A,φ)(cosφ)−
1
2 > 0, see Lemma 3.34. �
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REMARK 3.25. In [GMY11], Galé, Miana and Yakubovich draw a connection be-
tween the H∞-calculus for sectorial operators and the theory of functional models
for Hilbert space operators. They prove (however, without using this connection) a,
as they call it, logarithmic gap between the Hilbert space H and HA. HA is the space
of elements of H such that

‖x‖2
A =

∫∞
0
‖ψ(tA)x‖2dt

t
<∞,

for some ψ ∈ H∞0 (Σφ) \ {0}. From Theorem 3.23 it is clear that the H∞(Σφ)-calculus
is bounded if and only if the norm ‖ · ‖A is equivalent to the norm of the space H.
In the view of [Haa06a, Section 6.4], HA is the intermediate space X0,ψ,2. This space,
in turn, can be shown to be equal to the real interpolation space

(
H(1),H(−1)

)
1
2 ,2 , see

[Haa06a, Theorem 6.4.5], where H(1) and H(−1) are the homogeneous spaces for A. In
[GMY11], the logarithmic gap refers to the result that for all r > 1

2 there exist cr > 0
such that

c−1
r ‖Λ1(A)

−rx‖ 6 ‖x‖A 6 cr‖Λ1(A)
rx‖, (3.53)

for all x ∈ Λ1(A)
−rH, where Λ1(z) = Log(z) + 2πi (here, Log denotes the principle

branch of the logarithm) and where Λ−r
1 (A)H is interpreted as a (dense) subspace of

H, see Theorem 2.1 in [GMY11]. We learned from D. Yakubovich that it seems that
this result can be used to derive estimates of ‖(feε)(A)‖ of the form in (3.3), which
are slightly weaker than our results presented here.
However, as HA is an interpolation space, (3.53) should be rather seen as the con-
sequence of the ‘idea’ that functional calculus properties for A improve in the cor-
responding interpolation spaces. More generally, this motivates the study of the
relation between the results in this Chapter and interpolation spaces. This is subject
to future research.

The following theorem proves that the result in Theorem 3.24 is essentially sharp.

THEOREM 3.26. There exists a Hilbert space X and g ∈ H∞(C+) such that for any
δ ∈ (0, 1

2 ) there exists a A ∈ Sect(0) on X with
(i) 0 ∈ ρ(A),

(ii) A∗ satisfies square function estimates,

(iii) for some C̃ > 0,

‖(geε·)(A)‖ > C̃ · | log(ε)|
1
2 −δ, ε ∈ (0, 1

2 ). (3.54)

(iv) For all ε > 0 and f ∈ H∞(C+)

‖(f · eε)(A)‖ 6 cδ · Ei(ε)
1
2 −

δ
6 · ‖f‖∞, (3.55)

where cδ depends only on δ.
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PROOF. The example is a multiplication operator w.r.t. to a Schauder basis. It is
well-known and easy to see that if the basis is Besselian, the multiplication oper-
ator M{2n} satisfies square function estimates, see e.g., [LM03, Proof of Theorem
5.2]. We consider a basis {ψn}n∈N such that the dual basis {ψ∗n}n∈N is Besselian,
i.e.

∀y =
∑
n∈N

ynψ
∗
n ∈ X ⇒ (yn) ∈ `2(N). (3.56)

Hence, A∗ = M{2n} w.r.t. to {ψ∗n}n∈N satisfies square function estimates.
In fact, let X = L2(−π,π), β ∈ ( 1

3 , 1
2 ), and define ψn by

ψ2k(t) = |t|βeikt, ψ2k+1(t) = |t|βe−ikt, k ∈ N0,

see Lemma 3.33. The dual basis {ψ∗n}n∈N is Besselian, see [Sin70, Example 11.2].
Further note that ψn(t) = φn(t) for t ∈ (−π2 , π2 ), with φn from Definition 3.18.
Let x(t) = |t|−β1(0,π2 )(|t|) ∈ X. Since x(t) = 0 for t ∈ (π2 ,π) we get the same
coefficients xn w.r.t to {ψn} as for the basis {φn}. Thus, by Lemma 3.32 (iii), the
coefficients are positive and x2n = x2n+1 ∼ n−1+2β

1−2β . Furthermore, let

y(t) = |t|−β(π− |t|)−β1(π2 ,π),

which lies in L2(−π,π) and has, w.r.t.
{
ψ∗n,β

}
, the coefficients yn,

y2k = 〈y,ψ2k,β〉 =
1

2π

∫
π
2 <|t|<π

(π− |t|)−βeiktdt =
(−1)n

2π

∫ π
2

−π2

|t|−βe−iktdt,

and y2k+1 = y2k which can be seen easily. By Lemma 3.31, we conclude that
|y2k| = |y2k+1| ∼ (1−β)−1k−1+β ∼ k−1+β. Thus, because (2n) is interpolating,we
find g ∈ H∞(C+) such that g(2n) = sgn(yn) for all n ∈ N, and we get

〈(g · e−ε·)(A)x,y〉 =
∑
n∈N

g(2n)e−2nεxnyn

=
∑
n∈N

e−2nε|xnyn| (3.57)

& 1
1−2β

∑
n∈N

(e−2nε + e−2n+1ε)n−2+3β & 1
1−2β | log(ε)|−1+3β,

(3.58)

where in the last step we used Lemma 3.30. Since ‖x‖L2 · ‖y‖L2 ∼ 1
1−2β and by

defining β = 1
2 − δ

3 the assertion follows.

To show (3.55) let x,y ∈ H and x =
∑
xnψn, y =

∑
ynψ

∗
n. For f ∈ H∞(C+),

〈(feε)(A)x,y〉 = 〈
∑
n∈N

f(2n)e−2nεxnψn,
∑
n∈N

ynψ
∗
n〉

=
∑
n∈N

f(2n)e−2nεxnyn, (3.59)
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where we used that 〈ψn,ψ∗m〉 = δnm. By the Cauchy-Schwarz inequality

|〈(feε)(A)x,y〉| 6 ‖f‖∞ · ‖(e−2nε/2xn)‖2 · ‖(e−2nε/2yn)‖2.

Since {ψ∗n}n∈N is Besselian, (3.56) and the uniform boundedness principle imply
that there exists a constant Cβ such that ‖(yn)‖`2 6 Cβ‖y‖ for all y ∈ X. There-
fore,

|〈(feε)(A)x,y〉| 6 Cβ · ‖f‖∞ · ‖(e−2n−1εxn)‖2 · ‖y‖L2 . (3.60)

By (3.80) in Lemma 3.33,

|〈(feε)(A)x,y〉| . CβKβ · ‖f‖∞ · Ei(ε)
1+2β

4 · ‖x‖L2 · ‖y‖L2 .

Substituting β = 1
2 − δ

3 and cδ := CβKβ yields (3.55). �

3.5. Discussion and Outlook

3.5.1. Comparison with a result of Haase & Rozendaal. In [HR13], Haase and
Rozendaal derived a result of the type of Theorem 3.4 for Hilbert spaces, but for
general bounded, not necessarily analytic,C0-semigroups. We devote this subsection
to compare the results, in particular the dependence on the semigroup bound and
the sectorality constant, respectively.

We define the right half-plane Rδ = {z ∈ C : Re z > δ}. Using transference principles
developed by Haase in [Haa11] the following result was proved in [HR13].

THEOREM 3.27 (Haase, Rozendaal, Corollary 3.10 in [HR13]). LetH be a Hilbert
space and −A generate a bounded semigroup T on H and define B = supt>0 ‖T(t)‖.
Then, there exists an absolute constant c > 0 such that for all ε, δ > 0 the following
holds.
For f ∈ H∞(Rδ), the operator (feε)(A) = f(A)T(ε) is bounded and

‖(feε)(A)‖ 6 B2 · η(δ, ε) · ‖f‖∞,Rδ , (3.61)

where

η(δ, ε) =
{
c| log(εδ)|, δε 6 1

2 ,
2c, δε > 1

2 .

We can now compare Theorems 3.4 and 3.27 by setting r0 = δ. Then Ωφ,δ ⊂ Rδ
for all φ ∈ (0, π2 ] and thus, for functions f ∈ H∞(Rδ), we have ‖f‖∞,Ωφ,δ 6 ‖f‖∞,Rδ .
Hence, Theorem 3.4 yields

‖(feε)(A)‖ 6M(A,φ) · b(ε, δ,φ) · ‖f‖∞,Rδ , (3.62)

for all φ ∈ (ωA, π2 ) and f ∈ H∞(Rδ), where

b(ε, δ,φ) ∼
{

| log(εδ cosφ)|, εδ < 1
2 ,

| log cosφ
2 |, εδ > 1

2 .
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Let us collect the key observations when comparing (3.61) and (3.62).

(i) We see that the square of the semigroup bound B gets replaced by the sec-
torality constantM(A,φ) in our result.

(ii) Our estimate depends on another parameterφ that accounts for the fact that
the spectrum is truly lying in a sector rather than the half-plane. Taking
the infimum over all φ ∈ (ωA, π2 ) in (3.62) yields an optimized estimate.
However, then the constant dependence on M(A,φ) becomes unclear. See
also Theorem 3.7.

(iii) The dependence on φ also explains how the estimate explodes when con-
sidering A’s with sectorality angle ωA tending to π

2 . However, one can
cover this behavior in terms of the constant M = M(A, π2 ): Taking φ =

arccos 1
2M , we get by (3.20) thatM(A,φ) 6 2M and thus (3.62) becomes

‖(feε)(A)‖ 6M · b(ε, δ, arccos 1
2M ) · ‖f‖∞,Rδ . (3.63)

Therefore, we get anM-dependence of the form O(M(log(M) + 1)).

(iv) By Theorem 3.9, the semigroup bound of et(A) is of order O(M(log(M) +

1)). Whether B ∼ M(log(M) + 1)) in general is still an open problem,
see also [Vit05b, Remark 1.3]. However, it is easy to see that, in general,
M(A,π) 6 B. Therefore,

M(A,π) 6 B .M(log(M) + 1). (3.64)

3.5.2. The Besov calculus. We give a brief introduction to the following ho-
mogenous Besov space and refer to [Vit05b, Section 1.7] and the references therein
for details, see also [Haa11]. The notation follows [Vit05b]. The space B0∞,1 can be
defined as the space of holomorphic functions f on C+ such that

‖f‖B := ‖f‖∞ +

∫∞
0
‖f ′(t+ i·)‖∞dt <∞.

Clearly, B0∞,1, equipped with the above norm, is continuously embedded inH∞(C+).
Moreover, ∪0<ε<σH

∞[ε,σ], see Section 3.2.2, lies dense in B0∞,1 and the following
norm is equivalent to ‖ · ‖B, see [Vit05b, Theorem A.1],

‖f‖∗B = |f(∞)|+
∑
k∈Z

‖f ∗ φ̂k‖∞,

where φk is the continuous, triangular-shaped function that is linear on the intervals
[2k−1, 2k] and [2k, 2k+1], vanishes outside [2k−1, 2k+1], and such that φk(2k) = 1.
Thus, {φk}k∈N is a partition of unity with

∑
k∈Zφk ≡ 1 locally finite on (0,∞), see

[Haa11, Vit05b]. Obviously, the (inverse) Fourier-Laplace transform of f ∗ φ̂k has
support in [2k−1, 2k+1], hence, f ∗ φ̂k ∈ H∞[2k−1, 2k+1]. Therefore, it follows directly
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from Theorem 3.9 that for f ∈ B0∞,1

‖(f ∗ φ̂k)(A)‖ 6 cM(log(M) + 1) · 4 · ‖f ∗ φ̂k‖∞, (3.65)

where c is an absolute constant andM =M(A, π2 ). The following Theorem is a slight
improvement of Theorem 1.7 in [Vit05b], see also [Haa11, Corollary 5.5].

THEOREM 3.28. Let A ∈ Sect(ω) on the Banach space X with ω < π
2 . Let M =

M(A, π2 ). Then,
‖f(A)‖ 6 cM(log(M) + 1)‖f‖∗B,

for all f ∈ B0∞,1, where c > 0 is an absolute constant.
Thus, the B0∞,1-calculus is bounded.

PROOF. It is easy to see that for g ∈ H∞[ε,σ] with 0 < ε < σ <∞,

g(z) =
∑
k∈Z

(φ̂k ∗ g)(z), z ∈ C+ (3.66)

because the inverse Fourier transform of g has compact support. Let f ∈ B0∞,1.
Since ∪0<ε<σH

∞[ε,σ] is dense in B0∞,1, see [Vit05b], we find a sequence gn ∈
H∞[ 1

n
,n] such that gn → (f − f(∞)) in B0∞,1 as n → ∞. Thus, gn → f − f(∞) in

‖ · ‖∞ and ‖ · ‖∗B. Therefore, by (3.66) and the fact that φ̂k ∗ (f − f(∞)) = φ̂k ∗ f
we have that

f(z) = f(∞) +
∑
k∈Z

(φ̂k ∗ f)(z), z ∈ C+. (3.67)

Since ‖
∑

|k|6N(φ̂k ∗ f)‖∞ 6 ‖f‖∗B for any N ∈ N, the Convergence Lemma,
[Haa06a, Proposition 5.1.1], implies

f(A) = f(∞) +
∑
k∈Z

(φ̂k ∗ f)(A)

and the assertion follows from (3.65). �

REMARK 3.29. (i) In [Vit05b, Theorem 1.7], it is already shown that the B0∞,1-
calculus is bounded where the bound of the calculus was estimated by
31M3. Like in our proof, she derived the result from an H∞-calculus es-
timate for H∞[ε,σ].

(ii) In [Haa11] Haase showed that for (polynomially) bounded semigroups on
Hilbert spaces, one can consider more general homogenous Besov spaces
Bs∞,1, s > 0. Bs∞,1 consists of functions f, holomorphic on C+, and such that
limz→∞ f(z) exists and

‖f‖∗Bs := |f(∞)|+
∑
k<0

‖φ̂k ∗ f‖∞ +
∑
k>0

2ks‖φ̂k ∗ f‖∞ <∞.

It is easy to see that Theorem 3.28 holds for Bs∞,1 with the analogous proof
as for B0∞,1.
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3.5.3. Final remarks and outlook. Let us mention the well-known relation be-
tween analytic semigroup generators and Tadmor-Ritt operators, see e.g., [Haa06a,
Vit05a, Vit05b]. In Chapter 4, we will study these operators using ‘discrete’ versions
of the techniques developed in the present chapter.

We point out that in Theorems 3.4 and 3.11 the operator A need not be densely de-
fined. Thus, in the view of analytic semigroups, et(A) need not be strongly continu-
ous at 0, see [Haa06a, Chapter 3.3].

Looking back to Propositions 3.1 and 3.3 which served as a starting point to study
‖(feε)‖ to quantify the (un)boundedness, we can ask ourselves which other func-
tions gε with gε → 1 as ε → 0+ can be studied in order to characterize a bounded
calculus. For instance, one could consider gε(z) = zεe−εz which yields that fgε ∈
H∞0 (Σδ) for f ∈ H∞(Σδ).
An interesting question is how Theorem 3.24 generalizes to general Banach spaces.
As Theorem 3.23 is not true on general Banach spaces, one has to use generalized
square function estimates to characterize boundedH∞-calculus then. These general-
ized square function estimates where introduced in[CDMY96] for Lp-spaces and for
general Banach spaces by Kalton and Weis [KW01]. See also [KW04] for an detailed
overview.
It is subject to future work to find a version of Theorem 3.24 for general square func-
tion estimates. We refer also to Section 4.4 of the following chapter, where a similar
result is proved for Tadmor-Ritt operators and general discrete square function esti-
mates.
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3.6. Appendix - some technical results

LEMMA 3.30 (Growth Lemma). Let b > 1 and γ < 0.
(i) For 0 < ε < 1

b
,

e−1Fγ(ε,b) 6
∞∑
n=1

nγe−b
nε 6 Fγ(ε,b) + 1 + Ei(1)

log(b) , (3.68)

where

Fγ(ε,b) =

{
log(1/ε)1+γ−log(b)1+γ

log(b)1+γ(1+γ) , γ 6= −1,
log log(1/ε) − log log(b), γ = −1.

Moreover, for all γ0 ∈ (−1, 0) there exists Cγ0,b > 0 such that

∀γ ∈ (γ0, 0) : Fγ(ε,b) > Cγ0,b log
( 1
ε

)1+γ . (3.69)

(ii) For all ε > 0, ∞∑
n=1

e−b
nε 6

Ei(ε)
log(b)

.

PROOF. We estimate
∫∞

1 x
γe−b

xεdx. Substitute y = bxε, thus, x = log(y/ε)
log(b) ,∫∞

1
xγe−b

xε dx =
1

log(b)1+γ

∫∞
εb

log(y/ε)γ
e−y

y
dy

=
1

log(b)1+γ (

∫ 1

εb

log(y/ε)γ
e−y

y
dy+

∫∞
1

log(y/ε)γ
e−y

y
dy︸ ︷︷ ︸

6log( 1
ε
)γEi(1)<log(b)γEi(1)

).

Because e−1 6 e−y 6 1 for y ∈ (εb, 1) and since the primitive of log(y/ε)γ

y
is{

(log(y/ε))1+γ

1+γ , γ 6= −1,
log log(y/ε), γ = −1,

we get

e−1Fγ(ε,b) 6
∫∞

1
xγe−b

xε dx 6 Fγ(ε,b) +
Ei(1)

log(b) .

Next we use the fact that for the decreasing, integrable function f : [1,∞) →
(0,∞), x 7→ xγe−b

xε there holds∫∞
1
f(x) dx 6

∞∑
n=1

f(n) 6 f(1) +
∫∞

1
f(x) dx, (3.70)
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and so we conclude (3.68). (3.69) can be easily seen by the definition of Fγ(ε,b).
Finally, (ii). follows by∞∑

n=1

e−b
nε 6

∫∞
0
e−b

xε dx =
1

log(b)

∫∞
ε

e−y

y
dy =

Ei(ε)
log(b)

.

�

LEMMA 3.31. Let α ∈ (−1, 1). Then, for all n ∈ N,

cn,α :=

∫ π
2

−π2

|t|αeint dt = C1,αn
−1−α + Bn, (3.71)

where C1,α = −2 sin
(
απ2
)
Γ(α+ 1), |Bn| 6 C2n

−1 and C2 is an absolute constant.
Moreover, cn,α ∈ R and for α ∈ (−1, 0],

d3,αn
−1−α 6 cn,α 6 d1,αn

−1−α, n ∈ N, (3.72)

where dk,α = 2
∫ kπ

2
0 tα cos t dt ∼ 1

1+α , for k ∈ {1, 3}. If α ∈ (−1,− 1
2 ], then

d3,α > 0, hence cn,α > 0 for all n ∈ N.

PROOF. By

cn,α =

∫ π
2

−π2

|t|αeintdt = 2 Re
∫ π

2

0
tαeintdt,

it is clear that cn,α is a real number and we can consider∫ π
2

0
tαeintdt = n−1−α

∫nπ2
0

tαeitdt. (3.73)

Consider the contour consisting of the lines segments [ε,nπ2 ] and i[ε,nπ2 ] con-
nected via quarter circles with radii nπ2 and ε respectively, orientated counter-
clockwise. Then, since h(z) = zαeiz is holomorphic on C \ {z ∈ R : z 6 0},∫nπ2
ε

h(t)dt =

∫nπ2
ε

h(it)idt− i

∫ π
2

0
(n
π

2
eiθ)α+1ein

π
2 e
iθ

dθ+ i

∫ π
2

0
(εeiθ)α+1eiεe

iθ

dθ.

(3.74)
The last two integrals can both be estimated using the fact that |eire

iθ

| = e−r sinθ 6
e−r

2θ
π for θ ∈ [0, π2 ], r > 0. This yields∣∣∣∣∣

∫ π
2

0
(reiθ)α+1eire

iθ

dθ

∣∣∣∣∣ 6 π2 rα(1 − e−r).

Therefore, the integral for r = ε goes to zero as ε → 0+ because α > −1. The
integral for r = nπ2 can be estimated by

(
π
2

)α+1
nα. It remains to consider

lim
ε→0+

i

∫nπ2
ε

h(it)dt = i

∫nπ2
0

h(it)dt = ei(α+1)π2

∫nπ2
0

tαe−tdt
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= ei(α+1)π2

[
Γ(α+ 1) −

∫∞
nπ2

tαe−tdt

]
.

It is easily seen that there exists a constant C such that
∫∞
n t

αe−tdt 6 Cnαe−n

for all α ∈ (−1, 1). Altogether we get by (3.73) and the estimates for the terms in
(3.74) that ∫ π

2

0
tαeintdt = ei(α+1)π2 Γ(α+ 1)n−1−α + Bn,α,

with |Bn,α| 6 1
n

[(
π
2

)α+1
+ Ce−n

]
. This yields (3.71).

To show (3.72) for α ∈ (−1, 0), note that with (3.73)

cn,α = n−1−α2
∫ nπ

2

0
tα cos(t)dt.

We define dn,α = 2
∫nπ

2
0 tα cos tdt. It remains to show that d3,α 6 dn,α 6 d1,α

for all n ∈ N. Since t 7→ tα is positive and decreasing on (0,∞), it follows by the
periodicity of the cosine that for all for allm ∈ N0

(i) since cos( tπ2 ) < 0 on ((4m+ 1), (4m+ 3)), d4m+1,α > d4m+2,α >

d4m+3,α,

(ii) since cos( tπ2 ) > 0 on ((4m+ 3), (4m+ 5)), d4m+3,α < d4m+4,α <

d4m+5,α,

(iii) since t 7→ tα is decreasing, d4m+5,α < d4m+1,α and d4m+3,α <

d4(m+1)+3,α.
Inductively, this shows that maxn dn,α = d1,α and minn dn,α = d3,α. Finally we
check that d3,α > 0 if α ∈ (−1,− 1

2 ],

d3,α =

∫ 3π
2

0
tα cos(t)dt > cos(1)

∫ 1

0
tαdt+

(π
2

)α ∫ π2
1

cos(t)dt+
∫ 3π

2

π
2

tα cos(t)dt

> 2 cos(1) +
2
π
(1 − sin(1)) +

∫ 3π
2

π
2

cos(t)√
t
dt > 0,

where the last integral can be computed via a Fresnel integral and is approxi-
mately 0.0314. �
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LEMMA 3.32. Let β ∈ ( 1
4 , 1

2 ), X = L2(−π,π) and {φn}n∈N ⊂ X as in Definition
3.18. The following assertions hold. (See (3.32) for the definitions ofmφ and κφ.)

(i) {φn}n∈N forms a bounded Schauder basis of X with κφ ∼ 1
1−2β .

(ii) The family {φ∗n}n∈N ⊂ X given by

φ∗2k(t) =
1

2πwβ(t)
eikt, φ∗2k+1(t) =

1
2πwβ(t)

e−ikt,

satisfies 〈φ∗n,φm〉L2 = δnm and forms a Schauder basis of X with κφ∗ ∼
1

1−2β . Here, wβ is defined as in Definition 3.18.

(iii) The coefficients of x(t) = |t|−β1(0,π2 )(|t|), x =
∑
n xnφn are positive and

satisfy
x2k = x2k+1 ∼ k−1+2β

1−2β , k ∈ N. (3.75)

For the coefficients of y(t) = (π − |t|)−β1(π2 ,π)(|t|), y =
∑
n ynφ

∗
n, we

have that

y2k = (−1)k2π · x2k, y2k+1 = (−1)k2π · x2k+1, k ∈ N. (3.76)

PROOF. Lemma 3.32 (i)-3.32 (ii) follow from [Sin70, Example 11.2].
To see 3.32 (iii) we point out that for all x =

∑
k xkφk,β ∈ X there holds

xn = 〈x,φ∗n〉L2 , n ∈ N. (3.77)

Thus, for x = (t 7→ |t|−β1(0,π2 )(|t|)), k ∈ N,

x2k =
1

2π

∫π/2

−π/2
|t|−2βe−iktdt =

ck,−2β

2π
, x2k+1 =

1
2π

∫π/2

−π/2
|t|−2βeiktdt = x2k,

(3.78)
where ck,−2β are the coefficients from Lemma 3.31. Since −2β ∈ (−1,− 1

2 ), they
are even positive and (3.75) follows. The assertion for y follows similarly. �

LEMMA 3.33. Let X = L2 = L2(−π,π), β ∈ ( 1
3 , 1

2 ). Then {ψn}n∈N defined by

ψ2k(t) = |t|βeikt, ψ2k+1(t) = |t|βe−ikt, k ∈ N0,

is a bounded Schauder basis. For x =
∑
n∈N xnψn ∈ X, we have that {xn} ∈ `r for

r > 2
1−2β and

‖(xn)‖r . ‖x‖L2 · ‖n−1+β‖q, 1
q
= 1

2 + 1
r

. (3.79)

Furthermore,
‖(e−2nεxn)‖`2 . Kβ · Ei(ε)

1+2β
4 ‖x‖L2 , (3.80)

with Kβ = ‖(nβ−1)‖ 3−2β
4

.
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PROOF. That {ψn} is a Schauder basis can e.g., be found in [Sin70, Example
11.2]. Let wβ(t) = |t|β on (−π,π). Since

{
eint
}
n∈Z is an orthogonal basis of L2 it

follows that for x =
∑
n∈N xnψn ∈ X,

x2k =
1

2π
〈xw−1

β , eik·〉L2 = F(xw−1
β )[k],

where F denotes the discrete Fourier transform. Thus,

x2k =
(
F(x) ∗ F(w−1

β )
)
[k]. (3.81)

By x ∈ L2, {F(x)[n]} ∈ `2. From [Haa12, Proof of Theorem 2.4, p.861] (see also
Lemma 3.31) we have that∫π

−π

|t|γ−1e−int dt = 2n−γ cos(γπ2 )Γ(γ) + O( 1
n
),

for γ > 0. Thus, with γ = 1 − β ∈ ( 1
2 , 2

3 ), F(w
−1
β )[n] ∈ `q with q > q0 := 1

1−β and

‖F(w−1
β )[n]‖`q . ‖(n−1+β)‖`q .

We use Young’s inequality with 1
2 +

1
q
= 1+ 1

r
and q ∈ (q0, 2) to estimate the right-

hand-side of (3.81). Hence, {x2k} ∈ `r for r > 2
1−2β . Analogously, {x2k+1} ∈ `r. Eq.

(3.79) then follows since the discrete Fourier transform is isometric from L2 to `2.

To show (3.80), we use Hölder’s inequality and (3.79),

‖(e−2n−1εxn)‖2
2 = ‖(e−2nε|xn|

2)‖1

6 ‖(e−2nε)‖r′0 · ‖(xn)‖
2
2r0

. ‖(e−2nε)‖r′0 · ‖(n
−1+β)‖2

q · ‖x‖2
L2 (3.82)

for r ′0 = (1 − 1
r0
)−1 = 2

1+2β and 1
q
= 1

2 + 1
2r0

= 3−2β
4 . By Lemma 3.30,

‖(e−2nε)‖r′0= 2
1+2β
. Ei(r ′0ε)

1+2β
2

(3.6)
6 Ei(ε)

1+2β
2 , (3.83)

where we used that r ′0 > 1. Thus, (3.82) shows (3.80). �

A version of the following Lemma can be found in [Paz83, Theorem 6.13], however,
the constant dependence is unclear there.

LEMMA 3.34. Let A ∈ Sect(ω) with ω < φ < π
2 and α ∈ (0, 1]. Set R = 0 if

0 /∈ ρ(A), and R = 1
‖A−1‖ otherwise. Then, for every κ ∈ [0, 1)

‖AαT(t)‖ 6 Ct−αe−tκR cosφ ∀t > 0, (3.84)

with C = Cα,κM(A,φ)(cosφ)−α.
Note that by the assumptions, the growth boundω0 of T satisfiesω0 6 −R cosφ.
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PROOF. Let r = ηR for η ∈ [0, 1). Thus, if R = 0, then r = 0. We define the path
Γr = Γ1,r ∪ Γ2,r ∪ Γ3,r with

Γr1 =
{
r̃eiφ, r̃ > r

}
, Γr2 =

{
reiφ − it, t ∈ (0, 2=(reiφ)

}
, Γr3 =

{
−r̃e−iφ, r̃ 6 −r

}
,

orientated counter-clockwise. Note that Γ 0 = ∂Σφ. Since z 7→ zαe−tz ∈ H∞0 (Σφ),
and Γ ⊂ ρ(A) if 0 ∈ ρ(A), we get (see (3.4))

AαT(t) =
1

2πi

∫
Γr
zαe−tzR(z,A) dz. (3.85)

Splitting up the integral and taking norms, we derive for Γr1 ,∫
Γr1

|z|αe−tRez‖R(z,A)‖ |dz| 6M(A,φ)
∫∞
r

sα−1e−ts cosφ ds

=M(A,φ)(t cosφ)−α
∫∞
rt cosφ

sα−1e−s ds.

By the definition of the Gamma function it follows that
∫∞
a s

α−1e−sds 6 Γ(α)e−a

for a > 0 and α ∈ (0, 1]. Thus,∥∥∥∥∥
∫
Γr1

zαe−tzR(z,A)dz

∥∥∥∥∥ 6M(A,φ)(t cosφ)−αΓ(α)e−tRη cosφ. (3.86)

The estimate Γr3 can be derived analogously. Since Γ 0
2 = {}, it remains to consider

Γr2 for r > 0. Thus, R,η > 0 which means that 0 ∈ ρ(A). By the resolvent identity
follows

‖R(z,A)‖ 6 ‖A
−1‖

1 − η
for |z| 6 r = ηR,

see also the proof of Theorem 3.11. Therefore,∫
Γr2

|z|αe−tRez‖R(z,A)‖dz 6 e−tr cosφ ‖A−1‖
1 − η

rα
∫
Γ2,r

|dz|

6 e−tr cosφ ‖A−1‖
1 − η

rα+1(2 sinφ)

= rαe−tr cosφ 2η
1 − η

.

Since r 7→ f(r) = rαe−rb attains its maximum (α
b
)αe−α at r = α

b
, we conclude

that
rαe−rb = rαe−rb(1−η)e−rbη 6

(
α

b(1−η)

)α
e−αe−rbη,

and thus∥∥∥∥∥
∫
Γr2

zαe−tzR(z,A)dz

∥∥∥∥∥ 6M(A,φ)
2η

1 − η

(
e−1α
1−η

)α
(t cosφ)−αe−tRη

2 cosφ. (3.87)

where we use that M(A,φ) > 1, see [Haa06a, Prop. 2.1.1]. Since e−tRη
2 cosφ >

e−tRη cosφ, combining (3.85), (3.86) and (3.87) yields the assertion by setting η =√
κ. �





CHAPTER 4

Functional calculus estimates for Tadmor–Ritt operators

Abstract. We proveH∞-functional calculus estimates for Tadmor–Ritt operators.
These generalize and improve results by Vitse and are in conformity with the best
known power-bounds for Tadmor–Ritt operators in terms of the constant depen-
dence. We furthermore show the effect of having discrete square function estimates
on these estimates1

4.1. Tadmor–Ritt and Kreiss operators

For this chapter, by convention all operators T on a Banach space X are assumed to
be bounded. Let us start with the definition of a Tadmor–Ritt operator. Unless stated
otherwise, Xwill denote a general Banach space.

DEFINITION 4.1. A bounded operator T on X, i.e., T ∈ B(X), is called a Tadmor–Ritt
operator if σ(T) ⊂ D and if

C(T) := sup
|z|>1
‖(z− 1)R(z, T)‖ <∞. (4.1)

Let TR(X) denote the set of all Tadmor–Ritt operators on X.

Tadmor–Ritt operators, in the literature also sometimes referred to as Ritt operators,
were, with a slightly different but equivalent definition, first studied in [Rit53]. See
[Bak03, EFR02, Vit04b] for a detailed discussion of these two definitions.
Tadmor–Ritt operators form a class consisting of operators satisfying Kreiss’ resolvent
condition,

σ(T) ⊂ D, and CKreiss(T) = sup
|z|>1
‖(|z|− 1)R(z, T)‖ <∞. (4.2)

We will call operators satisfying (4.2) Kreiss operators and denote the set of all such
operators on X by KR(X). Obviously, TR(X) ⊂ KR(X). The most prominent question
related to these operators is the one of power-boundedness, i.e. whether

Pb(T) := sup
n∈N
‖Tn‖ <∞ (4.3)

1This chapter is a slight adaptation of the article:
F. L. SCHWENNINGER, Functional calculus estimates for Tadmor–Ritt operators, submitted, 2015
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holds. Originally, and of more importance for numerical analysis, the question was
studied for finite-dimensional spaces X. In this case the answer is positive for oper-
ators in KR(X). This follows from a result by Kreiss from 1962, [Kre62], which states
that

Pb(T) 6 g(CKreiss(T),N), (4.4)

for a function g depending onCKreiss(T) and the dimensionN of the space X. Kreiss’
originial estimate (of the function g) was improved steadily in the following decades
ending up with the final result proved by Spijker in 1991, [Spi91],

∀T ∈ KR(X) : Pb(T) 6 eCKreiss(T)N. (4.5)

For the detailed history of the result we refer to the monograph [TE05] and the re-
cent work [Nik13]. See also [SW97] for a study of infinite-dimensional versions. By
[LT84], estimate (4.5) is sharp in the sense that there exists a sequence of matrices
TN ∈ KR(CN×N) such that

lim
N→∞

Pb(TN)

CKreiss(TN)N
= e.

However, for this sequence, CKreiss(TN) → ∞, hence, for CKreiss(T) 6 C with a
fixed constant C, the behavior could theoretically be better. Indeed, a recent result
by Nikolski shows that for T having unimodular spectrum, i.e. σ(T) ⊂ ∂D, and a basis
of eigenvectors, one gets a sublinear growth in the dimension.

THEOREM 4.2 (Nikolski 2013, [Nik13]). Let X be a Hilbert space of dimension
N <∞. Let T be a Kreiss operator on X such that σ(T) ⊂ ∂D and such that T has a
basis of eigenvectors XN = (xj)

N
j=1. Then

Pb(T) 6 2πCKreiss(T)N1−ε,

where ε = 0.32
b(XN)2 and b(XN) denotes the basis constant of XN, i.e.

b(XN) = sup
k6l
‖P(xj)kj=l‖,

where P(xj)kj=l denotes the projection onto the span of the vectors (xj)kj=l.

The proof of the result is based on a classic theorem by McCarthy and Schwartz
[MS65]. We remark that Nikolski also shows a corresponding result on more general
Banach spaces using a generalization of McCarthy and Schwartz’ result by Gurari
and Gurari [GG71]. By using well-known techniques from Spijker, Tracogna, Welfert
[STW03], he further proves that the sublinear behavior is sharp. As indicated by
Nikolski, in order to get an estimate in the spirit of the Kreiss Matrix Theorem, one
has to close the loop by estimating b(XN) in terms of CKreiss(T). This still remains
open.
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When we turn to general infinite-dimensional spaces X, the power-boundedness
of general Kreiss operators, even on Hilbert spaces, is no longer true. We refer to
[Fog64] and [Hal64] for counterexamples. In the conference paper [Tad86], E. Tad-
mor states that the growth of ‖Tn‖ can at most be logarithmically in n under the
additional assumption that the spectrum of T ‘is not too dense in the neighbourhood
of the unit circle’. This condition is in particular ensured if (4.1) holds. Moreover,
the existence of an example is stated confirming the sharpness of the growth. As
both the proof and the example are unfortunately not published, we are indebted to
E. Tadmor for sharing them with us, [Tad14].

Knowing that general Kreiss operators are not power-bounded, the same question
for Tadmor–Ritt operators remained open until 1999 when Lyubich [Lyu99] and
Nagy & Zemanek [NZ99] used a preceding result of O. Nevanlinna [Nev93] to prove
that they are indeed power-bounded.
We remark that in 1993, C. Palencia [Pal93] and, independently, Crouzeix, Larsson,
Piskarev and Thomée [CLPT93] showed that the Crank–Nicolson-scheme is stable for
sectorial operators. In particular, this shows that the Cayley transform Cay(A) :=

(I − A)(A + I)−1 of a sectorial operator A is power-bounded. As the mapping
A 7→ Cay(A) establishes a one-to-one correspondence between sectorial operators
A with 0 ∈ ρ(A) and Tadmor–Ritt operators, Palencia’s result already shows the
power-boundedness of Tadmor–Ritt operators. This fact seems to be unnoticed in
the literature. Moreover, Palencia’s result shows that any bounded operator S with
σ(S) ⊂ D and such that there exists a constantM(S) > 0 and

‖R(z,S)‖ 6M(S)(|z+ 1|−1 + |z− 1|−1), |z| > 1,

is power-bounded. See also Remark 5.18 in Chapter 4 for further discussion.
In 2002, El-Fallah and Ransford, [EFR02] showed that for a Tadmor–Ritt operator T ,
it holds that Pb(T) 6 C(T)2, which was subsequently improved by Bakaev [Bak03]
to

∀T ∈ TR(X) : Pb(T) 6 aC(T) log(aC(T)), (4.6)

for some absolute constant a > 0 (which was not determined). The latter result
seems to be not so well-known. In [Vit05a, Remark 2.2] an alternative proof for the
quadratic dependence on C(T) is sketched. A careful study of this sketch reveals
that it is based on a similar approach as in Bakaev’s proof, which, with a sharper es-
timation and some additional work, actually yields (4.6). We will encounter a similar
approach in the proof of Theorem 4.7, which was actually motivated by a result of
the author for analytic semigroups, [Sch15b], see Chapter 3.

In [Vit04a, Vit05a], Vitse investigated the more general setting of a functional calcu-
lus for Tadmor–Ritt operators and proved that for 1 6 m 6 n and any polynomial
p(z) =

∑n
j=m ajz

j

‖p(T)‖ 6 c(C(T),m,n) · sup
z∈D

|p(z)|, (4.7)
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with c(C(T),m,n) = 191C(T)5 log
(
e(n+1)
m

)
. We also remark that Le Merdy showed

in [LM98] that a Tadmor–Ritt operator on a Hilbert space has bounded polynomially
calculus, i.e.

sup {‖p(T)‖ : p is polynomial, ‖p‖∞,D 6 1} <∞, (4.8)

if and only if T is similar to a contraction.
Obviously, (4.7) implies power-boundedness of T , however, with aC(T)-dependence
worse than in (4.6). We will show that this dependence can be improved significantly,
coupling it to the, so-far known, optimal constant for the power-bound of T in (4.6).
Precisely, in Theorem 4.9 we will show that for p(z) =

∑n
j=m ajz

j, 0 6 m 6 n,

‖p(T)‖ 6 aC(T) log
(
C(T) + b+ log

n+ 1
m+ 1

)
· ‖p‖∞,D, (4.9)

with absolute constants a,b > 0. The proof is significantly shorter and more direct
than the one for (4.7) in [Vit05b]. Moreover, the result is actually a consequence of a
more general functional calculus result for Tadmor–Ritt operators, see Theorem 4.7.
As a direct consequence our results improve the constant dependence on C(T) for
the Besov-calculus derived by Vitse in [Vit04a, Vit05a], see Theorem 4.27.

Finally, motivated by the result for analytic semigroup generators (or sectorial oper-
ators), which can be seen as the continuous counterparts of Tadmor–Ritt operators,
we discuss the influence of discrete square function estimates on the calculus estimates,
see also [LM14b]. For Hilbert spaces, it is known that if a Tadmor–Ritt operator
and its dual operator satisfy square function estimates, then the corresponding H∞-
functional calculus is bounded. As for the more known continuous counterpart of
sectorial operators (see Section 3.4), here, it is essential to have square function esti-
mates for both T and T∗. We show that having only T (or alternatively T∗) satisfying
square function estimates however improves the functional calculus estimate (4.9),
see Theorem 4.17. In Section 4.4, we generalize the result about square function esti-
mates to general Banach spaces. This involves a refined definition of square function
estimates using Rademacher means and R-boundedness. These abstract square func-
tion estimates are the discrete counterpart to the ones for sectorial operators, which
were introduced by Kalton and Weis [KW01] and have proved very useful in the
study of Lp-maximal regularity for parabolic evolution equations since then.

In Section 4.5, we discuss sharpness of the derived estimates. We conclude by a
result about a Besov-space calculus for Tadmor–Ritt operators, which is a refinement
of [Vit05a, Theorem 2.5].
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4.1.1. Properties of Tadmor–Ritt operators. Unless stated otherwise, X will al-
ways denote a, in general infinite-dimensional, Banach space.
From (4.1) it follows that for Tadmor–Ritt operators the only possible spectral point
on T is 1. Moreover, it is well-known that the spectrum is contained in the Stolz
type domain Bθ, which is the interior of the convex hull of {{1} ,Bsinθ(0)} for some
θ ∈ (0, π2 ), see Figure 4.1. Here, Br(z0) denotes the open ball centred at z0 with radius
r. For this and a proof of the following lemma we refer to Vitse [Vit04b, Vit05a] and
Le Merdy [LM14b], which improves earlier results in [Lyu99, NZ99] and [Nev93].

LEMMA 4.3. Let T be a Tadmor–Ritt operator on a Banach space X. Then, there
exists θ ∈ [0, π2 ) such that

(i) σ(T) ⊂ Bθ, and

(ii) for all η ∈ (θ, π2 ],

Cη(T) = sup
z∈C\Bη

‖(z− 1)R(z, T)‖ 6 C(T)

1 − cosη
cosθ

. (4.10)

We say that T is of type θ.
Moreover, θ can always chosen to be θ = arccos 1

C(T) .

Note that Bα ⊂ Bβ for α < β. The previous lemma tells us that for η going to θ, the
right-hand-side of (4.10) explodes whereas for η = π

2 it becomes C(T). We further
remark that the converse of Lemma 4.3 also holds: If there exists θ ∈ (0, π2 ) such that
σ(T) ⊂ Bθ andCη <∞ for all η ∈ (θ, π2 ), then T is Tadmor–Ritt, see [LM14b, Lemma
2.1].
We further need the following well-known characterization, which can be found e.g.,
in [LM14b, Lyu99, NZ99, Vit05a].

LEMMA 4.4. Let T be an operator on a Banach space X. The following assertions are
equivalent.

(i) T is Tadmor–Ritt.

(ii) The sets {Tn : n ∈ N} and
{
n(Tn − Tn−1) : n ∈ N

}
are bounded, i.e.

Pb(T) = sup
n∈N
‖Tn‖ <∞, and c1,T := sup

n∈N
‖n(Tn − Tn−1‖ <∞. (4.11)

4.2. A functional calclulus result for Tadmor–Ritt operators

By Lemma 4.3 we know that the spectrum of a Tadmor–Ritt operator is contained in
the Stolz type domain Bθ, with θ = arccos 1

C(T) . Let Ω ⊃ Bθ be an open, bounded
and simply connected subset of C. Then for any function holomorphic on Ω, the
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FIGURE 4.1. The sets Bθ andΩη,r with η ∈
(
θ, π2

)
.

·
θ

Bθ 0 1
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η

∂Bθ
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0

∂Ωη,r

1

i

operator f(T) can be defined via the Riesz-Dunford integral

f(T) =
1

2πi

∫
Γ

f(z) R(z, T) dz, (4.12)

where Γ is a rectifiable, positively orientated, simple contour inside Ω which encir-
cles Bθ. Let H∞(Ω) denote the bounded holomorphic functions onΩ.

REMARK 4.5. Let H∞0 (Bδ) be the functions f in H∞(Bδ) for which exist constants
c, s > 0 such that f(z) 6 c|1 − z|s for all z ∈ Bδ. For δ ∈ (θ, π2 ) and f ∈ H∞0 (Bδ),
f(T) can still be defined by (4.12) with Γ equal to the boundary of ∂Bδ′ of Bδ′ with
δ ′ ∈ (θ, δ). Analogously to the situation for sectorial operators, see e.g., [Haa06a], it
can be shown that the mapping f 7→ f(A) becomes an algebra homomorphism from
H∞0 (Bδ) to B(X), see [LM14b, Section 2] for more details.

For 0 < r < 1 and η ∈ (0, π2 ], we define the ‘keyhole-shaped’ set,

Ωη,r := Bη ∪ Br(1), (4.13)

see Figure 4.1.
The function

Ei(s) =
∫∞
s

e−x

x
dx (4.14)

is known as the Exponential integral. It holds that
1
2e

−s log
(
1 + 2

s

)
< Ei(s) < e−s log(1 + 1

s
), s > 0, (4.15)

Ei(s) < log( 1
s
), s ∈ (0, 1

2 ], (4.16)

see [Gau60] and Section 3.1.1 for more details.
The following lemma outsources technicalities in the proofs of the results to come.
Estimates of this kind for deriving functional calculus estimates can already be found
in [Bak03, Pal93, Vit05a]. The technique to compute power-bounds for matrices by
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using functional calculus methods can already be traced back to Laptev [Lap75],
Tadmor [Tad81], Le Veque and Trefethen [LT84] and Spijker [Spi91]. Here, the focus
is laid on deriving estimates explicitly in the used constants.

LEMMA 4.6. For 0 < r < 1 ,m > 0 and η ∈ (0, π2 ), we have that

G(m,η, r) :=
∫
∂Ωη,r

|z|m

|z− 1|
|dz| 6 C(r,m,η) (4.17)

where ∂Ωη,r denotes the boundary of the set defined in (4.13) and

C(r,m,η) := 4(sinη)m+1 log 4
cosη + 4Ei

(
rm+1

2 cosη
)
+ 2π(1 + r)m,

where Ei is defined in (4.14).
If r 6 1

m+1 , by (4.16),

C(r,m,η) 6 −8 log cosη− 4 log(r(m+ 1)) + 2π(1 + r)m + 12 log 2.

PROOF. Let us first assume that r < cosη. We split up the path ∂Ωη,r = Γ1 ∪ Γ2 ∪
Γ3, where Γ2 denotes the union of the two straight line segments of ∂Ωη,r (dashed
lines in Figure 4.1), whereas Γ1, Γ3 denote the part of ∂Ωη,r that lies on the circles
Bsinη(0) and Br(1), respectively (dotted lines in Figure 4.1). Precisely,

Γ1 =
{
(sinη)eiδ, |δ| ∈ (π2 − η,π]

}
, Γ2 =

{
1 − te±iη, t ∈ (r, cosη]

}
,

Γ3 =
{

1 + reiδ, |δ| ∈ [0,π− η)
}

,

Next we estimate Gi :=
∫
Γi

|z|m

|z−1| |dz| for i = 1, 2, 3.
For Γ1, we see that

G1 = 2(sinη)m+1
∫π
π
2 −η

dx

|eix sinη− 1|
. (4.18)

Since 2|Reix − 1| > |eix − 1| for all R, x > 0,

G1 6 4(sinη)m+1
∫π
π
2 −η

dx

|eix − 1|
= 2
√

2(sinη)m+1
∫π
π
2 −η

dx√
1 − cos x

. (4.19)

Since
√

2 log tan x
4 is a primitive of 1√

1−cosx
for x ∈ (0,π), we derive

G1 6 −4(sinη)m+1 log tan
π
2 − η

4
6 4(sinη)m+1 log 4

π
2 −η ,

where in the last step we used that tan x > x for x ∈ [0, π4 ], which follows from
the Taylor series of tan. Since sin x 6 x for all x > 0, we finally get

G1 6 4(sinη)m+1 log
4

cosη
. (4.20)
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To estimate G2, note that |1 − teiη|2 6 (1 − t cosη) for t ∈ [0, cosη] and thus,

G2 =

∫
Γ2

|z|m|dz|

|z− 1|
= 2
∫ cosη

r

|1 − teiη|m
dt

t
6 2
∫ cosη

r

|1 − t cosη|
m
2
dt

t

Since 1 − x 6 e−x and e−
x
2 e

1
2 > 1 for x ∈ [0, 1],

G2 6 2e
1
2

∫ cos2 η

r cosη
e−x

m
2 −x2

dx

x
6 2e

1
2

∫∞
rm+1

2 cosη

e−x

x
dx = 4Ei

(
rm+1

2 cosη
)

.

Finally, G3 can be estimated by

G3 = 2
∫π−η

0
|1 + reiδ|m dδ 6 2π(1 + r)m. (4.21)

This shows (4.17) for r < cosη.

If r > cosη, then ∂Ωη,r = ∂(Bsinη(0) ∪ Br(1)). Hence, we choose Γ1 and Γ3 to be
the convenient parts of the circles ∂Bsinη(0), ∂Br(1) such that Γ1 ∪ Γ3 = ∂Ωη,r, i.e.
Γ1 =

{
sinηeiδ, |δ| ∈ (α,π]

}
and Γ3 =

{
1 + reiδ, |δ| ∈ [0,π− β)

}
for certain angles

α, β depending on η. Since r > cosη it is easy to see that α > π
2 − η and hence,

we can estimate similarly as in (4.20) and (4.21),

G(m,η, r) =
∫
Γ1

+

∫
Γ3

6 G1 + 2π(1 + r)m 6 4(sinη)m+1 log 4
cosη + 2π(1 + r)m,

which concludes the proof as the right hand side is smaller than C(r,m,η). �

THEOREM 4.7. Let T be a Tadmor–Ritt operator on X. Let θ = arccos 1
C(T) . Then,

form ∈ N0, r ∈ (0, 1) and η ∈ (θ, π2 ) we have, with τm(z) = zm, that

‖(f · τm)(T)‖ 6 c(T ,m, r,η) · ‖f‖∞,Ωη,r (4.22)

for f ∈ H∞(Ωη,r). Here,

c(T ,m, r,η) 6
Cη(T)

2π
C(r,m,η)

where Cη(T) = supz∈C\Bη
‖(z− 1)R(z, T)‖, and C as in Lemma 4.6.

PROOF. Let η ∈ (θ, π2 ) and r > 0. By Lemma 4.3 we know that σ(T) ⊂ Ωη,r. Let
f ∈ H(Ωη,r). Since fτm is holomorphic onΩη,r,

(fτm)(T) =
1

2πi

∫
∂Ωη̃,r̃

f(z)zmR(z, T) dz,

where η̃ ∈ (θ,η) and r̃ ∈ (0, r). SinceΩη̃,r̃ ⊂ Ωη,r,

‖(fτm)(T)‖ 6 Cη̃(T)
2π

‖f‖∞,Ωη,r

∫
∂Ωη̃,r̃

|z|m

|z− 1|
dz

6
Cη̃(T)

2π
‖f‖∞,Ωη,r · C(r̃,m, η̃).
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Therefore, Lemma 4.6 and letting (η̃, r̃) → (η, r) give the assertion (that Cη̃(T) →
Cη(T) can be seen by the maximum principle, see Theorem A.3, the rest follows
since C is continuous). �

The following inequality is a direct consequence of the maximum principle. The disc
case (η = π

2 ) can be traced back to S. Bernstein, and can be found in [Rie16, p. 346],
or [PS25, Problem III. 269, p.137].

LEMMA 4.8. Let Bα, α ∈ (0, π2 ], be the Stolz type domain defined in Sec. 4.1.1. The
following assertions hold.

(i) For a polynomial p of degree n, and r > 1,

‖p‖∞,rBα 6
( r

sinα

)n
· ‖p‖∞,Bα . (4.23)

(ii) For f ∈ H(Bα) and continuous on Bα,m ∈ N and τm(z) = zm,

‖f · τm‖∞,Bα 6 ‖f‖∞,Bα 6
1

(sinα)m
‖f · τm‖∞,Bα . (4.24)

PROOF. The first assertion is a consequence of the maximum principle applied
to p(z)z−n. In fact, let z ∈ C \ Bα. Then, since z 7→ p(z)z−n is analytic at∞, by
the maximum principle,

|p(z)z−n| 6 max
z∈∂Bα

|p(z)z−n| 6 max
z∈∂Bα

|z−n| · ‖p‖∞,Bα . (4.25)

It is easy to see that maxz∈∂Bα |z
−1| = 1

sinα . Hence, multiplying (4.25) by |z|n and
noting that |z| 6 r for z ∈ ∂(rBα) ⊂ C \ Bα yields

|p(z)| 6
( r

sinα

)n
‖p‖∞,Bα , z ∈ ∂(rBα).

Therefore, (4.23) follows by the maximum principle.
It is easy to see that sinα 6 |z| for z ∈ ∂Bα. Therefore, by the maximum principle,

‖f‖∞,Bα = sup
z∈∂Bα

|f(z)| 6
1

(sinα)m
sup
z∈∂Bα

|zmf(z)| =
1

(sinα)m
‖fτm‖∞,Bα

The other inequality of (4.24) is clear as Bα ⊂ D. �

THEOREM 4.9. Let T be a Tadmor–Ritt operator on X and let m,n ∈ N such that
0 6 m 6 n. Then, for any p(z) =

∑n
k=m akz

k, we have that

‖p(T)‖ 6 aC(T)
(

2 logC(T) + b+ log
n+ 1
m+ 1

)
· ‖p‖∞,D, (4.26)

with absolute constants a,b, that can be chosen as

a = 2e
π(1−s) , b = −2 log(s) + 6, s ∈ (0, 1).
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PROOF. Let p(z) =
∑n
k=m akz

k = zmp0(z) with 0 6 m 6 n and p0 is a polyno-
mial of degree n −m. For s ∈ (0, 1] let η(s) = arccos s

C(T) . By Theorem 4.7 we
have for s, r ∈ (0, 1) that

‖p(T)‖ 6 c(T ,m, r,η(s)) · ‖p0‖∞,Ωη(s),r , (4.27)

where p(z) = zmp0. SinceΩη(s),r ⊂ (1 + r)D, Lemma 4.8 (i) (with α = π
2 ) yields

‖p0‖∞,Ωη(s),r 6 ‖p0‖∞,(1+r)D 6 (1 + r)n−m‖p0‖∞,D. (4.28)

By the maximum principle, ‖p0‖∞,D = ‖p‖∞,D. Hence, by choosing r = τ
n+1 with

τ ∈ (0, 1), Eq. (4.27) becomes

‖p(T)‖ 6 c(T ,m, τ
n

,η(s)) · (1 + τ
n+1 )

n−m‖p‖∞,D. (4.29)

It remains to estimate the right hand side. Clearly, (1 + τ
n+1 )

n−m 6 e. Theorem
4.7 yields that

c(T ,m, τ
n+1 ,η(s)) 6

Cη(s)

2π
C( τ
n+1 ,m,η(s)).

We can further estimate C using Lemma 4.6. Since r = τ
n+1 6

1
m+1 ,

c(T ,m, τ
n+1 ,η(s)) 6

2Cη(s)
π

(−2 log cosη(s) + log
n+ 1
m+ 1

− log τ+
π

2
eτ + 3 log 2).

By Lemma 4.3, Cη(s)(T) 6
C(T)
1−s for s ∈ (0, 1). Since cosη(s) = s

C(T) ,

c(T ,m, τ
n

,η(s)) 6
2C(T)
π(1 − s)

(2 logC(T)−2 log s+ log
n+ 1
m+ 1

− log τ+
π

2
eτ+3 log 2).

As minτ∈(0,1) log 1
τ
+ π

2 e
τ + 3 log 2 < 6, together with (4.29), this yields (4.26). �

COROLLARY 4.10. Let T be a Tadmor–Ritt operator. Then T is power-bounded,

sup
n∈N
‖Tn‖ 6 aC(T) (2 logC(T) + b)

with absolute constants a,b > 0 as in Theorem 4.9.

REMARK 4.11.

(i) Theorem 4.9 shows that any Tadmor–Ritt operator has a boundedH∞[m,n]-
calculus, where

H∞[m,n] =

{
p(z) =

n∑
k=m

akz
k : ak ∈ C

}
(4.30)

and m 6 n. With different techniques, such a result was proved by Vitse
in [Vit05a], see also (4.7). However, in [Vit05a] the bound of the calculus
depends on a factor C(T)5, whereas in our Theorem 4.9, this gets improved
to a behavior of C(T)(logC(T) + 1). Moreover, Corollary 4.10 shows that
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the same dependence holds true for the power-bound of a Tadmor–Ritt op-
erator. This confirms the result by Bakaev [Bak03], which seems not so
well-known, and improves the better known quadratic dependence C(T)2,
see [EFR02], [Vit05a].

(ii) It is a natural question to ask if the ‖ · ‖∞,D-norm in Theorem 4.9 can be
replaced by the sharper ‖ · ‖∞,Bη -norm for some η < π

2 . Indeed, Lemma
4.8 allows us to do this, see also (4.28). However, this leads to an additional
factor (sinη)−n, which therefore destroys the logarithmic behavior in n.
Let us further remark that a polynomially bounded Tadmor–Ritt operator
T (see (4.8)) on a Hilbert space implies an estimate of the form

‖p(T)‖ . ‖p‖∞,Bη ,

for some η < π
2 . In other words, T allows for a bounded H∞(Bη)-calculus.

However, this is not true for general Banach spaces, see [LM13]. More gen-
erally, including the Hilbert space case, if one assumes that T is R-Ritt (see
Section 4.4), then polynomial-boundedness does indeed imply a bounded
H∞(Bη)-calculus, see [LM14b, Proposition 7.6] on arbitrary Banach spaces.

4.3. The effect of discrete square function estimates - Hilbert space

In the following we will show that discrete square function estimates improve the
dependence in the way that log n+1

m+1 in (4.26) gets replaced by its square root.

DEFINITION 4.12 (Hilbert space square function estimate). Let T be a bounded op-
erator on a Hilbert space X. We say that T satisfies square function estimates if there
exists a K > 0 such that

‖x‖2
T :=

∞∑
k=1

k‖Tkx− Tk−1x‖2 6 K2‖x‖2, ∀x ∈ X. (4.31)

Square function estimates are a well-known tool characterizing bounded H∞-calculi
for sectorial operators, going back to McIntosh’s seminal work in the 80s [McI86].
From the 90s on, H∞-calculus has proved very useful in the study of maximal reg-
ularity. In [CDMY96] a suitable Lp-version of square function estimates was intro-
duced which then got further adapted to general Banach spaces by Kalton and Weis
in the unpublished note [KW01], see also [KW04] and the references therein. Max-
imal regularity for discrete-time difference equations were investigated in [Blu01b,
Blu01a]. Discrete square function estimates for Tadmor–Ritt operators were studied
in [KP08]. We mention that in the literature there exists a whole scale of square func-
tions, see [LM14b, Section 3], whereas we only use the specific form in Definition
4.12.
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As for sectorial operators, for non-Hilbert (typically, Lp-) spaces suitable square func-
tion estimates have to be redefined for Tadmor–Ritt operators using Rademacher
means. For the moment we will restrict ourselves to the Hilbert space case and leave
the general Banach space case for Section 4.4.
The following characterization of bounded H∞-calculus for Tadmor–Ritt operators
was recently proved in [LM14b]. For the rest of the section we want to empha-
size that on Hilbert spaces the notions of R-Ritt and Tadmor–Ritt operator coincide,
whereas on general Banach spaces R-Ritt is stronger than Tadmor–Ritt. For a defini-
tion of R-Ritt operators and square function estimates on general Banach spaces, we
refer to Definition 4.21 and Section 4.4.

THEOREM 4.13 (Le Merdy 2014, [LM14b, Corollary 7.5]). Let T be a Tadmor–
Ritt operator on a Banach space X. Consider the assertions

(i) T is R-Ritt (Def. 4.21) and both T and T∗ satisfy square function estimates.

(ii) For some η ∈ (0, π2 ),

‖f(T)‖ . ‖f‖∞,Bη ∀f ∈ H∞0 (Bη), (4.32)

where H∞0 (Bη) is defined in Remark 4.5.
Then, (i)⇒ (ii).
If X is a UMD space (in particular, a Hilbert space), then (ii)⇒ (i).

The assumption on (the geometry of) the Banach space for the direction (i) to (ii)
can be further generalized to X having property (∆), see [LM14b, KW01]. In [LM14b,
Proposition 8.1] it is further shown that there exist Tadmor–Ritt operators (even on
Hilbert spaces) such that (only) T satisfies square function estimates, but (4.32) does
not hold. However, we will see that having square function estimates for T (or
T∗) does improve the functional calculus estimate in Theorem 4.9. Note that for a
Tadmor–Ritt operator T of type θ and r ∈ (0, 1), rT is again Tadmor–Ritt with

C(rT) = sup
|λ|>1

∥∥∥(λ− 1) 1
r

(
λ
r
− T
)−1
∥∥∥ 6 C(T) sup

|λ|>1

∣∣∣∣λ− 1
λ− r

∣∣∣∣ = 2C(T)
1 + r

. (4.33)

We remark that moreover limr↗1 f(rT) = f(T) for f ∈ H∞0 (Bη) with η ∈ (θ, π2 ), see
[LM14b, Lemma 2.3].

LEMMA 4.14. Let T be a Tadmor–Ritt operator on a Hilbert spaceX. Form ∈ N∪{0},
r ∈ (0, 1),

‖(rT)mx‖rT 6 arm
√
b+ log

(
1 −

1
2(m+ 1) log r

)
‖x‖ ∀x ∈ X, (4.34)

with a =
√

2c1,T and b = 1 + Pb(T)2

c2
1,T

, where c1,T and Pb(T) are defined in (4.11).
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PROOF. Clearly, rT is a Tadmor–Ritt operator. By definition,

‖(rT)mx‖2
rT = r2m

∞∑
k=1

k‖rkTk+mx− rk−1Tk−1+mx‖2

6 r2m
∞∑
k=1

kr2(k−1) (2‖Tk+mx− Tk−1+mx‖2 + 2‖(1 − r)Tk+mx‖2)
6 r2m

∞∑
k=1

kr2(k−1)

(
2c2

1,T

(k+m)2 + 2(1 − r)2Pb(T)2

)
‖x‖2, (4.35)

where c1,T = supn∈N ‖n(Tn − Tn−1)‖ which is finite by Lemma 4.4. Since
k

(k+m)2 6 1
k+m ,

∞∑
k=1

kr2(k−1)

(k+m)2 6
∞∑
k=0

r2k

k+ 1 +m

6
1

m+ 1
+

∫∞
0

e2x log r

x+ 1 +m
dx

=
1

m+ 1
+ r−2(m+1)Ei(−2(m+ 1) log r)

6
1

m+ 1
+ log

(
1 −

1
2(m+ 1) log r

)
, (4.36)

where the last step follows by (4.15). Using this and the fact that
∑∞
k=1 kr

2(k−1) =
1

(1−r2)2 , we can conclude in (4.35) that

‖(rT)mx‖2
rT 6 r

2m
[

2c2
1,T

(
1

m+ 1
+ log

(
1 −

1
2(m+ 1) log r

))
+

2Pb(T)2

(1 + r)2

]
‖x‖2

6 2c2
1,T r

2m
(
b+ log

(
1 −

1
2(m+ 1) log r

))
‖x‖2,

for b = 1 + Pb(T)2

c2
1,T

. �

Another lemma, we will need, is the following result relating square function es-
timates for T and rT as r ↗ 1. This can be seen as a discrete analog of [LM03,
Proposition 3.4].

LEMMA 4.15. Let T be a Tadmor–Ritt operator on a Hilbert space. Then, the follow-
ing are equivalent

(i) T satisfies square function estimates.

(ii) rT satisfies square function estimates uniform in r ∈ (0, 1), i.e.,

∃K > 0 ∀r ∈ (0, 1)∀x ∈ X : ‖x‖rT 6 K ‖x‖.

PROOF. This follows from the more general Lemma 4.24 in Section 4.4. �
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The following theorem is essentially Le Merdy’s key argument to prove that (i) im-
plies (ii) in Theorem 4.13. As we need its precise form, we state it explicitly. For
a proof we refer to [LM14b, Proof of Theorem 7.3]. As before, for a definition of
R-Ritt operator of R-type θ we refer to Definition 4.21 in Section 4.4. For the moment
it suffices to remark that on Hilbert spaces this notion is equivalent to the one of a
Tadmor–Ritt operator of type θ, see Section 4.4.

THEOREM 4.16 (Le Merdy 2014). Let T be a R-Ritt operator of R-type θ on a Banach
space X (if X is a Hilbert space, this is equivalent to T being a Tadmor-Ritt operator of type θ).
Let 0 < θ < η < π

2 . Then, there exists c = c(η,C(T)) > 0 such that

|〈y,p(T)x〉| 6 c · ‖p‖∞,Bη · ‖x‖T · ‖y‖T∗ ,

for any polynomial p, x ∈ X and y ∈ X∗.
(Note that the right-hand-side is allowed to be∞).

Combining Theorem 4.16 and Lemma 4.14 yields the following refinement of Theo-
rem 4.9.

THEOREM 4.17. Let T be a Tadmor–Ritt operator on a Hilbert space X. Assume that
either T or T∗ satisfies square function estimates. Then, for integers 0 6 m 6 n and
p(z) =

∑n
j=m ajz

j,

‖p(T)‖ 6 acKe
1
2 ·
√
b+ log

n+ 2
m+ 1

· ‖p‖∞,D,

with K,a,b, c defined in (4.31), Lemma 4.14 and Theorem 4.16, respectively.

PROOF. Since X is a Hilbert space, T is R-Ritt of type θ = arccos 1
C(T) . Let r ∈

(0, 1) and choose η ∈ (θ, π2 ). Define p 1
r
(z) = p(z

r
). It is easy to see that p 1

r
(rT) =

p(T) since p is a polynomial. Furthermore, we write p(z) = zmq(z) for q having
degree n−m. Therefore, for all x ∈ X,

p(T)x = q 1
r
(rT)(rT)mx. (4.37)

W.l.o.g. let T∗ satisfy square function estimates. Hence, by Lemma 4.15, ‖y‖rT∗ 6
K‖y‖ for all y ∈ X∗ and all r ∈ (0, 1). Applying Theorem 4.16 for rT and p = q 1

r

yields
|〈y,q 1

r
(rT)(rT)mx〉| 6 cK · ‖q 1

r
‖∞,D · ‖(rT)mx‖rT · ‖y‖, (4.38)

for x ∈ X,y ∈ X∗where we used that Bη ⊂ D. By Lemma 4.8 (i) and the maximum
principle, ‖q 1

r
‖∞,D 6 rm−n‖q‖∞,D = rm−n‖p‖∞,D. Therefore, and by Lemma

4.14, Eq. (4.38) yields

‖q 1
r
(rT)(rT)m‖ 6 acK

√
b+ log

(
1 − 1

2(m+1) log r

)
· r2m−n · ‖p‖∞,D.
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Choose r = e−
1

2(n−m+1) . Then 1− 1
2(m+1) log r =

n+2
m+1 and r2m−n = e

n−2m
2(n−m+1) < e

1
2 .

Thus, by (4.37),

‖p(T)‖ 6 acKe
1
2

√
b+ log

n+ 2
m+ 1

· ‖p‖∞,D.

�

REMARK 4.18.

(i) The proof idea of Theorem 4.17 can also be used for an alternative proof
of the logarithmic behavior in Theorem 4.9, if we do a similar computation
for ‖Tmy‖rT∗ (instead of assuming square function estimates ‖y‖T . ‖y‖).
This finally yields another factor of the form

√
b̃+ log n+2

m+1 .

(ii) As explained in Remark 4.11, in Theorem 4.17 we can also derive ‘sharper’
estimates in the ‖ · ‖∞,Bη -norm at the price that additional factors of the
form (sinη)−n enter the estimate.

4.4. Discrete square function estimates on general Banach spaces

As indicated in Section 4.3, for non-Hilbert spaces, Definition 4.12 is not suitable for
characterizing boundedness of the H∞-calculus. For Lp-spaces the proper replace-
ment is given by

‖x‖T :=

∥∥∥∥∥∥
( ∞∑
k=1

k|Tkx− Tk−1x|2

) 1
2

∥∥∥∥∥∥
Lp

. ‖x‖ (4.39)

where T is a Tadmor–Ritt operator on Lp(Ω), p ∈ [1,∞), for some measure space
(Ω,µ), see [KP08], [LM14b] and the references therein. By Fubini’s theorem, this
definition coincides with Definition 4.12 if p = 2.
However, to cover general Banach spaces, we need the following generalization us-
ing Rademacher averages. This approach (for sectorial operators), paving the way
for a lot of research in this field, was introduced by Kalton and Weis in their ‘famous’
unpublished note, see the preprint [KW01]. For an excellent overview on the topic
we refer to [KW04]. The discrete version of these general square function estimates
for Tadmor–Ritt operators recently appeared in [LM14b].

We briefly recap the definition of the needed Rademacher norms. For more details,
we refer to [LM14b, KW04]. For k > 1, we define the Rademacher function εk(t) =
sgn(sin(2kπt)). It is easy to see that (εk)k>1 forms an orthonormal basis in L2(I)

with I = [0, 1]. For a Banach space X let us consider the linear span of elements
εk⊗ x = (t 7→ εk(t)x), k > 0, x ∈ X, in the Bochner space L2(I,X). Denote the closure
of this set, w.r.t. the norm in L2(I,X), by Rad(X). Hence, Rad(X) becomes a Banach
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space with the norm

‖x̃‖Rad(X) =

∫
I

∥∥∥∥∥∑
k

εk(t)xk

∥∥∥∥∥
2

dt

 1
2

,

for elements x̃ =
∑
k εk⊗xk with (xk)k being a finite family in X. By orthonormality

of the Rademacher functions it follows that

Rad(X) =

{ ∞∑
k=1

εk ⊗ xk : xk ∈ X, the sum converges in L2(I,X)

}
. (4.40)

Now we can define a general square function by

‖x‖T =

∥∥∥∥∥
∞∑
k=1

εk ⊗ k(Tkx− Tk−1x)

∥∥∥∥∥
Rad(X)

, (4.41)

where we set ‖x‖T =∞ if
∑
k εk ⊗ k(Tkx− Tk−1x) /∈ Rad(X).

DEFINITION 4.19 (Square function estimates for Tadmor–Ritt operators). Let T be a
Tadmor–Ritt operator on a Banach space X. We say that T satisfies (abstract) square
function estimates, if there exists KT > 0 such that for all x ∈ X,

‖x‖T =

∥∥∥∥∥
∞∑
k=1

εk ⊗ k
1
2 (Tkx− Tk−1x)

∥∥∥∥∥
Rad(X)

6 KT‖x‖. (4.42)

Note that if X is a Hilbert space, as a consequence of Parseval’s identity, this defi-
nition of square function estimates coincides with the one given in Definition 4.12.
Precisely, for any finite sequence (xk)k ∈ X,∥∥∥∥∥∑

k

εk ⊗ xk

∥∥∥∥∥
Rad(X)

= (
∑
k

‖xk‖2)
1
2 , (4.43)

which shows that both definitions of square functions estimates coincide. Further, it
can be shown that for X = Lp = Lp(Ω,µ) (p ∈ [1,∞) and (Ω,µ) being σ-additive),∥∥∥∥∥∑

k

εk ⊗ xk

∥∥∥∥∥
Rad(Lp)

∼

∥∥∥∥∥∥
(∑
k

|x|2

) 1
2

∥∥∥∥∥∥
Lp

,

see [KW04, Remark 2.9]. Hence, (4.39) is equivalent to having square function esti-
mates using Rademacher averages.

The notion of R-boundedness emerges naturally when considering the space Rad(X).
After being introduced in [BG94], it has been proved very useful in the study of
maximal regularity, see [KW04] for a detailed introduction.

DEFINITION 4.20. Let X be a Banach space and T ⊂ B(X) a set of bounded opera-
tors. Then, T is called R-bounded if there exists a constantM such that for any finite
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family (Tk))k ∈ T, and finite sequence (xk)k ⊂ X,∥∥∥∥∥∑
k

εk ⊗ Tkxk

∥∥∥∥∥
Rad(X)

6M

∥∥∥∥∥∑
k

εk ⊗ xk

∥∥∥∥∥
Rad(X)

. (4.44)

The smallest possible constant C is called the R-bound.

By (4.43), it follows that for Hilbert spaces the notion of R-boundedness of T coin-
cides with (uniform) boundedness of T in the operator norm. However, in general,
R-boundedness only implies boundedness, see [AB02].
Now we are able to introduce R-Ritt operators, which first appeared in [Blu01b,
Blu01a]. Nonetheless the notion R-Tadmor–Ritt would be more consistent in this
Chapter, we use the name R-Ritt following Le Merdy [LM14b]. For Hilbert spaces,
the following notion is equivalent to the one of a Tadmor–Ritt operator, see Lemma
4.4.

DEFINITION 4.21. An operator T on a Banach space X is called R-Ritt if the sets

{Tn : n ∈ N} and
{
n(Tn − Tn−1) : n ∈ N

}
(4.45)

are R-bounded. We denote the bounds by PbR(T) and cR1,T , respectively.

By Lemma 4.4, an R-Ritt operator is always a Tadmor–Ritt operator and the notions
coincide on Hilbert spaces. Moreover, the following R-Ritt version of Lemmata 4.3
and 4.4 holds. For a proof, see [LM14b, Lemma 5.2] and [Blu01b].

LEMMA 4.22. Let T be a bounded operator on a Banach space X. The following
assertions are equivalent.

(i) T is R-Ritt.

(ii) σ(T) ⊂ Bθ for some θ ∈ [0, π2 ) and for all η ∈ (θ, π2 ]{
(z− 1)R(z, T) : z ∈ C \ Bη

}
is R-bounded. (4.46)

In this case, we say that T is of R-Ritt type θ.

Now we are ready to prove the corresponding R-Ritt version of the results in Section
4.3 for general Banach spaces.
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LEMMA 4.23. Let T be a R-Ritt operator on a Banach space X. For m ∈ N ∪ {0},
r ∈ (0, 1),

‖(rT)mx‖rT 6 arm
√
bR + log

(
1 −

1
2(m+ 1) log r

)
‖x‖ ∀x ∈ X, (4.47)

with aR =
√

2cR1,T and bR = 1 + PbR(T)2

(cR1,T )
2 , where cR1,T ,PbR(T) are defined in Def.

4.21.

PROOF. The proof technique is very similar to the proof of Lemma 4.14. There-
fore, we will focus on the arguments involving R-boundedness. Since rT is a
Tadmor–Ritt operator, we have, see 4.42,

‖Tmx‖rT =

∥∥∥∥∥
∞∑
k=1

εk ⊗ k
1
2 (rkTk+mx− rk−1Tk−1+mx)

∥∥∥∥∥
Rad(X)

6

∥∥∥∥∥
∞∑
k=1

εk ⊗
[
(Tk+m − Tk−1+m) + (1 − r)Tk+m

]
k

1
2 rk−1x

∥∥∥∥∥
Rad(X)

6 cR1,T

∥∥∥∥∥
∞∑
k=1

εk ⊗
k

1
2 rk−1

k+m
x

∥∥∥∥∥
Rad(X)

+

+ (1 − r)PbR(T)

∥∥∥∥∥
∞∑
k=1

εk ⊗ k
1
2 rk−1x

∥∥∥∥∥
Rad(X)

, (4.48)

where the last step follows since T is R-Ritt. By the definition of the Rad(X)-norm,
and Parseval’s identity (for L2[0, 1]), the first norm in (4.48) equals∥∥∥∥∥

∞∑
k=1

εk ⊗
k

1
2 rk−1

k+m
x

∥∥∥∥∥
2

Rad(X)

=

∫ 1

0

∥∥∥∥∥
∞∑
k=1

εk(t)
k

1
2 rk−1

k+m x

∥∥∥∥∥
2

X

dt

= ‖x‖2
∫ 1

0

∣∣∣∣∣
∞∑
k=1

εk(t)
k

1
2 rk−1

k+m

∣∣∣∣∣
2

dt

= ‖x‖2
∞∑
k=1

∣∣∣∣∣k
1
2 rk−1

k+m

∣∣∣∣∣
2

.

The remaining series can be estimated as in the Hilbert space proof. Analogously,
the second norm in (4.48) can be computed. Therefore, we derive,

‖(rT)mx‖rT 6 rm
[
cR1,T

(
1

m+ 1
+ log

(
1 −

1
2(m+ 1) log r

)) 1
2

+
PbR(T)

(1 + r)

]
‖x‖

6
√

2cR1,T r
2m
(
bR + log

(
1 −

1
2(m+ 1) log r

)) 1
2

‖x‖,
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for bR = 1 + PbR(T)2

(cR1,T )
2 . �

We further need the generalization of Lemma 4.15 to (abstract) square function esti-
mates.

LEMMA 4.24. Let T be a R-Ritt operator on a Banach space X. Then, the following
are equivalent.

(i) T satisfies (abstract) square function estimates.

(ii) rT satisfies (abstract) square function estimates uniform in r ∈ (0, 1),

∃K > 0 ∀r ∈ (0, 1)∀x ∈ X : ‖x‖rT 6 K ‖x‖.

PROOF. The proof is similar to one for the continuous time analog [LM03,
Proposition 3.4] and is based on using the identity

(I− T)Tkx = (I− rT)Tkx+ (1 − r)Tk+1x. (4.49)

This yields, using that T is R-Ritt,∥∥∥∥∥
∞∑
k=1

εk ⊗ k
1
2 rk(I− T)Tkx

∥∥∥∥∥
Rad(X)

6

∥∥∥∥∥
∞∑
k=1

εk ⊗ k
1
2 (I− rT)(rT)kx

∥∥∥∥∥
Rad(X)

+

+ PbR(T)(1 − r)

∥∥∥∥∥
∞∑
k=1

εk ⊗ k
1
2 rkx

∥∥∥∥∥
Rad(X)

.

(4.50)

By Parseval’s identity, the second Rad(X)-norm equals (
∑∞
k=1 kr

2k)
1
2 ‖x‖ = ‖x‖

1−r2 .
Therefore, it is easy to see that the second term in (4.50) is bounded in r ∈ (0, 1).
Hence, by Fatou’s lemma, we get that (ii) implies (i). The other direction also
follows, with a similar estimation, from (4.49). �

The Banach space version of Theorem 4.17 now follows completely analogously to
the Hilbert space proof with Lemmata 4.23 and 4.24 (instead of Lemmata 4.14 and
4.15).

THEOREM 4.25. Let T be a R-Ritt operator on a Banach space X. Assume that either
T or T∗ satisfies (abstract) square function estimates. Then, for integers 0 6 m 6 n
and p(z) =

∑n
j=m ajz

j,

‖p(T)‖ 6 aRcKTe
1
2 ·
√
bR + log

n+ 2
m+ 1

· ‖p‖∞,D,

with KT ,aR,bR and c defined in (4.42), Lemma 4.23 and Theorem 4.16, respectively.



102 4. FUNCTIONAL CALCULUS ESTIMATES FOR TADMOR–RITT OPERATORS

4.5. Sharpness of the estimates

It is natural to ask whether the deduced functional calculus estimates from Theorems
4.9 and 4.17,

‖p(T)‖ 6 aC(T)
(

logC(T) + b+ log
n+ 1
m+ 1

)
‖p‖∞,D, (4.51)

and

‖p(T)‖ 6 a2cKTe
1
2 ·
√
b2 + log

n+ 2
m+ 1

· ‖p‖∞,D, (4.52)

for p ∈ H∞[m,n], that is p(z) =
∑n
k=m akz

k, are sharp. Clearly, here ‘sharpness’ has
different aspects depending on the variables C(T),m,n it is referring to. For a clear
discussion, we distinguish between the following questions.

(A) Is (4.51) sharp in the variablesm,n, with 0 6 m 6 n?

(B) Is (4.51) sharp in the variable C(T) for (some) fixedm,n?

(C) Question (A) for (4.52).

(D) Question (B) for (4.52).

To answer these questions, we introduce the quantity

C(T ,m,n) = sup {‖p(T)‖ : p ∈ H∞[m,n], ‖p‖∞,D 6 1} . (4.53)

Question (A) was discussed Vitse in [Vit05a, Remark 2.6] using the prior works
[Vit04b, Vit05b]. In particular, she showed that if X contains a complemented iso-
morphic copy of `1 or `∞ (e.g., some infinite-dimensional L1 or C(K) spaces), then
there exists a Tadmor–Ritt operator on X such that

C(T ,m,n) & log
ne

m
,

where the involved constant only depends on X and is thereby linked with constant
C(T). However, the precise dependence on C(T) is not apparent there. If X is an
(infinite-dimensional) Hilbert space (more, generally if the Banach spaceX contains a
complemented isomorphic copy of `2), then for any δ ∈ (0, 1), there exists a Tadmor–
Ritt operator such that

C(T ,m,n) &
(

log
ne

m

)δ
.

These statements can be generalized to more general spaces X that uniformly contain
uniform copies of `1n (or `2n respectively). We refer to [Vit04a, Vit05a] for details.

Question (B) can be split up in several cases. If m = 0, hence p is an arbitrary
polynomial of degree n, (4.51) implies that C(T , 0,n) . C(T)(logC(T) + log(n+ 1)).
Hence, we observe ‘linear’ asymptotic behavior inC(T) as n→∞. In fact, in [Vit04a,
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Theorem 2.1] it is shown that it is indeed linear, namely

C(T , 0,n) 6 (C(T) + 1) log(e2n), (4.54)

and there exists a T on some Banach space X such that C(T , 0,n) ∼ log(e2n). We
point out that the proof technique, [Vit04a, Theorem 2.1], requiresm = 0.

However, for m = n, Question (B) reduces to the prominent question of the opti-
mal power-bound for T . As mentioned in Corollary 4.10, (4.51) yields

C(T ,n,n) = ‖Tn‖ . C(T)(logC(T) + 1),

for all n. This is so-far the best known power-bound for Tadmor–Ritt operators,
see also [Bak03]. It remains open whether this can be replaced by a linear C(T)-
dependence. Furthermore, motivated by the Kreiss Matrix Theorem (4.5), it is not
clear whether for N-dimensional spaces X, an estimate of the form

Pb(T) 6 C(T)g(N) (4.55)

for some scalar function g can be achieved, where g(N) ∈ o(N). Note that the esti-
mate for g(N) = eN trivially holds by (4.5) and the fact that CKreiss(T) 6 C(T).

Let us turn to Question (C) now. We want to show sharpness of

C(T ,m,n) .

√
log

n+ 1
m+ 1

(4.56)

under the assumption that T satisfies square function estimates. Therefore, we con-
struct T as a Schauder basis multiplier, which is a well-known technique to construct
unbounded calculi, see e.g., Section 3.3.1 and [BC91], where it was introduced. Let
X be a separable infinite-dimensional Hilbert space with a bounded Schauder basis
{ψk}. For a sequence (λn) ⊂ [0, 1], define the bounded operator T = Mλ by

Tx =

(∑
k

xkψk

)
=
∑
k

λkxkψk,

for finite sequences (xk) ⊂ C. Let λn = 1 − 2−n, then T is Tadmor–Ritt, see [LM14b,
Proposition 8.2]. With this setting we can use the following argument from [Vit05b,
Proof of Theorem 2.1]. Let δ ∈ (0, 1). If for the uniform basis constant ub({ψk}

N
k=1) it

holds that ub({ψk}
N
k=1) & N

δ, i.e.

∃c > 0 ∀N ∈ N : sup

{∥∥∥∥∥
N∑
k=1

αkxkψk

∥∥∥∥∥ : |αk| 6 1,

∥∥∥∥∥
N∑
k=1

xkψk

∥∥∥∥∥ 6 1

}
> cNδ, (4.57)

then C(T ,m,n) &
(
log n+1

m+1

)δ.
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As for sectorial Schauder multipliers, it holds that T satisfies square function esti-
mates if the basis is Besselian, i.e., ∃cψ > 0

cψ

(∑
k

|xk|
2

) 1
2

6

∥∥∥∥∥∑
k

xkψk

∥∥∥∥∥ , (4.58)

for finite sequences (xk) ⊂ C, see [LM03, Theorem 5.2] and [LM14b, Theorem 8.2].
Note that (4.58) already implies that ub({ψk}

N
k=1) 6 cψm(ψ)

√
N, where m(ψ) =

supk ‖ψk‖. It remains to find a Besselian basis {ψk} such that (4.57) is fulfilled for
δ ∈ (0, 1

2 ). Indeed, such an example can be constructed for an L2-space on the unit
circle with suitable weight, see [LM03, Theorem 5.2], Theorem 3.26, and [STW03,
Section 4.3]. In fact, the example in Theorem 3.26 in Chapter 3 gives a basis

ψ2k(t) = |t|−βeikt, ψ2k+1(t) = |t|−βe−ikt, k ∈ N0,

(there, the notation is ψ∗) with β ∈ ( 1
3 , 1

2 ). Moreover, it is shown that there exist
elements x,y ∈ L2 such that

|xn| ∼ n3β−1, |yn| ∼ nβ−1, n ∈ N,

where x =
∑
n xnψn and y ∈

∑
n ynψ

∗
n, and where {ψ∗n} denotes the dual basis such

that 〈ψ∗k,ψn〉 = δnk. Choosing |αn| = 1 such that αnxnyn ∈ R>0, we deduce

|〈y,
N∑
n=1

αnxnψn〉| =
N∑
n=1

αnxnyn &
N∑
n=1

n3β−2 ∼ N3β−1.

Since ‖
∑N
n=1 xnψn‖ 6 b(ψ)‖x‖, (4.57) follows for δ = 3β− 1 ∈ (0, 1

2 ). Therefore, we
have proved the following result, which answers (C) for Hilbert spaces.

THEOREM 4.26. There exists a Hilbert space such that for any δ ∈ (0, 1
2 ) there exists

a Tadmor–Ritt operator T which satisfies square function estimates and

C(T ,m,n) &
(

log
n+ 1
m+ 1

)δ
holds, where C(T ,m,n) is defined in (4.53). Note that the involved constants depend
on δ.

An open question is whether there exists an R-Ritt operator on a Banach space such

that T satisfies square function estimates and C(T ,m,n) &
(
log n+1

m+1

) 1
2 .

By c1,T . C(T)3, see [Vit05a], and c . Pb(T)3c1,T , see [LM14b, Proof of Theorem
7.3], we can track C(T) in the constants of the estimate in Theorem 4.17. This yields
a C(T)-dependence, which seems far from being sharp. Hence, the answer to (D) is
probably ‘no’.
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4.6. Further results

As a direct corollary of the improvements of Vitse’s result, we get the following result
for the Besov space functional calculus of T , which in turn is a slight improvement of
[Vit05a, Theorem 2.2]. For details of the following notions and facts see [Vit05a] and
the references therein. Recall that the Besov space B∞,1(D) is defined by the functions
f ∈ H(D) such that

‖f‖B := ‖f‖∞,D +

∫ 1

0
max
α

|f ′(reiα)|dr <∞.

It is well known that there exists an equivalent definition via the dyadic decom-
position f =

∑∞
n=0Wn ∗ f, where Wn, n > 1 are shifted Fejer type polynomials,

whose Fourier coefficients Ŵn(k) are the integer values of the triangular-shaped
function supported in [2n−1, 2n+1] with peak Ŵn(2n) = 1 and W0(z) = 1 + z. Here
(g ∗ f)(z) =

∑∞
k=0 ĝ(k)f̂(k)z

k. Then,

f ∈ B∞,1(D) ⇐⇒ f ∈ H(D) and ‖f‖∗ =
∞∑
n=0

‖Wn ∗ f‖∞,D <∞.

SinceWn∗f is a polynomial, we can use the ‖·‖∞,D-estimate of Theorem 4.9 to derive
B∞,1(D)-functional calculus estimates. This follows the same lines as in [Vit05a],
however, using the improved constant dependence of our result in Theorem 4.9.

THEOREM 4.27. Let T be a Tadmor–Ritt operator on a Banach space X. Then,

‖f(T)‖ . C(T)(log(C(T) + 1))‖f‖∗ (4.59)

i.e., for all f ∈ B∞,1(D), where f(T) is defined by
∑∞
n=0(Wn ∗ f)(T).

PROOF. Since Wn ∗ f ∈ H∞[2n−1, 2n+1] for n > 1 and W0 ∗ f ∈ H∞[0, 1], see
Remark 4.11 for the definition of H∞[m,n], we can apply Theorem 4.9 to derive

‖(Wn ∗ f)(T)‖ 6 aC(T)
(

2 logC(T) + b+ log
2n+1 + 1
2n−1 + 1

)
‖Wn ∗ f‖∞,D,

for n > 1, with absolute constants a,b > 0. Clearly, 2n+1+1
2n−1+1 6 5. Analogously,

‖(W0 ∗f)(T)‖ can be estimated. Thus,
∑∞
n=0 ‖(Wn ∗f)(T)‖ . ‖f‖∗, and hence, f(T)

is well-defined with

‖f(T)‖ 6 aC(T) (2 logC(T) + b+ log 5) ‖f‖∗.

�

In [Vit05a, Theorem 2.5] a similar ‖ · ‖B∞,1(D)-estimate as in (4.59) is derived, but with
a C(T)-dependence of C(T)5.



106 4. FUNCTIONAL CALCULUS ESTIMATES FOR TADMOR–RITT OPERATORS

We conclude this chapter by mentioning the, to us, most interesting open questions
related to the presented results in this chapter.

Q1) Is C(T) log(C(T) + 1), up to a constant, the optimal bound for a Tadmor–Ritt
operator T?

Q2) What is the optimal power-bound of a Tadmor–Ritt operator in a finite-dimensional
space?



CHAPTER 5

Discrete vs. continuous time problems

Abstract. In the previous chapters we have seen some analogy between func-
tional calculus results for continuous and discrete-time. This chapter deals with the
transformation from the continuous to the discrete setting via the Cayley transform.
This leads to the prominent Inverse Generator Problem and the Cayley Transform Prob-
lem for C0-semigroups. We show the equivalence of these two problems and the fact
that we can even reduce these problems to the case where the semigroup is exponen-
tially stable. Furthermore, we give an overview on existing results in the literature
and state some open questions.

5.1. The Cayley transform

In this section we introduce a conformal mapping that takes the left-half-plane of the
complex plane, C−, to the unit disc D. We further show how images of sectors and
half-planes under this mapping look like.

DEFINITION 5.1. The mapping

τ : C ∪ {∞}→ C ∪ {∞} : z 7→ 1 + z

1 − z
, (5.1)

is called the Cayley transform from C− to D. Respectively, we call τ−(z) = τ(−z) the
Cayley transform from C+ to D.

Obviously, the Cayley transform is a special case of a Möbius transform,

z 7→ az+ b

cz+ d
(5.2)

for a,b, c,d ∈ C with ad− bc 6= 0. Such transformation are well-studied in complex
analysis, therefore, we state the following elementary properties without a proof.

107
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LEMMA 5.2. The Cayley transform τ has the following properties.
(i) τ(z) = 1+z

1−z = −1 + 2
1−z .

(ii) τ is bijective and the inverse mapping τ−1 equals −τ−.

(iii) τ maps C− onto D, iR onto T and C+ \ {1} onto D
c. Furthermore, τ(∞) =

−1, τ(0) = 1 and τ(1) =∞.

(iv) The restriction τ|C−
lies in H∞(C−) and

|τ(iy)| = 1 ∀y ∈ R,

thus, τ is an inner function on C− and ‖τn‖∞,C−
= 1 for all n ∈ N0.

From Lemma 5.2 it follows that subsets of C− are mapped into the unit disc. For
half-planes Cω = {z ∈ C : Re z < ω} withω < 0, τ(Cω) is a disc inside D that touches
the point −1. On the other hand, the image of sectors, with angle less than π, cannot
approach the points 1 and −1 tangentially. These results are summarized in the
following lemma, see also Figures 5.1 and 5.2.

LEMMA 5.3. Let ω 6 0 and θ ∈ (0, π2 ]. Then, the following holds for the Cayley
transform τ.

(i) τ maps the half-plane Cω onto the ball B 1
1−ω

( ω
1−ω ).

(ii) τ maps the sector Σθ = C \ Σπ−θ onto B 1
sinθ

( i
tanθ ) ∩ B 1

sinθ
( −i

tanθ ).

(iii) τ ( Σθ) ⊂ co ({1} ∪ {−1} ∪ Bsinθ(0)).
Here, co(X) denotes the convex hull of X ⊂ C and Σπ−θ = {z 6= 0 : | arg z| < π− θ}.

PROOF. It is well known that a Möbius transformations (5.2) maps a line in C to
either a circle or a line. We will use this fact to prove (i) and (ii).
Consider the line ω ′ + iR for ω ′ 6 ω. Since τ(∞) = −1, τ(ω ′) = 1+ω′

1−ω′ ∈ (−1, 1]
and τ(ω ′ + i) /∈ R, we conclude that τ(ω ′ + iR) is a circle going through the
points z1 = −1, z2 = 1+ω′

1−ω′ . Because τ(ω ′ + iy) = τ(ω ′ − iy) for y ∈ R, the cir-
cle τ(ω ′ + iR) is symmetric w.r.t. the real axis. Therefore, the radius rω′ and the
centre sω′ can be calculated by 2rω′ = |z1 − z2| =

2
1−ω′ and sω′ = z1+z2

2 = ω′

1−ω′ .
Since ∪ω′6ω∂Brω′ (sω′) = B 1

1−ω
( ω

1−ω ), this proves (i).
To show (ii), consider the line ei(π−θ)R. Similar as for (i), it follows that
τ(ei(π−θ)R) is a circle going through the points τ(∞) = −1, τ(0) = 1. More-
over, by symmetry, the centre s of the circle has to lie on iR. To derive s and the
radius r, we observe that d

dt
τ(tei(π−θ))(0) = 2ei(π−θ). Hence, the angle (oriented

clockwise) between the real axis and the tangent to τ(ei(π−θ)R) at point 1 equals
θ. From that and considering the triangle spanned by the points 0, 1 and s in
the complex plane, we derive r = 1

sinθ and s = −i
tanθ . Analogously, τ(e−i(π−θ)R)
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equals the circle with radius 1
sinθ and centre i

tanθ . Moreover, it follows that the
(rotated) half-planes Γ1 = ei(

π
2 −θ)C−, Γ2 = e−i(

π
2 −θ)C− are mapped onto the balls

B 1
sinθ

( −i
tanθ ), B 1

sinθ
( i

tanθ ), respectively. Since Γ1 ∩ Γ2 = Σθ, the assertion follows.

(iii) follows by noting that the angles spanned by the boundary of
co ({1} ∪ {−1} ∪ Bsinθ(0)) and 1 and −1, respectively (considered from ‘inside’ the
convex hull), both equal 2θ. See also Figure 5.2.

�

FIGURE 5.1. The Cayley transform τ(z) = 1+z
1−z on half-planes.

τ

0

i

1
ω

0 1−1

i

FIGURE 5.2. The Cayley transform τ(z) = 1+z
1−z and sectors.

θ τ

co ({1} ∪ {−1} ∪ Bsinθ(0))

B 1
sinθ

( i
tanθ ) ∩ B 1

sinθ
( −i

tanθ )

θ

0

i

1 1−1

iΣθ

In Figure 5.2, note that

co
(
{1} ∪ {−1} ∪ Bsinθ(0)

)
⊂ Bθ ∪

(
−Bθ

)
, (5.3)

where Bθ = co
(
{1} ∪ Bsinθ(0)

)
was defined in Section 4.1.1, see also Figure 4.1.
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The following result rests on the spectral mapping theorem for resolvents, which can
be found, e.g., in [Haa06a, Chapter A.3].

PROPOSITION 5.4. Let C : D(C) ⊂ X→ X be a closed operator on the Banach space
X and assume that 1 ∈ ρ(C). Then, the operator

Cay(C) := τ(C) := (I + C)(I − C)−1 = −I + 2R(1,C) (5.4)

is bounded on X. It further holds that

σ(Cay(C)) = τ(σ̃(C)), ρ(Cay(C)) = τ(ρ̃(C)), (5.5)

where ρ̃(C) denotes the extended resolvent set, i.e.

ρ̃(C) =

{
ρ(C) ∪ {∞} , if C ∈ B(X),
ρ(C), if C /∈ B(X),

(5.6)

and σ̃(C) = (C ∪ {∞}) \ ρ̃(C).

Proposition 5.4, together with Lemma 5.3, shows how the spectra of Cay(A) for A
generating bounded, exponentially stable and bounded analytic andC0-semigroups,
respectively, look like.

In fact, the Cayley transform of the generator A of a bounded semigroup has spec-
trum in the closed unit disc. If the semigroup is exponentially stable, then the spec-
trum of Cay(A) is contained in a smaller disc inside D, touching the unit circle at −1.
See Figure 5.1.

Similarly, the spectrum of Cay(A) is contained in the closure of the set B 1
sinθ

( i
tanθ ) ∩

B 1
sinθ

( −i
tanθ ) (grey-lined in Figure 5.2), if A generates a bounded analytic semigroup

(i.e., −A is sectorial of angle less than π
2 ), see also Figure 5.2. Here, θ equals the

sectorality angle of −A.

Combining these properties yields that if the analytic semigroup is also exponen-
tially stable (on [0,∞)), then the spectrum of Cay(A) lies in the intersection of the
grey-lined regions on the right-hand side of Figures 5.1 and 5.2. More precisely, if
−A is sectorial of angle θ andω < 0 is the growth bound of the semigroup etA, then

σ (Cay(A)) ⊂ (B 1
sinθ

(
i

tanθ

)
∩ B 1

sinθ

(
−i

tanθ

)
) ∩ B 1

1−ω

(
ω

1−ω

)
⊂ co

(
{1} ∪ {−1} ∪ Bsinθ(0)

)
∩ B 1

1−ω

(
ω

1−ω

)
.

Since B 1
1−ω

(
ω

1−ω

)
is a disc inside D touching T only at −1, it follows that there exists

θ ′ ∈ (0, π2 ) such that σ(Cay(A)) ⊂ co({−1} ∪ Bsinθ′(0)) = −Bθ′ . This indicates that
Tadmor–Ritt operators can be seen as the discrete analog of generators of exponen-
tially stable, analytic semigroup generators.
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5.2. The Cayley transform and the Inverse Generator Problem

Having introduced the Cayley transform of a closed operator in Section 5.1, we are
now going to study whether the Cayley transform preserves stability in the sense
as discussed in Section 1.1. As we have seen in the introduction of this thesis, such
questions originate from the analysis of differential and difference equations in nu-
merical analysis, see, e.g., [vDKS93, SW97].

To simplify notation for the rest of the Chapter, ifA is the generator of aC0-semigroup,
the corresponding semigroup will be denoted by etA =

(
etA
)
t>0. Moreover, all

considered semigroups will be strongly continuous, therefore, we will often use the
word semigroup rather than C0-semigroup. Let us begin with stating the two main
questions of this chapter.

PROBLEM 5.5 (The Cayley Transform Problem - Banach (Hilbert) space form).
Is the Cayley transform Cay(A) power-bounded, i.e.,

sup
n∈N
‖Cay(A)n‖ <∞,

when A is the generator of a bounded C0-semigroup on a Banach (Hilbert) space X?

PROBLEM 5.6 (The Inverse Generator Problem - Banach (Hilbert) space form).
Is A−1 the generator of a bounded C0-semigroup, when A generates a bounded C0-
semigroup on a Banach (Hilbert) space X and A−1 is supposed to exist as a densely
defined operator?

REMARK 5.7 (to Problems 5.5 and 5.6).

• Note that for the generatorA of a bounded semigroup, the operatorCay(A)
is bounded since 1 ∈ ρ(A), see Proposition 5.4.

• Suppose that etA is even exponentially stable. This implies that 0 ∈ ρ(A),
and hence, A−1 is a bounded operator. Therefore, A−1 generates the semi-
group given by the power series

etA
−1

=

∞∑
n=0

tn

n!
A−n.

Thus, for an exponentially stable semigroup etA, Problem 5.6 reduces to the
question whether this power series is uniformly bounded in t > 0.

• As we have seen in the Introduction, Section 1.1, Problem 5.5 is nothing else
than the question whether the Crank–Nicolson scheme, with stepsize h = 2,
is stable, cf. (1.3). Therefore, in the literature, Problem 5.5 is often referred
to as the (question of) stability of the Crank–Nicolson scheme.
We further remark that Cay(A) is sometimes called the cogenerator of the
semigroup etA, see, e.g., [EZ08, GZB11].
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The Cayley Transform and the Inverse Generator Problem have been studied inten-
sively in the last decades, see, e.g., [ABD04, deL88, EZ08, Gom99, Gom04, GZ07,
GZT07, GZB11, GZ06, vC11, PZ07, Zwa07]. For overviews see also [Haa06a, Sec-
tions 9.2.3, 9.2.4] and the theses [Bes12, Mub11]. In 1988, de Laubenfels [deL88]
started the study of the Inverse Generator Problem, already answering affirmatively
the (comparably simple) case of analytic semigroups. In the following 15 years, the
problem seemed to be a bit forgotten, until it got back attention by the works of
Gomilko, Tomilov and Zwart [Gom99, Gom04, GZT07, Zwa07], who pointed out
a relation to the Cayley Transform Problem. However, in 1993, Palenica [Pal93],
and, independently, Crouzeix, Larsson, Piskarev and Thomée [CLPT93] had already
proved that the Cayley transform of a sectorial operator on a Banach space is power-
bounded, i.e. the answer to Problem 5.5 is ‘yes’ for generators of bounded analytic
semigroups, see also Section 4.1.

Both problems actually split up in into a couple of sub-problems on the one hand for
special spaces (Hilbert vs. Banach spaces) and on the other hand in types of semi-
groups (e.g., bounded, contractive, exponentially stable, analytic). It is known that
the answers to Problems 5.5 and 5.6 depend on these very situations. For example,
we have positive answers if the semigroup etA is assumed to be analytic; see [Pal93]
and Chapter 4 for sectorially bounded analytic semigroups on Banach spaces and
[GZ06] for bounded analytic semigroups on Hilbert spaces. Whereas there exist ex-
amples of contraction semigroups on general Banach spaces such that the Cayley
transform of the generator is not power-bounded and such that A−1 is not generat-
ing a bounded strongly continuous semigroup, see Example 5.9 below.

At the end of this chapter we will list an overview of the (so-far known) answers to
the different cases, see Table 1. The most prominent question is whether the prob-
lems (for general bounded semigroups) have positive answers for Hilbert spaces.
This still remains open.

We remark that the Inverse Generator Problem is sometimes stated slightly differ-
ently in the literature, dropping the boundedness for the semigroup etA

−1
in the ques-

tion. However, this is an equivalent problem (if the problem is considered “for all A
and all spaces X” ), see [Zwa07] or Theorem 5.14 below.
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5.3. The equivalence of the Cayley Transform and the Inverse Generator Problem

To shorten notation, let us introduce the following sets.

DEFINITION 5.8. For a Banach space X,ω ∈ R andM > 1 we set

GM,ω(X) :=
{
A : A generates a C0-semigroup on X and ‖etA‖ 6Metω ∀t > 0

}
,

and GM := GM,0. Furthermore, let Gbdd(X) and Gexp(X) be the sets of bounded and
exponentially stable semigroups, respectively. So,

Gbdd(X) =
⋃
M>1

GM(X) and Gexp(X) =
⋃

M>1,ω<0

GM,ω(X).

If we omit the space X, like A ∈ GM, then we mean that there exists some Banach
space X such that A ∈ GM(X). Similar, we write A ∈ G if A is a semigroup generator
on some Banach space.

EXAMPLE 5.9.
The following example of an exponentially stable semigroup shows that neither the
Cayley transform of the generator needs to be power-bounded, nor does the inverse
of the generator need to generate a bounded semigroup. The part on the Cayley
transform is slightly adapted from [Bes12, Lemma 1.2] and the part on the inverse
generator can already be found in [Zwa07, Example 3.5].

Consider X = C0[0, 1), which denotes the Banach space of continuous functions f on
[0, 1) with limt→1− f(t) = 0, equipped with the supremum norm. Define

(T(t)f) (s) =

{
f(t+ s), t+ s < 1,

0, t+ s > 1.

It can be shown that T is a strongly continuous semigroup which is exponentially
stable as T(t) = 0 for t > 1. Therefore, Cay(A), see Proposition 5.4, and A−1 are
bounded operators, where A denotes the generator of T . Hence, A−1 generates a
strongly continuous semigroup (given by the power series etA

−1
). Therefore, it re-

mains to study
sup
n∈N
‖Cay(A)n‖ and sup

t>0
‖etA−1‖.

We are going to use the following semigroup version of a well-known identity for
Laguerre polynomials.

(−1)nCay(A)nx = I − 2
∫∞

0
e−tL

(1)
n−1(2t)T(t)x dt, x ∈ X,n ∈ N, (5.7)

where Lαn denotes the generalized Laguerre polynomials see, e.g., [Gom04] or [BZ10,
Lemma 4.4].
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Applying (5.7) to our semigroup T , we get for f ∈ C0[0, 1),

‖f‖+ ‖Cay(A)nf‖ > 2
∥∥∥∥s 7→ ∫ 1−s

0
e−tL

(1)
n−1(2t)f(t+ s)dt

∥∥∥∥∞
> 2

∣∣∣∣∫ 1

0
e−tL

(1)
n−1(2t)f(t)dt

∣∣∣∣ .
Now we choose f such that it approximates the sign of the smooth function

t 7→ e−tL
(1)
n−1(2t) on (0, 1).

More precisely, for any ε > 0, we find f ∈ C0[0, 1) such that∣∣∣∣∫ 1

0
e−tL

(1)
n−1(2t)f(t)dt

∣∣∣∣ > ∫ 1

0
|e−tL

(1)
n−1(2t)|dt+ ε,

(for a similar argument see [Zwa07, Example 3.5]).
Finally, we use that for all t > 0, |L(1)

n (t)| ∼ n
1
4 t−

3
4
∣∣cos

(
2
√
nt− 3π

4

)∣∣, see [Sze67], to
conclude that ∫ 1

0
|e−tL

(1)
n−1(2t)|dt & n

1
4 .

This shows that the Cayley transform is not power-bounded.
Similarly, using the following identity for exponentially stable semigroups due to

Zwart [Zwa07, Lem. 3.2],

eA
−1τx = x−

∫∞
0
τhac(tτ)e

tAx dt, τ > 0, (5.8)

where hac = 1√
t
J1(2
√
t) and J1 denotes the Bessel function of first kind, it can be shown

that ‖etA−1‖ ∼ t 1
4 for t > 0. Thus, etA

−1
/∈ Gbdd.

Let us now study the relation between Problems 5.5 and 5.6. It has been known for
a long time that there is a strong connection between these questions. For instance,
the following results are known.

THEOREM 5.10. Let A be an operator on a Hilbert space H. The following implica-
tions hold.

(i) IfA ∈ Gbdd(H), A injective andA−1 ∈ Gbdd(H), then Cay(A) is power-
bounded and the powers-bound can be estimated by

sup
n∈N
‖Cay(A)n‖ 6 e

2

(
1
4
+M2

1 +M
2
2

)
, (5.9)

whereM1 = supt>0 ‖etA‖ andM2 = supt>0 ‖etA
−1‖.

(ii) If A ∈ Gexp(H) and Cay(A) is power-bounded, then A−1 ∈ Gbdd(H).
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PROOF. The first item was first proved by [Gom04], see also [ABD04], [Bes12,
Theorem 7.6], [GZ06, Theorem 4.4] for alternative proofs.
The second assertion can be found in [GZB11, Theorem 4.11]. �

In particular, Theorem 5.10 shows that if A ∈ Gexp(H), then the operator A−1 (which
is even bounded as 0 ∈ ρ(A)) generates a bounded semigroup if and only if Cay(A)
is power-bounded. In Theorem 5.14 we will partially generalize this equivalence to
general A ∈ Gbdd(H) (“partially” in the sense that the equivalence then holds “for
all Hilbert spaces H”).

Versions of the following lemma can be traced back to Gomilko [Gom04, GZ07,
GZT07] and have often been used in the study of the relation between the Cay-
ley Transform Problem and the Inverse Generator Problem, see, e.g., [GZB11]. For
completeness, we include an elementary proof.

LEMMA 5.11 (Gomilko’s trick). Let A be such that (0,∞) ⊂ ρ(A) and assume
that A is injective. Then, for λ > 0 and Aλ := 2λA− I,

−λ
(
λ−A−1)−1

= (I +Aλ)(I −Aλ)−1,

= Cay(Aλ).

PROOF. Since (0,∞) ⊂ ρ(A) by assumption, 1 ∈ ρ(Aλ) for λ > 0. Thus, by
Proposition 5.4, Cay(Aλ) is well-defined as a bounded operator. By inserting the
definition ofAλ = 2λA−I and noting that (CD)−1 = D−1C−1 for closed operators
C and D, we derive

(I +Aλ)(I −Aλ)−1 = λA(I − λA)−1

= λ
[
(I − λA)A−1]−1

= − λ
(
λI −A−1)−1

, (5.10)

where the last equality follows since for all x ∈ R(A),

(I − λA)A−1x = (A−1 − λI)x

and D(A−1 − λI) = R(A). �

The following two theorems show that if Problems 5.5 and 5.6 have positive answers
for all A ∈ GM,ω, then the power-bound of the Cayley transform and the bound of
the inverse semigroup can be bounded by constants only depending on the constants
M andω.
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THEOREM 5.12. LetM > 1 andω 6 0. The following assertions are equivalent.

(i) For every Banach space X and every A ∈ GM,ω(X), it follows that the
Cayley transform of A is power-bounded, i.e.,

∃CA > 0 sup
n∈N
‖Cay(A)n‖X 6 CA. (5.11)

(ii) There exists a constant CM,ω > 0 such that for every Banach space X and
every A ∈ GM,ω(X), the powers of the Cayley transform of A are bounded
by CM,ω, i.e.,

sup
n∈N
‖Cay(A)n‖X 6 CM,ω. (5.12)

The equivalence remains true if one replaces “Banach space” by “Hilbert space” in
both (i) and (ii).

PROOF. Clearly, we only have to show (i)⇒ (ii).
Fix M > 1, ω 6 0. Let us assume that (ii) does not hold. Therefore, since
by (i), Cay(A) is power-bounded for every Hilbert space H and A ∈ Gbdd(H),
we can assume that there exists a sequence (Am)m∈N ⊂ GM,ω(Xm) such that
supm∈N supn∈N ‖Cay(Am)n‖Xm =∞. Define

A := diag
m∈N

(Am) =


A1

A2
. . .

. . .

 ,

with maximal domain in the Banach space⊕
m∈N

Xm =

{
x ∈
∏
m∈N

Xm : ‖x‖2⊕ :=
∑
m∈N

‖xm‖2
Xm

<∞} ,

equipped with the norm ‖ · ‖⊕. By its structure, it is easily seen that A generates
a C0-semigroup etA with ‖etA‖ 6 Metω, t > 0. Thus, A ∈ GM,ω(

⊕
m Xm), and

since we assumed that (i) holds, the Cayley transformCay(A) is power-bounded.
On the other hand, since Cay(A) = diagm(Cay(Am)), we have that

sup
n∈N
‖Cay(A)n‖B(

⊕
m∈NXm) = sup

n∈N
sup
m∈N

‖Cay(Am)n‖B(Xm) =∞, (5.13)

which contradicts (5.13).
The proof for Hilbert spaces is the same, noting that for Hilbert spaces Xm, the
space

⊕
m Xm is a Hilbert space with inner product

〈x,y〉 :=
∑
m∈N

〈xm,ym〉Xm , x,y ∈
⊕
m∈N

Xm.

�
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A similar result holds for the Inverse Generator Problem.

THEOREM 5.13. LetM > 1 andω 6 0. The following assertions are equivalent.

(i) For every Banach space X and every A ∈ GM,ω(X) such that A−1 is a
densely defined operator, it follows that A−1 ∈ Gbdd(X).

(ii) There exists a KM,ω > 0 such that the following holds. For every Banach
space X and every A ∈ GM,ω(X) such that A−1 is a densely defined op-
erator, it follows that A−1 ∈ GKM,ω,0(X), i.e., A−1 generates a semigroup
bounded by KM,ω.

The equivalence remains true if one replaces “Banach space” by “Hilbert space” in
both (i) and (ii).
Note that forω < 0, A ∈ GM,ω implies that A−1 ∈ B(X), see Remark 5.7.

PROOF. The proof is similar to the one of Theorem 5.12. The implication (ii)⇒
(i) is trivial.

To show that (i) implies (ii), we fixM > 1,ω 6 0.
First, let us observe that if an operator B and some K > 1, the condition that
B /∈ GK,0 is equivalent to the alternative,

(♥) B ∈ G and supt>0 ‖etB‖ > K, or
(♣) B /∈ G,

i.e., B is a generator but not in GK,0, or B is not a generator of a semigroup at all.
Assume that (ii) is not true. Hence, for every n ∈ N there exists exists an operator
Am ∈ GM,ω(Xm) for some Banach space Xm, such that A−1

m exists as a densely
defined operator andA−1

m /∈ GK,0. Since, we assumed that (i) holds,A−1
m generates

a bounded semigroup, i.e., A−1
m ∈ Gbdd. Hence, in particular, A−1

m ∈ G, and
since A−1

m /∈ GK,0, it follows that A−1
m has to be of type (♥) in the list above (with

B = A−1
m ).

Therefore, we have a sequence (Am)m∈N of generators on Banach spaces Xm with
the following properties. For m ∈ N, Am ∈ GM,ω(Xm), A−1

m is a densely defined
operator, A−1

m ∈ Gbdd(Xm) and

sup
m∈N

sup
t>0
‖etA−1

m ‖ =∞. (5.14)

Consider A := diagm(Am) defined on
⊕
m Xm, where

⊕
m Xm is defined as

in proof of Theorem 5.12. It is easy to see that A generates the semigroup
diagm(etAm), which implies that A ∈ GM,ω(

⊕
m Xm). Furthermore, it holds that

A−1 = diagm(A−1
m )

exists as a densely defined operator. By (i), we conclude that A−1 = diagm(A−1
m )

has to generate a bounded semigroup too.
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Next, we show that etA
−1

equals diagm(etA
−1
m ) (at least on some dense subspace).

Let x = (xm)m ∈
⊕
m Xm such that finitely many xm are non-zero in Xm.

Then, for s > 0,

L
(
e·A

−1
x
)
(s) =

(
sI −A−1)−1

x

=

(
diag
m∈N

(sIXm −A−1
m )

)−1

x

=
(
(sIXm −A−1

m )−1xm
)
m∈N

=
(
L
(
e·A

−1
m xm

)
(s)
)
m∈N

= L

(
diag
m∈N

(
e·A

−1
m

)
x

)
(s),

where in the last step we used that xm is the non-zero for only finitely many
m ∈ N. Since the Laplace transform is injective and the semigroup trajectories
are continuous, we derive that

etA
−1
x = diag

m∈N

(
etA

−1
m

)
x, t > 0, x ∈ D,

where D := {(xm) ∈
⊕
m Xm : xm = 0 for a.e.m ∈ N} is a dense subspace of⊕

m Xm. In particular, it follows that diagm(etA
−1
m ) is a bounded operator on

D1and ∥∥∥etA−1
∥∥∥ =

∥∥∥diagm(etA
−1
m )
∥∥∥ ,

Therefore,

sup
t>0
‖etA−1‖ = sup

t>0

∥∥∥∥∥diag
m∈N

(etA
−1
m )

∥∥∥∥∥ = sup
t>0

sup
m∈N

‖etA−1
m ‖B(Xm) =∞,

where the last step follows from (5.14). Hence, etA
−1
/∈ Gbdd, and thus (i) cannot

hold. This concludes the proof for the “Banach space” version of the Theorem.

The “Hilbert space” version of the Theorem follows completely analogously not-
ing that

⊕
m Xm becomes a Hilbert space if the Xm’s are Hilbert spaces (see also

proof of Theorem 5.12). �

For a closed operator A on X, the condition that A−1 exists as a densely defined
operator is equivalent to the condition that 0 ∈ σc(A) ∪ ρ(A), where

σc(A) = {λ ∈ σ(A) : λI −A is injective and R(λI −A) is dense in X},

denotes the continuous spectrum of A.

1Note that the norm of a bounded, densely defined operator B is defined by ‖B‖ = supx∈D(B)
‖Bx‖
‖x‖ .
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THEOREM 5.14. LetM > 1. The following assertions are equivalent.

(i) For every Hilbert space H:

A ∈ GM(H) =⇒ supn∈N ‖Cay(A)
n‖ <∞.

(ii) For every Hilbert space H:

A ∈ GM(H) ∩ Gexp(H) =⇒ supn∈N ‖Cay(A)
n‖ <∞.

(iii) For every Hilbert space H:

A ∈ GM,−1(H) =⇒ supn∈N ‖Cay(A)
n‖ <∞.

(iv) For every Hilbert space H:

A ∈ GM(H) with 0 ∈ σc(A) ∪ ρ(A) =⇒ A−1 ∈ Gbdd(H).

(v) For every Hilbert space H:

A ∈ GM(H) ∩ Gexp(H) =⇒ A−1 ∈ Gbdd(H).

(vi) For every Hilbert space:

A ∈ GM(H) with 0 ∈ σc(A) ∪ ρ(A) =⇒ A−1 generates C0-semigroup.

If “Hilbert space” gets replaced by “Banach space” in the above assertions, then none
of them hold.

PROOF. Note that the implications (i)⇒ (ii)⇒ (iii) and (iv)⇒ (v) are trivial (for
both the “Banach space” and the “Hilbert space”-version). The equivalence of
(iv) and (vi) follows by [Zwa07, Theorem 2.2], where it was only shown for the
“Hilbert space”-version. However, the proof is completely analogous for Banach
spaces.
Let us now give an overview of the different proof steps.
For the “Hilbert space”-version, we show the implications (iii) ⇒ (iv), (iv) ⇒ (i)
and (v)⇒ (ii), which concludes the proof of the equivalence.
Then, we will observe that for the “Banach space”-version, the chain of implica-
tions,

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v), (5.15)

still holds. Since, by Example 5.9, we have a counterexample to (v), we conclude
that none of the assertions can hold.

(iii) ⇒ (iv) : Let A ∈ GM(H), for a Hilbert space H, such that 0 ∈ σc(A) ∪ ρ(A).
Thus, A−1 exists as a densely defined operator. For λ > 0, define Aλ = 2λA − I.
Aλ generates a semigroup satisfying

‖eAλt‖ 6Me−t, λ, t > 0. (5.16)
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Thus, Aλ ∈ GM,−1(H) for all λ > 0. By the assumption of (iii) and Theorem 5.12,
there exists a constant KM,−1 such that

‖Cay(Aλ)n‖ 6 KM,−1, ∀n ∈ N, λ > 0.

Using Lemma 5.11, we get that Cay(Aλ) = −λ
(
λI −A−1

)−1. Hence,

‖
(
λ−A−1)−n ‖ 6 KM,−1

λn
, ∀n ∈ N. (5.17)

Since, by assumption, A−1 is densely defined and, as the inverse of the closed
operator A, closed, we conclude by the Hille-Yosida Theorem [EN00, Theorem
II.3.8] that A−1 generates a bounded semigroup. This shows (iv) for the “Hilbert
space version”.

(iv)⇒ (i): In the following lines, we will see that this implication is a consequence
of Theorem 5.13 and Theorem 5.10 (i).
In fact, let H be a Hilbert and A ∈ GM(H) for some M > 1. Clearly, for any ε > 0,
A− εI is also in GM(H) and 0 ∈ ρ(A− εI). By the assumption of (iv) and Theorem
5.13, it follows that there exists a constant CM > 0 such that (A− εI)−1 ∈ GCM,0 =

GCM for all ε > 0. To sum up, we have seen that for all ε > 0,

(A− εI) ∈ GM, 0 ∈ ρ(A− εI) and (A− εI)−1 ∈ GCM .

Therefore, by Theorem 5.10 (i), we conclude that Cay(A − εI) is power-bounded
and that

‖Cay(A− εI)n‖ 6 e
2

(
1
4
+M2 + C2

M

)
, ∀n ∈ N. (5.18)

By Proposition 5.4, Cay(A − εI) = −I + 2R(1,A − εI) = −I + 2R(1 + ε,A), and
since the mapping λ 7→ R(λ,A) is analytic on ρ(A), it follows that Cay(A− εI)→
Cay(A) in B(H) as ε→ 0+. Hence, by (5.18),

‖Cay(A)n‖ 6 e
2

(
1
4
+M2 + C2

M

)
, ∀n ∈ N.

Therefore, the Cayley transform of A is power-bounded.
Implication (v)⇒ (ii) follows directly from Theorem 5.10 (i).

Using the “Banach space”-version of Theorem 5.12, it is easy to see that the proof
of (iii)⇒ (iv) also holds for the “Banach space”-version of the assertions. There-
fore, (5.15) and the proof is finished. �

REMARK 5.15.

(i) An open question is whether for 0 ∈ σc(A) ∪ ρ(A), the implication

A,A−1 ∈ Gbdd(X) =⇒ Cay(A) is power-bounded

remains true on general Banach spaces X (the Hilbert space is covered by
Theorem 5.10).
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(ii) For generators of exponentially stable semigroups on Hilbert spaces, our
Theorem 5.14 yields that(

∀A ∈ Gexp : A−1 ∈ Gbdd
)
⇐⇒

(
∀A ∈ Gexp : sup

n∈N
‖Cay(A)n‖ <∞) , (5.19)

whereas, Theorem 5.10 yields that for all Hilbert spaces H,

∀A ∈ Gexp(H) : (A
−1 ∈ Gbdd(H) ⇐⇒ sup

n∈N
‖Cay(A)n‖ <∞). (5.20)

By comparing (5.19) and (5.20), we see that Theorem 5.14 only yields a
weaker assertion than the stronger (“pointwise”) result in Theorem 5.10.
In fact, the novelty of Theorem 5.14 is rather that it proves the general
equivalence of the Cayley Transform and the Inverse Generator Problem
for bounded semigroups on Hilbert spaces. More importantly, it shows that
both problems for bounded semigroups can be reduced to the case of expo-
nentially stable semigroups.

It is well-known that for a contraction semigroup on a Hilbert space, the Cayley
transform is power-bounded. In fact, by the Lumer-Phillips theorem, it follows by a
little exercise that for a semigroup etA on a Hilbert space with 1 ∈ ρ(A),

‖Cay(A)‖ 6 1 ⇐⇒ sup
t>0
‖etA‖ 6 1 Def.⇐⇒ A ∈ G1, (5.21)

where the last equivalence follows by definition. See, e.g., [Bes12, Theorem 1.9] for
a proof, however, the result is much older. We refer to, e.g., [SNF70, EZ08, Fac14,
Fac15, KW10] for related results. Clearly, (5.21) implies that the Cayley transform of
a contraction semigroup generator on a Hilbert space is power-bounded. Therefore,
by Theorem 5.14, the Inverse Generator Problem for contraction semigroups can be
solved in the most general setting.

THEOREM 5.16. If A generates a contraction semigroup on a Hilbert space H, i.e.
A ∈ G1(H) and 0 ∈ ρ(A) ∪ σc(A), then, A−1 generates a bounded semigroup.
However, there exists a Banach space X and A ∈ G1(X) with 0 ∈ ρ(B) such that
etA

−1
/∈ Gbdd.

PROOF. By (5.21), it follows that Cay(A) is power-bounded for everyA ∈ G1(H)

and every Hilbert space H. Therefore, by Theorem 5.14 (Implication (i) ⇒ (iv)),
the first assertion follows.
The second assertion follows by Example 5.9. �

However, we want to emphasize that there is also a very simple, direct proof of
Theorem 5.16, for which our main result, Theorem 5.14, is not needed. In fact, by
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the Lumer–Phillips theorem, see [EN00], it holds that A generates a contraction semi-
group on a Hilbert space if and only if

(a) the range of I −A equals H, and

(b) Re〈Ax, x〉 6 0 for all x ∈ D(A).

IfA generates a contraction semigroup onH andA−1 exists as densely defined oper-
ator, then it follows by (b) that 〈y,A−1y〉 6 0 for all y ∈ D(A−1) = R(A). Obviously,
(I −A−1)y = (A− I)A−1y for y ∈ D(A−1) = R(A). Since A−1 mapsD(A−1) toD(A),
we conclude by (a) that the range of (I − A−1) equals H. Therefore, A−1 generates a
contraction semigroup by Lumer–Phillips.
We observe that the assumption of D(A−1) being dense was actually not needed in
the argument above, and moreover, we even derived that etA

−1
generates a contrac-

tion semigroup.

5.4. Notes

In the following we want to discuss some known results concerning Problems 5.5
and 5.6.

We start with the already mentioned fact that the answers to both problems are ‘yes’,
if the semigroup T is bounded analytic, which is equivalent to −A being densely
defined and sectorial of angle less than π

2 . Note that this property is stronger than
the property that T is analytic on some sector Σδ (T is not necessarily bounded on
Σδ) and bounded on [0,∞).

THEOREM 5.17. Let A generate an analytic semigroup e·A : Σθ → B(X) for some
sector Σθ, θ ∈ (0,π), and a Banach space X. If either

(a) z 7→ ezA is bounded on Σθ, or

(b) t 7→ etA is bounded on [0,∞) and X is a Hilbert space,

then the answer to Problem 5.5 is ’yes’. If in addition 0 ∈ ρ(A) ∪ σc(A), then also
Problem 5.6 has an affirmative answer.

PROOF. If (a) holds, then −A is is densely defined and sectorial of angleω < π
2 ,

see Section 3.1. By Palencia [Pal93], the Cayley transform of a sectorial operator
is power-bounded.
If 0 ∈ ρ(A)∪σc(A), i.e., the inverseA−1 exists as a densely defined operator, then
it is well-known that −A−1 is also sectorial of angle ω, see, e.g., [Haa06a], and,
thus, generates a bounded analytic semigroup.
The assertions for (b) are due to Guo and Zwart [GZ06], see also [GZ07]. �
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REMARK 5.18. In the proof of Theorem 5.17, we used Palencia’s result that the Cay-
ley transform of a sectorial operator is power-bounded. Essentially, we have seen
this result in Chapter 4. In fact, by using the results in Section 5.1, it is not hard to see
that the Cayley transforms provides a one-to-one correspondence between sectorial
operators −A with 0 ∈ ρ(A) and Tadmor-Ritt operators. By Corollary 4.10, Tadmor-
Ritt operators are power-bounded. Thus, it follows that Cay(A) is power-bounded
for sectorial −A with 0 ∈ ρ(A).
We remark that the proof of Palencia’s result for sectorial operators −Awith 0 /∈ ρ(A)
can analogously be derived as in Chapter 4, by adapting the arguments to operators
S (= Cay(A)) of the form

σ(S) ⊂ D and ‖R(z,S)‖ 6M(S)(|z+ 1|−1 + |z− 1|−1), |z| > 1. (5.22)

The spectrum σ(S) then lies in the closure of

co
(
{1} ∪ {−1} ∪ Bsinθ(0)

)
for some θ ∈ (0, π2 ), see Figures 5.1 and 5.2 (right-hand side).

As we have seen at the end of Section 1.1, certain functional calculus estimates imply
that the Cayley transform is power-bounded. For a definition of a bounded H∞-
calculus for semigroup generators, we refer to Section 1.2 and Chapter 2.

THEOREM 5.19. If A ∈ Gexp has a bounded H∞(C−)-calculus, then Problems 5.5
and 5.6 have affirmative answers.

PROOF. This follows directly from the estimate

‖f(A)‖ . ‖f‖∞,C−
, f ∈ H∞(C−),

applied to fn(z) = τ(z)n =
( 1+z

1−z

)n and ft(z) = e
t
z , which both have ‖ · ‖∞,C−

-
norm less or equal to 1, and the fact that ft(A) = etA

−1
, where the right-hand side

is defined by the power series of the exponential function (this last identity holds
since ft(A) =

∑∞
n=0

tn

n!A
−n, which follows by the Convergence lemma, Lemma

2.45). �

REMARK 5.20. As mentioned already in Chapter 3, even bounded analytic semi-
group generators do not have a boundedH∞-calculus in general (not even on Hilbert
spaces), [MY90]. Hence, in the view of Theorem 5.17, it seems that the assumption
of a bounded H∞(C−)-calculus in Theorem 5.19 can be weakened.
Obviously, the Cayley Transform Problem for A ∈ Gbdd is equivalent to the state-
ment

‖f(A)‖ . ‖f‖∞,C−
, for all f = τn,n ∈ N. (5.23)

Therefore, we can see the Cayley Transform Problem as the question whether the
H∞(C−)-calculus restricted to the set {τn : n ∈ N} is bounded. Let us investigate this
in the following.
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We recall that finite Blaschke products (for C−) are functions of the form

B(z) = eiφ
n∏
i=1

bλi(z), with bλ(z) =
λ+ z

λ− z
,

where λi > 0 and φ ∈ [0, 2π). We observe that B ∈ H∞(C−) with ‖B‖∞ 6 1. Blaschke
products play an important role in Hardy space theory. We refer to [Gar07, Dur70,
Nik02a] for more information.
Clearly, τn is a finite Blaschke product for any n (λi = 1). Therefore, a bounded
Blaschke-product-calculus, i.e.,

‖B(A)‖∞,C−
6 C for a constant C > 0 and all Blaschke products B,

implies that the Cayley transform Cay(A) is power-bounded2 .
However, using Schauder multipliers, see Section 3.3.1, we can construct an exam-
ple of a generator such that the Blaschke-product-calculus is unbounded. In fact,
using the notation and theory of Section 3.3.1, one can choose a Schauder basis (ψn)
of some Banach space X such that there exists a sequence µn ∈ `∞(N, C) with un-
bounded multiplier Mµn . By [Str88], there exists a Blaschke B product such that
B(2n) = µn for all n ∈ N. Let A = M2−n w.r.t. (ψn). Then, A generates a bounded
analytic semigroup, but B(A) = Mµn is unbounded.
Moreover, Kriegler and Weis [KW10] pointed out that, by the Convergence lemma
(see Theorem 2.45), a bounded Blaschke-product-calculus always implies that the
H∞(C−)-calculus is bounded. They actually showed it for generators of bounded
analytic semigroups (with dense domain and range), however, the argument is the
same for generators of exponentially stable semigroups.

We conclude with Table 1, which gives an overview on the answers for the different
sub cases of the Cayley Transform and the Inverse Generator Problem, and a list of
some related open questions.

TABLE 1. Answers to the Cayley Transform / Inverse Generator Problem

Hilbert space Banach space
A has bounded H∞(C−)-calculus 3 [Thm.5.19] 3 [Thm.5.19]

A generates bounded analytic semigroup 3 [Thm.5.17] 3[Thm.5.17]
A generates contraction semigroup 3 [Thm.5.16] 7 [Ex.5.9]

A generates exponentially stable semigroup ??? 7 [Ex.5.9]
A generates bounded semigroup ??? 7 [Ex.5.9]

2A Blaschke product is an example of an inner function, which is a function f in H∞(C−) such that
|f(iω)| = 1 for a.e. ω ∈ R. The name of this Ph.D. project was Semigroups with an Inner Function
Calculus.
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Q1: IsCay(A) power-bounded, if we assume thatA andA−1 are generators of bounded
semigroups on a Banach space X?
For Hilbert spaces, the answer is ‘yes’, see Theorem 5.10.

Q2: What are suffcient additional assumptions in 5.4, if the answer to 5.4 is ‘no’?

Q3: What is the answer to Problems 5.5 and 5.6 for Hilbert spaces?
As we showed in Theorem 5.14, it suffices to consider A’s generating expo-
nentially stable semigroups.





Part II

On certain norm estimates for cosine
families





CHAPTER 6

Zero-two laws for cosine families

Abstract. We show that for (C(t))t>0 being a strongly continuous cosine family
on a Banach space, the estimate lim supt→0+ ‖C(t) − I‖ < 2 implies that C(t) con-
verges to I in the operator norm (Section 6.2). This implication has become known as
the zero-two law. We further prove that the stronger assumption of supt>0 ‖C(t)−I‖ <
2 yields that C(t) = I for all t > 0 (Section 6.3). For discrete cosine families the as-
sumption supn∈N ‖C(n) − I‖ 6 r < 3

2 yields that C(n) = I for all n ∈ N. For r > 3
2

this assertion does no longer hold. 1

More general and using different techniques, we show that, for (C(t))t∈R being a
cosine family on a unital Banach algebra, the estimate lim supt→∞+ ‖C(t) − I‖ < 2
implies that C(t) = I for all t ∈ R (Section 6.4). We also state the corresponding result
for discrete cosine families and for semigroups.
In the last part (Section 6.5) we consider scaled versions of above laws. We show
that from the estimate supt>0 ‖C(t)−cos(at)I‖ < 1 we can conclude that C(t) equals
cos(at)I. Here (C(t))t>0 is again a strongly continuous cosine family on a Banach
space. 2

6.1. Introduction

Let (T(t))t>0 denote a strongly continuous semigroup on the Banach space X with
infinitesimal generator A. It is well-known that the inequality

lim sup
t→0+

‖T(t) − I‖ < 1, (6.1)

implies that the generator A is a bounded operator, see e.g., [Sta05, Remark 3.1.4].
Or equivalently, that the semigroup is uniformly continuous (at 0), i.e.,

lim sup
t→0+

‖T(t) − I‖ = 0. (6.2)

1Sections 6.1, 6.2 and 6.3 are adapted from the article
F.L. SCHWENNINGER, H. ZWART, Zero-two law for cosine families, Journal of Evolution Equations, to appear
2015.
2Section 6.5 is adapted from the article
F.L. SCHWENNINGER, H. ZWART, Less than one implies zero, submitted, available at arXiv: 1310.6202.
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This implication has become known as zero-one law for semigroups. Surprisingly,
the same law holds for general semigroups on semi-normed algebras, i.e., (6.1) implies
(6.2), see e.g., [Est04]. For a nice overview and related results, we refer the reader to
[CEP15a].

In this chapter we study similar laws for cosine families. Therefore, we first recall
the definition of a cosine family. For more information (about strongly continuous
cosine families), we refer to [ABHN11] and [Fat69]. In the following a normed unital
algebra A refers to a normed linear space (not equal to {0}) over C with a mapping
• : A×A→ A such that

� • is bilinear and associative,
� there exists a unity element I ∈ A, i.e., a • I = I • a = a ∀a ∈ A and ‖I‖ = 1,
� for all a,b ∈ A, we have that ‖a • b‖ 6 ‖a‖ · ‖b‖.

We will always write ab for a•b. If • is commutative, A is called commutative and if
the normed space is complete, A is called a unital Banach algebra. We refer to [Rud91]
for details about normed algebras.

DEFINITION 6.1. Let A be a unital normed algebra. Then, a family C = (C(t))t∈R ⊂
A is called a cosine family in A if following two conditions hold.

(i) C(0) = I, and

(ii) for all t, s ∈ R, d’Alembert’s functional equation holds, i.e.,

2C(t)C(s) = C(t+ s) + C(t− s). (6.3)

If A = B(X) for some Banach space X and if for all x ∈ X and all t ∈ R we have that

lim
h→0

C(t+ h)x = C(t)x,

then C is called a strongly continuous cosine family on X.

Similar as for strongly continuous semigroups we can define the infinitesimal gen-
erator.

DEFINITION 6.2. Let C be a strongly continuous cosine family on the Banach space
X, then the infinitesimal generator A is defined as

Ax = lim
t→0

2(C(t)x− x)
t2 ,

with its domain consisting of those x ∈ X for which this limit exists.

It can be shown that the infinitesimal generator of a strongly continuous cosine fam-
ily is a closed, densely defined operator, see e.g., [ABHN11].
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One of the main goals of this chapter is to study the zero-two law for strongly contin-
uous cosine families on Banach spaces, i.e., whether

lim sup
t→0+

‖C(t) − I‖ < 2 implies that lim sup
t→0+

‖C(t) − I‖ = 0. (6.4)

This implication holds if the Banach space is UMD, see [Fac13, Corollary 4.2], hence,
in particular for Hilbert spaces. On the other hand the 0 − 3/2 law, i.e.

lim sup
t→0+

‖C(t) − I‖ < 3
2

implies that lim sup
t→0+

‖C(t) − I‖ = 0,

holds for cosine families on general Banach spaces as was proved by W. Arendt in
[Are12, Theorem 1.1 in Three Line Proofs]. The result even holds without assuming
that the cosine family is strongly continuous. In the same work, Arendt poses the
question whether the zero-two law holds for cosine families, [Are12, Question 1.2 in
Three Line Proofs]. In the following theorem we answer this question positively for
strongly continuous cosine families. For its proof we refer to Section 6.2.

THEOREM 6.3. Let (C(t))t>0 be a strongly continuous cosine family on the Banach
space X. Then

lim sup
t→0+

‖C(t) − I‖ < 2, (6.5)

implies that limt→0+ ‖C(t) − I‖ = 0.

By taking X = `2 and

C(t) =

 cos(t) 0 · · ·
0 cos(2t) 0 · · ·
...

. . .

 ,

it is easy to see that this result is optimal.
Very recently, in the preprints [Cho15a], [Est15b], W. Chojnacki and, independently
J. Esterle showed that Theorem 6.3 can be extended to the case of cosine families in
unital Banach algebras (in [Cho15a] even to normed unital algebras).

The zero-one law for semigroups and the zero-two law for cosine families tells some-
thing about the behaviour near t = 0. Instead of studying the behaviour around
zero, we could study the behaviour on the whole time axis. A result dating back to
the sixties is the following. For a semigroup the assumption

sup
t>0
‖T(t) − I‖ < 1, (6.6)

implies that T(t) = I for all t > 0, see e.g., Wallen [Wal67] and Hirschfeld [Hir68].
The corresponding result for cosine families, i.e.,

sup
t∈R
‖C(t) − I‖ < 2 implies that C(t) = I (6.7)
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has been been open until now. We prove (6.7) for strongly continuous cosine families
on Banach spaces, see Theorem 6.8. This result is strongly motivated by recent work
of A. Bobrowski and W. Chojnacki. In [BC13, Theorem 4], they showed that for
a ∈ R,

sup
t>0
‖C(t) − cos(at)I‖ < 1

2
, (6.8)

implies that C(t) = cos(at)I for all t > 0. They used this to conclude that scalar co-
sine families are isolated points in the (metric) space of bounded strongly continuous
cosine families on a fixed Banach space X, with the metric

d(C1,C2) = sup
t∈R
‖C1(t) − C2(t)‖.

Hence, (6.7) shows that (6.8) can be improved for a = 0. It is easy to see that the
number 2 in (6.7) is optimal. Furthermore, we will show that also for a 6= 0, the
constant 1

2 in (6.8) can be improved. Precisely, in Theorem 6.22 we prove that for a
strongly continuous cosine family (C(t))t∈R, and

sup
t∈R
‖C(t) − cos(at)I‖ < r implies that C(t) = cos(at)I (6.9)

for r = 1. Very recently, A. Bobrowski, W. Chojnacki and A. Gregosiewicz [BCG15],
and independently J. Esterle [Est15a] showed that the implication in (6.9) even holds
for r 6 8

3
√

3
and general cosine families (of elements in a normed unital algebra, or

unital Banach algebra respectively). This constant r is optimal, as supt∈R | cos(3t) −
cos(t)| = 8

3
√

3
.

The lay-out of this chapter is as follows. In Section 6.2 we prove the zero-two law for
strongly continuous cosine families, i.e., Theorem 6.3 is proved.
In Section 6.3, we prove the implication in (6.7). Furthermore, we study the corre-
sponding discrete version, and show that there the constant 2 has to be replaced by 3

2 .
Finally, we give an elementary alternative proof for strongly continuous semigroups.
The content of Sections 6.2 and 6.3 have, with minor adaptations, been published in
the article [SZ15c].
In Section 6.4, we consider general cosine families of elements in an unital Banach
algebra and generalize (6.7) to

lim sup
t→∞ ‖C(t) − I‖ < 2 implies that C(t) = I.

The used techniques based on a result by J. Esterle [Est15b] are different to the ones
in Section 6.3. We also show a discrete and a semigroup version.
Finally, in Section 6.5 we give a proof of (6.9) for r = 1. The content of this section
has, up to minor changes, been submitted for publication in the article [SZ15b].
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6.2. The zero-two law at the origin

In this section we prove that for a strongly continuous cosine family C on the Banach
space X, Theorem 6.3 holds; i.e.,

lim sup
t→0+

‖C(t) − I‖ < 2 implies that lim sup
t→0+

‖C(t) − I‖ = 0.

For the proof of Theorem 6.3, the following well-known estimates, which can be
found in [Fat69, Lemma 5.5 and 5.6 ], are needed.

LEMMA 6.4. Let C be a strongly continuous cosine family with generator A. Then,
there existsω > 0 andM > 1 such that

‖C(t)‖ 6Meωt ∀t > 0. (6.10)

Furthermore, for Re λ > ω we have λ2 ∈ ρ(A) and

‖λ2R(λ2,A)‖ 6M · |λ|

Re λ−ω
. (6.11)

Hence the above lemma shows that the spectrum of A must lie within the parabola
{s ∈ C | s = λ2 with Re λ = ω}. To study the spectral properties of the points within
this parabola, we use the following lemma.

LEMMA 6.5. Let C be a strongly continuous cosine family on the Banach space X
and let A be its generator. Then, for λ ∈ C and s ∈ R the following assertions hold.

(i) S(λ, s) defined by

S(λ, s)x =
∫s

0
sinh(λ(s− t))C(t)x dt, x ∈ X, (6.12)

is a linear and bounded operator on X and its norm satisfies

‖S(λ, s)‖ 6 supt∈[0,|s|] ‖C(t)‖ ·
sinh(|s|Re λ)

Re λ
. (6.13)

(ii) For x ∈ X we have S(λ, s)x ∈ D(A),

(λ2I −A)S(λ, s)x = λ(cosh(λs)I − C(s))x. (6.14)

Furthermore, S(λ, s)A ⊂ AS(λ, s).

(iii) The bounded operators S(λ, s) and C(s)x− cosh(λs)I commute.

(iv) If λ 6= 0 and cosh(λs) ∈ ρ(C(s)), then λ2 ∈ ρ(A) and

‖R(λ2,A)‖ 6 1
|λ|
· ‖S(λ, s)‖ · ‖R(cosh(λs),C(s))‖

6 supt∈[0,|s|] ‖C(t)‖ ·
2|s|e|sReλ|

|λ|
· ‖R(cosh(λs),C(s))‖. (6.15)
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PROOF. We begin by showing item (i). Since the cosine family is strongly con-
tinuous, the integral in (6.12) is well-defined. Hence S(λ, s) is well defined and
linear. For the estimate (6.13) we consider

‖S(λ, s)x‖ 6 sup
t∈[0,|s|]

‖C(t)‖ · ‖x‖ ·
∫ |s|

0
| sinh(λt)| dt

= sup
t∈[0,|s|]

‖C(t)‖ · ‖x‖ · 1
2

∫ |s|
0

|eλt − e−λt| dt

6 sup
t∈[0,|s|]

‖C(t)‖ · ‖x‖ · e
|s|Reλ − e−|s|Reλ

2 Re λ
.

By definition, the last fraction equals sinh(|s|Reλ)
Reλ , and so the inequality (6.13) is

shown.
Item (ii). See [Nag74, Lemma 4].
Item (iii). This is clear, since C(t) and C(s) commute for s, t ∈ R.
Item (iv). We define the bounded operator

B =
1
λ
S(λ, s)R(cosh(λs),C(s)).

By item (ii), we see that (λ2I −A)B = I. By item (iii), we get that

B =
1
λ
R(cosh(λs),C(s))S(λ, s).

Thus, again by (ii)., B(λ2I − A)x = x for x ∈ D(A). Hence, λ2 ∈ ρ(A) and the
first inequality of (6.15) follows. By using the power series of the exponential
function, it is easy to see that sinh(|s|Reλ)

Reλ 6 2|s|e|sReλ|. Combining this with (6.13)
gives the second inequality in (6.15). �

With the use of the above lemma we show that the spectrum of A is contained in
the intersection of a ball and a parabola, provided that (6.5) holds, i.e., provided
lim supt→0+ ‖C(t) − I‖ < 2.

LEMMA 6.6. Let C be a strongly continuous cosine family on the Banach space X
with generator A. Assume that there exists c > 0 such that

lim sup
t→0+

‖C(t) − I‖ < c < 2. (6.16)

Then, there existsMc, rc > 0 and φc ∈ (0, π2 ) such that

Rc :=
{
λ2 | λ ∈ C, |λ| > rc, | arg(λ)| ∈

(
φc,

π

2

]}
⊂ ρ(A), (6.17)

and
∀µ ∈ Rc ‖µR(µ,A)‖ 6Mc. (6.18)
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PROOF. First, we note that by (6.16) we have the existence of t0 > 0 such that
‖C(t) − I‖ < c for all t ∈ [0, t0), and by symmetry, for all t ∈ (−t0, t0). Using
the assumption, we find that 1

2‖C(t) − I‖ < c
2 < 1, and hence I + 1

2 (C(t) − I) =
1
2 (C(t) + I) is invertible with ‖(C(t) + I)−1‖ < 1

2−c for all t ∈ (−t0, t0). In other
words, −1 ∈ ρ(C(t)). By standard spectral theory, it follows that the open ball
centered at −1 with radius ‖R(−1,C(t))‖−1, i.e., B‖R(−1,C(t))‖−1(−1), is included
in ρ(C(t)). Therefore,

B 2−c
2
(−1) ⊂ B 1

2‖R(−1,C(t))‖
(−1) ⊂ ρ(C(t)) ∀t ∈ (−t0, t0), (6.19)

and by the analyticity of the resolvent, we have for µ ∈ B 2−c
2
(−1) and t ∈ (−t0, t0)

that

‖R(µ,C(t))‖ =

∥∥∥∥∥
∞∑
n=0

(µ+ 1)nR(−1,C(t))n+1

∥∥∥∥∥
6 2‖R(−1,C(t))‖ < 2

2 − c
. (6.20)

Since cosh(t) is entire and cosh(iπ) = −1, there exists r̃ > 0 such that

cosh(Br̃(iπ)) ⊂ B 2−c
2
(−1). (6.21)

Let λ ∈ C be such that | arg(λ)| 6 π
2 . We search for s ∈ R such that λs ∈ Br̃(iπ). Let

sλ =
π sin(arg(λ))

|λ|
be the unique element on the line {λs : s ∈ R} which is closest to

iπ. We have that |iπ−λsλ| = π cos(arg(λ)). Now, chooseφc ∈ (0, π2 ) large enough
such that π cos(φc) < r̃ and choose rc > 0 such that π

rc
< t0. Then, for all λ2 ∈ Rc,

we have that λsλ ∈ Br̃(iπ) with sλ ∈ (−t0, t0). By (6.21), cosh(λsλ) ∈ B 2−c
2
(−1).

Thus,

cosh(λsλ) ∈ ρ(C(sλ)), and ‖R(cosh(λsλ),C(sλ))‖ 6
2

2 − c
, (6.22)

by (6.19) and (6.20). Therefore, Lemma 6.5 (iv) implies that λ2 ∈ ρ(A) and

‖R(λ2,A)‖ 6 sup
t∈[0,|sλ|]

‖C(t)‖ · 2|sλ|e|sλ Reλ|

|λ|
· ‖R(cosh(λs),C(sλ))‖

6 sup
t∈[0,t0]

‖C(t)‖ · 2πeπ

|λ|2
· 2

2 − c
6
Mc

|λ|2

for someMc only depending on supt∈[0,t0]
‖C(t)‖ and c. �

Combining the results from Lemmas 6.4 and 6.6 enables us to prove Theorem 6.3. As
for semigroups we can prove a slightly more general result.
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THEOREM 6.7 (Zero-two law for cosine families). Let C be a strongly continuous
cosine family on the Banach space X. Denote by A its infinitesimal generator. Then
the following assertions are equivalent

(i) lim supt→0+ ‖C(t) − I‖ < 2;

(ii) lim supt→0+ ‖C(t) − I‖ = 0;

(iii) A is a bounded operator.

PROOF. Trivially, the second item implies the first one. If the assertion in item
(iii) holds, then the corresponding cosine family is given by

C(t) =

∞∑
n=0

An
(−1)nt2n

(2n)!
.

From this, the property in item (ii) is easy to show. Hence it remains to show that
item (i) implies item (iii).
Let c be the constant from equation (6.16), and let rc > 0,φc ∈ [0, π2 ) be the
constants from Lemma 6.6. By Lemma 6.4, we have that there exists ω ′ > ω > 0
such that

sup
λ∈Rω′∩Sφc

‖λ2R(λ2,A)‖ <∞, (6.23)

where Rω′ = {λ ∈ C : Re λ > ω ′} and Sφc = {µ ∈ C : | argµ| 6 φc}. Now, let λ
such that |λ| > rc and | arg(λ)| ∈ (φc, π2 ]. Thus λ2 ∈ Rc, see (6.17), and so by
Lemma 6.6,

sup
λ2∈Rc

‖λ2R(λ2,A)‖ <∞. (6.24)

Let f(z) = z2. It is easy to see that the closure of C\(Rc ∪ f(Rω′ ∩ Sφc)) is compact.
Thus, (6.23) and (6.24) yield that there exists an R > 0 such that the spectrum σ(A)

lies within the open ball BR(0) and

sup
|µ|>R

‖µR(µ,A)‖ <∞. (6.25)

Hence we have that µ 7→ R(µ,A) has a removable singularity at ∞. Since A is
closed, this implies that A is a bounded operator, [Kat95, Theorem I.6.13], and
therefore item (iii) is shown. �

6.3. Similar laws on R and N

In the previous section we showed that uniform estimates in a neighbourhood of
zero imply additional properties. In this section we study estimates which hold on
R, (0,∞), Z, or N. For R and (0,∞) we show that by applying a scaling trick, the
results can be obtained from the already proved laws. The main theorem of this
section is the following.



6.3. SIMILAR LAWS ON R AND N 137

THEOREM 6.8. The following assertions hold
(i) For a semigroup T we have that (6.6) implies that T(t) = I for all t > 0.

(ii) If the strongly continuous cosine family C on the Banach space X satisfies

sup
t>0
‖C(t) − I‖ = r < 2 (6.26)

then C(t) = I for all t ∈ R.

PROOF. Since the proof of the two items is very similar, we concentrate on the
second one.
For the Banach space Xwe define `2(N;X) as

`2(N;X) = {(xn)n∈N | xn ∈ X,
∑
n∈N

‖xn‖2 <∞}. (6.27)

With the norm

‖(xn)‖ =
√∑
n∈N

‖xn‖2,

this is a Banach space. On this extended Banach space we define Cext(t), t ∈ R as

Cext(t)(xn) = (C(nt)xn). (6.28)

Hence it is a diagonal operator with scaled versions of C on the diagonal. By
a standard argument and (6.26) it follows that the cosine family Cext is strongly
continuous. Now we estimate the distance from this cosine family to the identity
on `2(N;X) for t ∈ (0, 1].

‖Cext(t) − I‖2 = sup
‖(xn)‖=1

‖Cext(t)(xn) − (xn)‖2

= sup
‖(xn)‖=1

∑
n∈N

‖C(nt)xn − xn‖2

6 sup
‖(xn)‖=1

∑
n∈N

r2‖xn‖2 = r2,

where we have used (6.26). In particular, this implies that

lim sup
t→0+

‖Cext(t) − I‖ < 2.

By Theorem 6.7, we conclude that the infinitesimal generator of Cext is bounded.
Since Cext(t) is a diagonal operator, it is easy to see that its infinitesimal generator
Aext is diagonal as well. Furthermore, the n’th diagonal element equals nA. Since
n runs to infinity, Aext can only be bounded if A = 0. This immediately implies
that C(t) = I for all t ∈ R. �
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From the above proof it is clear that if Theorem 6.7 would hold for non-strongly
continuous cosine families, then the strong continuity assumption can be removed
from item 2 in the above theorem as well.

We emphasize that for semigroups no continuity assumption was needed. As men-
tioned in the introduction, this can also be proved using operator algebraic result
going back to Wallen [Wal67]. In Subsection 6.3.2, we present an (also simple) alter-
native proof. However, first we study the analog of Theorem 6.8 for discrete cosine
families.

6.3.1. Discrete cosine families.

DEFINITION 6.9 (Discrete cosine family). Let A be a unital normed algebra (with
unity I). A family C = (C(n))n∈Z ⊂ A is called a discrete cosine family (or cosine
sequence) in A when C(0) = I and (6.3) holds for all t, s ∈ Z.

THEOREM 6.10. If a discrete cosine family C in a unital normed algebra A satisfies

sup
n∈N
‖C(n) − I‖ = r < 3

2
, (6.29)

then C(n) = I for all n.
Furthermore, there exists a discrete cosine family such that C(n) 6= I for all n ∈ N
and

sup
n∈N
‖C(n) − I‖ = 3

2
.

PROOF. We closely follow the proof in [Are12]. Using equation (6.3) we find for
n ∈ Z that

2 (C(n) − I)2 = C(2n) − I − 4(C(n) − I).

Hence
4(C(n) − I) = C(2n) − I − 2 (C(n) − I)2 .

Taking norms, we find

4‖C(n) − I‖ 6 ‖C(2n) − I‖+ 2‖C(n) − I‖2. (6.30)

Let L := supn∈N ‖C(n) − I‖, then (6.30) implies that

4L 6 L+ 2L2

In other words, L = 0 or L > 3/2. By assumption, the latter does not hold, and
therefore, L = 0, or equivalently C(n) = I,n > 0. This proves the first part of the
theorem. To show that the constant 3/2 is sharp, we consider the following scalar
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discrete cosine family on X = C,

C(n) = cos
(

2π
3
n

)
, n ∈ Z.

It is easy to see that this family only takes the values 1 and − 1
2 , and thus

sup
n∈N
‖C(n) − I‖ = sup

n∈N

∣∣∣∣cos
(

2π
3
n

)
− 1
∣∣∣∣ = 3

2
. (6.31)

Hence we conclude that 3
2 is the best possible constant in (6.29). �

6.3.2. An elementary proof for semigroups. We now give an elementary proof
of the following known result.

THEOREM 6.11. Let T be a strongly continuous semigroup on the Banach space X,
and let A denote its infinitesimal generator. If

r := sup
t>0
‖T(t) − I‖ < 1, (6.32)

then T(t) = I for all t > 0.

PROOF. In general it holds that

T(t)x− x = A

∫t
0
T(s)x ds, t > 0, x ∈ X. (6.33)

For t > 0 let Bt denote the bounded operator x 7→ Btx :=
∫t

0 T(s)xds. For x ∈ X,

‖x− t−1Btx‖ =
1
t

∥∥∥∥∫t
0
x− T(s)x ds

∥∥∥∥ 6 1
t

∫t
0
‖x− T(s)x‖ds 6 r‖x‖.

Thus, since r < 1, it follows that t−1Bt is boundedly invertible for all t > 0 and

‖tB−1
t ‖ 6

1
1 − r

⇔ ‖B−1
t ‖ 6

1
t(1 − r)

. (6.34)

By (6.33) and (6.32), we have that ‖ABt‖ 6 1. Thus,

‖A‖ 6 ‖B−1
t ‖

(6.34)
6

1
t(1 − r)

∀t > 0, (6.35)

hence, A = 0 which concludes the proof. �

6.4. The zero-two law at∞
In Theorems 6.7 and 6.8 we have proved laws of the form

lim sup
t→0

‖C(t) − I‖ < 2 =⇒ lim
t→0
‖C(t) − I‖ = 0, (limsup-law)

sup
t∈R
‖C(t) − I‖ < 2 =⇒ C(t) = I ∀t ∈ R, (sup-law)
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where (C(t))t∈R is a strongly continuous cosine family on a Banach space X. Follow-
ing these results published in [SZ15c], Chojnacki [Cho15a] and Esterle [Est15b] have
generalized them to the situation of a cosine family of elements in a general unital
Banach algebra (In [Cho15a] even normed unital algebras are considered).

In this section we consider cosine families in a unital Banach algebra A (with unity
element I) satisfying

lim sup
t→∞ ‖C(t) − I‖ < 2. (6.36)

Clearly, this condition is weaker than the premise in the sup-law, however, we show
that it still allows for the same conclusion. In fact, in Theorem 6.16 we prove that

lim sup
t→∞ ‖C(t) − I‖ < 2 =⇒ C(t) = I ∀t ∈ R. (limsup-∞-law)

The proof (of (limsup-∞-law)) uses techniques by J. Esterle developed recently in
[Est15b]. Finally we state the corresponding result for semigroups.

6.4.1. A lim supt→∞- law. In the following, for a normed unital algebra A, let I
always denote the unity element. Let us recall the notions spectrum and resolvent for
elements in A. An element a ∈ A is called invertible if there exists a b ∈ A such that
ab = ba = I. Furthermore,

ρ(a) = {λ ∈ C : (λI − a) is invertible}, σ(a) = C \ ρ(a).

LEMMA 6.12. Let (C(t))t∈R be a cosine family in a unital Banach algebra. If

lim sup
t→∞ ‖C(t) − I‖ = 0,

then C(t) = I for all t ∈ R.

PROOF. From the assumption follows that limt→∞ C(t) = I. By d’Alembert’s
defining identity for cosine families,

C(t+ s) + C(t− s) = 2C(t)C(s), (6.37)

for all s, t ∈ R. Thus, letting t→∞, we derive 2I = 2C(s) for all s ∈ R. �

The following lemma is a slight extension of Esterle’s Lemma 2.1 in [Est15b], as we
also allow for t0 =∞. The proof is analogous the case t0 = 0.
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LEMMA 6.13. Let (c(t))t∈R be a complex-valued cosine family and t0 ∈ {0,∞}.
Then, we have one of the following situations.

(i) lim supt→t0
|c(t) − 1| =∞,

(ii) lim supt→t0
|c(t) − 1| = 2,

(iii) lim supt→t0
|c(t) − 1| = 0.

Moreover, in case (iii), it follows that

c(t) =

{
1 if t0 =∞,

cos(at) if t0 = 0,
(6.38)

for some a > 0.

PROOF. As mentioned the proof is analogous to the one in [Est15b, Lemma 2.1].
In case (iii) and t0 =∞, it follows by Lemma 6.12 that c(t) = 1 for all t ∈ R. �

For a unital Banach algebra A, which in additional is commutative, i.e., ab = ba for
a,b ∈ A, define the characters (or complex homomorphisms)

∆A = {χ : A→ C,χ is linear and multiplicative,χ 6= 0} , (6.39)

where χ 6= 0 means that χ is not the zero functional. It is easy to see that χ (I) = 1
for every χ ∈ ∆A. Moreover, one can show that |χ(a)| 6 ‖a‖ for a ∈ A and χ ∈ ∆A.
We equip ∆A with the initial topology induced by the set of mappings {â : a ∈ A},
where

â : ∆A → C,χ 7→ χ(a). (6.40)

The mapping a 7→ â is the well-known Gelfand transform and therefore, the topol-
ogy on ∆A is called Gelfand topology. It is well known that ∆A is compact and that
the Gelfand transform is a continuous algebra homomorphism from A to C(∆A), the
space of continuous functions on ∆A (equipped with the supremum norm). Fur-
thermore, for the spectral radius r(a) = supλ∈σ(a) |λ| of an element a ∈ A we have
that

∀a ∈ A : r(a) = ‖â‖∞ = sup
χ∈∆A

|χ(a)|. (6.41)

For detailed information about Banach algebras, the Gelfand transform and the space
of characters we refer to e.g., [Rud91, Chapter 11].
For a subset S of a (not necessarily commutative) Banach algebra A, let alg(S) de-
note the closure of the smallest subalgebra of A containing S, which is called the
Banach algebra generated by S. It can be shown that if S is commutative, i.e., ab = ba

for a,b ∈ S, then alg(S) is commutative. Hence, alg(S) is a commutative Banach
algebra.
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PROPOSITION 6.14. Let (C(t))t∈R be a cosine family in the unital Banach algebra.
If lim supt→∞ r (C(t) − I) < 2, then r (C(t) − I) = 0 for all t ∈ R.

PROOF. W.l.o.g. we can assume that the considered Banach algebra A is com-
mutative, otherwise consider the Banach algebra generated by the cosine family,
A = alg

(
(C(t))t∈R

)
, which is commutative. Let ∆A denote the characters on A,

see (6.39). By (6.41), we have that for all t ∈ R,

r (C(t) − I) = sup
χ∈∆A

|χ (C(t) − I) | = sup
χ∈∆A

|χ(C(t)) − 1|. (6.42)

Thus, by the assumption we get that lim supt→∞ |χ(C(t)) − 1| < 2 for all χ ∈ ∆A.
SinceC is a cosine family and χ ∈ ∆A a linear, multiplicative functional, it follows
directly that (χ (C(t)))t∈R is a complex-valued cosine family. Now Lemma 6.13
implies that χ(C(t)) = 1 for all t ∈ R and χ ∈ Â. Using this in (6.42), we deduce
that r(C(t) − I) = 0 for all t ∈ R. �

As pointed by Esterle [Est15b], if A is commutative, the following square root can be
defined. For a ∈ A with ‖a‖ 6 1 set

√
I − a :=

∞∑
n=0

(−1)nαnan, (6.43)

where α0 = 1, αn = 1
n!

1
2 (

1
2 − 1)...( 1

2 − n + 1) = (−1)n−1 1
n2n−1

(2(n−1)
n−1

)
, n > 0. We

remark (−1)nαn are the Taylor coefficients of the function z →
√

1 − z at the origin
(with convergence radius equal to 1). Then

(√
I − a

)2
= I−a and since (−1)n−1αn >

0 for n > 1,∥∥∥I −
√

I − a
∥∥∥ 6 ∞∑

n=1

|αn|‖a‖n =

∞∑
n=1

(−1)n−1αn‖a‖n = 1 −
√

1 − ‖a‖. (6.44)

For details see [Est15b]. Using (6.43) applied to the Banach algebra generated by the
cosine family, the following result can be proved.

LEMMA 6.15 (Esterle, [Est15b]). Let (C(t))t∈R be a cosine family in a unital Ba-
nach algebra and s ∈ R. If ‖C(2s) − I‖ 6 2 and r(C(s) − I) < 1, then,

C(s) =

√
I −

I − C(2s)
2

,

where the square root is defined as described above.

With the above preparatory results, the limsup-∞-law is now easy to show. The proof
is analogous to the one in [Est15b, Theorem 3.2], which in turn can be seen as an
elegant refinement of the technique used in the three-lines-proof in [Are12].



6.4. THE ZERO-TWO LAW AT ∞ 143

THEOREM 6.16. Let (C(t))t∈R be a cosine family in a unital Banach algebra. Then,
lim supt→∞ ‖C(t) − I‖ < 2 implies that C(t) = I for all t ∈ R.

PROOF. By Proposition 6.14, we have that r(C(t)−I) = 0 for t ∈ R. Furthermore,
there exists s0 such that ‖C(s)− I‖ < 2 for s > s0. Thus, we can apply Lemma 6.15
and Eq. (6.44) so that for all s > s0,

‖I − C(s)‖ 6 1 −

√
1 −

∥∥∥∥ I − C(2s)
2

∥∥∥∥ 6 1.

With S := lim sups→∞ ‖C(s) − I‖, this yields that

S 6 1 −

√
1 −

S

2
6 1. (6.45)

Therefore, 1 − S
2 6 (1 − S)2 and hence, 3

2S 6 S2. Thus, either S = 0 or S > 3
2 .

Since S 6 1 by (6.45), this implies that S = 0. Finally, Lemma 6.12 yields the
assertion. �

REMARK 6.17. After discussing Theorem 6.16 with J. Esterle, he pointed out that
the following alternative in the proof can be used. Instead of applying Lemma 6.15,
we could use Theorem 2.3 in [Est15a] which asserts that

r(C(t) − I) = 0 ∀t ∈ R =⇒ C(t) = I ∀t ∈ R, (6.46)

for a bounded cosine family C.

REMARK 6.18. It is clear that Theorem 6.16 generalizes the sup-law. We remark
that the known proofs of the sup-law, see Theorem 6.8 and [Cho15a], which use a
diagonalization argument and the limsup-law, cannot be generalized to the assertion
of Theorem 6.16.

6.4.2. A discrete lim sup-law. For discrete cosine families, or cosine sequences
(C(n))n∈Z, the following is a slight generalization of Theorem 6.10.

THEOREM 6.19. Let (C(n))n∈Z be a discrete cosine family in a unital Banach alge-
bra. Then,

lim sup
n→∞ ‖C(n) − I‖ < 3

2
=⇒ C(n) = I ∀n ∈ Z.

There exists a discrete cosine family such that C(n) 6= I for all n ∈ N and

lim sup
n→∞ ‖C(n) − I‖ = 3

2
.

PROOF. The proof is completely analogous to the one for Theorem 6.10, with
L := lim supn→∞ ‖C(n) − I‖ after (6.30). �
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6.4.3. The corresponding semigroup result. Let us finally state the correspond-
ing result for (discrete) semigroups in a normed unital algebra. This is a corollary of
a well-known result by Wallen [Wal67].

THEOREM 6.20. Let (Tn)n∈N be a semigroup in a normed unital algebra. Then,

lim sup
n→∞ ‖Tn − I‖ < 1 =⇒ Tn = I ∀n ∈ N. (6.47)

PROOF. If lim supn→∞ ‖Tn − I‖ < 1, then lim infn∈N
1
n

∑n
j=1 ‖Tj − I‖ < 1. By

Wallen [Wal67], the assertion follows. �

REMARK 6.21. Clearly, Theorem 6.20 implies that for a semigroup T on [0,∞), we
have that

lim sup
t→∞ ‖T(t) − I‖ < 1 =⇒ T(t) = I ∀t > 0. (6.48)

6.5. Less than one implies zero

6.5.1. Scaled zero-r laws. Turning again to the semigroup case, it is easy to see
that the zero-one law

sup
t>0
‖T(t) − I‖ < 1 =⇒ T(t) = I ∀t > 0,

implies the scaled version

sup
t>0
‖T(t) − eλtI‖ < 1 =⇒ T(t) = eλtI ∀t > 0, (6.49)

for Re λ > 0. Note that (6.49) is not true for Re λ < 0, as can be seen by the example
T(t) = e2λt. In the following we investigate a similar question for cosine families
(C(t))t>0. As mentioned in Section 6.1, Bobrowski and Chojnacki showed in [BC13,
Theorem 4] that

sup
t>0
‖C(t) − cos(at)I‖ < 1

2
, (6.50)

implies C(t) = cos(at)I for all t > 0. The purpose of this section is to extend Bo-
browski and Chojnacki’s result by showing that the number 1

2 in (6.50) may be re-
placed by 1. More precisely, we prove the following.

THEOREM 6.22. Let (C(t))t>0 be a strongly continuous cosine family on the Banach
space X and let a > 0. If the following inequality holds for r = 1,

sup
t>0
‖C(t) − cos(at)I‖ < r, (6.51)

then C(t) = cos(at)I.
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Clearly, the case a = 0 in Theorem 6.22 is not interesting, since then r 6 1 can be
weakend to r 6 2 as we have seen in Theorems 6.8 and 6.16.
After the first draft3 of Theorem 6.22 had appeared, Chojnacki [Cho15b] generalized
the result to the situation of cosine families on normed algebras indexed by gen-
eral abelian groups. Later, Bobrowski, Chojnacki and Gregosiewicz [BCG15] and,
independently, Esterle [Est15a] extended Theorem 6.22 to r < 8

3
√

3
≈ 1.54. This is op-

timal as can be seen by choosing C(t) = cos(3at)I and the fact that supt>0 | cos(3t) −
cos(t)| = 8

3
√

3
. Again, their results do not require the strong continuity assumption

and hold for cosine families on general normed algebras with a unity element.

The outline of this section is as follows. First we show some technical lemmata we
need later, see Section 6.5.2.
In Section 6.5.3 we prove Theorem 6.22 for a 6= 0 using elementary techniques, which
seem to be less involved than the technique used in [BC13] (which lead to the worse
constant r = 1

2 , see (6.50)).

6.5.2. Some technical lemmata.

LEMMA 6.23. If a,b > 0 and a 6= b, then supt>0 | cos(at) − cos(bt)| > 1.

PROOF. If a = 0, the assertion is clear as cos(π) = −1. Hence, let a,b > 0. By
scaling, it suffices to prove that

∀a ∈ (0, 1) ∃s > 0 : | cos(as) − cos(s)| > 1.

Since cos(2kπ) = 1 for k ∈ Z and cos(as) < 0 for t ∈ π
a
( 1

2 + 2m, 3
2 + 2m), m ∈ Z,

we are done if we find (k,m) ∈ Z× Z such that

k ∈ 1
a

( 1
4 +m, 3

4 +m
)

.

This is equivalent to ka−m ∈ ( 1
4 , 3

4 ). It is easy to check that for a ∈ (2−n−1, 2−n]∪
[1 − 2−n−1, 1 − 2−n) we can choose k = 2n−1 andm = bkac. �

The following lemma gives the Fourier series of odd powers of the cosine. We omit
the proof as it can be checked by the reader easily.

LEMMA 6.24. Let n ∈ N. Then, for all t ∈ R,

cos(t)2n+1 =

n∑
k=0

a2k+1,2n+1 cos ((2k+ 1)t) ,

where a2k+1,2n+1 = 2−2n
(2n+1
n−k

)
.

3F. Schwenninger, H. Zwart, Less than one implies zero, http://arxiv.org/abs/1310.6202v1.pdf.

http://arxiv.org/abs/1310.6202v1.pdf
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LEMMA 6.25. For any n ∈ N and a1,2n+1 chosen as in Lemma 6.24 holds that
• bn := limq→0+ q ·

∫∞
0 e

−qt| cos(t)n| dt exists and bn > bn+1,

• a1,2n+1 = 2b2n+2,

• limn→∞ a1,2n+1
2b2n+1

= 1.

PROOF. Because t 7→ | cos(t)n| is π-periodic,

q

∫∞
0
e−qt| cos(t)n| dt =

q
∫π

0 e
−qt| cos(t)n|dt
1 − e−qπ

,

which goes to 1
π

∫π
0 | cos(t)n|dt as q→ 0+. Furthermore,

2b2n+2 =
2
π

∫π
0
| cos(t)2n+2|dt =

1
π

∫ 2π

0
cos(t)2n+1 cos(t)dt

equals a1,2n+1 by the Fourier series of cos(t)2n+1, see Lemma 6.24.
By the same lemma we have that for n > 1

a1,2n−1

a1,2n+1
=

2−2n+2
(2n−1
n

)
2−2n

(2n+1
n

) =
(2n+ 1)2n
4(n+ 1)n

,

which goes to 1 as n→∞. This implies that a1,2n+1
2b2n+1

goes to 1 as

a1,2n+1 = 2b2n+2 6 2b2n+1 6 2b2n = a1,2n−1, n ∈ N.

�

6.5.3. Proof of Theorem 6.22. In the following, let (C(t))t>0 always be a strongly
continuous cosine family on the Banach space X with infinitesimal generator of A
which has domain D(A).

Assume that for some r > 0,

sup
t>0
‖C(t) − cos(at)I‖ = r. (6.52)

The following lemma shows that if (6.52) holds, the spectrum of A is a singleton.
This will be essential in proving Theorem 6.22.

LEMMA 6.26. If (C(t))t∈R is a strongly continuous cosine family such that (6.52)
holds for r < 1 and a > 0, then the spectrum of the generator A satisfies σ(A) ⊆{
−a2
}

.

PROOF. The case r = 0 is trivial, thus let r > 0. From (6.52) it follows in partic-
ular that the cosine family (C(t))t>0 is bounded. Using Lemma 5.4 from [Fat69]
we conclude that for every s ∈ C with positive real part s2 lies in the resolvent set
of A, i.e., s2 ∈ ρ(A). Thus the spectrum of A lies in R− ∪ {0}.
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To determine the spectrum, we use Lemma 6.5. By (ii) of the Lemma, for λ ∈ C,
s ∈ R and x ∈ D(A) there holds

1
λ
S(λ, s)(λ2I−A)x dt = (cosh(λs)I− C(s))x,

where the operator S(λ, s) is defined in (6.12) and bounded (by Lemma 6.5 (i)).
By this and the definition of the approximate point spectrum,

σap(A) =
{
λ ∈ C | ∃(xn)n∈N ⊂ D(A), ‖xn‖ = 1, lim

n→∞ ‖(A− λI)xn‖ = 0
}

,

it follows that if λ2 ∈ σap(A), then cosh(λs) ∈ σap(C(s)). Hence,

cosh
(
s
√
σap(A)

)
⊂ σap(C(s)), ∀s ∈ R. (6.53)

Since σ(A) ⊂ R−∪{0}, the boundary of the spectrum equals σ(A). Combining this
with the fact that the boundary of the spectrum is contained in the approximate
point spectrum [EN00, Prop.VI.1.10], we see that σ(A) = σap(A). Let −λ2 ∈ σ(A)
for λ > 0. Then, by (6.53),

cosh(±siλ) = cos(sλ) ∈ σap(C(s)), ∀s ∈ R.

If λ 6= a, we can find s0 > 0 such that | cos(s0λ) − cos(as0)| > 1, see Lemma 6.23.
Since cos(s0λ) ∈ σap(C(s0)), we find a sequence (xn)n∈N ⊂ X such that ‖xn‖ = 1
and limn→∞ ‖(C(s0) − cos(s0λ)I)xn‖ = 0. Therefore,

‖(C(s0) − cos(as0)I)xn‖ > | cos(s0λ) − cos(as0)|− ‖ (C(s0) − cos(s0λ)I) xn‖.

Thus ‖C(s0) − cos(as0)I‖ > 1. This contradicts assumption (6.52) as r < 1. �

If a > 0 in (6.52), we may apply scaling on t. Hence in that situation, we can take,
without loss of generality, a = 1, thus

sup
t>0
‖C(t) − cos(t)I‖ = r. (6.54)

For the rest of the section assume that (6.54) holds with r < 1. Hence, we know that
the norm of the difference

e(t) := C(t) − cos(t)I

is uniformly below one, i.e., supt>0 ‖e(t)‖ < 1, and we want to show that it equals
zero. The idea is to work on the following inequality (which holds by the uniform
boundedness of e). ∥∥∥∥∫∞

0
hn(q, t)e(t)dt

∥∥∥∥ 6 r ∫∞
0

|hn(q, t)|dt, (6.55)

with hn(q, t) = −2qe−qt cos(t)2n+1, n ∈ N, where q > 0 is an auxiliary variable to
be dealt with later.
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Since (C(t))t>0 is bounded, it is well-known (see e.g., [Fat69, Lemma 5.4]) that for s
with Re(s) > 0, s2 ∈ ρ(A) and we can define E(s) as the Laplace transform of e(t),

E(s) :=

∫∞
0
e−ste(t) dt = s(s2I −A)−1 −

s

s2 + 1
I (6.56)

To calculate the left-hand side of (6.55) we need the following result (together with
Lemma 6.24).

PROPOSITION 6.27. For hn(q, t) = −2qe−qt cos(t)2n+1 and q > 0 we have∫∞
0
hn(q, t)e(t)dt = a1,2n+1 [g(q)I + qB(A,q)] +G(A,q),

where an as in Lemma 6.24, g(q) = 2q2+4
(q2+4) ,

B(A,q) = R(q+i)2 2q
[
A− (q2 + 1)I

]
R(q−i)2 ,

where Rλ = R(λ,A) and G(A,q) is such that limq→0+ G(A,q) = 0 in the operator
norm.

PROOF. By Lemma 6.24, we have that∫∞
0
hn(q, t)e(t)dt = −

n∑
k=0

a2k+1,2n+1 2q
∫∞

0
e−qt cos ((2k+ 1)t) e(t) dt

= −

n∑
k=0

a2k+1,2n+1q [E(q+ (2k+ 1)i) + E(q− (2k+ 1)i)] .

Let us first consider the term in the sum corresponding to k = 0. By (6.56),

E(q± i) = (q± i)R(q±i)2 −
q± i

q(q± 2i)
I. (6.57)

Hence,

E(q+ i) + E(q− i) = −
2q2 + 4
q(q2 + 4)

I + (q+ i)R(q+i)2 + (q− i)R(q−i)2

= −
g(q)

q
I + R(q+i)2

[
(q+ i)((q− i)2I −A)+

+ ((q− i)2I −A)(q− i)
]
R(q−i)2

= −
g(q)

q
I + R(q+i)2 2q

[
q2I + I −A

]
R(q−i)2

= −
g(q)

q
I − B(A,q).

Thus, it remains to show that limq→0+ G(A,q) = 0, with

G(A,q) := −

n∑
k=1

a2k+1,2n+1q [E(q+ (2k+ 1)i) − E(q− (2k+ 1)i)] .
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Let dk = (2k+ 1)i. By (6.56),

E(q± (2k+ 1)i) = (q± dk)R(q±dk)2 −
q± dk

(q± dk)2 + 1
I.

For k 6= 0, d2
k ∈ ρ(A) by Lemma 6.26. Thus, by continuity of λ 7→ Rλ,

lim
q→0+

E(q± (2k+ 1)i) = ±dkRd2
k
± dk

d2
k + 1

I,

for k 6= 0, hence, limq→0+ G(A,q) = 0. Therefore, the assertion follows. �

Now we are ready to prove Theorem 6.22.

PROOF (Proof of Theorem 6.22). Let r = 1 − 2ε for some ε > 0. Since
limn→∞ 2b2n+1

a1,2n+1
= 1 by Lemma 6.25, we can choose n ∈ N such that

r
2b2n+1

a1,2n+1
< 1 − ε. (6.58)

Let us abbreviate a1,2n+1 by a2n+1. By (6.55) and Proposition 6.27, we have that

‖a2n+1 [g(q)I + qB(A,q)] +G(A,q)‖ 6 2rq
∫∞

0
e−qt| cos(t)2n+1|dt,

hence, dividing by g(q)a2n+1,∥∥∥∥I +
1
g(q)

(
qB(A,q) +

1
a2n+1

G(A,q)
)∥∥∥∥ 6 2rq

g(q)a2n+1

∫∞
0
e−qt| cos(t)2n+1|dt,

For q → 0+, g(q) → 1+, G(A,q) → 0 by Proposition 6.27 and by Lemma 6.25,
q
∫∞

0 e
−qt| cos(t)2n+1|dt→ b2n+1. Thus, there exists q0 > 0 (depending only on ε

and n) such that∥∥∥∥I +
q

g(q)
B(A,q)

∥∥∥∥ 6 r2b2n+1

a2n+1
+ ε =: δ, ∀q ∈ (0,q0),

Since δ < 1 by (6.58), B(A,q) is invertible for q ∈ (0,q0). Moreover,

‖B(A,q)−1‖ 6 q

g(q)
· 1

1 − δ
.

Since

B(A,q)−1x1 =
1
2
(
(q− i)2I −A

)
q−1 [A− (q2 + 1)I

]−1 (
(q+ i)2I −A

)
x1,

for x1 ∈ D(A), which is dense in X, we conclude that

‖((q− i)2 −A)R(q2 + 1,A)((q+ i)2 −A)x1‖ 6
q2

g(q)
· 2

1 − δ
· ‖x1‖.

As q → 0+, the right-hand-side goes to 0, whereas the left hand side tends to
‖(I+A) [I −A]−1 (I+A)x1‖ as 1 ∈ ρ(A). Since −1 ∈ ρ(A), we derive (I+A)x1 = 0.
Therefore, A = −I since D(A) is dense in X. �
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REMARK 6.28.

(i) As mentioned before, by the recent results of Bobrowski, Chojnacki and
Gregosiewicz [BCG15] and, independently, Esterle [Est15a], we know that
the implication of our ‘Less than one implies zero’ law, Theorem 6.22, even
holds if the constant 1 in the premise gets replaced by 8

3
√

3
. Their proof

techniques, however, differ completely from the ones we use for Theorem
6.22. It is an interesting question whether our proof can be extended to the
more general result.

(ii) Recently, Esterle [Est15c] has studied the discrete-version of Theorem 6.22,

proving that for every a ∈ R there exists k(a) ∈
[√

5
2 , 8

3
√

3

]
such that for

every discrete cosine family C in a unital Banach algebra it holds that

sup
n∈N
‖C(n) − cos(an)I‖ < k(a) =⇒ C(n) = cos(an) ∀n ∈ Z.

He also proves that for a cosine family (C(g))g∈G in a unital Banach alge-
bra and a scalar cosine family (c(g))g∈G, where G is an abelian group, the
assertion

sup
g∈G
‖C(g) − c(g)I‖ <

√
5

2
=⇒ C(g) = c(g) ∀n ∈ Z

holds. Moreover, the number
√

5
2 is shown to be optimal.



APPENDIX A

Maximum principles for operator-valued functions

For an open set Ω ⊂ C, H(Ω) denotes the (complex-valued) holomorphic functions
onΩ.

THEOREM A.1 (Phragmén-Lindelöf principle - general version, [PL08]). Let
f ∈ H(Ω), where Ω ⊂ C is an open, connected set and denote by Γ the boundary of
in the extended complex planeΩ in C ∪ {∞}. Let E ⊂ Γ and assume that there exists
M > 0 such that

lim sup
z→ζ,z∈Ω

|f(z)| 6M, ζ ∈ Γ \ E.

Further assume the existence of a function w ∈ H(Ω) with 0 < |w| 6 1 on Ω and
for all σ > 0,

lim sup
z→ζ,z∈Ω

|w(z)σf(z)| 6M, ζ ∈ E.

Then,
|f(z)| 6M, z ∈ Ω.

Recall that ∂Ω denotes the boundary of Ω in C. Setting E = {∞} ∩ Γ and ω(z) = 1 in
Theorem A.1 yields the following maximum principle for H∞-functions.

COROLLARY A.2 (Phragmén-Lindelöf principle for H∞-functions). LetΩ ⊂ C
be open and connected. For a scalar-valued, bounded analytic function f on Ω we
have

sup
z∈Ω

|f(z)| = sup
ζ∈(∂Ω\{∞})

f̃(ζ),

where f̃(ζ) = lim supz→ζ,z∈Ω |f(z)|.
If f is continuous at ζ ∈ ∂Ω, then f̃(ζ) = |f(ζ)|.
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THEOREM A.3 (Phragmén-Lindelöf principle for operator-valued
H∞-functions). LetΩ ⊂ C be a connected, open set and X a Banach space.
For a function bounded and analytic function F : Ω→ B(X), it holds that

sup
z∈Ω
‖F(z)‖ = sup

ζ∈∂Ω\{∞}

F̃(ζ),

where F̃(ζ) = lim supz→ζ,z∈Ω ‖F(z)‖.
If F is continuous at ζ ∈ ∂Ω, then F̃(ζ) = ‖F(ζ)‖.

PROOF. Since for ζ ∈ ∂Ω, F̃(ζ) 6 supz∈Ω ‖F(z)‖, it follows that

sup
z∈Ω
‖F(z)‖ > sup

ζ∈Ω\{∞}

F̃(ζ).

To prove the converse inequality, let x ∈ X, y ∈ X ′ and define Fx,y(z) = 〈y, F(z)x〉.
Since F is analytic if and only if Fx,y is analytic for all x,y, we can apply Corollary
A.2 to derive that supz∈Ω |Fx,y(z)| = supζ∈∂Ω\{∞} F̃x,y(ζ). Hence,

sup
z∈Ω
‖F(z)‖ = sup

z∈Ω
sup

‖x‖=‖y‖=1
|Fx,y(z)|

= sup
‖x‖=‖y‖=1

sup
ζ∈∂Ω\{∞}

F̃x,y(ζ)

= sup
ζ∈∂Ω\{∞}

sup
‖x‖=‖y‖=1

lim sup
z→ζ,z∈Ω

|〈y, F(z)x〉|

6 sup
ζ∈∂Ω\{∞}

sup
‖x‖=‖y‖=1

lim sup
z→ζ,z∈Ω

‖F(z)‖

6 sup
ζ∈∂Ω\{∞}

lim sup
z→ζ,z∈Ω

‖F(z)‖

= sup
ζ∈∂Ω\{∞}

F̃(ζ).

�

In Corollary A.2 and Theorem A.3 we have seen that for general domains Ω, the
supremum norm of a bounded, analytic function on Ω is ‘attained’ at the bound-
ary. For Ω ∈ {D, C−, C+}, by Hardy space theory, one can even define a ‘boundary
function’ f∗ ∈ L∞(∂Ω) such that ‖f‖∞,Ω = ‖f∗‖L∞ . Hence, H∞ isometrically embed-
ded in L∞(∂Ω). The operator-valued analog is not true in general, but at least for
Hilbert spaces X an boundary function F∗ ∈ L∞(∂Ω,B(X)) can be defined (where
the boundary function is defined in the strong operator topology). The case for sep-
arable Hilbert spaces is well-known, see, e.g., [CZ95, Tho97], the non-separable case
was proved by Mikkola, see [Mik08], which answered a problem stated by Thomas
[Tho97].
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Nomenclature

DBg,y A (scalar) output mapping defined by g ∈ H∞(C−), p. 23
H2(Y) Y-valued Hardy space on C+, p. 19
H2
⊥(Y) Y-valued Hardy space on C−, p. 19

L (two-sided) Laplace transform, p. 20
A normed unital algebra, p. 130
Bθ The interior of the convex hull of {{1} ,Bsinθ(0)}, p. 87
F The Fourier transform, p. 20
Gbdd(X) The set of bounded a C0-semigroups on X, p. 113
Gexp(X) The set of exponentially stable C0-semigroups on X, p. 113
GM,ω(X) The set of semigroup generators A on X such that ‖etA‖ 6Metω, p. 113
GM GM,0, p. 113
ΠY orthogonal projection from L2(iR) onto H2, p. 20
ρ(a),σ(a) spectrum, resolvent of element a in a unital algebra, p. 140
σc(A) The continuous spectrum of a closed operator A, p. 118
τ The Cayley transform τ(z) = 1+z

1−z , p. 107
Br(z0) open ball with radius r and centre z0, p. 10
C(T) The Tadmor–Ritt constant of an Tadmor–Ritt operator, p. 83
CΛ Lambda extension of an operator C ∈ B(D(A),X), p. 29
Cay(A) The Cayley transform (I +A)(I −A)−1 of A, p. 110
H∞(Ω) Banach algebra of bounded holomorphic functions onΩ, p. 10
H∞[ε,σ] space of H∞(C+) with Fourier spectrum in [ε,σ], p. 57
KR(X) The set of Kreiss operators on X, p. 83
M(A, δ) The sectoriality constant for A, p. 49
mφ,κφ,ubφ basis constants for the Schauder basis φ, p. 63
Mg Toeplitz operator on L2(R+,H), p. 21
S(θ)(X) The set of θ-sectorial operators on X, p. 58
TR(X) The set of Tadmor–Ritt operators on X, p. 83
X1 (Banach) spaceD(A) equipped with graph norm for closed operatorA, p. 12
Ei(x) Exponential integral function, p. 54
M− Borel measures supported in (−∞, 0] with bounded variation, p. 21
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Summary

This thesis presents various results within the field of operator theory that are for-
mulated in estimates for functional calculi. Functional calculus is the general concept
of defining operators of the form f(A), where f is a scalar function and A is an oper-
ator A, typically on a Banach space. For instance, an example is given by eA. Norm
estimates for f(A) emerge in applications for example when studying stability of
numerical schemes. This work is split into two parts.

The first part essentially deals with the H∞-functional calculus for generators A of
strongly continuous semigroups. Here, the functions f are bounded and analytic on
a (suitable) half-plane in the complex plane.
The interest in this operator-functions pair comes, for instance, from the study of
maximal regularity of p.d.e.’s and numerical analysis. Within this part, we further
distinguish the following topics.
First, an alternative approach to the classical definition of the calculus for general
strongly continuous semigroups is presented, motivated by notions from linear sys-
tems theory. The operator f(A) is constructed via an output mapping of a linear
system associated with f. As a consequence, sufficient conditions for a boundedH∞-
calculus are given, i.e., conditions which guarantee that f(A) is a bounded operator
for any f in the considered class.
Second, we restrict to generators of analytic semigroups and allow for functions
f that are bounded and analytic on sectors, which is known as the classical H∞-
calculus for sectorial operators. We show that the possible unboundedness of the
calculus can be measured by the norm of ‖f(A)T(t)‖ for small t, where T denotes the
semigroup generated by A. Whereas the general asymptotical behavior is O(| log t|),
the occurrence of square function estimates reduces the blow-up.
Third, we consider Tadmor–Ritt operators, the discrete-time analog of analytic semi-
groups. Since we are dealing with bounded operators, the functions f are bounded
and analytic on bounded domains in this case. The provided functional calculus
estimates imply in particular a new, simpler proof for the power-boundedness of
Tadmor–Ritt operators, and also yield the best-known bound. Furthermore, the in-
fluence of discrete square function estimate is described.
Fourth, the relation between the above-mentioned results for analytic and Tadmor–
Ritt operators is investigated in more generality. The interplay between the solution
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of continuous-time systems, given through the semigroup, and solutions of discrete-
time systems, given through the powers of an operator, is by nature of major im-
portance when studying the stability for numerical methods. Here, stability can be
phrased as the question wether the approximate solution is bounded on the infi-
nite time axis given that the exact solution is bounded. In the view of semigroup
theory, the Cayley transform of the generator yields a discrete-time system from a
continuous-time system. The question of stability then refers to whether the Cayley
transform is power-bounded if the semigroup is assumed to be bounded. Whereas
the answer is in general ‘no’ for semigroups on Banach spaces, the case of semi-
groups on Hilbert spaces has become an enigmatic open problem in the last decades.
Using a well-known link with the Inverse Generator Problem, we prove that for the
Hilbert space case, it suffices to consider exponentially stable semigroups to find the
answer to the question. Moreover, it is shown the Cayley Transform Problem and the
Inverse Generator Problem are equivalent in a general sense.

The second part of the thesis is on zero-two laws for cosine families. Cosine families
can be seen as the analog to semigroups for second-order Cauchy problems. For a
semigroup T it is well-known that if the transient behavior of the semigroup at 0
is less than 1 in the operator norm, i.e., lim supt→0+ ‖T(t) − I‖ < 1, then the semi-
group equals the identity I. This has become known as a zero-one law. We prove
the corresponding zero-two law for strongly continuous cosine families on Banach
spaces which has been open so far. Furthermore, related laws are provided as well
as generalizations to cosine families on Banach algebras.



Samenvatting

Functional calculus is een deelgebied van operator theorie met als centrale thema het
definiëren van een nieuwe operator ,f(A), waarbij f een scalaire functie en A een
operator op een Banachruimte is. Een voorbeeld hiervan wordt onder andere gege-
ven door eA. Norm afschattingen van zulke operatoren f(A) vinden toepassingen
in, onder andere, numerieke wiskunde. Het voor u liggende proefschrift kan gezien
worden als een collectie van dit soort afschattingen.
Het onderzoek is gesplitst in twee delen. Het centrale thema in het eerste deel is
H∞-calculus voor generatoren van sterk continue halfgroepen, waarbij de functies f be-
grensd en analytisch op een (passend) half-vlak van het complexe vlak zijn. De the-
orie van dit operator-functie paar heeft belangrijke toepassingen voor vragen betref-
fende maximale regulariteit van partiëlle differentiaal vergelijkingen. Verder worden
in het eerste deel de volgende situaties onderscheiden.
Ten eerste wordt een alternatieve constructie voor de calculus aangetoond, gemo-
tiveerd door ideeën uit de systeemtheorie. De operator f(A) wordt ingevoerd als
de uitgang van een lineair systeem geassocieerd met f. Als een gevolg worden vol-
doende condities aangetoond die een begrensde calculus impliceren, dat is, condities
zodanig f(A) een begrensde operator levert voor elke f in de toegelaten klasse.
Ten tweede beschouwen we generatoren A van analytische halfgroepen T en func-
ties f die analytisch en begrensd op een sector zijn. In dit proefschrift wordt bewezen
dat deze calculus niet willekeurig onbegrensd kan zijn. Echter de ‘onbegrensdheid’
kan door het gedrag van de norm van f(A)T(t) voor kleine positieve t beschreven
worden. In het algemeen is deze afhankelijkheid logarithmisch in t, maar onder be-
paalde voorwaarden, kwadratische afschattingen, verbetert het gedrag.
Het derde onderdeel behandelt Tadmor–Ritt operatoren welke als discrete-tijd te-
genhangers van analytische halfgroepen interpreteert kunnen worden. Omdat deze
operatoren begrensd zijn, zijn de beschouwde functies f analytisch en begrensd op
een begrensd gebied. We bewijzen norm afschattingen voor de bijhorende calculus.
Deze impliceren ook de uniforme begrensdheid van machten van Tadmor–Ritt ope-
ratoren, en leveren tevens de best bekende grens.
Ten vierde wordt de relatie tussen discrete- en continue-tijd systemen onderzocht.
De focus ligt hier op de stabiliteit van een bepaalde numerieke methode. Om precies
te zijn betekent stabiliteit dat de numerieke approximatie begrensd is op de gehele
tijd-as als de exacte oplossing begrensd is deze tijd-as. In onze situatie is de exacte
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oplossing gegeven door de halfgroep en de discrete-tijd oplossing door machten van
een begrensde operator. Deze operator is de Cayley getransformeerde van A en de nu-
merieke methode is het Crank–Nicolson schema. Daardoor is onze stabiliteitsvraag
equivalent met de vraag of de machten van de Cayley getransformeerde uniform
begrensd zijn als wordt aangenomen dat de halfgroep uniform begrensd is. Voor
Banachruimtes is het bekend dat het antwoord negatief is – er bestaan voorbeelden
van begrensde halfgroepen zodanig dat de machten van de bijhorende Cayley ge-
transformeerde niet uniform begrensd zijn. Echter het antwoord is onbekend voor
Hilbertruimtes. In dit proefschrift wordt aangetoond dat de vraag gereduceerd kan
worden tot het geval van exponentieel stabiele halfgroepen. Dit is een sterkere eis
dan uniforme begrensdheid. Verder wordt bewezen dat deze vraag over stabiliteit
equivalent is met het Inverse Generator Probleem.

Het tweede deel gaat over cosinus families. Dat zijn operator-waardige functies op de
reëele as die aan soortgelijke regels voldoen als de cosinus. Zoals halfgroepen na-
tuurlijk verbonden zijn met eerste orde Cauchy problemen, zo zijn cosinus families
natuurlijk verbonden met tweede orde Cauchy problemen. Voor een halfgroep T is
het algemeen bekend dat als het transitief gedrag van de halfgroep bij nul kleiner
is dan 1, d.w.z. lim supt→0+ ‖T(t) − I‖ < 1, dan is T gelijk aan de identiteit I. Hier
wordt bewezen dat de correspondeerde regel, de zogenaamde zero-two law, ook voor
cosinus families geldt. Dit is was onbekend tot nu toe. Voorts worden soortgelijke
regels bewezen voor t gaande naar oneindig, en voor discrete tijd.
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