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1 Introduction

1.1 Overview

Two-dimensional conformal field theory has lead to an interplay of various mathematical dis-
ciplines

• Representation theory, in particular representation theory of Hopf algebras, loop groups,
Kac-Moody algebras, vertex algebras.

• Algebraic geometry, e.g. the moduli spaces of complex curves via the theory of non-abelian
theta functions.

• Topology via three-dimensional topological field theory and knot invariants.

It has various applications in physics

• The world sheet theories of closed and open strings (and superstrings) are full local
conformal field theories.

• Universality classes of critical two-dimensional systems.

• Quasi-one-dimensional systems with impurities, so-called Kondo systems, are described
full local conformal field theories with boundaries.

• Universality classes of quanten Hall fluids are described by chiral conformal field theories.

It is important to note that the word “CFT” is used for two rather different theories:

• Chiral conformal field theory, which is a theory defined on Riemann surfaces without
boundaries. Insertions are allowed, hence the importance of the moduli space of complex
curves with marked points. Chiral conformal field theories are defined on oriented surfaces.
The orientation is explicitly given by the external magnetic field in quantum Hall systems.

• Full local conformal field theory which is defined on conformal surfaces. These surfaces
can have (physical) boundaries. There is also a version defined on unoriented surfaces
that is important for string theories of type I.

In this class, we do not assume any familiarity with the notion of a quantum field theory,
but assume a general mathematical background. We will also explain some basic notions of
representation theory. The plan of these lectures is as follows:

• We use the free massless boson to explain what kind of structure we expect to be present
in a two-dimensional full conformal field theory.

• From a first analysis of correlation functions of a quantum field theory, we extract an
infinite set of meromorphic sections of line bundles on the Riemann sphere. We show how
to extract from this set the algebraic structure of a vertex algebra.

• We show how affine Lie algebras arise in this context. We review some aspects of their
basic theory, then we show how to construct conformal blocks from them and investigate
some of their properties. In particular we explain the Knizhnik-Zamolodchikov connection.

• We then show how much structure that exists on the system of conformal blocks can
be encoded in the structure of a modular functor. We explain how this is related to a
three-dimensional topological field theory.

• We finally use three-dimensional topological field theories to construct full local two-
dimensional rational conformal field theories.
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1.2 Classical field theories

Typically, a field theory is defined for a certain category of manifolds; moreover, a certain di-
mension is distinguished in a field theories. Keeping boundary terms in mind, it is not surprising
that manifolds of lower dimensions ultimately play a role in an n-dimensional field theory as
well. The manifolds involved can have additional structure (bundles, metrics, . . . ). We thus
start our considerations with a category M of manifolds.

Examples 1.2.1.

1. Mechanical systems depend on one variable, with the interpretation of time. The relevant
category is the category of one-dimensional oriented manifolds with a metric. (For the
moment, we take manifolds without boundary, i.e. circles.)

2. Topological field theory in d-dimensions is defined on the category of d-dimensional
smooth manifolds, with morphisms being diffeomorpisms.

3. For gauge theories in n-dimensions with structure group typically a finite-dimensional Lie
group G, the objects in the category are smooth n-dimensional manifolds, together with
a G-bundle (and possibly more structure).

4. Theories with fermions are defined on categories of manifolds with spin bundles.

5. Full local two-dimensional conformal field theories are defined on two-dimensional man-
ifolds with a conformal structure, i.e. with a class of Riemannian metrics up to local
rescaling: two metrics g, g′ on a manifold M are thus identified, if there is a nowhere
vanishing function λ : M → R+ such that g′(x) = λ(x)g(x) for all x ∈ M . (Lorentzian
signature is also considered in the literature.)

There are two classes of theories: for oriented conformal field theories, one considers the
category of oriented conformal manifoldsMor; there is also a variant without orientation
Munor.

In a classical field theory, we assign for eachM ∈M a set F(M) of field configurations. Later
on, the structure of a set will not be enough to define dynamics and to implement covariance.

Examples 1.2.2.

1. For a mechanical system describing a particle moving on a smooth manifold T , we asso-
ciate to an oriented one-dimensional manifold I the space of smooth maps to T ,

FT (I) = C∞(I, T ) .

This is the space of trajectories in T parametrized by the one-dimensional time manifold
I.

2. For a (complex or real) free boson, we associate to M ∈M the space of smooth (real- or
complex-valued) functions on M , for the real boson

FR(M) = C∞(M,R) .

3. These two examples suggest to consider the following construction: take any smooth
manifold T and consider for M ∈M

FT (M) = C∞(M,T ) .
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Such a model is called a sigma model with target space T .

An important example is obtained by taking an n-dimensional lattice L ⊂ Rn.

Consider Rn with the standard structure of a Euclidean vector space. A lattice Λ ⊂ Rn

is a discrete subset that spans Rn. Alternatively, it is a free abelian group Λ of rank an,
together with a positive definite bilinear form.

Then FRn/L(−) describes the classical field configurations for a free boson compactified
on the torus T = Rn/L. Another important class of sigma models have a Lie group G as
a target space.

4. For a gauge theory with structure group G, we assign to a manifold M the category of all
G-bundles on M , with morphisms being gauge transformations. Systems in which field
configurations are (higher) categorical objects are thus crucial for physics. While this is
also of relevance for two-dimensional conformal field theory, e.g. for gauged sigma-models,
we do not pursue this any further in these lectures.

Functions can be pulled back. Given a function N → T and a map f : M →M ′ of manifolds,
we have a map of functions

f ∗ : C∞(M ′, T ) → C∞(M,T )
ϕ 7→ ϕ ◦ f

This has the property that for given maps M
f→M ′ g→M ′′, we have

(g ◦ f)∗ϕ = ϕ ◦ (g ◦ f) = (g∗ϕ) ◦ f = f ∗(g∗ϕ) .

We keep this feature since it allows to build in locality and covariance with respect to the
category M on which the theory is defined. We are thus ready to describe the kinematical
setup for classical field theories:

Definition 1.2.3
A kinematic classical field theory in dimension d consists of a category M of d-dimensional
manifolds (with possibly additional structure), together with a presheaf on M with values in
Set (or possible a richer category or even a bicategory), i.e. a contravariant functor

F : Mopp → Set .

We now need dynamics for classical theories. Take a mechanical system of a particle moving
on a target space T . For each one-dimensional manifold S, we have an equation of motion,
typically a differential equation. Only a subset of the trajectories in FT (S) are a solution to
this equation of motion. We thus single out a subspace SolM ⊂ F(M) for each M ∈M.

For example, given a Riemannian metric on T , we might take SolM to be the subspace of
trajectories that are geodesics. The dynamics should respect covariance, and we should impose
more conditions on the subspaces SolM , e.g. it should be a subpresheaf of F . (If SolM is specified
by differential equations, they should be natural.) If the differential equation is given as the
Euler-Lagrange equations of an action,

SM : F(M)→ C

many aspects of covariance are easier to build in. One should notice that an action is a function
on the space of field configurations.
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We thus define:

Definition 1.2.4
A classical field theory consists of a category M of manifolds, together with a presheaf F on
M with values in Set, called the sheaf of field configurations (or trajectories) and a subpresheaf
Sol of F called the presheaf of classical solutions.

Examples 1.2.5.

1. Consider a mechanical system given by a target space (T, g) which is a Riemannian
manifold. A field configuration in s ∈ F(T,g)(I) is a trajectory s : I → T . We can consider
the action

SI(s) :=

∫
I

dt g(ṡ(t), ṡ(t)) with ṡ :=
ds

dt
.

The solutions for the corresponding Euler-Lagrange equation are geodesics on T .

2. This directly generalizes to higher dimensional field theories, defined on a categoryM of
Riemannian manifolds, i.e. objects of M are pairs (M,h). Then field configurations are
maps s : M → T and a natural action, the Nambu-Goto action, is

SM,h(s) :=

∫
M

dµh h
αβg(∂αs(t), ∂βs(t))

One can also consider a theory defined on manifolds without metric and use the metric
on M induced from the metric on T via s to define the action:

SM,h(s) =

∫
M

√
s∗ deth .

Then the classical solutions are minimal surfaces.

What are interesting questions to ask? In a mechanical system, we look for solutions ϕ of
the equation of motion on an interval I = [a, b] such that given values ξa, ξb are taken at the
boundary,

ϕ(a) = ξa ϕ(b) = ξb

and for example count their number (or understand the structure of this space). In this way, we
also finally get time intervals. An example would be the space of geodesics on (T, g) connecting
two given points ξa, ξb ∈ T .

This leads us to extend the type of theories we consider:
we now consider a manifold with boundary. There might have been manifolds with boundary

already in M, but now we deal with the boundary in a special way: we prescribe values there.
Hence, we rather consider a cobordism. For a mechanical system, we consider a diagram of
manifolds of the form

[a, b]

{a}

<<

{b}

bb

In general, we need the following definition:

Definition 1.2.6
Let n be any positive integer. We define a category Cobn,n−1 of n-dimensional cobordisms as
follows:
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1. An object of Cobn,n−1 is a closed oriented (n− 1)-dimensional smooth manifold.

2. Given a pair of objects M,N ∈ Cobn,n−1, a morphism M → N is a class of cobor-
disms from M to N . A cobordism is an oriented, n-dimensional smooth manifold B with
boundary, together with an orientation preserving diffeomorphism

φB : M tN ∼−→ ∂B .

Here M denotes the same manifold with opposite orientation.

Two cobordisms B,B′ give the same morphism in Cobn,n−1, if there is an orientation-
preserving diffeomorphism φ : B → B′ such that the following diagram commutes:

B
φ // B′

M tN
φB

cc

φ′B

;;

3. For any object M ∈ Cobn,n−1, the identity map is represented by the product cobordism
B = M × [0, 1], i.e. the so-called cylinder over M .

4. Composition of morphisms in Cobn,n−1 is given by gluing cobordisms: given objects
M,M ′,M ′′ ∈ Cobn,n−1, and cobordisms B : M → M ′ and B′ : M ′ → M ′′, the com-
position is defined to be the morphism represented by the manifold B tM ′ B′. (To get a
smooth structure on this manifold, choices like collars are necessary. They lead to diffeo-
morphic glued cobordisms, however.)

Example 1.2.7.

1. The objects of Cob1,0 are collections of finitely many oriented points. Thus objects are
finite disjoint unions of (•,+) and (•,−). The morphisms are oriented one-dimensional
manifolds, possibly with boundary, i.e. unions of intervals and circles.

2. The objects of Cob2,1 are finite disjoint unions of oriented circles. There are six elementary
morphism: the cylinder, the cap, the trinion or pair of pants and their inverses and two
exchanging cylinders.

Remarks 1.2.8.

1. The definition of a cobordism uses smooth manifolds. We will need categories in which
the morphisms will be manifolds with more structure. This will be possibly at the expense
of loosing literally the structure of a category. (If cylinders have to have a length, we will
not have identities any longer.)

2. There is an obvious short-coming in our definition: one would like to incorporate a notion
when two manifolds that are morphisms are “close to each other”. We drop this aspect
in these lectures.

We also have to extend the field configurations we consider:
we include field configurations on the boundary. Since the boundary has a different dimension,

we have to assume for this type of questions that the presheaf of field configurations F is also
defined on a class of n− 1-dimensional manifolds.
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Given a cobordism in any dimension,

M

Σ

s

>>

Σ′

t

``

we get a so-called span of sets

Sol(M) ⊂ F(M)
t∗

''

s∗

ww
F(Σ) F(Σ′)

Here the maps s∗ and t∗ are restrictions of field configurations. We can now ask questions like:
given field configurations ϕ ∈ F(Σ) and ϕ′ ∈ F(Σ′), how many solutions to the equations of
motions are there with these boundary values, i.e. study the space

Sol(M)ϕ,ϕ′ := {Φ ∈ Sol(M) | s∗Φ = ϕ, t∗Φ = ϕ′} ;

this is a subspace of the following space of field configurations:

F(M)ϕ,ϕ′ := {Φ ∈ F(M) | s∗Φ = ϕ, t∗Φ = ϕ′}

We thus have

Definition 1.2.9
A classical (n, n − 1)-dimensional field theory consists of a “category” Cob of n-dimensional
cobordisms of manifolds, together with a presheaf F with values in Set defined at least on all
manifolds appearing either as objects or morphisms in Cob. This presheaf is called the presheaf
of field configurations (or trajectories, in the case of one-dimensional systems).

Moreover, we have a subpresheaf Sol of F defined on manifolds appearing as a morphism
of Cob, called the presheaf of classical solutions. (We definitely neglect here some important
structure on the boundary, think about the role of boundary terms in Noether’s theorem!)

For later use, we present the following

Example 1.2.10.
For a two-dimensional σ-model given by a target space T , we have boundaries which are closed
oriented 1-manifolds S and thus disjoint unions of circles. Thus

FT (S) = FT (S1 t . . . t S1) = C∞(S1 t . . . t S1, T ) = C∞(S1, T )× . . .× C∞(S1, T ) .

We thus get a Cartesian product of loop spaces LM := C∞(S1, T ). In the case of loop groups,
LG, in particular when the target space is a compact Lie group G, there are tools from represen-
tation theory and infinite-dimensional analysis that are used in certain approaches to conformal
field theory.

1.3 Quantum field theories

We have now to motivate the structures appearing in a quantum field theory. We use the
“path” integral as a heuristic tool. The word “path integral” is appropriate for one-dimensional
systems; in the general case, we have integrals over spaces of field configurations.
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Observation 1.3.1.

• Suppose we are given a classical n-dimensional field theory with action S, defined on a
category Cobn,n−1.

• Closed n-dimensional manifolds are endomorphisms M ∈ EndCob(∅). The heuristic idea
is to introduce an invariant Z(M) for an n-manifold M – a “partition function”– by
integration over all field configurations on M :

Z(M) := ”

∫
F(M)

dφ eiS[φ] ”.

In general, this path integral has only a heuristic meaning.

• We consider a n-manifold M with a (n − 1)-dimensional boundary Σ := ∂M . We fix a
boundary field configuration φ1 ∈ F(Σ) and consider the space Fϕ1(M) of all fields φ on
M that restrict to the given boundary values ϕ1.

Once we have fixed boundary values φ1 of the field, we can think about performing a path
integral over the space of field configurations Fϕ1(M). We therefore introduce, again at a
heuristic level, the complex number

Z(M)ϕ1 := ”

∫
Fϕ1 (M)

dφ eiS[φ] ”. (1)

Any n-manifold M with boundary Σ thus provides an assignment

ψM : F(Σ) → C
φ1 7→ Z(M)ϕ1 ;

We are thus lead to assign to a codimension 1 manifold Σ a vector space HΣ, the state
space

HΣ := ”L2
(
F(Σ),C

)
”

of “wave functions”. Any n-manifold M with boundary Σ specifies a wave function in the
state sapceHΣ. Our idea will be to find an independent starting point for the construction
of these state spaces.

• The transition from field configurations to wave functions amounts to a linearization. The
notation L2 should be taken with a grain of salt; it should not suggest the existence of
any distinguished measure on a general category.

• The situation naturally generalizes to cobordisms Σ → M ← Σ′ to which we wish to
associate a linear map

Z(M) : HΣ → HΣ′

by giving its matrix elements (“transition amplitudes”) in terms of the path integral

Z(M)φ,φ′ := ”

∫
Fϕ,ϕ′ (M)

dΦ eiS[Φ] ”

with fixed boundary field configurations ϕ ∈ F(Σ) and ϕ′ ∈ F(Σ′). Here Fφ,φ′(M) is the
space of field configurations on M that restrict to the field configuration φ on the ingoing
boundary Σ and to the field configuration φ′ on the outgoing boundary Σ′.

• The linear maps Z(M) should be compatible with gluing of cobordisms along boundaries.
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In a two-dimensional theory, one has finite disjoint unions of circles as boundaries. to see
further properties of the assignment, we consider a two-dimensional sigma model with target
space T . We recall that the classical configuration space is the space functions on LT :=
C∞(S1, T ), the loop space for T . For the vector space, one might take functions L2(LT,C)
on the loop space (or sections in line bundles over it). We thus expect that the vector space
assigned to the one-dimensional manifold S ∼= S1 t S1 is

L2(C∞(S1, T )× C∞(S1, T )) ∼= L2(C∞(S1, T ))⊗ L2(C∞(S1, T )) .

We therefore postulate that the assignment should be such that Z(S1 t S1) ∼= Z(S1)⊗ Z(S1).
No measure exists on F(Σ) which is typically an infinite-dimensional space, e.g. a loop

space. Therefore, such a space is not an easy starting point. We therefore do the following
formal argument and consider cobordisms. Let us take the simplest example of a target space,
T = R. With the action

S(M,h)[X] =

∫
M

√
dethhµν∂µX∂νX (2)

one obtains a conformal field theory that is called massless free real boson. Suppose for simplicity
that we have Σ′ = ∅, Σ is the disjoint union of n circles and M is the complement of n discs in
P 1 ∼= C ∪ {∞}. Denote the boundary circles by Ci, with i = 1, . . . , n. We prescribe boundary
conditions fi ∈ FR(S1) and thus fix n functions

fi : S1 → R .

We then should “integrate” over the space all functions X : M → R that restrict to fi on Ci.
Thus we want to give sense to∫

DXeiS(X)
∏

δ(X(c)− f(c))

=

∫
DXeiS(X)

∏∫
eiki(X(c)−f(c)dki

=

∫
dkie

−ikif(c)

∫
DXeiS(X)

∏
eiki(X(c))

We thus wish to give some sense for each n-tuple (k1, . . . , kn) ∈ Rn and each n-tuple
(z1, . . . , zn) of distinct points in C to the expression∫

DXeiS(X)
∏

eiki(X(zi)) =: 〈eik1X(z1) . . . eiknX(zn)〉 (3)

We call the right hand side a correlator. We consider correlators (and not actions and path
integrals) as the basic building blocks of quantum field theories. We consider a correlator as
a function on the configuration space of n distinct points on P 1. The expression eik1X(z1) does
not have, for the moment, any independent meaning. We will relate it to vertex operators only
later.

1.4 A discrete model

To find a reasonable definition for the expression (3), we replace the d-dimensional manifold M
by a finite d-dimensional cubic lattice with periodic boundary conditions

Mdisc = (Zm)d
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On this space, we construct a probabilistic model that has essential features of the free
boson. We need:

A measure space Ξ with probability measure µ
Random variables are measurable functions f : Ξ → R for which we would like to study

expectations

E(f) = 〈f〉 =

∫
fdµ

We realise such a model as follows:

• for Ξ, take the finite-dimensional real vector space

Ξ := C∞(Mdisc,R) ∼= RMdisc

space of maps X from Mdisc to the target space R. A field configuration X ∈ Ξ is a vector
(X(p))p∈Mdisc

and X(p) is the value of the field X in the point p ∈Mdisc.

• The probability measure that specifies our model is continuous with respect to the
Lebesgue measure on the finite-dimensional vector space Ξ and is given by the expo-
nential of the action S, which is now a function

eiSM : C∞(Mdisc,R)→ C

Thus the measure is
dµ(X) = e−SM (X)/ZdµM

We have included a normalization factor Z, called the partition function, to ensure that
the measure µ has total weight 1.

For the action, we replace differentials by differences and as a replacement for a metric
on Mdisc, we choose a symmetric matrix (Kp1p2)p1,p2∈Mdisc

:

S(X) =
β0

4π

∑
|t−s|=1

|X(s)−X(t)|2 =:
1

2
(X,KX)

The sum is thus over nearest neighbors. We simplify our model by the assumption that
the matrix K is positive definite and thus in particular non-degenerate.

We are thus lead to compute Gaussian integrals. Gaussian integrals are essentially com-
binatorial. Denoting by A the inverse of the matrix K, we have the following integral over a
finite-dimensional vector space:∫

Ξ

e−
1
2

(X,KX)DX = (detA)1/2(2π)|Mdisc|/2

This fixes the normalization constant:

Z =

∫
Ξ

e−
1
2

(X,KX)DX = (detA)1/2(2π)|Mdisc|/2 (4)

Determinants of operators acting on spaces of functions are thus important. There is a good
mathematical theory for this, which is not the subject of these lectures.

As a trick to get access to correlators, we regard Z as in (4) as a function of the “metric”
K on Mdisc. (This is a discrete classical background field.) Differentiating Z(K) with respect
to Kp1,p2 gives the identity ∫

Ξ
X(p1)X(p2)e−

1
2

(X,KX)DX∫
Ξ

e−
1
2

(X,KX)DX
= Ap1,p2
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One can see this as a 2-point correlator for the “field” X. By repeating this, we obtain for the
n-point correlator zero, if n is odd, for symmetry reasons, and for n = 2m

〈X(p1) . . . X(p2m)〉 :=

∫
Ξ
X(p1)X(p2) . . . X(p2m)e−

1
2

(X,KX)DX∫
Ξ

e−
1
2

(X,KX)DX
=
∑ ∏

pairs σ

Aσ+,σ− (5)

where the sum is over all possibilities to group the variables p1 . . . p2m in pairs and then one mul-
tiplies the corresponding elements of the matrix A. The matrix A is also called the propagator.

A convenient trick to summarize the information in (5) is the following: introduce a vector
J in C∞(Mdisc,R) ∼= RMdisc , called a source; this is to be seen as a function on Mdisc. Consider
the function

RMdisc → R
Z[J ] :=

∫
Ξ
DXe−

1
2

(X,KX)+(J,X) (6)

Then, the n-point correlators in (5) can be recovered by repeated partial differentiation:

1

Z

∂nZ[J ]

∂Jp1 . . . Jpn
|J=0 = 〈X(p1) . . . X(pn)〉

In the Gaussian model, there is a simple quadratic completion of the exponent to reduce the
integral (6) to a Gaussian integral and one computes

Z[J ] = (detA)1/2(2π)|Mdisc|e
1
2
〈J,AJ〉

The same trick allows to obtain the correlators

〈ek1X(p1) . . . eknX(pn)〉 =
1

Z

∫
Ξ

DX exp(
∑
i

kiX(pi)) exp(X,KX)

from a source function of the form

J(z) =
n∑
i=1

kiδ(z − pi)

as

〈ek1X(p1) . . . eknX(pn)〉 = (detA)1/2e1/2JtAJ = exp(
∑
ij

kikj
1

2
Apipj) =

∏
i,j

exp(
1

2
Apipj)

kikj .

This should be seen as a discrete version of the correlator (3) to which we have to give sense
(and which will be the starting point of our more rigorous considerations).

1.5 The free boson: aspects of the continuum theory

We now come back to the free boson, a theory defined on two-dimensional conformal manifolds
with target space T = R with the standard metric. Correlators will be the basis of our theory,
but not probability measures.

We fix a metric h on M in the conformal class and consider the action

S(M,h)(X) =

∫
M

dz
√
hhµν∂µX∂νX =

∫
M

dX ∧ ?hdX

One verifies that the value of the action does not change under local conformal transformations

h(z) 7→ eω(z)h(z) .
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To arrive at a set of correlation functions, we use a formal analogy to the previous subsection.
More rigorous methods are available, but not the topic of these lectures. For more details, we
refer to [G]. For the metric h, we have a Laplacian ∆h which depends on the metric and not only
on the conformal structure. The integrand in the action becomes, after a partial integration in
the action

K(p1, p2)X(p1)X(p2) = X(p1)(−∆h)X(p2)δ(p1, p2)

It has a kernel – harmonic functions – which has to be dealt with separately. The role of the
inverse A of K is played by the Green function that obeys

−∆G′(σ1, σ2) = h−1/2δ(σ1, σ2)− vol(M) .

For a sphere with quasi global coordinate z and metric

ds2 = e2ω(z,z̄)dzdz̄ (7)

the Green function reads

G′ = − 1

4π
log |z1 − z2|2 + f(z1, z̄1) + f(z2, z̄2) (8)

for a certain function f depending on the conformal function ω (this function will be neglected
soon).

In this way, one is lead to consider the expression

〈exp(ik1X(p1)) . . . exp(iknX(pn))〉

= N (det
−∆h

2π
)−1 exp

(
− 1

4π

∑
i

k2
i ω(pi)

)
︸ ︷︷ ︸ δ(

∑
i ki)

∏
i<j |pi − pj|kikj/2

Notice that the first two terms depend on the conformal factor in the metric (7). We will neglect
them and consider the functions on the complex plane with flat metric

〈exp(ik1X(p1)) . . . exp(iknX(pn))〉 = ε(k1, k2, . . . , kn)δ(
∑
i

ki)
∏
i<j

|pi − pj|kikj (9)

Such expressions are the starting point for us to derive the algebraic notion of a vertex
algebra.

1.6 Holomorphic factorization

Correlation functions are functions on the configuration spaceM0,n of n marked points on S2 as
a conformal manifold (or sections in a line bundle over it). Two dimensional conformal manifolds
and complex one-dimensional manifolds are closely related: a complex one-dimensional manifold
is an orientable conformal manifold, together with a choice of orientation.

For any manifold M , the orientation cover M̂ is a two-fold cover M̂
π→M whose total space

consists of points p ∈M , together with a choice of local orientation in p.

Examples 1.6.1.

1. The orientation cover of the sphere S2 consists of two copies of S2 with opposite orienta-
tion. If the oriented sphere S2 ∼= C∪{∞} is described by a quasi-global coordinate z ∈ C,

denote the coordinates on the two connected components of Ŝ2 by z, z∗; the two points
in the same fibre are related by the Z2-action z 7→ z∗ = z, i.e. by complex conjugation
(which indeed reverses the orientation).

11



2. More generally, for any closed orientable manifold M , the orientation cover M̂ consists of
two disjoint copies of M with opposite orientation.

3. The orientation cover of a Klein bottle is the torus. More precisely, consider a torus given
by identifying the opposite edges of the rectangle (0, 1, 2it, 2it + 1) with t ∈ R+ in the
complex plane, modulo the anticonformal involution

z 7→ 1− z + it ,

which does not have any fixed points.

4. For a two-dimensional manifold with boundary, we consider a version of the cover in which
boundary circles are identified. An example is given by the Möbius strip. The cover is a
parallelogram in the complex plane with vertices (0, 1, 1

2
+ it

2
, 3

2
+ it

2
) and anticonformal

involution z 7→ 1− z which has fixed points.

There is a natural map
doub : Mn(M)→M2n(M̂)

from the moduli space of n points in M to the moduli space of 2n points in M̂ which associates
to an n-tuple of points in M the 2n-tuple of their preimages under π : M̂ →M . Later, we will
also include moduli of the conformal structure of M and of the complex structure of M̂ . (This
has already been done in the example of the Möbius strip and the Klein bottle.)

In the case of the Riemann sphere with a quasi-global coordinate z, and an orientation
double with coordinates z and z∗, we have

doub : Mn(P 1) → M2n(P 1 t P 1
)

(z1, . . . , zn) 7→ (z1, . . . , zn; z1, . . . , zn)

The correlator (9) which is a meromorphic section on Mn(M) for M a conformal surface,
is the product of the meromorphic functions∏

i<j

(zi − zj)kikj and
∏
i<j

(z∗i − z∗j )kikj , (10)

with z∗i set to zi. In general, products can be related to pullback. Consider e.g. a manifold M and
the diagonal map ∆ : M →M×M . A smooth function on M×M given by f(x, y) = g1(x)g2(y)
is then pulled back to ∆∗f(x) = g1(x) · g2(x).

The idea is thus that correlators on M are pullbacks along the map doub of holomorphic
functions on M2n(M̂) defined on the moduli space of points for the double M̂ . Actually, we
should consider not only functions, but allow for sections in non-trivial bundles as well. These
sections will be called conformal blocks and are the building blocks of local correlators.)

A technically more convenient starting point for us is a different set of correlators than (9).
We differentiate and study

∂

∂z1

∂

∂z2

〈X(z1)X(z2)〉 =
∂

∂z1

∂

∂z2

log |z1 − z2| =
1

(z1 − z2)2

We see this as a 2-point correlator of a new field J(z) = ∂X(z).
This gives a purely holomorphic expression. Repeating the differentiation, we get for the

n-point correlators purely holomorphic expressions as well:

〈J(z1) . . . J(z2n)〉 =
1

2nn!

∑
π∈S2n

n∏
j=1

1(
zπ(j) − zπ(j+n)

)2 (11)
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and that these expressions transform as a density over the moduli space of 2n points on the
sphere, i.e.

〈J(z1) . . . J(z2n)〉dz1 . . . dz2n

is independent of the choice of coordinates.

2 Amplitudes, vertex algebras and representations

We now show how to obtain from a set of amplitudes of finitely many fields for an arbitrary
number of insertions on a Riemann sphere the algebraic structure of a vertex algebra and its
representations. We follow [GG].

2.1 From sets of amplitudes to vertex operators

To describe the input data of our construction, we first need the following

Observation 2.1.1.

1. The Cartesian product M1 ×M2 of two manifolds comes with canonical projections

M1 ×M2

p2

%%

p1

yy
M1 M2

Suppose we are given line bundles L1 →M1 and L2 →M2. Then

L1 � L2 := (p1)∗L1 ⊗C (p2)∗L2

is a line bundle on M1×M2. (This construction obviously generalizes to vector bundles.)

2. Given a Riemann surface Σ, we can consider the holomorphic tangent bundle TΣ. It is a
holomorphic line bundle. Sections in its dual are meromorphic differential forms. In local
coordinates, they read ω = ω(z)dz and transform as differential form under the change
of local holomorphic coordinates.

Definition 2.1.2
A consistent set of amplitudes consists of the following data:

• A a Z-graded vector space V = ⊕h∈ZVh.
We call a homogeneous vector v ∈ Vh a quasi-primary field of scaling dimension or
conformal weight h ∈ Z.

• For any n-tuple (v1, v2, . . . , vn) ∈ V n of homogeneous vectors of degree deg(vi) = hi, we
have a meromorphic section, called the amplitude, of the bundle

T−h1P 1 � T−h2P 1 � . . .� T−hnP 1

over Mn(P 1) = (P 1)×n which we write

f(v1, . . . , vn; z1, . . . , zn) ≡ 〈V (v1, z1)V (v2, z2) · · ·V (vn, zn)〉
n∏
j=1

(dzj)
hj .
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The amplitudes are required to obey the following axioms:

• They are multilinear in the vectors vi.

• (Meromorphicity:) They are analytic, except possibly for finite order poles, if points co-
incide, zi = zj.

• (Locality:) They are invariant under exchange (vi, zi)↔ (vj, zj),

f(v1, . . . , vi, . . . , vj . . . , vn; z1, . . . , zi, . . . , zj, . . . zn)
= f(v1, . . . , vj, . . . , vi . . . , vn; z1, . . . , zj, . . . , zi, . . . zn)

• (Non-degeneracy:) If all amplitudes involving a given ψ ∈ V vanish, then ψ = 0.

We should warn the reader that there are interesting chiral conformal field theories, so-called
logarithmic conformal field theories, which are not covered by these axioms and where one has
to admit for logarithms in the amplitudes.

Since the behaviour as a differential form is fixed by the conformal weight, we follow the
usual convention: we fix a quasi-global coordinate z on P 1 and drop all basis elements dz.

Examples 2.1.3.

1. Free boson, Heisenberg algebra:
In this case, V is one-dimensional in degree 1. We fix a generator J of V , i.e. V = CJ
and call the corresponding field an abelian current. The amplitude of an odd number
of J-fields is defined to vanish, and in the case of an even number it is given, with the
shorthand J(z) := V (J, z) by the expression in (11),

〈J(z1) · · · J(z2n)〉 =
kn

2nn!

∑
π∈S2n

n∏
j=1

1

(zπ(j) − zπ(j+n))2

where k is an arbitrary (real) constant and S2n is the permutation group on 2n object.
This defines the amplitudes on a basis of V and we extend the definition by multilinearity.
It is clear that the amplitudes are meromorphic in zj, and that they satisfy the locality
condition.

2. Affine Lie algebras:
We generalise this example to the case of an arbitrary finite-dimensional Lie algebra g.

Definition 2.1.4

(a) A Lie algebra g over a field K is a K-vector space, together with a bilinear map,
called the Lie bracket,

[·, ·] g× g→ g

that is antisymmetric, [x, x] = 0 for all x ∈ g, and for which the Jacobi identity
holds,

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ g .

(b) A morphism of Lie algebras φ : g → g′ is a K-linear map such that [φ(x), φ(y)] =
φ([x, y]) for all x, y ∈ g.

14



Important examples of Lie algebras include the Lie algebra gl(V ) = EndK(V ) for an any
K-vector space, with the Lie bracket given by the commutator. For dimK V <∞, traceless
matrices form a Lie subalgebra sl(V ).

For any element t ∈ g, we consider the endomorphism adt := [t,−] of g. The Jacobi
identity implies

adt1 ◦ adt2 − adt2 ◦ adt1 = ad[t1,t2] ;

thus t 7→ adt defines the adjoint action of g on itself. Let K be any endomorphism of
g commuting with the adjoint action of g, e.g. the identity. For any n ∈ N, define an
n-linear map

κ : g× . . .× g → C
(t1, t2, . . . , tn) 7→ trg(K ◦ adt1 ◦ adt2 ◦ . . . ◦ adtn) .

These forms have cyclic symmetry and, due to the Jacobi identity, obey

κ(t1, t2, t3, . . . , tm−1, tm)− κ(t2, t1, t3 . . . , tm−1, tm) = κ([t1, t2], t3 . . . , tm−1, tm) .

Our amplitudes are now defined by taking V equal to g in degree 1. We call the elements
of V non-abelian currents and use for t ∈ g the shorthand t(z) := V (t, z).

To a cyclic permutation σ = (i1, i2, . . . , im) ≡ (i2, . . . , im, i1) and (t1, . . . , tm) ∈ gm, we
associate the function on Mm(P 1)

f t1,t2...tmσ (zi1 , zi2 , . . . , zim) =
κ(t1, t2, . . . , tm)

(zi1 − zi2)(zi2 − zi3) · · · (zim−1 − zim)(zim − zi1)
.

A permutation ρ ∈ Sn without fixed points can be written as the product of disjoint cycles
of length at least two, ρ = σ1σ2 . . . σM . We associate to ρ the product fρ of functions
fσ1fσ2 . . . fσM and define 〈t1(z1)t2(z2) . . . tn(zn)〉 to be the sum of such functions fρ over
permutations ρ ∈ Sn with no fixed point.

The amplitudes are evidently local and meromorphic.

3. Lattice Theories:
These theories appear in the description of free bosons compactified on lattices.

Let Λ ⊂ V be an even n-dimensional Euclidean lattice; an even lattice is a lattice for
which 〈k, k〉 ∈ 2Z for all k ∈ Λ. For any pair v1, v2 ∈ Λ of lattice vectors of an even
lattice, we have by polarization

〈v1, v2〉 =
1

2
(〈v1 + v2, v1 + v2〉 − 〈v1, v1〉 − 〈v2, v2〉) ∈ Z .

As a consequence, the dual lattice

Λ∗ := {v ∈ V | 〈v, w〉 ∈ Z for all w ∈ Λ}

of an even lattice obeys Λ∗ ⊃ Λ. Then AΛ := Λ∗/Λ is a finite abelian group on which the
quadratic form

v 7→ 〈v, v〉 mod Z

is well-defined.

We need to construct auxiliary quantities:
Fix a basis e1, e2, . . . , en of Λ as a free Z-module. Consider an algebra with generators γj,
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1 ≤ j ≤ n and relations γ2
j = 1 and γiγj = (−1)〈ei,ej〉γjγi. For k = m1e1 + m2e2 + . . . +

mnen ∈ Λ, we define γk := γm1
1 γm2

2 . . . γmnn . Then one can show that

γk1γk2 . . . γkN = ε(k1, k2, . . . , kN)γk1+k2+...+kN

with ε(k1, k2, . . . , kN) ∈ {±1}.
We take V to be the (infinite-dimensional) vector space C[Λ] freely generated by the set
underlying the lattice Λ. It has a natural basis {ψk : k ∈ Λ}; we define a Z-grading on V by
assigning grade 1

2
k2 ∈ Z to ψk. All homogeneous components of V are finite-dimensional.

Writing V (ψk, z) = V (k, z), we define the n-point amplitudes to be

〈V (k1, z1)V (k2, z2) · · ·V (kN , zn)〉 = ε(k1, k2, . . . , kN)
∏

1≤i<j≤N

(zi − zj)ki·kj

if k1 + k2 + . . .+ kN = 0 and zero otherwise. This expression should be compared to the
one in equation (9). Correspondingly, we write in this case

〈V (k1, z1)V (k2, z2) · · ·V (kN , zn)〉 = 〈ek1X(z1)ek2X(z2) · · · eknX(zn)〉 .

Our idea is now to generate a “space of states” from a consistent set of amplitudes. We will
see that we rather get a family of topological vector spaces. A word of warning is in order: the
construction we present will not give us all states that appear in a conformal field theory, but
only the “descendants of the vacuum”.

Observation 2.1.5 (1.step).
We fix an open set C ⊂ P 1 \ {∞}. Denote by Mn(C) the space of n distinct ordered points in
C. Consider the vector space

VC := ⊕∞n=0V
⊗n ⊗ spanC(Mn(C)) ;

This vector space contains in particular elements which we write quite formally in the form

~ψ :=
n∏
i=1

V (ψi, zi)Ω for ψ1 ⊗ . . . ψn ∈ V ⊗n and (z1, . . . , zn) ∈Mn(C)

with all ψi homogeneous elements. We call the set of such elements BC; they form an (uncount-
able) set of generators for VC. The elements of BC are thus just finitely many points, with a

homogeneous vector in V attached to each point. We interpret the vector ~ψ as being generated
by the quasi-primary field V (ψi) at the point zi by acting on the vacuum Ω.

The vector space C has not enough structure: we have not implemented the idea that
the same field V (ψ) at insertion points zi and z′i that are close to each other should give
“neighbouring” states. To this end, we need a topology on VC. The only tool we have available
to this end is the set of amplitudes from definition 2.1.2.

Observation 2.1.6 (2.step).

1. Let O be an open subset of P 1 in the complement of C, i.e. O∩C = ∅. Each vector ~φ ∈ BO
defines a map on VC by the amplitude

η~φ(~ψ) =

〈
m∏
i=1

V (~φi, ζi)
n∏
j=1

V (~ψj, zj)

〉
.
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2. One could say that we are using states attached to points in O to “test” the states
attached to points in C.

3. We now define a topology on VC. For any compact subset K ⊂ O and any ε > 0, consider
the compact set of m distinct ordered points in K of distance at least ε

Km
ε := {(ζ1, . . . , ζm) with ζi ∈ K, |ζi − ζj| ≥ ε} ⊂ Mn(O) .

We say that a sequence (ψi) of elements in VC is an O-Cauchy sequence, the sequence of
complex numbers

η~φ(~ψi)

converges uniformly for all ~φ ∈ BO with insertion points ~ζ ∈ Km
ε .

4. One can show that the limit limi→∞ η~φ(~ψi) is a meromorphic function of the ζi, with
singularities only for coinciding points. This yields on VC the structure of a topological
vector space, which depends on the choice of O.

5. The corresponding completion ṼOC is still too big: we have to divide out those elements
~ψ ∈ ṼOC for which

η~φ(ψ) = 0 for all ~φ ∈ BO ,

because they cannot be distinguished by the amplitudes. We thus divide out the radical
of all forms η~φ used to induce the topology and denote the corresponding quotient by VOC .

(This should be compared to the construction of the Banach space L1(Rn) by dividing
out all integrable functions such that

∫
Rn |f | = 0.)

It can be shown that the topology of VOC is given by a countable family of seminorms. Un-
der the assumption of cluster decomposition (see below), the span of BC can be identified
with a dense subspace of any VOC .

One then shows the following

Theorem 2.1.7.

1. If the complement of O is path connected, then VOC is independent of C.

2. If O ⊂ O′, then VO′ ⊂ VO as a dense subset.

Remarks 2.1.8.

1. The idea of the proof of 1. is the fact that a meromorphic function is already uniquely
specified on any open subset.

2. The idea in the proof of 2. is the fact, that for the larger set O′, we impose more conver-
gence conditions on sequences vectors in VC to call them a Cauchy sequence.

3. One can show independence of the choice of global coordinate.

4. We summarize our findings on the space of states: For any open set O such that the
complement is path connected, we have a topological vector space VO. For O ⊂ O′, then
VO′ ⊂ VO. Moreover, for any open set C with C ∩ O = ∅, the set of vectors BC is a dense
subset of VO.
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We can now define vertex operators. It is crucial that they are not endomorphisms. Rather,
they are a whole collection of linear maps between different topological vector spaces. To define
a vertex operator at a point z ∈ P 1 \ {∞} for a vector ϕ ∈ V , we need to fix open sets O,O′
such that z ∈ O′ \ O. Moreover, we fix an open set C with C ∩ O′ = ∅ and define a linear map

V (ϕ, z) : VO′ → VO

(i.e. as an operator going to a larger space) by its action on the dense subset BC

V (ϕ, z)~ψ := V (ϕ, z)V (ψ1, z1)V (ψ2, z2) · · ·V (ψn, zn)Ω︸ ︷︷ ︸
~ψ

.

One then shows:

Proposition 2.1.9.

1. This is well-defined, i.e. independent of the choice of C, and V (ψ, z) is continuous.

2. If z, ζ ∈ O, z 6= ζ, and φ, ψ ∈ V , then it follows directly from the locality property of the
amplitudes that

V (φ, z)V (ψ, ζ) = V (ψ, ζ)V (φ, z)

as an identity on VO.

2.2 Möbius invariance

We have now to impose one more requirements on our amplitudes to get a reasonable theory.
Recall that the group PSL(2,C) acts on the Riemann sphere by

γ(z) =
az + b

cz + d
with a, b, c, d ∈ C, ad− bc = 1 .

This group has the following one-parameter-subgroups:

• Translations
eλL−1(z) = z + λ with λ ∈ C .

• Scaling transformations
eλL0(z) = eλz with λ ∈ C .

• Special conformal transformations

eλL1(z) =
z

1− λz
with λ ∈ C .

One verifies that in the Lie algebra of PSL(2,C)

[Ln, Lm] = (m− n)Lm+n for m,n ∈ {0,±1} .

We impose covariance of the amplitudes under these transformations:

Definition 2.2.1
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A Möbius-covariant consistent set of amplitudes obeys in addition the axiom that for all γ ∈
PSL(2,C) and any n-tuple (ψ1, . . . , ψn) of homogeneous vectors in V of degree deg(ψj) = hj〈

n∏
j=1

V (ψj, zj)

〉
n∏
j=1

(dzj)
hj =

〈
n∏
j=1

V (ψj, ζj)

〉
n∏
j=1

(dζj)
hj , where ζj = γ(zj) ,

or, equivalently, 〈
n∏
j=1

V (ψj, zj)

〉
=

〈
n∏
j=1

V (ψj, γ(zj))

〉
n∏
j=1

(γ′(zj))
hj .

Remarks 2.2.2.

1. The power of the derivative γ′(z)h takes into account that the amplitude is really a section
of a line bundle.

2. The amplitudes for the free boson, the non-abelian currents and the lattice theory pre-
sented in example 2.1.3 are all Möbius covariant.

Observation 2.2.3.

1. The Möbius group also acts on open subsets of P 1 by

O 7→ Oγ := {γ(z) : z ∈ O} .

To implement the symmetries on the space of states, we we define an operator U(γ) :
VO → VOγ . Again we choose C with C ∩ O = ∅ and define U(γ) on the dense subset BC
by

U(γ)~ψ =
n∏
j=1

V (ψj, γ(zj))
n∏
j=1

(γ′(zj))
hj Ω ∈ VOγ .

2. It follows immediately from the definition of U(γ) that U(γ)Ω = Ω. This is the (Möbius-
)invariance of the vacuum. Furthermore,

U(γ)V (ψ, z)U(γ−1) = V (ψ, γ(z))γ′(z)h, for ψ ∈ Vh. (12)

3. Then the definition is extended from the dense subspace BC to VO.

4. Fix any point z0 6∈ O. One can conclude from Möbius invariance of the amplitudes that
the map

V → VO
ψ 7→ V (ψ, z0)Ω

is an injection. For, if

〈
n∏
i=1

V (ψi, zi)V (ψ, z0)〉

vanishes for all ψi and zi, then by the invariance property, the same holds for an infinite
number of points that are Möbius-images of z0. Regarded as a function of z0, the preceding
expression defines a meromorphic function with infinitely many zeros; it therefore vanishes
identically, thus implying by the non-degeneracy axiom of the amplitudes that ψ = 0.
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5. Without loss of generality, we can chose in a Möbius covariant theory z0 = 0 ∈ C ⊂ P 1

as a reference point and then identify

ψ = V (ψ, 0)Ω ∈ VO .

This is the first instance of a field-state-correspondence.

6. We next notice that for an element γ ∈ SL(2,C), we have

U(γ) = exp

(
b

d
L−1

) (√
ad− bc
d

)L0

exp
(
− c
d
L1

)
.

Now the Möbbius covariance relation (12) implies

U(γ)ψ = U(γ)V (ψ, 0)Ω = U(γ)V (ψ, 0)U(γ)−1Ω = lim
z→0

V (ψ, γ(z))Ωγ′(z)h

From this relation, we conclude that

L0ψ = hψ , L1ψ = 0 , L−1ψ = V ′(ψ, 0)Ω . (13)

Vectors obeying the relation (13) are called quasi-primary states. For example, for the
subgroup generated by L0, we have

γ′(λ) = (eλ)′ = γ(λ)

and thus
U(eλL0)ψ = (eλ)h lim

z→0
V (ψ, eλz)Ω = (eλ)hψ

and thus by differentiating with respect to λ, we get L0ψ = hψ.

Note that L0 acts as the grading operator on V . (This is a consequence of our axioms,
but not necessarily true for all conformal field theories considered in the literature. In
so-called logarithmic conformal field theories, L0 can have a nilpotent part.)

7. One then defines vertex operators for the state ~ψ =
∏n

j=1 V (ψj, zj)Ω ∈ BC by

V (~ψ, z) =
n∏
j=1

V (ψj, zj + z) .

Then V (~ψ, z) is a continuous operator VO1 → VO2 for suitably chosen open subsetsO1,O2.

We can further extend the definition of V (~ψ, z) by linearity from ~ψ ∈ BC to vectors
Ψ ∈ VOC , the image of VC in the completion VOC , to obtain a continuous linear operator

V (Ψ, z) : VO1 → VO2 ,

where Cz ∩ O2 = ∅, O2 ⊂ O1 and Cz ⊂ O1 for Cz = {ζ + z : ζ ∈ C}. It can, however, not
be extended to all states in the closure VOC ∼= VO of VOC .

Proposition 2.2.4.

1. For the vertex operator associated to Ψ ∈ VOC , we again have

eλL−1V (Ψ, z)e−λL−1 = V (Ψ, z + λ) and V (Ψ, 0)Ω = Ψ .
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2. Furthermore, we have for ζ 6= z that

V (Ψ, z)V (φ, ζ) = V (φ, ζ)V (Ψ, z) ,
V (Ψ, z)Ω = ezL−1Ψ

for any φ ∈ V . Thus L−1 plays the role of a translation operator.

3. The two conditions in 2. characterise the vertex operator for the state Ψ ∈ VOC uniquely.
This can be called a field-state correspondence.

4. (Duality:) If Ψ ∈ VOC and Φ ∈ VO
′
C , then

V (Ψ, z)V (Φ, ζ) = V (V (Ψ, z − ζ)Φ, ζ) . (14)

This can be seen as a generalized version of associativity.

Proof.
We only show uniqueness and duality:

1. To show uniqueness in 3., we assume that we have an operator W (z) such that for all
φ ∈ V

W (z)V (φ, ζ) = V (φ, ζ)W (z) and W (z)Ω = ezL−1Ψ .

It follows for all Φ ∈ VO
′

C′ that

W (z)eζL−1Φ = W (z)V (Φ, ζ)Ω [creation property of V ]
= V (Φ, ζ)W (z)Ω [locality assumption on W ]
= V (Φ, ζ)ezL−1Ψ [creation assumption on W ]
= V (Φ, ζ)V (Ψ, z)Ω [creation property of V ]
= V (Ψ, z)V (Φ, ζ)Ω [locality property of V ]
= V (Ψ, z)eζL−1Φ [Möbius covariance of V ]

Since this holds on the dense subspace VO
′

C′ of VO′C′ we have W (z) = V (Ψ, z).

2. To see duality, we use Möbius covariance to find:

V (Φ, z)V (Ψ, ζ)Ω = V (Φ, z)eζL−1V (Ψ, 0)e−ζL−1Ω = V (Φ, z)eζL−1Ψ
= eζL−1e−ζL−1V (Φ, z)eζL−1Ψ = eζL−1V (Φ, z − ζ)Ψ
= V (V (Φ, z − ζ)Ψ), ζ)Ω.

The uniqueness result in 3. now implies (14).

2

2.3 Modes, graded vector spaces and OPE’s

We now want to get rid of families of topological vector spaces and reduce the structure to a
Z-graded vector space with finite-dimensional homogeneous components.

Observation 2.3.1.
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1. It is straightforward to see that we can construct contour integrals of vectors in the
topological vector space VO of the form∮

C1

dz1

∮
C2

dz2 . . .

∮
Cr

dzrµ(z1, z2, . . . , zr)
n∏
i=1

V (ψi, zi)Ω ,

where r ≤ n and the weight function µ is analytic in some neighbourhood of the contours
C1 × C2 × · · · × Cr and the distances |zi − zj|, i 6= j, are bounded away from 0 on this
set. In this way we can define the modes

Vn(ψ) =
1

2πi

∮
C

zh+n−1V (ψ, z)dz , for ψ ∈ Vh ,

as linear operators on VOC , where the contour C encircles C and C ⊂ O with ∞ ∈ O and
0 ∈ C.

2. The meromorphicity of the amplitudes allows us to prove the identity

V (ψ, z) =
∞∑

n=−∞

Vn(ψ)z−n−h (15)

with convergence with respect to the topology of VO′ for an appropriate open set O′.
The definition of the mode operator Vn(ψ) is independent of the contour C if it is taken to
be a simple contour encircling the origin once positively. Further, if O2 ⊂ O1, VO1 ⊂ VO2

and if∞ ∈ O2, 0 /∈ O1, the definition of Vn(ψ) on VO1 , VO2 , agrees on VO1 , which is dense
in VO2 , so that we may regard the definition as independent of O. Vn(ψ) depends on our
choice of 0 and ∞ but different choices can be related by Möbius transformations.

3. We define the graded vector space HO ⊂ VO to be the space spanned by finite linear
combinations of vectors of the form

Ψ = Vn1(ψ1)Vn2(ψ2) · · ·VnN (ψN)Ω ,

where ψj ∈ V and nj ∈ Z, 1 ≤ j ≤ N . Then, by construction, HO has a countable basis.
It is easy to see that HO is dense in VO. Further it follows from the independence of
the definition of modes that HO is independent of O, and, where there is no ambiguity,
we shall denote it simply by H. It does however depend on the choice of 0 and ∞, but
different choices will be related by the action of the Möbius group again.

4. It follows that
V (ψ, 0)Ω = ψ for ψ ∈ V ,

so that we can identify V ⊂ H. Using the mode expansion (15), we find

Vn(ψ)Ω = 0 if n > −h and V−h(ψ)Ω = ψ .

Observation 2.3.2.

1. The duality property (14) of the vertex operators can be rewritten in terms of modes as
the operator product expansion (OPE) for Ψ,Φ ∈ H with L0Ψ = hΨΨ and L0Φ = hΦΦ

V (Φ, z)V (Ψ, ζ) = V (V (Φ, z − ζ)Ψ, ζ) =
∑
n

V (Vn(Φ)Ψ, ζ)(z − ζ)−n−hΦ . (16)
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2. We can then use contour deformation techniques to derive from this formula commutation
relations for the respective modes. Indeed, the commutator of two modes Vm(Φ) and Vn(Ψ)
acting on BC is defined by

[Vm(Φ), Vn(Ψ)] =
1

(2πi)2

∮
dz

∮
dζ|z|>|ζ|z

m+hΦ−1ζn+hΨ−1V (Φ, z)V (Ψ, ζ)

− 1

(2πi)2

∮
dz

∮
dζ|ζ|>|z|z

m+hΦ−1ζn+hΨ−1V (Φ, z)V (Ψ, ζ) ,

where the contours on the right-hand side encircle C anti-clockwise. We can then insert
(16) and deform the two contours to find:

[Vm(Φ), Vn(Ψ)] =
1

(2πi)2

∮
0

ζn+hΨ−1dζ

∮
ζ

zm+hΦ−1dz
∑
l

V (Vl(Φ)Ψ, ζ)(z − ζ)−l−hΦ ,

where the ζ contour is a positive circle about 0 and for fixed ζ the z contour is a small
positive circle about ζ. Now recall the Cauchy-Riemann formula

1

2πi

∮
dz

f(z)

(z − w)n
=

1

(n− 1)!
f (n−1)(w) .

Only terms with l ≥ 1− hΦ contribute to the z-integral, which becomes

1

2πi

∮
dz

zm+hΦ−1

(z − ζ)l+hΦ
=

1

(l + hφ − 1)!

dl+hΦ−1

dζ l+hΦ−1
ζm+hΦ−1

=
1

(l + hφ − 1)!

(m+ hΦ − 1)!

(m+ hΦ − 1− (l + hΦ − 1))!
ζm+hΦ−1−l−hΦ+1

=

(
m+ hΦ − 1
m− l

)
ζm−l

We thus find

[Vm(Φ), Vn(Ψ)] =
∑
k,l

(
m+ hΦ − 1
m− l

)
1

2πi

∮
0

dζ ζn+hΨ−1ζm−l Vk(Vl(Φ)Ψ)ζ−k−(hΨ−l)

=
∑

l

(
m+ hΦ − 1
m− l

)
Vn+m(Vl(Φ)Ψ)

We thus find the following commutation relations between the modes:

[Vm(Φ), Vn(Ψ)] =
∞∑

N=−hΦ+1

(
m+ hΦ − 1

m−N

)
Vm+n(VN(Φ)Ψ) . (17)

Consider the case when

m ≥ −hΦ + 1 and n ≥ −hΨ + 1 .

The first identity implies that m − N ≥ 0 in the sum (17); as a consequence m + n ≥
N +n ≥ N − hΨ + 1. This implies that the modes {Vm(Ψ) : m ≥ −hΨ + 1} close as a Lie
algebra.

The cluster decomposition property to be discussed later guarantees that the spectrum of
L0 is bounded below by 0. If this is the case then the sum in (17) is also bounded above
by hΨ.
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We present a few more tools and structures that can be derived from the operator product
expansion (16):

V (Φ, z)V (Ψ, ζ) =
∞∑

n=−n0

C(n)(z − ζ)n .

Definition 2.3.3
We call

V (Φ, z)V (Ψ, ζ)︸ ︷︷ ︸ =
−1∑

n=−n0

C(n)(z − ζ)n .

the contraction of the two vertex operators V (Φ, z) and V (Ψ, ζ) and

: V (Φ, z)V (Ψ, z) : := C(0)(z)

the normal ordered product of the two vertex operators. We then have

V (Φ, z)V (Ψ, ζ) = V (Φ, z)V (Ψ, ζ)︸ ︷︷ ︸+ : V (Φ, z)V (Ψ, z) : +O(z − ζ) .

We take now up our previous examples and extract algebraic structure.

Examples 2.3.4.

1. For the free boson from example 2.1.3, we find from the amplitudes the contraction

J(z)J(w)︸ ︷︷ ︸ =
k

(z − w)2
.

we then obtain the commutation relations

[Jn, Jm] =
1

2πi

∮
0

dzzn
1

2πi

∮
z

dwwm
k

(z − w)2
= k

1

2πi

∮
0

dzzn
dzm

dz
= nkδn,−m .

This defines an infinite-dimensional Lie algebra, the Heisenberg algebra û(1). The value
of the central extension is fixed in a chiral conformal field theory.

2. The amplitudes in example 2.1.3 that are given by a Lie algebra and a central element
determine the contraction of the operator product expansion to be of the form

Ja(z)J b(w)︸ ︷︷ ︸ =
κab

(z − w)2
+
fabcJ

c(w)

(z − w)
,

and the algebra therefore becomes

[Jam, J
b
n] = fabcJ

c
m+n +mκabδm,−n .

This is centrally extended loop algebra; the central extension is fixed in a conformal field
theory. In the particular case where g is simple, κ is a certain multiple of the Killing form
and ĝ is an untwisted affine Lie algebra ĝ.

For later use, we give a definition of affine Lie algebras.

Definition 2.3.5
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The affine Lie algebra ĝ associated to a finite-dimensional simple Lie algebra g is a central
extension of the loop algebra g⊗ C((z)) by C:

ĝ =
(
g⊗ C((z))

)
⊕ Cc ,

the bracket of two elements of g⊗ C((z)) being given by

[X ⊗ f, Y ⊗ g] = [X, Y ]⊗ fg + c · κ(X, Y )Res(g df)

with κ the Killing form. We denote by ĝ+ and ĝ− the subspaces g⊗ zC[[z]] positive modes and
g⊗ z−1C[z−1] of ĝ, so that we have a triangular decomposition

ĝ = ĝ− ⊕ g⊕ Cc⊕ ĝ+ .

By the formula for the Lie bracket, each summand is actually a Lie subalgebra of ĝ.

We investigate the normal ordering in a bit more detail.

Observation 2.3.6.
1. From the definition 2.3.3 of the normal ordering, one derives the formula

: A(z)B(z) :=
1

2πi

∮
z

dw
A(w)B(z)

z − w

one finds for commutators, cf. [F, (3.1.23)]

: [A(z), B(z)] :
def
=: A(z)B(z) : − : B(z)A(z) :=

∑
n=1

(−1)n+1

n!
∂nC−n(z) ,

where C(n) are the fields appearing in the OPE of the vertex operators A(z) and B(w).
so that normal ordering is not commutative, but commutative up to derivative fields. It
can be shown to be associative [Z96, Section 4.4].

2. An explicit contour integration [F, (3.1.29)] shows that the modes of the normal ordering
are

cm =
∑
n∈Z

: anbm−n :

with

: ambn : :=

{
ambn for m ≤ −hA
bnam for m > −hA

3. Another normal ordering prescription is obtained which differs from the normal ordering
by a finite number of terms:

N0(A,B)n =
∑
m≥0

ambn−m +
∑
m<0

bn−mam ;

in terms of contour integrals, one has

N0(A,B)(0) =
1

2πi

∮
0

(1 + z)hA

z
A(z)B(0) .

This product is not associative; however, the violation of associativity can be expressed
in terms expressions of the type ∂Φ + hΦΦ: modulo normally ordered products of such
fields, the product is associative.

4. The quotient C2(H) of H by such fields is an associative algebra, called Zhu’s algebra. If
the quotient is finite-dimensional, then H is called C2-cofinite.
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2.4 Cluster decomposition

So far the axioms we have formulated do not impose any restrictions on the relative normali-
sation of amplitudes involving a different number of vectors in V .

Definition 2.4.1
A Möbius-covariant consistent set of amplitudes is said to have the
cluster decomposition property, if the following property holds. If we partition the vari-
ables of an amplitude into two sets and scale one set towards a fixed point (e.g. 0 or ∞) the
behaviour of the amplitude is dominated by the product of two amplitudes, corresponding to
the two sets of variables, multiplied by an appropriate power of the separation:〈∏

i

V (φi, ζi)
∏
j

V (ψj, λzj)

〉
∼

〈∏
i

V (φi, ζi)

〉〈∏
j

V (ψj, zj)

〉
λ−Σhj as λ→ 0 ,

where φi ∈ Vh′i , ψj ∈ Vhj . Here, we assume ηi 6= 0 for all i. Here we write for functions

f(λ) ∼ g(λ) for λ→ 0, if limλ→0
f(λ)
g(λ)

= 1.

Remarks 2.4.2.

1. It follows from the invariance under the Möbius transformation z 7→ λz, that the cluster
decomposition property is equivalent to〈∏

i

V (φi, λζi)
∏
j

V (ψj, zj)

〉
∼

〈∏
i

V (φi, ζi)

〉〈∏
j

V (ψj, zj)

〉
λ−Σh′i as λ→∞ .

2. The cluster decomposition property extends also to vectors Φi,Ψj ∈ H.

3. It is not difficult to check that the examples 2.1.3 satisfy this condition.

Proposition 2.4.3.
Given a Möbius-covariant consistent set of correlators obeying the cluster decomposition prop-
erty, the spectrum of L0 is non-negative and the vacuum is unique up to scalars.

Proof.
Consider the endomorphism of H defined by

PN =
1

2πi

∮
0

uL0−N−1du, for N ∈ Z .

In particular, we have

PN
∏
j

V (ψj, zj)Ω =
1

2πi

∮
uh−N−1V (ψj, uzj)Ωdu ,

where h =
∑

j hj. This implies that the PN are projection operators onto the eigenspaces of L0,

L0PN = NPN .

For N ≤ 0, the cluster decomposition property implies〈∏
i V (φi, ζi)PN

∏
j V (ψj, zj)

〉
=

∮
0
uΣhj−N−1

〈∏
i V (φi, ζi)

∏
j V (ψj, uzj)

〉
du

∼ 〈
∏

i V (φi, ζi)〉
〈∏

j V (ψj, zj)
〉 ∮
|u|=ρ u

−N−1du,
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which, by taking ρ→ 0, is seen to vanish for N < 0 and, for N = 0, to give

P0

∏
j

V (ψj, zj)Ω = Ω

〈∏
j

V (ψj, zj)

〉
,

and so P0Ψ = Ω 〈Ψ〉. 2

Remark 2.4.4.
The absence of negative eigenvalues of L0 gives an upper bound on the order of the pole in the
operator product expansion of two vertex operators, and thus to an upper bound in the sum in
(16): if Φ,Ψ ∈ H are of degree L0Φ = hΦΦ, L0Ψ = hΨΨ, we have that Vn(Φ)Ψ = 0 for n > hΨ

because otherwise Vn(Φ)Ψ would have a negative eigenvalue, hΨ − n, with respect to L0. One
says that the action is locally finite. In particular, this shows that the leading singularity in the
OPE V (Φ, z)V (Ψ, ζ) is at most (z − ζ)−hΨ−hΦ .

2.5 Vertex algebras

Our field theoretic discussion thus leads to the following algebraic definition:

Definition 2.5.1
A vertex algebra consists of the following data:

• a graded vector space

H =
∞⊕
n=0

H(n)

whose homogeneous subspaces H(n) are finite-dimensional, dimH(n)<∞;

• a non-zero vacuum vector Ω ∈ H;

• a shift operator
T = L−1 : H → H ;

• and a field-state correspondence Y involving a formal variable z:

Y : H → End(H)[[z, z−1]] ; (18)

Y (v, ·) is also called the vertex operator for the vector v ∈ H.

These data are subject to the conditions

• that the field for the vacuum Ω is the identity, Y (Ω, z) = idH;

• that the field-state correspondence respects the grading, i.e. if v ∈ H(h), then all endo-
morphisms vm appearing in Y (v, z) =

∑
m∈Z vmz

−h−m have grade m: vm(H(p))⊆H(p+m);

• that one recovers states by acting with the corresponding fields on the vacuum and ‘send-
ing z to zero’, or more precisely,

Y (v, z)Ω ∈ v + zH[[z]]

for every v ∈ H;
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• that T implements infinitesimal translations,

[T, Y (v, z)] = ∂zY (v, z) ; (19)

and that the vacuum is translation invariant, TΩ = 0.

• Finally, the most non-trivial constraint – called locality – is that commuta-
tors of fields have poles of at most finite order. More precisely, for any two
v1, v2 ∈ H there must exist a number N = N(v1, v2) such that

(z1− z2)N [Y (v1, z1), Y (v2, z2)] = 0 . (20)

Remarks 2.5.2.

1. The requirement in equation (20) is a kind of weak commutativity. This constraint only
makes sense because we consider formal series in the zi, which can extend to both arbi-
trarily large positive and negative powers. Had we restricted ourselves to ordinary Laurent
series, i.e. series without arbitrarily large negative powers, (20) would already imply that
the commutator vanishes.

2. The vectors in H \ {CΩ} are also called descendants of the vacuum.

We take up our examples:

Examples 2.5.3.

1. For a free boson, we have the Heisenberg Lie-algebra g with generators (Jn)n∈Z and
relations

[Jn, Jm] = n δn+m,0 .

Consider the Lie subalgebra b+ := span(Jn)n≥0. Fix any finite-dimensional vector space
W together with an endomorphism ϕ ∈ End(W ). Then W can be endowed with the
structure of a b+-module by Jn.w = 0 for all n ≥ 1 and all w ∈ W and J0w = ϕ(w). The
induced g-module

F(W,ϕ) := U(g)⊗U(b+) W

is called the Fock space for W . The grading on the Heisenberg Lie algebra induces a
natural structure of a graded vector space.

The underlying vertex algebra is defined on the graded vector space H = F(C), where
C is endowed with the zero endomorphism. The vacuum Ω = 1 ∈ C ⊂ F(W ) is the
ground state in this Fock space. The field-state correspondence is expressed in terms of
the abelian currents

J(z) =
∑
n∈Z

Jn z
−n−1

by setting Y (J−1Ω, z) = J(z) and, more generally,

Y (Jn1· · · JnkΩ, z) =
1

(n1−1)! · · · (nk−1)!
: ∂n1−1

z J(z) · · · ∂nk−1
z J(z) : ,

where the colons indicate a normal ordering, the lowest order regular part of an OPE. This
prescription indeed yields the structure of a vertex algebra. (It is not a trivial exercise,
though, to check that this works out.)
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2. We also describe the generalization to lattice vertex algebras. Let L ⊂ Rd be an even
Euclidean lattice. We now take the d-fold tensor product U := (U(g))⊗d of the Heisen-
berg algebra with generators (Jan)n∈Z,a=1,...d. Denote by b+ again the subalgebra spanned
by non-negative modes. A Fock space is now constructed as follows: take d commuting
endomorphisms (ϕi)i=1,...,d of a finite-dimensional vector space W to endow W with the
structure of a b+-module

Jan.w = δn,0ϕa(w) .

Then the Fock space is again

F(W ) := U⊗U(b+) W

As a particular example, take W ∼= C to be one-dimensional and for q ∈ Rd the action
ϕa(w) = qa · w. Denote the corresponding Fock space by Fq
For an even Euclidian lattice Λ ⊂ Rn, the vector space

H = ⊕q∈LFq

has the structure of a vertex algebra. Vertex operators are normally ordered expressions
of the type

Y (Jn1· · · Jnkq, z) =
1

(n1−1)! · · · (nk−1)!
: ∂n1−1

z J(z) · · · ∂nk−1
z J(z) exp(iqX(z)): ,

Here the grade of a vector is q2

2
plus the natural grade in the Fock space.

3. In the case of untwisted affine Lie algebras based on a finite-dimensional simple Lie algebra
g with a certain multiple ` ∈ N of the Killing form, a vector space H(`) will be constructed
for each ` ∈ N from representations of certain infinite-dimensional Lie algebras, untwisted
affine Lie algebras in section 2.7. The multiple ` ∈ N is called the level of the theory.

4. The classes of vertex algebras we described are not disjoint. For example, for any simply
laced finite-dimensional simple Lie algebra g, the vertex algebra at level ` = 1 and the
lattice algebra for the root lattice of g are the same. This is known as the Frenkel-Kac-
Segal construction.

For many applications, e.g. in string theory, one needs to make sense of a chiral conformal
field theory not only on a the Riemann sphere, but on a general compact Riemann surface. To
this end, one needs more structure on a vertex algebra than Möbius invariance.

Definition 2.5.4

1. A conformal structure of Virasoro-central charge c ∈ C on a vertex algebra H is a vector
vV ir ∈ H(2) such that the operators appearing in the mode expansion of the so-called
(chiral) stress-energy tensor

T (z) := Y (vV ir, z) =
∑
n∈Z

Ln z
−n−2

possess the following properties: L−1 = T gives the translations; L0 is semisimple and
reproduces the grading of H; L0 acts as n id on H(n); and finally,

L2vV ir =
1

2
cΩ .
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2. A vertex algebra, together with a choice of conformal structure, is called a
conformal vertex algebra.

Remarks 2.5.5.

1. The axioms of a conformal vertex algebra imply that the modes Ln span an infinite-
dimensional Lie algebra, the Virasoro algebra of central charge c. It has has basis ({Ln, n ∈
Z, C} where C is central and the other Lie brackets read

[Ln, Lm] = (n−m)Ln+m +
C

12
m(m2 − 1)δm+n,0 (21)

In a chiral conformal field theory, the central element C acts as the same multiple of the
identity in all sectors.

2. The choice of a conformal structure for a vertex algebra should not be confused with
the choice of a conformal structure of the world sheet; it is, rather, related to (chiral)
properties of the target space.

3. For applications to string theory, one needs vertex algebras with even more structure, e.g.
a superconformal structure.

Examples 2.5.6.
The examples we have discussed all carry the structure of a conformal vertex algebra:

1. For the vertex algebra based on the Heisenberg Lie algebra, there is a one-parameter
family of conformal vectors in the Fock space:

vV ir(λ) =

(
1

2
(J−1)2 + λJ−2

)
Ω ∈ F0

with Virasoro central charge c(λ) = 1 − 12λ2. The corresponding stress-energy tensor
reads

Tλ(z) =
1

2
: J(z)J(z) : +λ∂J(z) .

2. For the chiral free boson, but also for the lattice vertex algebras, the case λ = 0 is crucial.
In particular, the lattice vertex algebra for a lattice Λ ⊂ Rn has Virasoro central charge
c = n. The Virasoro algebra is realized by the operators

Lm :=
1

2

∑
n∈Z

: JnJm−n :

where we have the normal ordering from observation 2.3.6.2

: JnJm : :=

{
JnJm for n ≤ −hJ = −1
JmJn for n > −1

A careful discussion of normal ordering is e.g. in [F, Section 3.1].

3. For an affine Lie algebra at level `, one fixes a basis (Ja)a=1,... dim g of the underlying finite-
dimensional simple Lie algebra g that is orthonormal with respect to the Killing form and
takes

1

2(`+ h∨)

∑
a

(Ja−1)2Ω(`) ∈ H(`) ,
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where h∨ is the dual Coxeter number, a natural number associated to each finite-
dimensional simple Lie algebra g. The Virasoro central charge can be computed [F, Section
3.2] to be

c(`) =
` dim g

`+ h∨
. (22)

We again write the modes of the stress energy tensor explicitly:

Lm :=
1

2(`+ h∨)

∑
n∈Z

∑
a,b

κa,b : JanJ
b
m−n : (23)

with an analogous normal ordering convention based on the mode numbers. This con-
struction of a Virasoro algebra is called the (affine) Sugawara construction. One should
note the similarity to the second order Casimir operator.

2.6 Representations

Vertex algebras are formalizing aspects of a chiral symmetry algebra, and symmetries in a quan-
tum theory should be represented on the space of states. We thus expect that more vector spaces
contribute to the space of states of the theory. These are additional (superselection/solitonic)
sectors of the theory. In the applications of chiral conformal field theories to quantum Hall
systems, these sectors describe non-trivial quasi-particle excitations. We are thus lead to study
the representation theory of vertex algebras.

Definition 2.6.1
A representation of a vertex algebra is a graded vector space

M =
⊕
n∈Q≥0

M(n)

with

• a translation operator TM : M→M of degree 1 and

• a representation map
YM : H → End(M)[[z, z−1]] ,

such that

• for v ∈ H(n) all components of YM(v, z) are endomorphisms of M of degree
−n;

• YM(Ω) = idM ;

• [TM , YM(v, z)] = ∂zYM(v, z) ;

• and the “duality” relation

YM(v1, z1)YM(v2, z2) = YM(Y (v1, z1−z2)v2, z2) (24)

holds.
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Morphisms of representations can be defined in the obvious way: it is a linear map F : M →M ′

such that
F (YM(a, z), v) = YM ′(a, z)F (v) for all v ∈M and a ∈ V .

Remarks 2.6.2.

1. One can show that the vertex algebra furnishes a representation of itself; this is called
the vacuum representation. This implies that the identity (24) is in particular valid for
H, i.e. (24) remains true when YM is replaced by Y . This expresses a kind of associativity
of the vertex algebra. Thus for vertex algebras ‘associativity’ in the sense of (24) is a
consequence of ‘commutativity’ in the sense of (20). This is, of course, the duality of (14)
of proposition 2.2.4.

2. The definition of representations is also possible in terms of a set of generalized amplitudes
on a finite cover of the Riemann sphere. See [GG, Section 8] for details. Note that then
one simultaneously defines a representation and its dual.

3. Once we know what representations and what morphisms of representations are, we can
consider equivalence classes of isomorphic irreducible representations. They form a set

I := π0(H-mod) .

We will call the elements of I labels or also, by an abuse of terminology, primary fields or
sectors. We use lower case greek letters for elements in I, and denote byHµ the underlying
vector space for a representation isomorphic to µ ∈ I.

4. When the vertex algebra is conformal, every module M is in particular, by restriction, a
module over the Virasoro algebra (21). It follows directly from the definition of a conformal
vertex algebra that in each CFT model the central element C of the Virasoro algebra acts
as C = c id with one and the same value of the number c in every representation that
occurs in the model.

5. If every finitely generated module over a conformal vertex algebra decomposes into
a finite direct sum of irreducible Virasoro modules, the vertex algebra is called a
Virasoro-minimal model. (In the case of logarithmic minimal models, this definition has
to be modified.)

6. When v is an eigenstate of the Virasoro zero mode L0, its eigenvalue ∆v is called the
conformal weight of v. The conformal weights of different vectors in the same irreducible
module differ by integers, or in other words, e2πiL0 acts as a multiple of the identity on
every irreducible module. The endomorphism θM = e−2πiL0 , called the twist, commutes
with the action of all vertex operators. In particular, it acts as a scalar multiple on each
irreducible module.

7. Vectors v ∈M which obey the conditions in (13)

L1v = 0 and L0v = hv

are called quasi-primary states of conformal weight h. Vectors v ∈ H which obey

Lnv = 0 for all n > 0 and L0v = hv

are called Virasoro-primary states of conformal weight h.
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8. It is a remarkable result [Z96] that under the condition of C2-cofiniteness from observation
2.3.6.4, the character of any simple module M

χM(τ) := trM exp(2πiτ(L0− c/24)) . (25)

is a holomorphic functions in τ on the complex upper half-plane H.

Definition 2.6.3
A rational vertex algebra H is a conformal vertex algebra that obeys the following finiteness
conditions:

1. The homogeneous subspace of H of weight 0 is spanned by the vacuum Ω.

2. The graded dual H′ = ⊕nH∗(n) is isomorphic to H as a H-module.

3. Every H-module is completely reducible.

4. H is C2-cofinite.

Remarks 2.6.4.

1. The homogeneous subspaces M(n) of the graded vector space underlying an irreducible
representation M of a rational vertex algebra are finite-dimensional.

2. A rational vertex algebra H has only finitely many inequivalent irreducible representa-
tions. They are in bijection to isomorphism classes of irreducible representations of Zhu’s
algebra C2(H).

3. Moreover, the action of the group SL(2,Z) on the complex upper half plane

τ 7→ aτ + b

cτ + d
with a, b, c, d ∈ Z and ad− bc = 1

induces an action on the irreducible characters.

4. The vertex algebra for an even lattice is rational. The same applies to the vertex algebra
associated to an irreducible highest weight module over an affine Lie algebra.

An example of a non-rational vertex algebra is provided by the vertex algebra for a single
free boson. It has infinitely many inequivalent irreducible representations, one for each
complex number q. The Fock space for an endomorphism ϕ that is not semisimple is an
example of a non fully reducible representation.

5. Notice, however, that not every vertex algebra that has only finitely many inequivalent
irreducible representations is rational in the sense of definition 2.6.3.

6. It has been proven [H05] that the category of representations of a rational vertex algebra
carries even more structure, namely the one of a modular tensor category. We will explain
this structure later.

Examples 2.6.5.
We make the structure of the representation categories explicit in the first two of our examples.
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1. A single free boson is not rational. The indecomposable representations obeying finiteness
conditions on the homogeneous components are given by generalized Fock spaces for which
the endomorphism consists of a single Jordan block. In this case, J0 and hence L0 has a
nilpotent part so that we are strictly speaking leaving our framework by including these
representations. For the irreducible representations, we have an endomorphism ϕ of a
one-dimensional vector space, i.e. a complex number q. The conformal weight is then
q2/2.

On the finite abelian group Λ∗/Λ this gives the quadratic form

Λ∗/Λ → C∗

[µ] 7→ e2πi
〈µ,µ〉

2 .

This is well-defined: for µ ∈ Λ∗ and λ ∈ Λ, we have

〈µ+ λ, µ+ λ〉
2

=
〈µ, µ〉

2
+ 〈µ, λ〉+

〈λ, λ〉
2

=
〈µ, µ〉

2
mod Z ,

since 〈λ, λ〉 ∈ 2Z for λ in the even lattice Λ and 〈λ, λ〉 since the lattices Λ and Λ∗ are
dual.

2. The irreducible representations of a lattice vertex algebra based on an even lattice Λ ⊂ Rn

are in bijection to the finite abelian group Λ∗/Λ. For µ ∈ Λ∗, the direct sum of Fock spaces

⊕λ∈ΛFµ+λ

carries an irreducible representation of the lattice vertex algebra for Λ. The dual lattice
inherits from the Euclidian scalar product on Rn a quadratic form q : Λ → R. The
conformal weight is then given by q(λ)2/2.

To compute the character of a Fock space for the Heisenberg algebra, introduce the Lie
subalgebra n− := span(Jn)n<0 of the Heisenberg algebra and note that Fq is free as an
U(n−) module:

Fq = U(g)⊗U(b+) C ∼= U(n−)⊗C C

so that the Poincaré-Birkhoff-Witt theorem gives us a basis,

χq(τ) = TrFq exp(2πiτ(L0− 1/24)) =
e2πiτ q

2

2

η(τ)

where

η(q) := q1/24 ·
∞∏
n=1

(1− qn) with q = e2πiτ

is the Dedekind eta-function. The character of the lattice model thus is a quotient of a
theta function for the lattice Λ ⊂ Rn,

θµ(τ) =
∑
λ∈Λ

e2πiτ
〈µ+λ,µ+λ〉

2 for µ ∈ Λ∗

and the eta-function:

χµ(τ) =
θµ(τ)

η(τ)n
.
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One can use Poisson resummation to compute the representation of SL(2,Z) on the char-
acters explicitly. We find for all λ ∈ Λ∗/Λ

χλ(τ + 1) = Tλχλ(τ) and χλ(−
1

τ
) =

∑
µ∈Λ∗/Λ

Sλ,µχµ(τ)

with a diagonal unitary matrix with entries

Tλ = exp

[
2πi

(
(λ, λ)

2
− n

24

)]
and a symmetric unitary matrix

Sλ,µ = (
√
|Λ∗/Λ|)−1/2 exp [−2πi(λ, µ) .] (26)

3. Zhu’s algebra has been computed [L96] for the vertex algebra based on the Heisenberg
algebra where it is the polynomial algebra, C2(H(U(1))) ∼= C[X] whose irreducible rep-
resentations are in bijection to the complex numbers and for the even lattice

√
2Z ⊂ R

where one finds a direct sum of two matrix algebras of 2× 2 matrices.

4. For more background about vertex algebras, we refer to [K-Ver].

2.7 Affine Lie algebras

For the case of affine Lie algebras, we need some notions of Lie theory. From now on, we closely
follow [B96].

We start recalling some basic facts from the theory of finite-dimensional simple Lie algebras.
For the reader not sufficiently familiar with this theory, we exemplify our statements in the case
of g = sl(N), the Lie algebra of traceless N×N matrices. Denote in this context by (Eij)1≤i,j≤n
the matrix units which form a basis of the space of all matrices and by E∗ij the corresponding
dual matrix.

Observation 2.7.1.

1. We fix a simple complex Lie algebra g and a Cartan subalgebra h ⊂ g. For g = sl(N), h
are the traceless diagonal matrices.

One then has a root system R(g, h) ⊂ h∗. For g = sl(N), these are the n2 − n vectors
±(E∗ii − E∗jj) for i 6= j.

Denote by Hα ∈ h the coroot associated to a root α. For the root ±(E∗ii − E∗jj) of sl(N),
this is the diagonal matrix ±(Eii − Ejj) We have a decomposition g = h⊕

∑
α∈R(g,h) g

α.

We also fix a basis (α1, . . . , αr) of simple roots, the root system, which provides us with
a partition of the roots into positive and negative ones. In the case of sl(N), we take
αi := E∗ii − E∗i+1,i+1 for i = 1, . . . n− 1. The positive roots are then of the form E∗ii − E∗jj
for i < j.

2. The weight lattice P ⊂ h∗ is the additive group of linear forms λ ∈ h∗ such that λ(Hα) ∈ Z
for all roots α. A weight λ is dominant if λ(Hα) ≥ 0 for all positive roots α; we denote
by P+ the set of dominant weights.

3. To each dominant weight λ is associated a simple g-module Vλ, unique up to isomorphism,
containing a highest weight vector vλ with weight λ (this means that vλ is annihilated by
gα for α > 0 and that H vλ = λ(H)vλ for all H ∈ h). The map λ 7→ [Vλ] is a bijection of
P+ onto the set of isomorphism classes of finite-dimensional simple g- modules.

35



4. The normalized Killing form ( | ) on g is the unique g-invariant nondegenerate symmetric
form on g satisfying (Hβ |Hβ) = 2 for every long root β. We denote by the same symbol
the non-degenerate form induced on h and the inverse form on h∗. We will use these
normalized forms.

5. Let θ be the highest root of R(g, h), and Hθ the corresponding coroot. In the case of
sl(N), we have θ = E∗11 − E∗n,n. We choose elements Xθ in gθ and X−θ in g−θ satisfying

[Hθ, Xθ] = 2Xθ , [Hθ, X−θ] = −2X−θ , [Xθ, X−θ] = −Hθ .

These elements span a Lie subalgebra s of g, isomorphic to sl2, which will play an impor-
tant role. In the case of sl(N),

Hθ = E11 − Enn Xθ = E1,n X−θ = En1 .

Observation 2.7.2.

1. We fix an integer ` > 0, called the level. We need the irreducible representations of the
untwisted affine Lie algebra ĝ which are of level `, i.e. such that the central element c
of ĝ acts as multiplication by `. Let P` be the set of dominant weights λ of g such that
λ(Hθ) ≤ `. This set is finite. For example, for g = sl(2), the set is P` = {0, 1, . . . , `}. A
fundamental result of the representation theory of ĝ asserts that reasonable irreducible
representations of level ` are classified by P`. For more, see observation 2.7.4.

2. More precisely, for each λ ∈ P`, there exists a simple ĝ-module Hλ of level `, characterized
up to isomorphism by the following property: The subspace of Hλ annihilated by the
subalgebra ĝ+ of positive modes is isomorphic, as a g-module, to the irreducible highest
weight module Vλ of g.

In the sequel we will identify Vλ with the subspace of Hλ annihilated by ĝ+. The subcat-
egory of direct sums of such representations is semi-simple.

For later use, we note that the modes Ln of the Virasoro algebra (23) given by the affine
Sugawara construction act on Hλ such that the relation

[Lm, X ⊗ tn] = −nX ⊗ tm+n (27)

holds for all X ∈ g and m,n ∈ Z.

Remarks 2.7.3.

1. The vertex algebra H(`) introduced in Example 2.5.3.3 is defined on the Z+-graded vector
space underlying the module H0 at level `.

2. It is known [FZ] that Zhu’s algebra is in this case isomorphic to a quotient of the universal
enveloping algebra,

C2(H) ∼= U(g)/〈X`+1
θ 〉 .

It has been computed [B98] using Gröbner basis techniques in the case of g = sl(2):

C2(H(sl(2), `)) = ⊕λ∈P`EndC(Vλ) .

This shows that the vertex algebra is C2-cofinite.

3. The simple objects of H(`)-mod are thus in bijection to elements in P`. Their characters
can be computed explicitly, see the Weyl-Kac character formula, cf. e.g. [F, Section 2.6]
or [FS, Section 14]. The characters can be expressed as a quotient of an alternating sum
over theta-functions for the coroot-lattice of g.
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4. One can therefore compute the representation of SL(2,Z) on the characters explicitly. We
find, see e.g. [F, Section 2.7], for all λ ∈ P`:

χλ(τ + 1) = T
(`)
λ χλ(τ) and χλ(−

1

τ
) =

∑
µ∈P`

S
(`)
λ,µχµ(τ)

with a diagonal unitary matrix with entries

T
(`)
λ = exp

[
2πi

(
(Λ,Λ + 2ρ)

2(`+ h∨)
− c(`)

24

)]
with the Virasoro central charge c(`) as in (22) and ρ := 1

2

∑
α>0 α. One should note that

(Λ,Λ+2ρ) is the eigenvalue of the second order Casimir operator. We moreover, have the
symmetric unitary matrix

S
(`)
λ,µ = N

∑
w∈W

sign(w) exp

[
− 2πi

`+ h∨
(w(λ+ ρ), µ+ ρ)

]
(28)

where the sum is over the Weyl group W of g and the normalization constant N is chosen
such that S is unitary and that S0λ > 0 for all λ ∈ P`.

Observation 2.7.4.

1. We will need a few more technical details about the ĝ-module Hλ. Let us first recall its
construction. Let p be the Lie subalgebra p := g ⊕ Cc ⊕ ĝ+ of non-negative modes in ĝ,
a so-called parabolic subalgebra. We extend the representation of g on Vλ to p by letting
the subalgebra ĝ+ of positive modes act trivially and c as ` IdVλ ; we denote by Vλ the
induced ĝ- module U(ĝ) ⊗U(p) Vλ. It is called a parabolic Verma module. It contains a
unique maximal ĝ-submodule Zλ. The quotient Vλ/Zλ is the irreducible module Hλ.

Denote by ĝ− the Lie subalgebra of negative modes. Since U(ĝ) is isomorphic as a U(ĝ−)-
module to U(ĝ−)⊗C U(p), we see that the natural map U(ĝ−)⊗C Vλ −→ Vλ is an isomor-
phism of ĝ−- modules.

We identify the g-module Vλ to the g-submodule 1 ⊗ Vλ of Vλ. The unique maximal
submodule Zλ is generated by the element (Xθ ⊗ z−1)`−λ(Hθ)+1 vλ [K-Lie, Exercise 12.12];
this element is annihilated by the Lie subalgebra ĝ+ of positive modes. We still have an
embedding Vλ ⊂ Hλ.

2. The representation theory of ĝ is essentially independent of the choice of the local coordi-
nate z. Let u = u(z) be an element of C[[z]] with u(0) = 0, u′(0) 6= 0 describing a change
of coordinates z 7→ u(z). Then, we have an automorphism

γu : ĝ → ĝ
f ⊗X 7→ (f ◦ u)⊗X

Let λ ∈ P`; since γu preserves ĝ+ and is a multiple of the identity on g, the representation
πλ ◦ γu is irreducible, and the subspace annihilated by ĝ+ is exactly Vλ. Therefore the
representation πλ ◦ γu is isomorphic to πλ. In other words, there is a canonical linear
automorphism Γu of Hλ such that

Γu
(
(X ⊗ f)v

)
= (X ⊗ f ◦ u) Γu(v) for v ∈ Hλ and X ⊗ f ∈ ĝ

and Γu(v) = v for v ∈ Vλ.
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3 From affine Lie algebras to WZW conformal blocks

3.1 Conformal blocks

Observation 3.1.1.
1. We started out with a Möbius covariant consistent set of amplitudes

〈V (v1, z1)V (v2, z2) · · ·V (vn, zn)〉 (29)

for ψ ∈ V and ~z = (z1, . . . , zp) ∈ M0,p. Then we enlarged the graded vector space V to
first the Z+-graded vector space H on which the vertex algebra is defined and next to
representations Hµ of the vertex algebra.

2. We would like to have a consistent set of expressions available that generalize the ampli-
tudes (29) and where vi can be a vector in any H-module. At the same time, we would
like to take the points ~z to be distinct points in any given complex curve C of genus g.
Denote by Mm,g the moduli space of complex curves of genus g with m distinct marked
points. In this general situation, we might not be able to pinpoint an amplitude (29) ex-
actly. Rather, we will introduce a vector space of possible amplitudes obeying necessary
conditions.

3. We now change the perspective and consider instead of (29) for every (~z, C) ∈ Mm,g

linear functionals

β~z,C : Hλ1 ⊗C . . .Hλm → C
(v1, . . . , vm) 7→ 〈V (v1, z1)V (v2, z2) · · ·V (vn, zn)〉

4. The correlators of a full local conformal field theory should be built from these linear
functionals. Not any linear functional should qualify, though. Put differently, we want to
identify a subbundle Vn,g(~λ) of the trivial bundle (Hλ1 ⊗C . . .Hλm)∗ ×Mm,g →Mm,g by
imposing consistency conditions that come from the vertex algebra and depend on the
point in Mm,g.

5. This can be done for a general vertex algebra, for more details see the book [FB-Z] or
the review [F]. It is a non-trivial result that for a rational vertex algebra, for any m,
~λ := (λ1, . . . , λm) and g, a finite-dimensional subbundle can be identified. This bundle
is called the bundle of conformal blocks or chiral blocks. In fact, it is not only a vector
bundle, but even comes with a projectively flat connection.

6. To simplify the presentation, we decided not to cover the general case of a rational vertex
algebra, but rather restrict to the case of vertex algebras given by an affine Lie algebra. In
this case, Lie theoretic tools are available. Moreover, a simple set of necessary conditions
turns out to be sufficient to determine a collection of conformal blocks obeying non-trivial
properties.

We now present some basic Lie-theoretic notions to understand conformal blocks for affine
Lie algebras.

Definition 3.1.2
Let a be a Lie algebra and V an a-module.

1. The space of coinvariants of V , denoted by [V ]a, is the largest quotient of V on which a
acts trivially, that is the quotient of V by the subspace spanned by the vectors X.v for
all X ∈ a and all v ∈ V .

38



2. The space of invariants of V , denoted by [V ]a, is the largest subspace of V on which a
acts trivially, that is the subspace

[V ]a := {v ∈ V |X.v = 0 for all X ∈ a} .

Remarks 3.1.3.
1. The space of coinvariants [V ]a equals V/U+(a)V , where U+(a) is the augmentation ideal

of the universal enveloping algebra U(a).

2. Let V and W two a-modules. Using the canonical anti-involution σ of U(a) (characterized
by σ(X) = −X for any X in a) we can consider V as a right U(a)-module as well.

Then the space of coinvariants [V ⊗W ]a is the tensor product V ⊗U(a) W .

To see this, observe that both vector spaces are equal to the quotient of V ⊗W by the
subspace spanned by the elements Xv ⊗ w + v ⊗Xw for all X ∈ a, v ∈ V and w ∈ W .

3. The algebraic dual V ∗ of an a-module V carries the structure of an a-module by X.β(−) =
β(σ(X).−) as well. Then

[V ∗]a
∼→ ([V ]a)

∗

An a-invariant linear form β : V → C is precisely a linear form vanishing on the subspace
U+(a)V ⊂ V . This is precisely the space of linear forms descending under the projection

π : V → [V ]a = V/U+(a)V

to linear forms on the space [V ]a of coinvariants.

The last remark allows us to work with spaces of coinvariants to understand conformal
blocks. This avoids the use of algebraic duals.

Observation 3.1.4.
1. Let C be a smooth, connected complex curve. For each open set U ⊂ X, we denote by
O(U) the ring of holomorphic functions on U , and by g(U) the Lie algebra g⊗O(U).

We want to associate a vector space to the data of C, a finite subset ~P = {P1, . . . , Pp} of
C, and an highest weight λi of P` attached to each insertion point Pi.

2. In order to do this, we consider the ĝ-module H~λ := Hλ1 ⊗ . . . ⊗ Hλp . We choose a
local coordinate zi at each Pi, and denote by fPi the Laurent series at Pi of an element

f ∈ O(C \ ~P ) with at most finite order poles at the points P1, . . . , Pp. This defines for

each i a ring homomorphism O(C \ ~P ) −→ C((z)), hence a Lie algebra homomorphism

g(C \ ~P ) −→ g⊗ C((z)). We define an action of g(C \ ~P ) on H~λ by the formula

(X ⊗ f).(v1 ⊗ . . .⊗ vp) =

p∑
i=1

v1 ⊗ . . .⊗ (X ⊗ fPi)vi ⊗ . . .⊗ vp

That this is indeed a Lie algebra action:

[X ⊗ f, Y ⊗ g].(v1 ⊗ . . .⊗ vp) =
∑p

i=1 v1 ⊗ . . .⊗ [X ⊗ fPi , Y ⊗ gPi ]vi ⊗ . . .⊗ vp
=

∑p
i=1 v1 ⊗ . . .⊗ [X, Y ]⊗ (fg)Pivi ⊗ . . .⊗ vp

+`κ(X, Y )ResPi
(
fPidgPi

)
= [X, Y ]⊗ fg.(v1 ⊗ . . .⊗ vp)

since the sum over the residues vanishes by the residue formula
∑

i ResPi
(
fPidgPi

)
= 0.
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3. Using the notation of definition 3.1.2, we introduce the vector spaces

VC(~P ,~λ) := [H~λ]g(C\~P ) and V †C(~P ,~λ) := Homg(C\~P )(H~λ,C) = [H∗~λ]
g(C\~P ),

where C is considered as a trivial g(C \ ~P )- module. We call VC(~P ,~λ) the space of WZW-

conformal blocks for the curve C with insertions at the points ~P labelled by the weights
~λ.

4. By remark 3.1.3.3, V †C(~P ,~λ) is in natural duality with VC(~P ,~λ). By observation 2.7.2,
these spaces do not depend – up to a canonical isomorphism – on the choice of the local
coordinates z1, . . . , zp. On the other hand it is important to keep in mind that they depend
on the Lie algebra g and the integer `, though neither of these appear in the notation.

5. We give an interpretation of the space V †C(~P ,~λ) which shows that they have the properties
expected for an amplitude (29).

• There is one consistency condition for any meromorphic function f on C that has at
most finite order poles at the points z1, . . . , zm and any element x ∈ g. Heuristically,
we might think of this space of Lie-algebra valued functions Fg as a “globalization”
to the curve (C, z1, . . . , zm) of the vertex algebra. Indeed, given a conformal vertex
algebra H, a bundle of vertex algebras can be defined for any complex curve with
marked points; for details, we refer to the book [FB-Z] or the review [F, Section 4.2].

• We present a heuristic understanding of the conditions:
consider a contour CP encircling a point P ∈ C. Let z be a local coordinate centered
at P . We note that for any meromorphic function f on C with Laurent series f(z) =∑
anz

n we have for the vertex operator V (J, z, ) =: J(z):

1

2πi

∮
CP

f(z)J(z) =
1

2πi

∮
CP

∑
n,m

anz
nJmz

−m−1 =
∑
n

anJm

We use the fact that on the vacuum Ω ∈ H0, we have JnΩ = 0 for all n ≥ 0 for
all J ∈ g with g the underlying Lie algebra. Consider a conformal block on a curve
of genus g and insert a “small” contour that does not encircle any insertion. We
imagine at a point z0 inside the contour a vacuum inserted which should not change
the block (this will be shown in corollary 3.1.6). Thus for any meromorphic function
f on C that has at most finite order poles at the points z1, . . . , zm, but not at z0, we
find

0 =
1

2πi
〈V (v1, z1)V (v2, z2) · · ·V (vn, zn)

∮
Cz0

f(z)J(z)V (Ω, z0)〉 ,

where the action is again defined in terms of local coordinates.

Using a contour deformation such that we get contours around all other insertion
points then yields the identity

0 =
n∑
i=1

〈V (v1, z1)V (v2, z2) . . .
1

2πi

∮
Czi

f(z)J(z)V (vi, zi) . . . V (vn, zn)〉

This motivates the idea that the building blocks of correlators on conformal sur-
faces of arbitrary genus should be invariant under the action of Lie-algebra valued
functions.

The following proposition makes the situation quite explicitly accessible:

40



Proposition 3.1.5.
Let ~P = {P1, . . . , Pp}, ~Q = {Q1, . . . , Qq} be two finite nonempty subsets of C, without common

point; let λ1, . . . , λp; µ1, . . . , µq be integrable weights in P`. We let the Lie algebra g(C \ ~P ) act
on the finite-dimensional g-modules Vµj through the evaluation map X ⊗ f 7→ f(Qj)X. The
inclusions Vµj ↪→ Hµj induce an isomorphism

[H~λ ⊗ V~µ]g(C\~P )

∼−→ [H~λ ⊗H~µ]g(C\~P\ ~Q) = VC(~P ∪ ~Q, (~λ, ~µ)) .

We refer to [B96, Section 3] for a proof of this proposition. This means that we can trade for
all but one insertion infinite ĝ-modules for finite-dimensional g-modules. A similar description
of conformal blocks on the sphere can be obtained for any vertex algebra, see [FZ, Theorem
1.5.2,1.5.3].

We immediately have the following consequences:

Corollary 3.1.6.

1. Let Q ∈ C \ ~P . There is a canonical isomorphism

VC(~P ,~λ)
∼−→ VC(~P ∪Q, (~λ, 0))

This isomorphism is, rather misleadingly, called “propagation of vacua” in the mathe-
matics literature.

2. Let Q ∈ C \ ~P . There is a canonical isomorphism

VC(~P ,~λ)
∼−→ [H0 ⊗ V~λ]g(C\Q) .

Proof.

1. This is the special case ~Q = {Q} with label µ = 0.

2. Apply 1., then the proposition 3.1.5 inverting the role of ~P and ~Q.

2

The expression for VC(~P ,~λ) given by corollary 3.1.6.2 is quite flexible. It allows to get rather
explicit expressions for the conformal blocks on the sphere P 1 and to relate conformal blocks
for surfaces at different genus.

Proposition 3.1.7.
Let C be a complex curve with n marked points ~P . Assume that the curve is singular and has
an ordinary double point in c ∈ C. Let ν : C̃ → C be a partial desingularization in c and let
ν−1(c) = {a, b} ⊂ C̃.

Then there is an isomorphism of vector spaces

⊕µ∈PlVC̃(~P , a, b, ;~λ, µ, µ∗)
∼→ VC(~P ;~λ) ,

where Vµ∗ the the finite-dimensional irreducible g-representation dual to Vµ. The isomorphism
is unique up to a scalar.
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Proof.
We only sketch the proof. Let U ⊂ C be the complement of the marked points and Ũ :=
ν−1(U) ⊂ C̃. Proposition 3.1.5 implies that it suffices to find a canonical isomorphism

δ : ⊕P`Homg(Ũ)(H~λ ⊗ Vµ ⊗ Vµ∗ ,C)
∼→ Homg(U)(H~λ,C) .

The ideal I of meromorphic functions on U vanishing in the double point c equals the the ideal
of functions vanishing on Ũ in the two points a and b. Moreover, we have an isomorphism

Homg(U)(H~λ,C) ∼= Homg⊗I(H~λ,C)g

and, with the following analogue of the regular representation

K` := ⊕P`Vµ ⊗ Vµ∗

we have
⊕P`Homg(U)(H~λ ⊗ Vµ ⊗ Vµ∗ ,C) ∼= Homg⊗I(H~λ ⊗K`,C)g×g .

Since Vµ∗ is the dual representation of the irreducible representation Vµ, the vector space of
invariants (Vµ ⊗ Vµ∗)g is one-dimensional. We fix a non-zero element γµ in it.

Given ψµ ∈ Homg(U)(H~λ ⊗ Vµ ⊗ Vµ∗ ,C), we set

δ(ψµ) : u 7→ ψµ(u⊗ γµ) for u ∈ H~λ .

One shows that this is a conformal block and that the map is an isomorphism of vector spaces. 2

To show that the conformal blocks are finite-dimensional, we need the following

Lemma 3.1.8.
Let a be a Lie algebra and H an a-module of finite type, i.e. there is a finite-dimensional
subspace L ⊂ H such that U(a)L = H. Suppose that there is a basis (ei) of a such that all ei
act on H in a locally finite way, i.e. for any u ∈ H the subspace generated by ((ei)

lu)i=0,..., is
finite-dimensional.

Let a+ := {x ∈ a |x.L = 0} and suppose that k ⊂ a is a Lie subalgebra such that k+ a+ has
finite codimension in a. Then the quotient H/kH is finite-dimensional.

Proof.
The hypotheses are such that we can find finitely many locally finite basis elements (ei)i=1,...N

in a such that a = [k+ a+]⊕
(
⊕Ni=1Cei

)
. By the Poincaré-Birkhoff-Witt theorem, we then have

U(a) =
∑

m1,...,mN

U(k)⊗ em1
1 . . .⊗ emNN ⊗ U(a+) .

By definition of a+, we have U(a+)L = L; thus

H =
∑

m1,...,mN

U(k)em1
1 . . . emNN L

Since all ei act in a locally finite way, one can show by induction that the subspace
em1

1 . . . emNN L is finite-dimensional. Thus H = U(k)L̃ with L̃ a finite-dimensional subspace. Thus
the map L̃→ H/kH induced from the embedding L̃→ H is surjective which shows the claim. 2
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Proposition 3.1.9.
The WZW conformal blocks are all finite-dimensional, dimC VC(~P ,~λ) <∞ for all choices ~λ of
sectors and all curves, of any genus with any number of marked points.

Proof.
We can assume by proposition 3.1.5 that there is just a single marked point p ∈ C with label
λ ∈ P`. We choose a local coordinate z around p.

Take in the lemma a = ĝ and a+ = ĝ+. Take k := g(C \ {p}). Then k + a+ are g-valued
functions on C which are holomorphic everywhere, except for at most a finite order pole in p.
By Riemann-Roch, this space is of finite codimension in a.

We still have to find a basis of a obeying the conditions in the lemma: take any basis of
the Lie subalgebra g ⊗ C[t] of positive modes and add the center and elements X(m) with X
ad-nilpotent and m negative. 2

We will give in the next section an explicit formula for their dimension.

3.2 Conformal blocks on the Riemann sphere and the Verlinde for-
mula

We can be even more explicit for conformal blocks on the Riemann sphere. We fix a quasi-
global coordinate t on P 1. We remind the reader of the Lie subalgebra s = {Xθ, X−θ, Hθ} ⊂ g
isomoprhic to sl(2) introduced in Observation 2.7.1 using the highest root θ of g.

Proposition 3.2.1.
Let P1, . . . , Pp be distinct points of P 1 with coordinates t1, . . . , tp, and let λ1, . . . , λp be elements
of P`. Let T be the endomorphism of the tensor product V~λ = Vλ1⊗. . .⊗Vλn of finite-dimensional
g-modules defined by

T (v1 ⊗ . . .⊗ vp) =

p∑
i=1

ti v1 ⊗ . . .⊗Xθ vi ⊗ . . .⊗ vp .

1. The space of conformal blocks VP1(~P ,~λ) is canonically isomorphic to the largest quotient
of V~λ on which g and T `+1 act trivially.

2. The space V †P1(~P ,~λ) is isomorphic to the space of g- invariant p-linear forms ϕ : Vλ1 ×
. . .× Vλp −→ C such that ϕ ◦ T `+1 = 0.

Proof.
We apply corollary 3.1.5 with Q = ∞, with the understanding that the local coordinate z at
Q =∞ is t−1. This gives an isomorphism of VP1(~P ,~λ) onto [H0 ⊗ V~λ]g(C).

Now the Lie algebra g(C) is the sum of the zero-mode algebra g and the subalgebra of
negative modes ĝ−; it follows from observation 2.7.2 that the U(g(C)-module H0 is generated
by the highest weight vector v0, with the relations g v0 = 0 and (Xθ⊗ z−1)`+1 v0 = 0. Therefore
the space and by remark 3.1.3.2

[H0 ⊗ V~λ]g(C)
∼= H0 ⊗U(g(C)) V~λ

which is canonically isomorphic to V~λ/(gV~λ + Im T `+1), where T is the action of the Lie algebra
valued function Xθ ⊗ t which is given by the endomorphism of V~λ given by the above formula.
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The description of V †P1(~P ,~λ) follows by duality. 2

When p = 3, one can describe the space VP1(a, b, c;λ, µ, ν) of three-point blocks in an
even more concrete way. Let us first consider the case when g = sl2. We denote by E the
standard 2-dimensional representation of g. We will identify P` with the set of integers p with
0 ≤ p ≤ ` by associating to such an integer the irreducible representation SpE. By proposition
3.2.1, V †P1(a, b, c; p, q, r) is the space of linear forms F ∈ Homg(S

pE ⊗ SqE ⊗ SrE,C) such that
F ◦ T `+1 = 0.

Lemma 3.2.2.

1. The space Homg(S
pE ⊗ SqE ⊗ SrE,C) is either zero- or one-dimensional. It is nonzero,

if and only if p+ q + r is even, say = 2m, and p, q, r are ≤ m.

2. The subspace V †P1(a, b, c; p, q, r) is nonzero if and only if p+ q + r is even and ≤ 2`.

Proof.
The first assertion is an immediate consequence of the Clebsch-Gordan formula. The second is
an explicit calculation for which we refer to [B96, Section 4]. 2

For the general case, we consider the Lie subalgebra s ∼= sl2 of g for the highest root with
basis (Xθ, X−θ, Hθ). For λ ∈ P`, the g-module Vλ is completely reducible as an s-module: we

denote the isotypical components by V
(i)
λ with 0 ≤ i ≤ `/2.

Proposition 3.2.3.
Let g be any finite-dimensional simple Lie algebra.

1. The space VP 1(a, b, c;λ, µ, ν) is canonically isomorphic to the quotient of the space g-
invariants

[Vλ ⊗ Vµ ⊗ Vν ]g

by the image of the subspaces V
(p)
λ ⊗ V (q)

µ ⊗ V (r)
ν for p+ q + r > `.

2. The space V †P1(a, b, c;λ, µ, ν) is canonically isomorphic to the space of g- invariant linear

forms ϕ : Vλ ⊗ Vµ ⊗ Vν −→ C which vanish on the subspaces V
(p)
λ ⊗ V

(q)
µ ⊗ V (r)

ν whenever
p+ q + r > `.

Proof.
The two assertions are equivalent, we prove 2. By proposition 3.2.1, we have to reformulate the
condition ϕ ◦ T `+1 = 0 for a g-invariant linear form ϕ : Vλ ⊗ Vµ ⊗ Vν −→ C.

To this end, we decompose into isotypical s-components

Vλ = ⊕`/2p=0V
(p)
λ , Vµ = ⊕`/2p=0V

(p)
µ and Vν = ⊕`/2p=0V

(p)
ν

The subspaces V
(p)
λ ⊗ V

(q)
µ ⊗ V

(r)
ν are stable under s and hence under the endomorphism T ,

so we have to find out when the restriction ϕpqr of ϕ to any of these subspaces vanishes on
Im T `+1. By lemma 3.2.2.2, the restriction automatically vanishes, if p + q + r ≤ `, while we
have to impose ϕpqr = 0 when p+ q + r > `, hence the proposition. 2

We note a direct consequence:
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Corollary 3.2.4.
One has the following statements for one-point and two-point blocks on P 1:

VP1(P, λ) = 0 for λ 6= 0 , VP1(P, 0) ∼= VP1(∅) ∼= C
VP1(P,Q, λ, µ) = 0 for µ 6= λ∗ , VP1(P,Q, λ, λ∗) ∼= C .

Combining now the factorization result 3.1.7 with the rather explicit description of the
three-point blocks on the Riemann sphere in 3.2.3 allows to compute the dimension of the
space of conformal blocks. For a detailed derivation, we refer to [B96]; the result is

Proposition 3.2.5 (Verlinde formula).

1. Assume that g is of type A, B, C, D or G. One has

dimVC(~P ,~λ) = |T`|g−1
∑
µ∈P`

TrV~λ
(exp 2πi

µ+ ρ

`+ h∨
)
∏
α>0

∣∣∣2 sinπ
(α |µ+ ρ)

`+ h

∣∣∣2−2g

.

with |T`| = (`+ h∨)rfq, where r is the rank of g, f its connection index, f = |P/Q|, and
q the index of the sublattice Qlg of long roots in the root lattice Q. A glance at the tables
gives q = 2 for Br, 2r−1 for Cr, 4 for F4, 6 for G2, and of course 1 otherwise.

2. It is more instructive to express the result in terms of the symmetric unitary matrix
S appearing in (28) in the description of the modular transformation properties of the
characters:

dimVC(~P ,~λ) =
∑
µ∈P`

m∏
i=1

Sλi,µ
S0µ

(S0,µ)2−2g .

3.3 The Knizhnik-Zamolodchikov connection

In this subsection, we follow [K, Section 1.5]. We now show that the WZW-conformal blocks
form a vector bundle with projectively flat connection over the configuration spaceMm(P 1) of
m distinct points on the complex plane. To this end, we need to vary the insertion points.

Observation 3.3.1.

1. We fix m ∈ N and an m-tuple ~λ of integrable highest weights at level `. Recall that
conformal blocks are a subbundle of the trivial bundle

E(~λ) :=Mm(P 1)× (Hλ1 ⊗C . . .⊗C Hλm)∗ →Mm(P 1)

over the configuration space Mm(P 1).

2. Consider the projection π : (P 1)m+1 → (P 1)m on the first m factors.

For any open subset U ⊂Mm(P 1), consider the infinite-dimensional Lie algebra g(U) of
meromorphic g-valued functions on π−1(U) with singularities at most poles of finite order
along the divisors Di of (P 1)m+1 that are defined by zi = zm+1.

The coordinates z1, . . . , zm parametrize the insertion points and can be seen as coordinates
on the configuration space. The last coordinate zm+1 will be used to describe meromorphic
functions on P 1 with singularities at most finite order poles at the insertion points.

One should keep in mind that f ∈ g(U) is a Lie algebra-valued function of m+1-variables.
Along the divisor Dj, any f ∈ g(U) has a Laurent expansion in tj := zm+1 − zj of the
form

fDj(tj) =
∞∑

n=−N

an(z1, . . . , zm)tnj
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with holomorphic g-valued functions an(z1, . . . , zm).

Denote by O(U) the set of holomorphic functions on U ⊂Mm(P 1). The Laurent expan-
sion gives a map

τj : g(U) → g⊗O(U)((tj))
f 7→ fDj(tj)

We regard this as an element in the loop algebra C((t)) depending holomorphically on
the m insertion points (z1, . . . , zm).

3. The expansion map τi allows us again to define an action of the Lie algebra g(U) depending
on (z1, . . . , zm) on the tensor product (Hλ1 ⊗C . . .⊗C Hλm)∗.

We denote by Vm(~λ)(U) the set of smooth sections

Ψ : U → U × (Hλ1 ⊗C . . .⊗C Hλm)∗ =: E(~λ)|U
of the trivial vector bundle E(~λ) that is invariant under this action of g(U) at any ~P :=

(p1, . . . , pm) ∈ U . Specifically, the section Ψ ∈ Vm(~λ)(U) obeys

m∑
j=1

Ψ(p1, . . . , pm)(v1, . . . , τj(f)vj, . . . , vm) = 0

for all f ∈ g(U). Then Ψ(~P ) ∈ V †P1(~P ,~λ) for any ~P ∈ U .

4. For X ∈ ĝ and any Ψ ∈ (Hλ1 ⊗C . . .⊗C Hλm)∗ we let

[X(j)Ψ](v1, . . . , vm) := Ψ(v1, . . . , Xvj, . . . vm) .

We extend this notation to the modes of the Virasoro algebra obtained by the Sugawara
construction (23).

Lemma 3.3.2.
If Ψ is a smooth local section with values in Vm(~λ)(U), then

∂Ψ

∂zj
− L(j)

−1Ψ

is a smooth local section with values in Vm(~λ)(U) as well.

Proof.
• We first note that for f ∈ g(U), also the partial derivative fj := ∂f

∂zj
with j = 1, . . . ,m is

in g(U). Its Laurent expansion along Dj is

τj(fj) =
∞∑

n=−N

(
∂an
∂zj

tnj − anntn−1
j

)
,

since tj = zm+1 − zj depends on zj as well.

• The partial derivative
∂j : g⊗O(U)→ g⊗O(U)

is extended to
∂j : g⊗O(U)⊗ C((tj))→ g⊗O(U)⊗ C((tj))

with the trivial action on the last tensorand. With this notation,

τj(fj) =
∞∑

n=−N

(
∂an
∂zj

tnj − anntn−1
j

)
= ∂jτj(f)− ∂

∂tj
τj(f) .
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• Recall from 2.7.2 the relation (27) which implies for the action on ĝ-modules:

∂

∂tj
τj(f) = −[L−1, τj(f)] .

Thus
(∗) τj(fj) = ∂jτj(f) + [L−1, τj(f)] ;

moreover, one has
τi(fj) = ∂jτi(f) for i 6= j .

• We have to show that
m∑
i=1

(
∂Ψ

∂zj
− L(j)

−1Ψ

)
(v1, . . . , τi(f)vi, . . . , vm) = 0

for all vi ∈ Hλi and all f ∈ g(U). We first note that

(∗∗) ∂

∂zj
[Ψ(v1, . . . , τi(f)vi, . . . , vm)] =

∂Ψ

∂zj
(v1, . . . , τi(f)vi, . . . , vm) + Ψ(v1, . . . , ∂jτi(f)vi, . . . , vm)]

Summing over i and using (∗) and (∗∗), we find

m∑
i=1

(
∂Ψ

∂zj
− L(j)

−1Ψ

)
(v1, . . . , τi(f)vi, . . . , vm)

(∗∗)
=

m∑
i=1

∂

∂zj
[Ψ(v1, . . . , τi(f)vi, . . . , vm)]

−
m∑
i=1

Ψ(v1, . . . , ∂jτi(f)vi, . . . , vm)

−
m∑

i=1,i 6=j

Ψ(v1, . . . , τi(f)vi, . . . , L−1vj, . . . , vm)

−Ψ(v1, . . . , vi, . . . , L−1τj(f)vj, . . . , vm)

(∗)
=

m∑
i=1

∂

∂zj
[Ψ(v1, . . . , τi(f)vi, . . . , vm)]

−
m∑
i=1

Ψ(v1, . . . , τi(fj)vi, . . . , vm)

−
m∑
i=1

Ψ(v1, . . . , τi(f)vi, . . . , L−1vj, . . . , vm)

.

Since both f and fj are in g(U) and since Ψ is required to be invariant under the action
of g(U), the all three terms on right hand side vanish.

2

We therefore introduce the linear operators

∇ ∂
∂zj

: Vm(~λ)(U) → Vm(~λ)(U)

Ψ 7→ ∂Ψ
∂zj
− L(j)

−1Ψ .
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Theorem 3.3.3.
The family of conformal blocks Vm(~λ) over Mm(P 1) is endowed by these operators with the
structure of a vector bundle E with flat connection:

∇ : Γ(E) → Γ(T ∗Mm ⊗ E)

Ψ 7→ ∇Ψ = dΨ−
∑m

i=1 L
(i)
−1Ψdzi

This connection is called the Knizhnik-Zamolodchikov connection.

Proof.
Consider

ω :=
m∑
i=1

L
(i)
−1dzi ;

this is a 1-form on the configuration spaceMm(P 1) with values in End(E(~λ)). Since L
(i)
−1 does

not depend on z ∈ M, the form is closed, dω = 0. Moreover, [L
(i)
−1, L

(j)
−1] = 0 for all i, j implies

ω ∧ ω = 0. Thus we have a flat connection on the trivial bundle E(~λ).

Lemma 3.3.2 implies that the connection ∇ restricts to the subsheaf Vm(~λ) ⊂ E. Horizontal

local sections for the connection provide a local frame which locally trivializes Vm(~λ). Thus
this is a vector bundle, and the restriction of the connection ∇ to it is still flat. 2

By an explicit calculation using the affine Sugawara (23) construction from Observation
2.5.6, one gets a concrete equation. To state it, denote by (ta)a=1,... dim g a basis of g that is
orthonormal with respect to the Killing form of g. Put

Ω :=

dim g∑
a=1

ta ⊗ ta ∈ g⊗ g

and denote by Ω(ij) for i 6= j its action on the i-th and j-th component in the tensor product
Vλ1 ⊗ . . .⊗ Vλm .

Corollary 3.3.4.
Let Ψ be a local horizontal section of the bundle Vm(~λ). Then the restriction Ψ0 of Ψ to the
finite-dimensional subspace Vλ1 ⊗ . . .⊗ Vλm ⊂ Hλ1 ⊗C . . .⊗CHλm satisfies the following system
of partial differential equations:

∂Ψ0

∂zi
=

1

`+ h∨

∑
j;j 6=i

Ω(ij)

zi − zj
for 1 ≤ i ≤ n .

This system is called the Knizhnik-Zamolodchikov equation.

.

Remarks 3.3.5.

1. As with any vector bundle with flat connection, we get a representation of the fundamental
group π1(Mm(P 1)) of the base space. This is a braid group, and as a consequence, we
have an action of the braid group on the WZW-conformal blocks on the Riemann sphere.

2. The construction can be generalized to conformal blocks of higher genus, but then the
Knizhnik-Zamolodchikov connection is only projectively flat. The fundamental group of
the moduli spaceMm,g is called mapping class group. We thus get a projective represen-
tation of the relevant mapping class group on WZW conformal blocks at any genus.
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3. The mapping class group for a torus is the modular group SL(2,Z). Hence the zero-point
WZW-blocks on the torus carry an action of the modular group. It turns out to be the
action of SL(2,Z) on the characters from remark 2.7.3.4.

4. The structure we have discussed in this subsection is expected to generalize to any rational
conformal vertex algebra: one can define finite-dimensional vector bundles of conformal
blocks that obey factorization rules and that are endowed with a projectively flat con-
nection. See the book [FB-Z] for some steps in this direction. In particular, we have a
projective action of mapping class groups on the spaces of conformal blocks

This is the basis for our next axiomatization.

4 Modular functors and modular tensor categories

The system of conformal blocks endows the abelian category H-mod of modules over a ver-
tex algebra with much additional structure induced from the flat connection. The additional
structure is captured by the notion of a modular functor (this is really a family of functors).

4.1 Modular functors

We note that the category H-mod is a C-linear abelian category.

Definition 4.1.1
A C-linear abelian category is a category such that the set of morphisms between any two
objects U, V is a C-vector space Hom(U, V ), and such that compositions are bilinear.

Let A be a complex algebra. Then the category A-mod of A-modules is a C-linear category.
It is helpful to understand the structure on the collection of such categories: we have a

three-layered structure, a bicategory:

• Its objects a C-linear abelian categories.

• Let C1 and C2 be C-linear abelian categories. A 1-morphism F : C1 → C2 is a C-linear
functor.

• Given two C-linear functors F1, F2 : C1 → C2, a two-morphism F1 → F2 is a natural
transformation.

It is crucial to note that the bicategory Cat(C) comes with a categorified tensor product,
the Deligne tensor product C1 � C2. Rather than giving an explicit definition, it suffices to say:

• If Ci is equivalent to the category of modules Ai-mod of a C-algebra Ai, then the category
C1 � C2 is equivalent to the category A1 ⊗ A2-mod.

• If both categories Ci are finitely semisimple, then C1�C2 is finitely semisimple with simple
objects of the form S1 � S2, where Si runs over all simple objects of Ci.

Conformal blocks are associated to Riemann surfaces; to keep track of the representations
of the mapping class group they furnish, we have to introduce a suitable class of surfaces.

Definition 4.1.2
An extended surface is a compact oriented smooth two-dimensional manifold Σ, possibly with
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boundary, together with a choice of a marked point on each connected component of the bound-
ary ∂Σ. The set of boundary components of Σ is denoted byA(Σ) and we write extended surfaces
as (Σ, {ea}a∈A(Σ)). A morphism of extended surfaces is a smooth map that preserves marked
points.

Definition 4.1.3
Let C be a C-linear abelian category. A gluing object R ∈ C � C is a symmetric object, i.e.
R ∼= Rop. Here Rop is obtained by the permutation action on the two factors.

A C-extended modular functor consists of the following data:

1. Functors for extended surface:
For every extended surface Σ, we have a functor

τ(Σ, {ea}a∈A(Σ)) : �a∈A(Σ)C → vect , (30)

We write τ(Σ; {Va}) for the value of the functor on a family {Va} of objects in C.

2. Functorial isomorphisms for morphisms of extended surfaces:
For every isomorphism f : (Σ, {ea}a∈A(Σ)) → (Σ′, {e′a}a∈A(Σ′)) of extended surfaces a
functorial isomorphism

f∗ : τ(Σ, {ea}a∈A(Σ))→ τ(Σ′, {e′a}a∈A(Σ′))

that depends only on the isotopy class of f .

3. Functorial isomorphisms τ(∅) ∼= C and τ(Σ t Σ′) ∼= τ(Σ)⊗C τ(Σ′).

4. Functorial gluing isomorphisms:
Let (Σ, {ea}a∈A(Σ)) be an extended surface and let α, β ∈ A(Σ), α 6= β. We can glue
Σ along the boundary components α and β. We require the existence of functorial
gluing isomorphisms

Gα,β : τ(Σ; {Va},R)
∼→ τ(tα,βΣ; {Va}) (31)

This is well defined by symmetry of R. Here tα,βΣ is the surface with the boundary
components α and β glued.

These data are subject to the following conditions:

• (f ◦ g)∗ = f∗ ◦ g∗ and id∗ = id.

• All morphisms in 3. and 4. are functorial in (Σ, {ea}a∈A(Σ)) and compatible with each
other. Examples include the compatibility of gluing with disjoint union and the associa-
tivity of gluing [BK, Section 5.1].

• Symmetry of the gluing, Gα,β = Gβ,α.

• Normalization: τ(S2) ∼= C

Definition 4.1.4
A C-extended modular functor is called non-degenerate, if for every non-zero object V in C,
there is a an extended surface Σ and a collection of objects {Va}, such that τ(Σ, V, {Va}) is
non-zero.
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Observation 4.1.5.

1. We take C to be the representation category of a vertex algebra H. We then can think
of the vector space τ(M ; {Va}) as the space of conformal blocks associated to a complex
curve with underlying smooth manifold M and insertions labelled by H-modules Va. The
functors introduced in 1. then express that taking invariants as in the definition 3.1.4.3
of conformal blocks is functorial in the representation. The projectively flat connection
then leads to representations of the mapping class group which are captured by the data
2. Finally the gluing data in 4. capture the factorization of conformal blocks described in
proposition 3.1.7.

2. We can view this definition as follows: a two-dimensional topological field theory is a
symmetric monoidal function

tft : Cob2,1 → vect .

A modular functor is now, morally, a category-valued topological field theory:

tft : Cob2,1 → Cat(C)

3. We can also describe the information we have suppressed. For each one-dimensional man-
ifold S, we need a functor

HS : tft(S)→ vect

with values in graded vector spaces, together in particular with coherent equivalences
HS ⊗HS′ → HStS′ of functors.

A non-degenerate modular functor endows the category C := τ(S1) with much additional
structure. To this end, we need the following notions:

Definition 4.1.6

1. A monoidal category or tensor category C is a category, together with a functor

⊗ : C × C → C

and certain associativity constraints. We also require the existence of a monoidal unit I
and coherent isomorphisms I⊗V ∼= V ∼= V ⊗ I. Such a category is called strict, if for any
objects U, V,W , we have identitites (U⊗V )⊗W = U⊗ (V ⊗W ), and V ⊗ I = I⊗V = V .
We restrict to strict tensor categories from now on.

2. For a C-linear monoidal category, we require the tensor product to be bilinear on homo-
morphisms.

3. A braiding on a (strict) monoidal category associates to any pair of objects V , W an
isomorphism cV,W ∈ Hom(V ⊗W,W ⊗ V ) such that

(i) cU,V⊗W = (idV ⊗ cU,W ) ◦ (cU,V ⊗ idW ).

(ii) cU⊗V,W = (cU,W ⊗ idV ) ◦ (idU ⊗ cV,W ).

(iii) (g ⊗ f) ◦ cV,W = cV,W ◦ (f ⊗ g).

Here U, V, . . . are arbitrary objects and f ∈ Hom(V, V ′), g ∈ Hom(W,W ′) are arbitrary
morphisms.

4. A left duality on a (strict) monoidal category associates to any object V a dual object
V ∗ and morphisms bV ∈ Hom(I, V ⊗ V ∗), dV ∈ Hom(V ∗ ⊗ V, I) such that

51



(i) (idV ⊗ dV ) ◦ (bV ⊗ idV ) = idV .

(ii) (dV ⊗ idV ∗) ◦ (idV ∗ ⊗ bV ) = idV ∗ .

5. A ribbon category is a strict monoidal category with additional data: a braiding, a twist
and a duality. A twist associates to any object V an isomorphism θV ∈ Hom(V, V ) such
that

(i) θV⊗W = cW,V ◦ cV,W ◦ (θV ⊗ θW ).

(ii) θV ′ ◦ f = f ◦ θV .

(iii) (θV ⊗ idV ∗) ◦ bV = (idV ⊗ θV ∗) ◦ bV .

Lemma 4.1.7.

1. Let C be a category and F : C → Set be a functor. Then F is called representable, if
there is an object XF ∈ C such that F ∼= Hom(XF ,−). The object XF is unique up to
unique isomorphism.

2. We need the Yoneda lemma: let F : C → Set be any functor and consider for A ∈ C the
functor Hom(A,−). Then we have a natural bijection of sets

Nat(Hom(A,−), F ) ∼= F (A) .

In the special case when F = Hom(B,−), we find

Nat(Hom(A,−),Hom(B,−)) ∼= Hom(B,A) .

3. Let C be a finitely semisimple C-linear category. Then any additive functor F : C→ vect
is representable.

Proposition 4.1.8.
A genus 0 non-degenerate C-extended modular functor is equivalent to the structure of a ribbon
category on C.

Proof.
We only indicate the ideas and refer to [BK, Section 5.3] for more details. For any n-tuple
(V1, V2, . . . , Vn) of objects in C, we introduce the shorthand

〈V1, V2, . . . , Vn〉 := τ(S2, V1, V2, . . . , Vn) ∈ vect(C) .

• The dual object of an object V is the object representing the functor

C → vect
T 7→ 〈V, T 〉 .

• Define a functor ⊗ : C�2 → C on objects A,B by

〈T,A⊗B〉 ∼= 〈T,A,B〉 .

• The monoidal unit I is defined as the object that obeys

〈I, T 〉 ∼= 〈T 〉 .
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• To get the associativity constraints (A⊗B)⊗C → A⊗ (B ⊗C), cut the four-punctured
sphere in two different ways into two three-punctured spheres. The cutting gives functo-
rial isomorphisms between the corresponding vect-valued functors. Since these are rep-
resentable with objects (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C) respectively, the Yoneda lemma
4.1.7.2 gives an associativity isomorphism.

• The braiding is recovered from a braiding isomorphism

ϕB : S2
3 → S2

3

that maps the three-punctured sphere to itself: the functorial isomorphism

〈T,A⊗B〉 def
= 〈T,A,B〉 def

= τ(S2
3 , T, A,B)

(ϕB)∗→ τ(S2
3 , T, B,A)

def
= 〈T,B,A〉 def

= 〈T,B ⊗ A〉

gives, by the Yoneda lemma, an isomorphism cA,B : A⊗B → B ⊗ A.

2

In fact, the representation category of representations of a rational vertex algebra has has
the structure of a ribbon category and one more property [H05]: it is a modular tensor category.

Definition 4.1.9
A modular category is a strict monoidal semisimple abelian C-linear ribbon category C with
unit object I and an additional set of data obeying a system of axioms:

1. A the set of isomorphism classes of simple objects is finite. The monoidal unit I is simple.
Denote by I a set of representatives containing I.

2. The matrix (si,j) := (tr(cj,ici,j)) indexed by i, j ∈ I is invertible.

One should note that, up to a normalization, this matrix describes the transformation of the
zero-point blocks on the torus under the modular group SL(2,Z).

4.2 The 3-dimensional topological field theory

To every modular category C there is an associated 3-dimensional topological field theory; such
a topological field theory has more structure than a modular functor. The TFT associates a
finite dimensional vector space tftC(X) (the space of conformal blocks) to each surface X with
marked points and additional labels, and an element of tftC(X) to each 3-dimensional manifold
with a graph of Wilson lines labelled by objects of C bounding X. We replace in the extended
surfaces discs with a point on the boundary by marked arcs. In a C-labelled extended surface,
the arcs are labelled by objects of C.

Definition 4.2.1

1. A cobordism of extended surfaces is a triple (M,∂−M,∂+M) such that:

(a) M is a 3-dimensional manifold with boundary containing a ribbon graph. A ribbon
graph consists of ribbons, annuli and coupons. Ribbons ends are glued to coupons
or are contained in the boundary ∂M .
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(b) ∂±M are disjoint disconnected subsets of the boundary ∂M so that ∂M = ∂+M ∪
(−∂−M). The marked arcs at which the ribbons in M end are given the label of the
ribbons whose core is oriented inwards, and the dual label otherwise.

We say that (M,∂−M,∂+M) is a cobordism from ∂−M to ∂+M .

2. A cobordism of C-labelled extended surfaces is a cobordism of extended surfaces where
ribbons and annuli are labelled by objects in C and coupons by appropriate morphisms
in C.

Definition 4.2.2
The three-dimensional topological field theory tftC associated to a modular category C over C
consists of the following data.

(i) For each C-labelled extended surface X, there is a finite dimensional complex vector
space tftC(X), the space of states (or of conformal blocks), such that tftC(∅) = C and
tftC(X t Y ) = tftC(X)⊗ tftC(Y ).

(ii) To each homeomorphism of C-labelled extended surfaces f : X → Y there is an isomor-
phism f]: tftC(X)→ tftC(Y ).

(iii) If (M,∂−M,∂+M) is a cobordism of C-labelled extended surfaces, then the TFT associates
to it a linear map

tftC(M,∂−M,∂+M) : tftC(∂−M)→ tftC(∂+M)

depending linearly on the labels of the coupons.

These data obey the following axioms.

1. (Naturality) Let (M,∂−M,∂+M), (N, ∂−N, ∂+N) be cobordisms of C-labelled extended
surfaces. Let f : M → N be a degree one homeomorphism mapping the ribbon graph in M
onto the ribbon graph in N , restricting to homeomorphisms f±: ∂±M → ∂±N (preserving
the Lagrangian subspaces). Then

(f+)] ◦ tftC(M,∂−M,∂+M) = tftC(N, ∂−N, ∂+N) ◦ (f−)]

2. (Multiplicativity) If M1,M2 are two cobordisms of C-labelled extended surfaces, then
under the identification tftC(∂±M1t∂±M2) = tftC(∂±M1)⊗tftC(∂±M2) we have tftC(M1t
M2) = tftC(M1)⊗ tftC(M2).

3. (Functoriality) Suppose a cobordism M is obtained from the disjoint union of M1 and
M2 by gluing ∂+M1 to ∂−M2 along a degree one homeomorphism f : ∂+M1 → ∂−M2

preserving marked arcs with their orientation and labels. Then

tftC(M,∂−M1, ∂+M2) = κm tftC(M2, ∂−M2, ∂+M2) ◦ f] ◦ tftC(M1, ∂−M1, ∂+M1),

for some integer m. (Here κ is a constant associated to the category C.)

4. (Normalization) Let X be an extended surface. Let the cylinder over X be the 3-manifold
X× [−1, 1], with the ribbon graph consisting of the ribbons z× [−1, 1], where z runs over
the marked arcs of X. Their orientation is such that they induce the orientation of the
arcs on X × {1}. Their core is oriented from 1 to −1. Then

tftC(X × [−1, 1], X × {−1}, X × {1}) = idtftC(X). (32)
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Remarks 4.2.3.
1. The homomorphism tftC(M,∂−M,∂+M) is called the invariant of the cobordism of C-

labelled extended surfaces (M,∂−M,∂+M). By the naturality axiom it is invariant under
degree one homeomorphisms that restrict to the identity on the boundary.

2. The TFT gives the system of vector spaces tftC(X) the structure of a modular functor.

3. The action f 7→ f] of homeomorphisms may be expressed in terms of the TFT. Namely,
let f : X → Y be a homeomorphism of extended surfaces. Then the 3-manifold obtained
by gluing the cylinder over X to the cylinder over Y defines a cobordism (Mf , X, Y ). The
normalization and functoriality axioms then imply that f] = tftC(Mf , X, Y ). Moreover,
it can be shown, using the naturality axiom, that if f, g are homotopic in the class of
homeomorphism of extended surfaces, then f] = g]. In particular, if X = Y , f 7→ f]
defines a projective representation of the mapping class group of X.

5 Full conformal field theory

We are now ready to discuss full, local two-dimensional conformal field theories and to combine
left and right movers in the sense of Section 1.6. We restrict to the case when X is a compact
oriented two-dimensional conformal manifold, but allow for boundaries.

5.1 Decoration data

Observation 5.1.1.
We expect that then the following data have to be specified:

• Whenever a two-manifold X has a boundary, one expects that it is necessary to spec-
ify boundary conditions. We take the possible boundary conditions to be the objects of
a decoration category M. Morphisms are boundary fields that can change the bound-
ary condition. The composition of morphisms in the category M captures the operator
product of boundary fields.

• Conformal field theories can have topological defect lines. We label the possible types of
defect lines by objects in yet another decoration category D.

There is a natural notion of fusion of defect lines; accordingly, D will be a tensor category.
Also, to take into account the topological nature of defect lines, we assume that the tensor
category D has dualities and that it is even sovereign. In contrast, there is no natural
notion of a braiding of defect lines, so D is, in general, not a ribbon category.

We can now formulate a central insight: the decoration categories can be expressed in terms
of Frobenius algebras in the modular tensor category C obtained from the chiral conformal field
theory. The additional structure of a Frobenius algebra comes from a field-theoretic analysis,
taking in particular into account the non-degeneracy of the two-point functions of boundary
fields on a disk.

Definition 5.1.2
1. A Frobenius algebra A = (A,m, η,∆, ε) in C is an object of C carrying the structures of

a unital associative algebra (A,m, η) and of a counital coassociative coalgebra (A,∆, ε)
in C, with the algebra and coalgebra structures satisfying the compatibility requirement
that the coproduct ∆: A→A ⊗ A is a morphism of A-bimodules (or, equivalently, that
the product m: A⊗ A→A is a morphism of A-bi-comodules).
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2. A Frobenius algebra is called special, iff the coproduct is a right-inverse to the product
– this means in particular that the algebra is separable – and a nonvanishing multiple of
the unit η: I→A is a right-inverse to the counit ε: A→ I.

3. There are two isomorphisms A→A∨ that are naturally induced by product, counit and
duality; A is called symmetric, iff these two isomorphisms coincide.

We summarize the insight of [FFRS1, FFRS2]:

Proposition 5.1.3.
1. The category of boundary conditions M is equivalent to the category of left A-modules

in C.

2. The category D labelling defect lines is equivalent to the category of A-bimodules. Types
of defect lines separating A1 and A2 are described by isomorphism classes of A1−A2-
bimodules.

3. The monoidal structure capturing operator products products are tensor products over
A.

4. Full conformal field theories combining left movers and right movers are in bijection to
Frobenius algebras.

We now present a construction of CFT-correlators based on Frobenius algebras. Recall the
double covering X̂, obtained from the orientation cover that we considered in Section 1.6.
We consider it for a smooth two-dimensional manifold; it comes with an orientation reversing
involution σ such that the quotient X̂/〈σ〉 is naturally isomorphic to X, and we have a canonical
projection

π : X̂ 7→ X ∼= X̂ /〈σ〉 .
The set of fixed points of σ is just the preimage under π of the boundary ∂X.

Given the modular tensor category C, the complex modular functor [BK] provides us with
a vector bundle V with projectively flat connection on Mg,m. We recall from Section 1.6 the
‘principle of holomorphic factorization’. It states that, first of all, the conformal surface X
should be decorated in such a way that the double X̂ has the structure of an object in the
decorated cobordism category for the topological field theory based on C. It then makes sense
to require, secondly, that the correlation function is a certain global section of the restriction
of V to Mσ

g,m.
At this point, it proves to be convenient to use the equivalence of the complex modular

functor and the topological modular functor tftC based on the modular tensor category C [BK]
so as to work in a topological (rather than complex-analytic) category. We are thereby lead
to the description of a correlation function on X as a specific vector Cor(X) in the vector
space tftC(X̂) that is assigned to the double X̂ by the topological modular functor tftC. These
vectors must obey two additional axioms:

• Covariance: Given any morphism f : X→Y in the relevant decorated geometric category }C,
we demand

Cor(Y ) = tftC(f)
(
Cor(X)

)
.

• Factorization: Certain factorization properties must be fulfilled.

We refer to [FFRS1, FFRS2] for a precise formulation of these constraints.

The covariance axiom implies in particular that the vector Cor(X) is invariant under
the action of the mapping class group Map(X)∼= Map(X̂)σ. This group, also called the

relative modular group, acts genuinely on tftC(X̂).
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5.2 The TFT construction of RCFTs

To find solutions to the covariance and factorization constraints on the vectors Cor(X) ∈
tftC(X̂) we use the three-dimensional topological field theory associated to the modular ten-
sor category C. Thus we look for a (decorated) cobordism (MX , ∅, X̂) such that the vector
tftC(MX , ∅, X̂)1∈ tftC(X̂) is the correlator Cor(X).

The three-manifold MX should better not introduce any topological information that is not
already contained in X. This leads to the idea to use an interval bundle as a “fattening” of the
world sheet.

Definition 5.2.1
Given a surface X, possibly with boundary and possibly unorientable, the connecting manifold
is the following oriented three-manifold

MX :=
(
X̂ × [−1, 1]

)
/ 〈(σ, t 7→−t)〉 ,

where X̂ is the orientation cover of X.

The connecting manifold has boundary ∂MX
∼= X̂ and contains X as a retract: the embed-

ding ι of X is to the fiber t=0, the retracting map contracts along the intervals.
The connecting manifold MX must now be decorated with the help of Frobenius algebras

in C and (bi-)modules over them.
The conformal surfaceX is decomposed by defect lines (which are allowed to end on ∂X) into

various two-dimensional regions. There are two types of one-dimensional structures: boundary
components of X and defect lines. Defect lines, in general, form a network; they can be closed
or have end points, and in the latter case they can end either on the boundary or in the interior
of X. Both one-dimensional structures are partitioned into segments by marked “insertion”
points. The end points of defect lines carry insertions, too. Finally, we also allow for insertion
points in the interior of two-dimensional regions.

To these geometric structures, data coming from Frobenius algebras are now assigned as
follows.

• First, we attach to each two-dimensional region a symmetric special Frobenius algebra, i.e.
an object of FrobC.

• To a segment of a defect line that separates regions with label A and A′, respectively, we
attach an A-A′-bimodule.

• Similarly, to a boundary segment adjacent to a region labeled by A, we assign a left A-module.

• Finally, zero-dimensional geometric objects are labeled with morphisms of modules or bi-
modules, respectively.

Two types of points, the insertion points of field, still deserve more comments: those sep-
arating boundary segments on the one hand, and those separating or creating segments of
defect lines or appearing in the interior of two-dimensional regions on the other.

– An insertion point p ∈ ∂X that separates two boundary segments labeled by objects
M1,M2 ∈ A-mod has a single preimage under the canonical projection π from X̂ to
X; to the interval in MX that joins this preimage to the image ι(p) of p under the
embedding ι of X into MX , we assign an object U of the category C of chiral data. To
the insertion point itself, we then attach a morphism of A-modules HomA(M1⊗U,M2).
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– An insertion point in the interior of X has two preimages on X̂; these two points are
connected to ι(p) by two intervals. To each of these two intervals we assign an object U
and V , respectively, of the category C of chiral data. The orientation is used to attribute
the two objects U, V to the two preimages.

We now first consider an insertion point separating a segment of a defect line labeled
by an object B1 ∈ Hom(A,A′) from a segment labeled by B2 ∈ Hom(A,A′). We then
use the left action ρl of A and the right action ρr of A′ on the bimodule B1 to define
a bimodule structure on the object U ⊗ B1 ⊗ V of C by taking the morphisms (idU ⊗
ρl⊗ idV ) ◦ (c−1

U,A⊗ idB1 ⊗ idV ) and (idU ⊗ ρr ⊗ idV ) ◦ (idU ⊗ idB1 ⊗ c−1
A′,V ) as the action of

A and A′, respectively, where c denotes the braiding isomorphisms of C. The insertion
point separating the defect lines is now labeled by a morphism of A-A′-bimodules in
Hom(U ⊗B1 ⊗ V,B2).

– To deal with insertion points in the interior of a two-dimensional region labeled by
a Frobenius algebra A, we need to invoke one further idea: such a region has to be
endowed with (the dual of) a triangulation Γ. To each edge of Γ we attach the morphism
∆◦η ∈ Hom(I, A⊗A), and to each trivalent vertex of Γ the morphism ε◦m◦(m⊗idA) ∈
Hom(A⊗ A⊗ A, I).
Now each of the insertion points p that we still need to discuss is located inside a two-
dimensional region labeled by some Frobenius algebra A or creates a defect line. For the
first type of points, we choose the triangulation such that an A-ribbon passes through p;
to p we then attach a bimodule morphism in Hom(U ⊗A⊗V,A), with U and V objects
of C as above. To a point p at which a defect line of type B starts or ends, we attach a
bimodule morphism in Hom(U ⊗ A⊗ V,B) and in Hom(U ⊗B ⊗ V,A), respectively.

We have now obtained a complete labelling of a ribbon graph in the connecting manifold
MX with objects and morphisms of the modular tensor category C; in other words, a cobordism
from ∅ to X̂. We can apply to it the tftC-functor for the tensor category C to obtain a vector

Cor(X) = tftC(MX) 1 ∈ tftC(X̂) .

This is the prescription for RCFT correlation functions in the TFT approach. It follows from
the defining properties of a symmetric special Frobenius algebra that Cor(X) does not depend
on the choice of triangulation; for details see [FFRS1].

Remark 5.2.2.
On the basis of this construction one can establish many further results. Let us list some of
them, without indicating their proofs:

• One can compute the coefficients of partition functions for bulk fields, boundary fields and
defect fields. One can show that they obey all consistency conditions that have been proposed
in the literature, in particular integality and modular invariance of torus partition functions.

• One can derive explicit expressions for the coefficients of operator product expansions of
bulk, boundary, and defect fields.

• The theory can be extended to unorientable surfaces. This is necessary for string compacti-
fications of type I. Then, additional structure has to be chosen on the Frobenius algebra.

• For arbitrary topology of the surface X the correlators obtained in the TFT construction
can be shown to satisfy the covariance and factorization axioms that were stated earlier.
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• One can explicitly compute symmetries and Kramers-Wannier dualities of rational conformal
field theories.

The TFT approach to the construction of CFT correlation functions represents CFT quan-
tities as invariants of knots and links in three-manifolds, It constitutes a powerful algebraization
of many questions that arise in the study of (rational) conformal field theory.
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ribbon category, 52

scaling dimension, 13
sectors, 32
sigma model, 3
special Frobenius algebra, 56
stress-energy tensor, 29
strict monoidal category, 51
Sugawara construction, 31
symmetric Frobenius algebra, 56

target space, 3
tensor category, 51
twist, 32, 52

vacuum representation, 32
Verlinde formula, 45
vertex algebra, 27
vertex operator, 18, 27
Virasoro algebra, 30
Virasoro-central charge, 29
Virasoro-minimal model, 32
Virasoro-primary states, 32

Yoneda lemma, 52

Zhu’s algebra, 25
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