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Abstract

We present a menagerie of examples for Lie n-algebras, study their
morphisms and discuss applications to higher order connections, in par-
ticular String 2-connections and Chern-Simons 3-connections.
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1 Introduction

We investigate several concrete examples, some of them of relevance in
quantum field theory, of higher order generalizations of Lie algebras and
of connections taking values in these.

Higher Lie algebras have been conceived as, equivalently, Lie n-algebras,
L∞-algebras, or, dually, quasi-free differential graded commutative alge-
bras (quasi-“FDA”s, of “qfDGCA”s).

As Lie n-algebras, they arise through a process of categorification, as
pioneered by Baez and his school. From their point of view, a Lie group
is a Lie groupoid with a single object. Accordingly, a Lie n-group is a Lie
n-groupoid with a single object.

Just as Lie groups have Lie algebras, Lie n-groups have Lie n-algebras,
but in both cases, the algebra can be studied without recourse to the
groups. Baez and Crans [2] have discussed how semistrict Lie n-algebras
are the same as L∞-algebras that are concentrated in the first n degrees.

An L∞-algebra L can be described (see Definition ??) as a graded
cocommutative coassociative coalgebra ScsL with a coderivation D of
degree -1 that squares to 0.

Dually, on the space
∧•(sL)∗, an L∞-algebra L induces a differential

graded commutative algebra which is free as a graded commutative alge-
bras (we say “quasi-free DGCA” for short, but notice that in the physics
literature these are known as “free differential algebras” or “FDA”s),
whose derivation differential of degree 1 is given by

dω = −ω(D(·)) .

All these descriptions of higher Lie algebras have their advantages:

• the coalgebra picture is the most convenient one for many compu-
tations;

• the DCGA picture is most directly related to connections, curvatures
and Bianchi identities with values in the given Lie n-algebra;

• the Lie n-algebra picture is conceptually the most powerful one.

We hope this work will be of interest to somewhat disparate read-
ers: applied n-category theorists, homotopy theorists and cohomological
physicists. Hopefully the table of contents will help each to find the parts
most appealing to their individual tastes.

2 Main results

2.1 Non-fake-flat 2-Connections

For G a Lie group, parallel transport in a G-bundle with connection is,
locally, equivalent [27] to a smooth functor

tra : P1(Y ) → ΣG ,

where P1(Y ) is the groupoid of thin homotopy classes of paths in the
cover Y , and where ΣG is the Lie group, regarded as a 1-object groupoid.

4



The curvature of this transport is a 2-functor

curv : Π2(Y ) → Σ(INN(G))

from the fundamental 2-groupoid of Y to the inner automorphism 2-group
of G.

We discuss how the infinitesimal formulation of this is given by

n=1 n=2

g � � // inn(g)

Vect(X)

(A)

FA=0

OO

Vect(X)

(A)

OO
,

for A ∈ Ω1(X, g).
In [4] 2-connections on 2-bundles were similarly realized locally as

parallel transport 2-functors

tra2 : P2(X) → ΣG(2)

with values in a strict 2-group, whose descent data reproduced that pro-
posed in [9] up to a constraint known as “fake flatness”. The uncon-
strained data is obtained instead from a smooth 3-functor [25]

curv : Π3(Y ) → Σ(INN(G(2))) .

Being a morphism of n-groupoids, such an n-functor

curv : Πn(Y ) → Σ(INN(G(n−1)))

should have a differential version as a morphism of Lie n-algebroids

dcurv : Lie(Πn(Y )) → Lie(INN(G(n−1))) .

While we do not discuss this differential version in general, we claim that
the resulting morphism is, in its dual incarnation, a qfDGCA morphism

f∗ : (inn(g(2)))
∗ → Ω•(Y )

from the qfDGCA corresponding to the given Lie n-algebra to the deRham
complex of Y , which we may interpret as an algebroid morphism

f : Vect(X) → inn(g(2)) ,

where Vect(X) denotes the algebroid with identity anchor map over TX.
For the special case that

g(2) := (t : h → g)

is a strict Lie 2-algebra, coming from a crossed module of ordinary Lie
algebras g and h, we present several results demonstrating that these
qfDGCA morphisms indeed capture all the corresponding data found in
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[27, 4, 25, 9] in that connections with values in the strict Lie algebra
(g → h) itself are given by pairs of forms (A,B) which satisfy the “fake
flatness” constraint FA + t ◦ B = 0, while connections with values in
inn(h → g) come from arbitrary pairs of such forms:

n=2 n=3

(h → g)
� � // inn(h → g)

Vect(X)

(A,B)
FA+t∗B=0

dAB=0

OO

Vect(X)

(A,B)

OO
(1)

for
(A,B) ∈ Ω1(X, g)× Ω2(X, h) .

Moreover, we show that derivation homotopies of these morphisms

Vect(X)

(A,B)

""

(A′,B′)

<<
inn(g → h)(λ,a)

��

capture the corresponding linearized (or “infinitesimal”) gauge (and higher
gauge) transformations.

All this pertains to n-connections on trivial n-bundles or, hence, to
that on nontrivial n-bundles after these have been trivialized over a cover.
The general case of qfDGCA n-connections on nontrivial n-bundles is
postponed to [26].

With the relation between n-connections and qfDGCA-morphisms thus
established, we move on to investigate n-connections directly in the qfDGCA-
picture, which would presumeably be much harder to investigate using
other pictures. This is the content of 2.2.

2.2 String 2-Connection and Chern-Simons 3-Connection

Baez and Crans [2], later also [32], had defined, for any semisimple Lie al-
gebra g, a 1-parameter family of Lie 2-algebras called gk. This was shown
[3] to be equivalent to the strict Kac-Moody Lie 2-algebras stringk(g),
which sit in the exact sequence [3]

0 // (Ω̂kg → Ωg) // stringk(g) // g // 0 . (2)

Both integrate to a 2-group [20, 3], the realization of whose nerve, as a
category, is a model for the topological group known as the String group
associated with the semisimple closed compact Lie group G at level k [30].

For Stringk(G)-bundles to exist, the first Pontryagin class of the base
has to vanish [30]. If it doesn’t, then the obstruction classifies a Chern-
Simons 2-gerbe – a 3-bundle – whose connection 3-form is a Chern-Simons
form [28].
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(On general grounds n-gerbes are the (n+1)-sheaves of (n+1)-sections
of (n+1)-bundles. For instance a 0-gerbe is just the sheaf of sections of a
(1-)bundle. An explicit proof of the equivalence of 1-gerbes with 2-bundles
is given in [7]. An analogous discussion for G-bundle gerbes is in [5].)

Therefore, understanding connections with values in Lie n-algebras
related to stringk(g) is relevant both for understanding connections on
String 2-bundles, as well as for understanding the proper 3-categorical
nature of the Chern-Simons functional.

It turns out that there is an isomorphism of Lie 3-algebras

inn(gk) ' csk(g)

of the inner derivation Lie 3-algebra of the semistrict version of the String
Lie 2-algebra with the Chern-Simons Lie 3-algebra from ??. This in partic-
ular implies that csk(g) is also trivializable. But the nontrivial information
is extracted by an epimorphism

csk(g) // // chk(g)

to the Chern Lie 3-algebra chk(g). This remembers only the curvature
4-form of the Chern-Simons connection, not the “3-form potential” that
it came from.

This means that the situation we find is this:

n = 1 n = 2 n = 3 n = 3

g stringk(g)oooo � � //

∼

inn(stringk(g))
as strict
as possible

g gkoooo � � // csk(g)

∼

// // chk(g)
as small
as possible

Vect(X)

(A)

FA=0

OO

Vect(X)

(A,B)
FA=0

dB+kCS(A)=0

OO

Vect(X)

(A,B,C)

C=dB+kCS(A)

OO

Vect(X)

(A,C)

dC=〈FA∧FA〉

OO

,

for
(A,B,C) ∈ Ω1(X, g)× Ω2(X)× Ω3(X) .

The epimorphism on the left here is a remnant of the exact sequence (2),
while the inclusion in the middle is that of (1).

Again, derivation homotopies of these maps provide the relevant lin-
earized gauge transformations and hence the linearized gluing data for
these connection p-forms.

We may interpret this as saying that

• String-bundles with connection are 2-bundles with structure 2-group
Stringk(G).

• The Chern-Simons functional is a 3-connection on a 3-bundle with
structure 3-group INN(Stringk(G)).
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Notice that, by the above, a Chern-Simons 3-connection

(A,B,C) : Vect(X) → csk(g)

with curvature 4-form

dC = dkCS(A) = k〈FA ∧ FA〉 ,

where FA is the curvature 2-form of A, factors through the String Lie
2-algebra

(A,B,C) : Vect(X)
(A,B) // gk

� � // csk(g)

if and only if the 4-form
〈FA ∧ FA〉 = 0

vanishes.
This should be the n-connection perspective on the statement in [30],

that
“String connections trivialize Chern-Simons theory.”

2.3 Supergravity as a higher gauge theory

Notably due to the remarkable old work [1], physicists have long been
aware of the fact that qfDGCAs (or “FDA”s as they are, imprecisely,
called in the respective literature) are a remarkably powerful tool for the
description of supergravity theories in various dimensions.

The right interpretation of this fact, however, seems to have remained
mysterious. Frequently the term “soft group manifold” is used to motivate
what, from our perspective, is nothing but an n-connection with values in
a certain Lie n-algebra.

In fact, as shown in [1] the entire field content of 11-dimensional su-
pergravity may be regarded, from our perspective, as a 4-connection on
spacetime with values in the inner derivations of the supergravity Lie
3-algebra

inn(sugra(10, 1)) .

While technically this is a rather trivial point – due to the power of
the statement of the equivalence of semistrict Lie n-algebras with n-term
qfDGCAs and using the result on inner derivations discussed in ?? – it
does matter conceptually:

if supergravity is really a higher gauge theory of certain 4-bundles with
connection, this indicates that and how the usual formulation is really
just in terms of the local connection on a possibly globally nontrivial 4-
bundle. The notion of higher morphisms of qfDGCAs which we discuss
here provides the structure for gluing such local data to a global object
in a way that has, as far as we are aware, not been considered so far.

But even locally, we think that our conception of supergravity field
configurations as n-connections with values in Lie n-algebras clarifies some
notions that haunt the supergravity literature without yet having found
their proper home there.
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3 Lie Algebras

An ordinary Lie algebra, or “Lie 1-algebra” in our context, provides a
particularly simple example of the structures that we are studying here.
Despite its simplicity, the coalgebra and qfDGCA description of Lie alge-
bras and their morphisms exhibit already many of the phenomena which
are relevant for the more sophisticated examples.

In particular, the expression of a Lie algebra valued connection 1-form
in terms of a morphism of DGCAs already exhibits the peculiar flatness
constraint and the linearized gauge transformation behaviour that play a
crucial role as we move up to higher n.

3.1 Examples

3.1.1 Ordinary Lie algebras

Let g be a Lie algebra. Define a codifferential D = d2 : Scsg → Scsg
(with g regarded as of degree 0) by

d2(sX ∨ sY ) = s[X,Y ]

for all X ∈ g and extended as a coderivation. This means

D(sX1 ∨ sX2 ∨ · · · ∨ sXp) =
∑

±s[Xi, Xj ] ∨ sX1 ∨ ..... ∨ sXp ,

where the sum is over i < j, Xi and Xj are omitted in the factors further
to the right if they are bracketed up front, and the sign is that obtained
from commuting Xi and Xj from their original position to the the first
two positions.

To check D2 = 0, we need only check it on sX1 ∨ sX2 ∨ sX3, where it
is readily seen to correspond to the Jacobi identity.

This is the Chevalley-Eilenberg chain complex for computing Lie alge-
bra homology.

In terms of a basis {Xa} for g and structure constants Cc
ab so that

[Xa, Xb] = Cc
abXc,

we have D(sXa ∨ sXb) = Cc
absXc.

Alternatively, to see the usual cochain algebra in terms of a basis {qa}
of the vector space dual g∗, consider the free graded commutative algebra∧• g∗, where g∗ is in degree 1. Using

dqa(sXb ∨ sXc) = −qa(D(sXb ∨ sXc)) = −qa(s[Xb, Xc])

we find that the differential on that algebra is given by

dqa = −1

2
Ca

bcq
b ∧ qc . (3)

This is the Chevalley-Eilenberg cochain complex for computing Lie
algebra cohomology with values in the ground field.

We will often suppress the “∧” and write qaqb for qa ∧ qb.
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3.1.2 Concrete example: gl(N)

The following concrete example of a qfDGCA coming from a Lie algebra
will be useful later on:

Proposition 1 Let {tij} be the canonical basis for (sgl(N))∗. Then the
differential on ∧•(sgl(N))∗

describing the Lie algebra structure on gl(N) acts as

dtij = −tikt
k

j .

3.1.3 Super Lie algebras

Our Lie n-algebras are n-categories internal to the category Vect of vector
spaces. If we instead consider categories internal to the category sVect of
super vector spaces, we obtain super Lie n-algebras.

For us, a super vector space is a Z2-graded vector space

V = V0 ⊕ V1 .

The crucial property of sVect is the nontrivial braiding isomorphism

σ : V ⊗W
∼ // W ⊗ V

which introduces a sign whenever two odd graded spaces exchange posi-

tion: if σ0 : V ⊗W
∼ // W ⊗ V denotes the ordinary braiding isomor-

phism in Vect, then

σ|Vi⊗Wj := (−1)ijσ0|Vi⊗Wj .

In particular, an N-graded vector space internal to super vector spaces is
an N× Z2-bigraded vector space.

Super Lie n-algebras are equivalent to L∞ algebras and to qfDGCAs
built from graded super vector spaces.

For an element v ∈ V of such a bigraded vector space, we shall continue
to write

|v| ∈ N
for its degree in N. Then we write

[v] ∈ Z2

for the super degree in Z2. Combining our Koszul grading with the grading
inherited from sVect, we then get the graded commutation relation

v ∨ w = (−1)(|v||w|+[v][w])w ∨ v

for all v, w ∈ V . Similarly for elements ω, λ ∈ V ∗.
Notice in particular that our graded differentials d have Koszul degree

+1 but super degree 0, so that their graded Leibniz rule is still

d(ω ∧ λ) = (dω) ∧ λ+ (−1)|w|ω ∧ dλ .
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The qfDGCA of the super-Poincaré Lie algebra. Denote by

iso(10, 1) = so(10, 1) n R11

the Poincaré Lie algebra on R11, and by

isos(10, 1)

the corresponding super Lie algebra. This is by itself Z2-graded, such that∧•(sisos(10, 1))∗

is N-Z2-bigraded. The graded symmetry is with respect to the total de-
gree. For ψα ∈ isos(10, 1) odd graded and ψα ∈ (sisos(10, 1))∗ dual to
that, we now have

ψα ∧ ψβ = +ψβ ∧ ψα .

After choosing a basis {va} of (sR)∗, a basis {ωab} of (sso(10, 1))∗,
there is a choice of generators {ψα} of this kind such that the differential
on

∧•(sisos(10, 1))∗ encoding the super Lie algebra structure is deter-
mined on these generators by

dωab = ωac ∧ ωcb

dva = ωab ∧ vb +
i

2
(Γa)α

βψ̄α ∧ ψβ

dψα =
1

4
(Γab)α

βω
ab ∧ ψβ .

(Here the {Γa} are representation matrices of the Clifford algebra gen-
erators, and ψ̄ := ψC for the corresponding charge conjugation matrix C.)

3.2 Morphisms

Lie algebra morphisms
f : h → g

correspond bijectively with morphisms of the corresponding qfDGCA:

f∗ : (Λ•g∗, d) → (Λ•h∗, d) .

Being algebra morphisms, these morphisms of complexes are entirely spec-
ified by their action on the generators

f∗ : g∗ → h∗ ,

which is nothing but the dual morphism to the original morphism of Lie
algebras.

In order for this to be a morphism of complexes, f∗ has to satisfy the
chain map condition, which says that the diagram

g∗
d //

f∗

��

g∗ ∧ g∗

f∗∧f∗

��
h∗

d // h∗ ∧ h∗
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has to commute. This indeed says that the map intertwines the Lie brack-
ets on g and h.

The dual picture is straightforward. The morphism

f : h → g

extends to a map of graded coalgebras

f : Scsh → Scsg

which is a chain map if and only if

h ∨ h
[ , ] //

f∨f

��

h

f

��
g ∨ g

[ , ] // g

commutes.

4 Lie Algebroids

By definition, the vector space sL corresponding to the L∞-algebra (Sc(sL), D)
which corresponds to some Lie n-algebra is concentrated in degree n ≥ 1.

The natural generalization to spaces (sL) concentrated in degree n ≥ 0
generalizes Lie n-algebras to Lie n-algebroids.

To the best of our knowledge an n-categorical conception of Lie n-
algebroids which would parallel that of Lie n-algebras and their relation
to L∞-algebras has not been considered yet.

Here we shall simply adopt this as a definition.

Definition 1 A Lie n-algebroid is an L∞-algebra (Sc
A(sL), D) which is

a cocommutative coalgebra over a commutative algebra A, or equivalently
the dual qfDGCA (

∧•
A(sL)∗, d).

Remark. Notice this means that (Sc
A(sL), D), respectively (

∧•
A(sL)∗, d)

in degree 0 is a copy of A as in the following basic example.

4.1 Examples

4.1.1 The tangent algebroid Vect(X)

In his doctoral thesis [23], George Rinehart effectively identified de Rham
cohomology of a smooth manifold X with the Lie algebra cohomology of
the space of vector fields Γ(X) on X. Note that, for this to make sense,
he regards Γ(X) as a Lie algebra over C∞(X) rather than over a ground
field. Then the usual exterior algebra

Ω•(X)
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is generated by the dual of Γ(X) over C∞(X). For finite dimensional X,
Γ(X) is of finite rank over C∞(X) where that rank is generally greater
than the dimension of X.

Thus this exterior algebra can be regarded as

Ω•(X) = HomC∞(X)(S
csV ect(X), C∞(X)) .

In terms of a generating set of vector fields, structure constants become
structure functions belonging to C∞(M).

The same situation may be described in terms of the tangent algebroid
with trivial anchor map

ρ = id : TX → TX .

In our language of L∞-algebras we phrase this as follows.

Definition 2 Given a manifold X, the L∞-algebra

Vect(X) = (Sc(sL), D)

is that defined on the space

sL := C∞(X)⊕ sΓ(TX) ,

concentrated in degree 0 and 1, where the codifferential D = d1 + d2 is
defined by

d1(sV ) = 0

d2(sV ∨ sW ) = s[V,W ]

d2(sV ∨ f) = V (f)

d2(f ∨ g) = fg ,

for all V,W ∈ Γ(TX) and all f, g ∈ C∞(X).

4.2 Morphisms

Here we shall study morphisms

f : Vect(X) → g(n)

in terms of the dual DGCA morphism

f∗ : (g(n))
∗ → Ω•(X) .

4.2.1 Flat connections

Let
∧•g∗ be the qfDGCA encoding a Lie algebra g as above.
By inspection of the definition, one finds

Proposition 2 DGCA-morphisms

f∗ :
∧•g∗ → Ω•(X)

are in bijection with g-valued 1-forms A ∈ Ω1(X, g) such that

FA = 0 .
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We write
f∗A

for the DGCA morphism corresponding to the 1-form A under this corre-
spondence.

Here FA := dA+A∧A is the curvature 2-form of A. For {Xa} a basis
of g as before, with A = AaXa this reads, more explicitly,

F a
A = dAa +

1

2
Ca

bcA
b ∧Ac .

Notice the simple but, in its generalization, very useful fact that the ex-
pression on the right directly mimics the appearance (3) of the differential
on

∧•g∗.
Another simple but, in its generalization, very useful fact is that we

may regard such a 1-form A as a flat connection on a trivial G-bundle
over X, where g ' Lie(G).

Gauge Transformations. A gauge transformation between two such
1-forms A and A′ is a G-valued function g ∈ Ω0(X,G) such that

A′ = gAg−1 + gdg−1 .

Here and henceforth, we abuse notation: dg−1 means d(g−1).
We shall need an equivalent version of this, which is more symmetric

in A and A′. To that end, let

g = exp(−sλ)

for some λ ∈ g and some s ∈ R. The above is equivalent to

e
s
2 λA′e−

s
2 λ = e−

s
2Ae

s
2 + e−

s
2 (desλ)e

s
2 λ .

Differentiating both sides with respect to s and evaluating the result at
s = 0 yields

A′ − 1

2
[A′, λ] = A+

1

2
[A, λ] + dλ .

This is what physicists call an “infinitesimal gauge transformation”

λ : A→ A′ .

Proposition 3 These infinitesimal gauge transformations λ : A → A′

are in bijective correspondence with derivation homotopies

∧•g∗

f∗A

""

f∗
A′

<<Ω•(X)hλ
��

Proof. This follows straightforwardly from inspection of Def. ??. λ is
the value of the derivation homotopy on generators in (sg)∗. �
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Remark. We will find this same phenomenon also for all gauge trans-
formations of higher order connections that we consider later on: deriva-
tion homotopies of DGCA morphisms know only about the linearized form
of the ordinary gauge transformation.

As we will discuss elsewhere, by using a higher notion of Cartan con-
nection, this turns out to be enough information to construct connections
on nontrivial n-bundles.

5 Lie 2-Algebras

5.1 Examples

5.1.1 Strict Lie 2-algebra/crossed module (h → g)

Let (g, h) be an infinitesimal crossed module, also known as a Lie algebra
crossed module [17] or a strict Lie 2-algebra [2]. That is, a morphism of
Lie algebras t : h → g together with an action α : g → Der(h) of the Lie
algebra of derivations of h, such that

(1) α is a Lie morphism, i.e. h is a Lie module over g, which is to say,
for X,Y ∈ g and A,B ∈ h:

α([X,Y ]) = α(X)α(Y )− α(Y )α(X)

(2)
t(α(X))(A) = [X, tA]

(3)
α(tA)(B) = [A,B].

An alternative notation which will be helpful is to write

[X,A] := α(X)(A) .

If we extend t to g as the zero map, then trivially we have t2 = 0, but we
do not have a DG Lie algebra since t is not a derivation.

However, we can still transfer the definition to a coderivation differen-
tial Sc(sg ⊕ ssh), namely

Proposition 4 The codifferential of degree -1

D = d1 + d2 : Sc(sg ⊕ ssh) → Sc(sg ⊕ ssh)

defined by
d1(ssA) = s(tA)

d2(sX ∨ sY ) = s[X,Y ]

d2(sX ∨ ssA) = ss[X,A] .

squares to zero
D2 = 0

if and only if conditions (1) and (2) above hold.
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Proof. The fact that D2 = 0 must be checked only on terms v for which
D2v has a component in sg⊕ssh. These are sX∨sY ∨sZ and sX∨sY ∨ssA,
but also on sX ∨ ssA and ssA ∨ ssB.

On sX ∨ sY ∨ sZ, D2 = 0 is equivalent to the Jacobi identity on g.
In D(sX ∨ sY ∨ ssA) and D(sX ∨ ssA∨ ssB), there are terms which still
have two instances of ∨ and so will have no component in sg ⊕ ssh after
another application of D. The remaining terms of D(sX ∨sY ∨ssA) map
to 0 under D precisely if (1) holds.

Then

D2(sX ∨ ssA) = D(ss[X,A]− sX ∨ stA) = st([X,A])− s[X, tA] = 0

if and only if (2) holds.
Finally D(ssA∨ ssB) = D(ssA)∨ ssB+ ssA∨D(ssB) = stA∨ ssB+

ssA ∨ stB. Applying D again gives ss[A,B] twice with opposite signs,
hence 0. �

Dually, consider the free graded-commutative algebra
∧•((sg)∗⊕(ssh)∗).

Choose a basis {aa} of g∗ and a basis {bi} of h∗. In this basis, let the
structure constants of g be Ca

bc. Let the action of g on h have structure
constants αi

aj . Let the morphism from h to g have components tai.
Our differential dω = (−1)|ω|ω(D(·)) on this algebras is given on basis

elements by

daa = −1

2
Ca

bca
bac − taib

i

dbi = −αi
aja

abj .

The nature of the form of these equations will become more evident when
we consider DGCA morphisms from

∧•((sg)∗⊕(ssh)∗) to Ω•(X) in 5.2.1.

5.1.2 The Weil Algebra W (G) and Ω•(G/H)

A major example of H. Cartan’s algebraicization of differential geometry,
especially principal bundles, is his analysis [11] of the Weil algebra W (G).
It plays the role of differential forms on the universal principal G-bundle,
which did not exist in those days.

In our notations, the underlying algebra of W (G)is∧•(sg∗ ⊕ ssg∗)

where g is the Lie algebra of the finite dimensional Lie group G. From
our revisonist point of view, consider the infinitesimal crossed module
t = id : g → g with the action of the target g on the source g given by the
adjoint action, i.e. by the Lie bracket. According to proposition 4, the
coderivation differential on Sc(sg⊕ ssg) is given by

D = d1 + d2

defined by
d1(ssA) = s(tA)

d2(sX ∨ sY ) = s[X,Y ]
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d2(sX ∨ ssA) = ss[X,A] ,

for all X,Y,A ∈ g.
Dually, the differential on

∧•(sg∗ ⊕ ssg∗) is given on basis elements
aa ∈ sg∗ and ba = saa ∈ ssg∗ by

daa = −1

2
Ca

bca
bac − ba

dba = −Ca
bca

bbc .

The comparison with Cartan’s defintion is effectuated in terms of the
corresponding dual basis xa ∈ g (so that aa = e(xa in his notation) and
the operations

h : aa 7→ ba,

θ(xc) : aa 7→ −1

2
Ca

bca
b

and

θ(xc) : ba 7→ −1

2
Ca

bcb
b.

Another Lie 2-algebra coming from an infinitesimal crossed module
that Cartan considered (implicitly) is the special case that t : h ↪→ g is
the inclusion of a Lie sub-algebra, (

∧•((sg)∗⊕ (ssh)∗), d). This is used by
Cartan to calculate the cohomology of the corresponding homogeneous
space G/H in the case in which G is compact connected and H is a
connected closed subgroup.

Remark. We reencounter Cartan’s strict Lie 2-algebra id : g → g as
the sub Lie-2-algebra inn(g) of the Lie 2-algebra DER(g) in 5.1.3.

5.1.3 Lie 2-algebra DER(g) of (inner) derivations (inn(g))

One classical example for a class of infinitesimal crossed modules is

Definition 3 (derivation Lie 2-algebra) The infinitesimal crossed mod-
ule

(t : h → g) = (ad : g → Der(g))

with the obvious action of derivatins Der(g) on g gives rise, under propo-
sition 5.1.1, to the derivation Lie 2-algebra

DER(g)

of the Lie 1-algebra g.

Remark. This is the infinitesimal version of the automorphism 2-group
AUT(G) of any Lie groupG, which can be defined literally as the automor-
phism category of G, when the latter is regarded as a 1-object groupoid.
While the automorphism (n + 1)-group of any n-groupoid (an n-group,
for instance) has an obvious definition, a general notion of derivation Lie
(n+ 1)-algebra of a given Lie n-algebra should also exist, but is less obvi-
ous. Here we won’t go any further into the general definition of DER(·).
But see [29].

Inside DER(g) we have the sub-Lie-2-algebra of inner derivations.
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Definition 4 (inner derivation Lie 2-algebra) The infinitesimal crossed
module

(t : h → g) = (id : g → g)

with the obvious adjoint action of g on itself gives rise, under proposition
5.1.1, to the inner derivation Lie 2-algebra

inn(g)

of the Lie 1-algebra g.

Remark. This is the Lie 2-algebra of the strict 2-group

INN(G)

coming from the crossed module of groups (id : G→ G). The property of
INN(G) which is important in the context of connections is that INN(G)
is the codiscrete category over G. This means that there is precisely one
morphism in INN(G) for any ordered pair of elements in G. We can hence
understand the category INN(G) as obtained from the 0-category G by
killing the 0-th homotopy group.

This has two important consequences. First:

Proposition 5 For any Lie algebra g,the Lie-2-algebra inn(g) is, as an
object in the Baez-Crans 2-category of Lie 2-algebras, equivalent to the
trivial Lie 2-algebra.

Proof. The nature of morphisms in this 2-category is discussed in ??.
Using these definitions, the proof is an easy exercise. The proof has also
been given in [3]. �

While inn(g) is trivializable, hence apparently uninteresting, there is
non-trivial information in how it trivializes. We see this in 5.2.2, where we
shown that 2-connections with values in inn(g) are trivial as 2-connections,
but nontrivial as 1-connections.

In fact, passing from g to inn(g) removes the flatness constraint 4.2.1
on 1-connections . It does also introduce another flatness constraint, now
one level higher: that is the Bianchi identity (see also table ??).

5.1.4 Concrete example: inn(gl(N))

As an illustrative example, consider the inner derivation Lie 2-algebra of
the qfDGCA considered in 3.1.2.

Proposition 6 Let {tij} be the canonical basis for (sgl(N))∗ and {ri
j}

that for (ssgl(N)).
Then the differential on∧•((sgl(N))∗ ⊕ (ssgl(N))∗)

describing the Lie 2-algebra structure on inn(gl(N)) acts as

dtij = −tikt
k

j + ri
j

dri
j = −tikr

k
j + ri

kt
k

j .
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5.1.5 Semistrict Lie 2-algebra

Baez-Crans defined strict Lie-2-algebras, as above, and generalized them
to semi-strict Lie-2-algebras for which the strict Jacobi identity is replaced
by a homotopy relation. They show that these are equivalent to 2-term
L∞-algebras (those concentrated in the first two degrees, V = V0 ⊕ V1).

The differential D = d1 + d2 + d3 is determined by

d : V1 → V0

l2 : V0 ∨ V0 → V0

l2 : V0 ∨ V1 → V1

l3 : V0 ∨ V0 ∨ V0 → V1 .

The ternary bracket d3 is the Jacobiator of the Lie 2-algebra. If D fails
to define a strict Lie 2-algebra as in example 5.1.1, then the boundary
of the Jacobiator cancels the discrepancy. That is, the binary bracket d2

satisfies the Jacobi relation on V0 ∨ V0 ∨ V0 only modulo the image of d3

under d1:

dl3(X∨Y ∨Z) = −l2(l2(X∨Y )∨Z)+ l2(l2(X∨Z)∨Y )− l2(l2(Y ∨Z)∨X)

and on V0 ∨ V0 ∨ V1

l3(X∨Y ∨tA) = −l2(l2(X∨Y )∨A)+l2(l2(X∨A)∨Y )−l2(l2(Y ∨A)∨X).

Notice that this means that when d1 is trivial, we can still have a
nontrivial Jacobiator even though d2 satisfies the Jacobi identity on the
nose. This will be important in example 5.1.6 below.

For the dual qfDGCAformulation, again choose a basis {aa} of sV ∗
0

and {bi} of sV ∗
1 ,. The most general differential on

∧•((sV0)
∗ ⊕ (sV1)

∗) is
defined by

daa = −1

2
Ca

bca
bac − taib

i

and

dbi = −αi
aja

abj − 1

6
ri

abca
aabac .

The components here encode the above maps as follows (where {aa}
and {bi} are the bases dual to {aa} and {bi}, respectively):

1

2
Ca

bcaa = l2(ab, ac)

1

2
αi

ajbi = l2(ab, bi)

taiaa = d(bi)

1

6
ri

abc =
1

2
l3(aa, ab, ac) .

5.1.6 The String Lie 2-algebra gk / stringk(g)

A very simple but also very interesting example of a semistrict Lie 2-
algebra is the skeletal version of the String Lie 2-algebra. It is equivalent
to a strict but infinite-dimensional Lie 2-algebra.
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Skeletal version of the String Lie 2-algebra. Baez and Crans
noticed that a semisimple Lie algebra g together with the k-fold multiple
of its canonical 3-cocycle 〈[·, ·], .〉, where 〈, 〉 : g ⊗ g → R is the canonical
inner product, may be regarded as a Lie 2-algebra

gk

which is mildly non-strict.
In terms of (co)differential (co)algebra, gk looks as follows. For g

any Lie semisimple algebra and h = Lie(R), consider Sc(sg ⊕ ssh) with
differential D = d2 + d3 given by

d2(sX ∨ sY ) = s[X,Y ]

d3(sX ∨ sY ∨ sZ) = k〈[X,Y ], Z〉ssB
where B is a choice of basis for h. This squares to zero by the invariance
of 〈 , 〉 and the Jacobi identity.

In terms of a basis {aa} of (sg)∗ and {b} of (ssh)∗, define a differential
by

daa = −1

2
Ca

bca
bac

db = k
1

6
Cabca

aabac ,

where Cabc = kaa′C
a′

bc with kab the components of 〈·, ·〉 in the chosen
basis.

Remark. This Lie 2-algebra is called skeletal, since, when we regard
it as a linear category following Baez-Crans, it is a category where all
isomorphic objects are actually equal, i.e. where every isomorphism has
source the same as its target. Here this translates into the property that
d1 = 0, since d1 measures the difference between source and target of a
morphism in the Lie 2-algebra.

In words, being skeletal means that a Lie 2-algebra is “as small as
possible”. The following Lie 2-algebra is much larger and not skeletal.
But it is strict, meaning that d3 vanishes. Still, it is equivalent, as a Lie
2-algebra, to the one described above.

The semistrict Lie 2-algebra from example 5.1.6 turns out to be equiv-
alent to

Definition 5 (Strict version of String Lie 2-algebra) The strict String
Lie 2-algebra is the strict Lie 2-algebra (example 5.1.1) coming from the
(infinite-dimensional) crossed module

stringk(g) := (t : Ω̂kg → Pg) .

Here g is the semisimple Lie algebra from example 5.1.6, Pg is the Lie
algebra of based paths in g and Ω̂kg is the Kac-Moody central extension
of the Lie algebra of based loops in g.

The morphism t : Ω̂kg → Pg simply forgets the central part and
embeds loops into paths.
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In more detail, elements of Pg are maps

p : [0, 2π] → g

such that p(0) = 0 and equipped with the pointwise Lie bracket

[p1, p2](σ) = [p1(σ), p2(σ)] .

Similarly, elements of Ωg are maps

l : [0, 2π] → g

such that l(0) = 0 and l(2π) = 0.
Elements of the central extension Ω̂kg are pairs

(l, c) ∈ Ωg× R .

Paths act on loops by

[p, (l, c)] = ([p, l], 2k

∫ 2π

0

〈p, dl〉) .

Notice that this then also defines the bracket on Ω̂kg.
If g = Lie(G) is the Lie algebra of a semisimple, compact simply

connected Lie group G, we assume the invariant inner product 〈·, ·〉 to be
normlaized such that the 3-form 〈·, [·, ·]〉 on G generates the third integral
cohomology of G. But as long as we do not consider integrating our Lie 2-
algebras to Lie 2-groups, this normalization condition is pure convention.

The notion of equivalence here is the 2-categorical one coming from
the notion of 1- and 2-morphisms of Lie 2-algebras as described in the
next section.

Remark. We refer to this Lie 2-algebra as stringk(g), because, as shown
in [20, 3], it integrates to a Lie 2-group whose nerve (whith the 2-group
regarded as a category), geometrically realized, is a model for the topo-
logical (1-)group known as Stringk(G).

5.2 Morphisms

5.2.1 Flat 2-connections

Let (t : h → g) be an infinitesimal crossed module and let (
∧•((sg)∗ ⊕

(ssh)∗), d) be the corresponding qfDGCA according to 5.1.1.

Proposition 7 qfDGCA morphisms from (
∧•((sg)∗ ⊕ (ssh)∗), d) to the

deRham complex of some manifold X

f∗ : (
∧•((sg)∗ ⊕ (ssh)∗), d) → Ω•(X)

are in bijective correspondence with pairs consisting of a 1-form A ∈
Ω1(X, g) and a 2-form B ∈ Ω2(X, h) satisfying

t ◦B + FA = 0 , (4)

and
dAH = 0 .
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Here
H := dAB

is the 3-form curvature.
Proof. This is a straightforward computation. A is the value of f∗ on

(sg)∗ and B that on (sh)∗. The condition t◦B+FA = 0 is the chain map
condition evaluated on (sg)∗ and dAB = 0 is the chain map condition
evaluated on (ssh)∗. �

Remark. This observation is also discussed in [31].

Remark. Morphisms

f∗ : (t : h → g)∗ → Ω•(X)

as above may be regarded as flat connections on trivial principal G(2)-
2-bundles, where G(2) is a 2-group that integrates the crossed module
(t : h → g).

In the theory of connections on principal 2-bundles and on nonabelian
gerbes, the 2-form β = t◦B+FA has been addressed as the fake curvature,
although 2-form curvature would be a more appropriate name. Similarly,
H is addressed as the 3-form curvature. [9, 4].

5.2.2 Non-flat 1-connections as flat 2-connections

Consider the special case that the infinitesimal crossed module is (id :
g → g), corresponding to the Lie 2-algebra inn(g) from definition 4. Then
we find that a morphism

f∗ : (inn(g))∗ → Ω•(X)

is entirely determined by a 1-form A ∈ Ω1(X, g). The 2-form in this case
is constrained to be (up to a sign) the curvature 2-form of A:

B = −FA .

Moreover, the flatness of this 2-connection is now nothing but the Bianchi
identity of the 2-form curvature:

dAFA = 0 .

We hence have a bijection between general g-connection 1-forms on (triv-
ial G-bundles over) X, and flat (id : g → g)-2-connections on (trivial
INN(G2)-2-bundles) over X. (The generalization to nontrivial bundles
will be discussed elsewhere.)

Analogously, in the next section we will find a Lie 3-algebra obtained
from the Lie 2-algebra (t : h → g) which is such that morphisms from it
to Ω•(X) are exactly as above, but without the constraint (4).

The following two examples should be compared with example 4.2.1.
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5.2.3 Gauge transformations

Let (A,B) and (A′, B′) be two pairs of p-forms as in proposition 7.
For G a Lie group integrating g, a gauge transformation

(g, a) : (A,B) → (A′, B′)

between these is a function g ∈ Ω0(X,G) and a 1-form a ∈ Ω1(X, h) such
that

A′ = gAg−1 + gdg−1 − t ◦ a
and

B′ = αg(B) + dAa+ a ∧ a .
Here αg : h → h is the action of G on h whose differential yields the

action of g on h that comes with the given infinitesimal crossed module.
This one derives for instance from looking at pseudonatural transfor-

mation between 2-functors from 2-paths to the strict 2-group that inte-
grates the infinitesimal crossed module (t : h → g) [4].

The composition of two such gauge transformations turns out to be

(g′, a′) ◦ (g, a) = (g′g, a+ αg(a′)) ,

so that
(g, a)−1 = (g−1,−αg−1(a))

As before in 4.2.1, we need an equivalent reformulation of this which is
more symmetric in (A,B) and (A′, B′) in order to relate this to derivation
homotopies.

To this end, again, set

g(s) = exp(−sλ)

for λ ∈ g such that g(1) = g. Then

(A,B)
(e−sλ,sa) // (A′, B′) = (A,B)

(
e
− s

2 λ
, s
2 a

)
// (A′′, B′′)

(
e
− s

2 λ
,αexp( s

2 λ)(
s
2 a)

)
// (A′, B′)

at s = 1. Computing (A′′, B′′) from this in the two different ways yields

g−
s
2 λAg

s
2 λ+g−

s
2 λdg

s
2 λ−t◦( s

2
a) = A′′ = g

s
2 λA′g−

s
2 λ+g

s
2 λdg−

s
2 λ+t◦(αexp(sλ)(

s

2
a))

and
αexp(− s

2 λ)(B) + dA(
s

2
a) + (

s

2
a) ∧ (

s

2
a) = B′′

= αexp( s
2 λ)(B

′)− dA′(αexp(sλ)
s

2
a) + αexp( s

2 λ)((
s

2
a) ∧ (

s

2
a)) .

Definition 6 We say that a linearized gauge transformation

(λ, a) : (A,B) → (A′, B′)

between two 2-connections as in proposition 7 is a g-valued 0-form λ ∈
Ω0(X, g) and an h-valued 1-form a ∈ Ω1(X, h) such that the above equa-
tions hold when differentiated with respect to s and evaluated at s = 0:

A′ − 1

2
[A′, λ] = A+

1

2
[A, λ] + dλ− t ◦ a
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and

B′ − 1

2
[B′, λ] = B +

1

2
[B, λ] +

1

2
dA+A′a .

Proposition 8 There is a bijective correspondence between linearized gauge
transformations

(λ, a) : (A,B) → (A′, B′)

and derivation homotopies

τ : f∗(A,b) → f∗(A′,B′)

of the corresponding morphisms f∗(A,B) :
∧•(t : h → g)∗ → Ω•(X) of

DGCAs.

Proof. This is again a straightforward computation. λ is the component
of the homotopy on (sg)∗ and a is the component on (ssh)∗. �

5.2.4 Gauge transformations of gauge transformations

Let (λ, a) and (λ′, a′) be linearized gauge transformations of 2-connections
as in definition 6.

We define a transformation

f : (λ, a) → (λ′, a′)

between these linearized transformations to be an h-valued 0-form

f ∈ Ω0(X, h)

such that
λ′ − λ = t ◦ f

and

a′ − a =
1

2
dA+A′f .

Proposition 9 There is a bijective correspondence between such trans-
formations of linearized gauge transformations of 2-connections and sec-
ond order derivation homotopies (definition ??) between the corresponding
derivation homotopies from proposition 8.

Proof. This is a straightforward computation; f is the component of the
second order homotopy of DGCA morphisms on (ssh)∗. �

Remark. We have concentrated above on working out the transfor-
mation properties of 2-connections with values in strict Lie 2-algebras,
showing that they reproduce the linearized transformations known from
connections on principal 2-bundles and nonabelian gerbes for given strict
Lie 2-group G(2).

With only slightly more computational effort, the entire discussion
above may be carried through also for the most general semistrict Lie
2-algebras from 5.1.5. This is left to the reader.
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5.3 Lie algebras of derivations

5.3.1 Derivation Lie algebra of (h → g)

Proposition 10 The derivation Lie algebra of the crossed module Lie
2-algebra

(t : h → g)

is the semidirect sum Lie algebra

g⊕ (g∗ ⊗ h) ,

where g acts on (g∗ ⊗ h) by

x(α, h) = ((adx)∗α, x(h)) ,

with h 7→ x(h) := α(x, h) the given action of g on h by derivations. The
bracket on (g∗ ⊗ h) itself is given by

[(α1, h1), (α2, h2)] = α2(t(h1))(α1, h2)− α1(t(h2))(α2, h1)

Proof. The proof is given in B.1. �

This should be the Lie algebra of the conjugation Lie algebra of the
strict 2-group coming from a crossed module of groups (t : H → G) which
integrates the above differential crossed module. See figure 1.

5.3.2 Derivation Lie algebra of gµ

Let g be semisimple and µ := 〈·, [·, ·]〉 the canonical 3-cocycle. Recall the
Baez-Crans Lie 2-algebra gµ from 5.1.6.

Proposition 11 The derivation Lie algebra of gµ is isomorphic to

g⊕ Rdim(g) .

Proof. The proof is given in B.2. �
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• horizontal conjugation by any q ∈ G

Adq ∈ Aut2Cat(G(2))

(true conjugation in the sense of the 2-group) acts as

Adq : •

g

��

g′

AA •h
��

7→ • q // •

g

��

g′

AA •
q−1

// •h
��

• vertical conjugation

vAdf ∈ Aut2Cat(G(2))

by any map f : G → H which extends to a homomorphism

Id× f : G → G n H ,

acts as

vAdf : •

g

��

g′

AA •h
��

7→ •
g

##

g′

;;

t(f(g)−1)g

��

t(f(g′))g′

GG•h��

f(g′)��

f(g)−1��

Figure 1: The two notions of conjugation in a 2-group, for the special case
of a strict 2-group G(2), coming from a crossed module (H t→ G

α→ Aut(H)) of
groups.
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6 Lie 3-Algebras

6.1 Examples

6.1.1 Inner derivation Lie 3-algebra of (h → g)

We wish to define the Lie 3-algebra which we call inn(h → g), using just
data contained in a strict Lie 2-algebra (h → g). The idea is that, given a
strict Lie 2-algebra (h → g) as in example 5.1.1, we may find a strict Lie 2-
group G(2) = (H → G) integrating it. Since a Lie 2-group can be regarded
as a 1-object 2-groupoid, we may naturally form its automorphism 3-group
AUT(G(2)). This has a sub-3-group

INN(G(2)) ⊂ AUT(G(2))

coming from restricting to all inner automorphisms. This Lie 3-group, in
turn, may be differentiated to a Lie 3-algebra

Lie(INN(G(2))) .

For brevity we will write

inn(h → g) := Lie(INN(H → G))

and address this as the Lie 3-algebra of inner derivations of the strict Lie
2-algebra (h → g).

Here we shall not go into the details of this derivation. Instead, the fol-
lowing example simply defines the Lie 3-algebra which we call inn(h → g),
using just data contained in a strict Lie 2-algebra (h → g). For the present
purposes, the reader may just as well read “inn(·)” as a mere shorthand
for this definition. However, it may be helpful to keep in mind the Lie
2-algebra of inner derivations of a Lie 1-algebra, discussed in example
5.1.3.

Definition 7 (Coalgebra version of inn(h → g)) Given (h → g) as in
5.1.1, the codifferentiual coalgebra

inn(h → g)

is the free coalgebra

Sc(sg⊕ (ssg⊕ ssh)⊕ sssh)

equipped with the codifferential D defined as follows:

d1(ssX) = sX

d1(ssB) = stB

d1(sssB) = sstB

d2(sX ∨ sY ) = s[X,Y ]

d2(sX ∨ ssY ) = ss[X,Y ]

d2(sX ∨ ssB) = ss[X,B]

d2(sX ∨ sssB) = sss[X,B]

and
d2(ssX ∨ ssB) = sss[X,B] .
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Proposition 12 D2 = 0.

Proof. One checks that the above definition is indeed a special case of
??. �

Dually, consider the vector space

•∧
((sg)∗ ⊕ ((ssg)∗ ⊕ (ssh)∗)⊕ (sssh)∗) .

Denote a chosen basis of (sg)∗ by {qa}, a basis of (ssg)∗ by {ra}, a
basis of (ssh)∗ by

{
si

}
and, finally, a basis of (sssh)∗ in degree 3 by

{
ti

}
.

Let Ca
bc, α

i
aj and tia be the tensors characterizing the crossed module

(h → g) as in example 5.1.1.
The differential, induced by the codifferential D above using dω =

−ω(D(·)), acts on these basis elements as

dqa = −1

2
Ca

bcq
bqc − tais

i − ra

dra = −Ca
bcq

brc − tait
i

dsi = −αi
ajq

asj + ti

dti = −αi
ajq

atj − αi
ajr

asj .

Remark. Except for the constants, this is the only differential on∧•((sg)∗ ⊗ ((ssg)∗ ⊗ (ssh)∗)⊗ (sssh)∗)

which can be written down using just the data of the crossed module
(h → g).

Remark. As in the examples before, while the expression of the differ-
ential in a basis looks awkward, this already essentially makes the nature
of 3-connections with values in inn(h → g) – example 6.2.1 below – man-
ifest.

6.1.2 Chern-Simons Lie 3-algebra csk(g)

For any semisimple Lie algebra g and every k ∈ R define a Lie 3-algebra

csk(g) ,

called the Chern-Simons Lie 3-algebra of g at level k as follows.
The underlying coalgebra is

Sc(sg⊕ (ssg⊕ ssR)⊕ sssR) .

The coderivation D = d1 + d2 + d3 on this is given by

d1(ssX) = sX

d1(sssC) = ssC

d2(sX ∨ sY ) = s[X,Y ]
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d2(sX ∨ ssY ) = ss[X,Y ] + ssk〈X,Y 〉
d2(ssX ∨ ssY ) = −sssk〈X,Y 〉
d3(sX ∨ sY ∨ sZ) = −ssk ,

for all X,Y ∈ g and C ∈ R.
The corresponding dual qfDGCA is defined on the vector space∧•((sg)∗ ⊕ ((ssg)∗ ⊕ (ssR)∗)⊕ (sssR)∗) .

To express the differential, choose a basis {ta} of (sg)∗, a basis {ra} of
(ssg)∗, a basis {b} spanning (ssR)∗ and a basis {c} for (sssR)∗.

The codifferential D from above induces the differential d that acts on
these basis elements as

dta = −1

2
Ca

bct
btc + ra

dra = Ca
bct

brc

db = k

(
1

6
Cabct

atbtc − kabt
arb

)
+ c

dc = k(kabr
arb) .

6.1.3 The Lie 3-algebra inn(gk)

Notice that the Chern-Simons Lie 3-algebra from 6.1.2 is similar to, but
different from the inner derivation Lie 3-algebra of the Baez-Crans Lie
2-algebra gk from 5.1.6.

Using definition ??, one finds that the qfDGCA corresponding to

inn(gk) ,

which is defined on the same free graded commutative algebra as csk(g),
has a differential which reads, in the basis chosen in 6.1.2:

dta = −1

2
Ca

bct
btc + ra

dra = Ca
bct

brc

db = k
1

6
Cabct

atbtc + c

dc = −k 1

2
Cabct

atbrc .

While inn(gk) is not equal to csk(g), we show in 6.2.7 that both are
equivalent in 3Lie.
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6.1.4 Supergravity Lie 3-algebra sugra(10, 1)

The theory of supergravity is the study of generalizations of the Einstein-
Hilbert functional on Riemannian manifolds to the world of super-Riemannian
manifolds, hence to functionals on manifolds equipped with a Riemannian
metric and certain further extra structure. One notable phenomenon in
this context is that this extra structure involves – beyond the spinorial
structures that one expects – in particular differential forms of various
degree on these manifolds.

We shall see that these differential forms may in fact naturally be
conceived as components of connections with values in higher Lie alge-
bras and that at least some supergravity functionals may be regarded as
functionals on a space of n-connections.

In 1982, D’Auria and Fré [1] demonstrated that a useful tool for dealing
with the intricate structures appearing in these studies is a formalism that
they call a Cartan integrable system.

A Cartan integrable system is defined by these authors as a collection
of graded generators {ΘA}, with A running over some index set, and
structure constants CA

B1,···,Bn
defining a differential

dΘA = −
∑ 1

n
CA

B1···Bn
ΘB1 ∧ · · · ∧ΘBn .

of degree +1 such that
d2 = 0 .

In other words, a “Cartan integrable system” is precisely a qfDGCA, hence
an L∞-algebra, hence a Lie n-algebra.

Definition 8 (D’Auria-Fré) Consider the qfDGCA of the super Poincaré
Lie algebra from 3.1.3. Extend this by adding one generator in degree 3∧•(sisos(10, 1)⊕ sssR)∗ .

For c ∈ (sssR)∗ a choice of basis, extend the qfDGCA-differential of
isos(10, 1) to this space by setting

dc =
1

2
(Γab)α

βψ̄α ∧ ψβ ∧ va ∧ vb .

This defines the super Lie 3-algebra which we call

sugra(10, 1) .

As discussed in [1], one shows that with this definition d2 = 0 follows from
Fierz identities on spinors in eleven dimensions.

Remark. With the contraction of the spinor indices understood implic-
itly, we have, in summary, a qfDGCA defined on generators {va, ωab, ψα, c}
by

dωab = ωacωcb

dva = ωabvb +
i

2
ψ̄Γaψ

dψ =
1

4
ωabΓabψ
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dc =
1

2
ψ̄Γabψvavb .

Accordingly, qfDGCA morphisms

f∗ : sugra(10, 1)∗ → Ω•(X)

are in bijective correspondence with p-forms

(V,Ω,Ψ, C) ∈ Ω1(X,R11)× Ω1(X, so(10, 1))× Ω1(X,C32)× Ω3(X)

satisfying
dΩ + [Ω ∧ Ω] = 0

dV + Ω · V +
i

2
ψ̄ ∧ ΓΨ = 0

dΨ + Ω ·Ψ = 0

dC = ψ̄ ∧ Γabψ ∧ V a ∧ V b .

URS: THIS is for the moment modulo signs etc.

Remark. A useful brief summary of the concepts and terminology used
in the relevant supergravity part of the physics literature can be found
at the beginning of of [12]. Notice for instance that the notion of gauge
transformation considered in this context – usually conceived as a Lie
derivative as in (2.16) of [12] – is essentially nothing but a homotopy of
qfDGCA maps

sugra(10, 1)∗

(V,Ω,Ψ,C)

!!

(V ′,Ω′,Ψ′,C′)

==Ω•(X)ε
��

.

This relation is also considered in [10]. However, recall from our discussion
in ?? that derivation homotopies in general differ from the transformations
considered in [10] by terms of higher order in the “gauge transformation
parameter”. But in contexts such as [12], these higher terms would be
dropped anyway.

6.2 Morphisms

6.2.1 Non-flat 2-connections as flat inn(h → g)-connections

Proposition 13 DGCA morphisms from the inner derivation Lie 3-algebra
of example 6.1.1 to the deRham complex of some manifold X

f∗ : inn(h → g)∗ → Ω•(X)

are in bijective correspondence with pairs consisting of a g-valued 1-form
A, an h-valued 2-form B such that with

β := FA + δ(B)

and
H = dAB
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we have
dAβ = t ◦H

and
dAH + β ∧B = 0 .

Proof. This is a straightforward computation. A is the component of f∗

on (sg)∗, B is the component on (ssh)∗, β is the component on (ssg)∗ and
H is the component on (sssh). The given relations between these forms
are equivalent to the chain map condition on f∗. �

Remark. Setting β = 0 and H = 0 leads back to example 5.2.1.

Remark. In the case that the crossed module (h → g) is DER(g),
discussed in 5.1.3, the above differential form data is exactly that which
Breen and Messing [9] give for the connection on a trivial nonabelain G-
gerbe. In particular, the “fake curvature” β – which in [4] was found to
vanish for strict parallel transport 2-functors from 2-paths to AUT(G) –
here is arbitrary. In the light of 5.2.1 and the above, it is now clear what
is going on:

the parallel n-transport which integrates the Breen-Messing connec-
tion data should in fact not take values in the 2-group AUT(G), but in
the 3-group INN(AUT(G)). This is indeed the case, as will be discussed
in [25].

6.2.2 Gauge transformations

6.2.3 Gauge transformations of gauge transformations

6.2.4 Gauge transformations of gauge transformations of
gauge transformations

6.2.5 Chern-Simons 3-connection

Proposition 14 Let (csk(g))∗ be the DGCA describing the Lie 3-algebra
from 6.1.2. Then DGCA morphisms

f∗ : (csk(g))∗ → Ω•(X)

are in bijective correspondence with pairs consisting of a g-Chern-Simons
3-form

CS(A) = 〈A ∧ dA〉+
1

3
〈A ∧ [A ∧A]〉

for A ∈ Ω1(X, g) and a 2-form

B ∈ Ω2(X) .

Proof. The 1-form A is the value of f∗ on (sg)∗, the 2-form is the value
on (ssR)∗. The value on (ssg)∗ is constrained to be the curvature of A
and the value on (sssR)∗ is constrained to be the 3-form

dB + kCS(A) .

�
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6.2.6 10D supergravity 2-connection

Just as we could regard non-flat 2-connections with values in a strict Lie 2-
algebra as flat Lie 3-connections (their curvature) in 6.2.1, it makes sense
to interpret a morphism

f∗ : (csk(g))∗ → Ω•(X)

as in 6.2.5 as the 3-curvature of a non-flat 2-connection of sorts.
Regarded from this point of view, the 2-connection corresponding to

6.2.5 is given by a pair of forms

(A,B) ∈ Ω1(X, g)× Ω2(X)

whose curvature 3-form is

H = dB + kCS(A)

In string theoretic application one would address the 2-form B as the
Kalb-Ramond field.

The modified field strength H which appears this way plays a crucial
role in the Green-Schwarz anomaly cancellation mechanism [18] for the
heterotic string background theory.

6.2.7 The equivalence inn(gk) ' csk(g)

The Chern-Simons Lie 3-algebra is in fact equivalent (even isomorphic)
to the inner derivation Lie 3-algebra of gk. We prove this by explicitly
constructing the isomorphism

Proposition 15 The map

f∗ : inn(gk)∗ → csk(g)∗

defined by
f∗ : ta 7→ ta

f∗ : ra 7→ ra

f∗ : b 7→ b

f∗ : c 7→ c− kkabt
arb

is a morphism of Lie 3-algebras.

Proof. We check [d, f∗] = 0 on all generators. On ta and ra this is trivial.
On b we find

f∗(dinn(gk)b) = f∗(k
1

6
Cabct

atbtc + c)

= k
1

6
Cabct

atbtc − kkabt
arb + c ,

which is indeed equal to dcsk(g)(f
∗b). On c we find

f∗(dinn(gk)c) = f∗(−k 1

2
Cabct

atbrc) = −k 1

2
Cabct

atbrc
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and

dcsk(g)(f
∗(c)) = dcsk(g)(c− kkabt

arb)

= kkabr
arb − kkabr

arb +
1

2
kCabct

atbrc − kCabct
atbrc .

�

Proposition 16 The map

f∗ : csk(g)∗ → inn(gk)∗

defined by
f∗ : ta 7→ ta

f∗ : ra 7→ ra

f∗ : b 7→ b

f∗ : c 7→ c+ kkabt
arb

is a morphism of Lie 3-algebras.

Proof. We check [d, f∗] = 0 on all generators. On ta and ra this is trivial.
On b we find

f∗(dcsk(g)b) = f∗(k
1

6
Cabct

atbtc − kkabt
arb + c)

= k
1

6
Cabct

atbtc + c ,

which is indeed equal to dinn(gk)(f
∗b). On c we find

f∗(dcsk(g)c) = f∗(k
1

2
kabr

arb) = k
1

2
kabr

arb

and

dinn(gk)(f
∗(c)) = dinn(gk)(c+ kkabt

arb)

= −k 1

2
Cabct

atbrc + kkabr
arb − k

1

2
Cabct

atbrc + kCabct
atbrc .

�

Proposition 17 We have an equivalence (in fact an isomorphism)

inn(gk) ' csk(g) .

Proof. It is immediate that the two morphisms above compose to the
identity, either way. �
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7 Lie 4-Algebras

7.1 Supergravity field strength Lie 4-algebra inn(sugra(10, 1))

Definition 9 (Supergravity field strength Lie 4-algebra) On∧•((sisos(10, 1))∗ ⊕ (ssisos(10, 1))∗ ⊕ (sssR)∗ ⊕ (ssssR)∗)

with a basis for (sisos(10, 1))∗ ⊕ (sssR)∗ chosen as in 6.1.4 and another
basis {rab, ra, ψ} chosen for (ssisos(10, 1))∗ and a basis {g} chosen for
(sssR)∗ define a differential as follows

dωab = ωacωcb + rab

dva = ωabvb +
i

2
ψ̄Γaψ + ra

dψ =
1

4
ωabΓabψ + ρ

dc =
1

2
ψ̄Γabψvavb + g

drab = −d(ωacωcb)

dra = −d(ωabvb +
i

2
ψ̄Γaψ)

dρ = −d(1

4
ωabΓabψ)

dg = −d(1

2
ψ̄Γabψvavb) .

This qfDGCA defines the Lie 4-algebra

inn(sugra(10, 1)) .

URS: HERE AS before, no guarantee yet on signs etc.
claim: the “rheonomy constraints” [1] on the curvatures in 11-dimensional

supergravity express nothing but the qfDGCA-morphism property of

dcurv : Vect(X) → inn(sugra(10, 1)) .

8 Open problems

What is the structure unifying csk(g) and sugra(10, 1)? From
string-theoretical considerations [14] we might expect that there is a Lie
n-algebra m which naturally unifies the Chern-Simons Lie 3-algebra of e8

with that of spin(10, 1) and with the supergravity Lie 3-algebra:

sugra(10, 1)� _

��
m

csk(e8)
* 


88ppppppppppp
csk(spin(10, 1))

5 U

hhQQQQQQQQQQQQQQ

.
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A direct sum construction would do, but it is conceivable that this really
points to an interesting indecomposable Lie n-algebra m.

It seems that we should regard sugra(10, 1) as a super Lie n-algebra of
Baez-Crans type ??. That would suggest to extend it to a corresponding
super Chern and super Chern-Simons Lie n-algebra.
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A Useful component formulas

It so happens that computations in a DGCA are often practical only after
choosing a basis. Since some of our proofs rely on such computations in a
chosen basis, we here list some useful formulas concerning our examples.

A.1 DGCA for strict Lie 2-algebra

Consider the DGCA with its chosen basis as in example 5.1.1.
The fact that α is an action

α(aa)(α(ab)(bi)) = α([aa, ab])(bi) + α(ab)(α(aa)(bi))

reads in components

2αi
[a|j|α

j
b]k = αi

ckC
c
ab . (5)

One of the conditions on the differential crossed module is

t(α(aa)(bi)) = [aa, t(bi)] .

In components this reads

tbjα
j
ai = Cb

act
c
i . (6)

The other condition is

α(t(bi))(bj) = [bi, bj ] .

This says that

αi
akt

a
j = C̃i

jk (7)

are the structure constants of h. In particular, this implies that the ex-
pression is antisymmetric in the two lower indices.

Nilpotency of d follows from

d2aa = d(−1

2
Ca

bca
bac − taib

i)

=
1

2
Ca

bcC
b
dea

cadae − Ca
bca

btcib
i + taiα

i
bja

bbj

= 0 ,

where the first term vanishes again by the Jacobi identity on g and the
second two terms by the first of the two crossed module conditions. Also

d2bi = d(−αi
aja

abj)

= −αi
aj(−

1

2
Ca

bca
bac − takb

k)bj + αi
aja

a(−αj
bka

bbk)

= (αi
aj

1

2
Ca

bc − αi
bkα

k
cj)a

bacbj + αi
a(jt

a
k)b

kbj

= 0 .

The first term vanishes by (5). The second vanishes by the antisymmetry
of (7) combined with the symmetry of bkbj , due to b being of even degree.
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A.2 Lie 2-algebra morphisms as DGCA morphisms

The following is guaranteed by the general relation between L∞-morphisms
and the morphisms of the dual DGCA. We spell out the proof because
the details will be helpful for our computations in section 6.

Proposition 18 The morphisms of 2-term L∞-algebras from Def. ?? are
in bijective corespondence with morphisms of the corresponding DGCAs
(which are algebra homomorphisms that are at the same time chain maps).

Proof. Let {aa} and {bi} as above be a basis of generators for (Λ•(W ∗
0 ⊕

W ∗
1 ) and let {a′a} and {b′i} be a basis of generators for another Lie 2-

algebra (Λ•(V ∗
0 ⊕ V ∗

1 ).
Then a morphism

q : (Λ•(W ∗
0 ⊕W ∗

1 ), dW ) → (Λ•(V ∗
0 ⊕ V ∗

1 ), dV )

reads in terms of these bases

q : aa 7→ qa
ba

′b

and

q : bi 7→ qi
jb
′j +

1

2
qi

aba
′aa′b.

The chain map condition demands that the coefficients satisfy

−1

2
Ca

bcq
b
dq

c
ea

′da′e−1

2
taiq

i
jb
′j−taiq

i
bca

′ba′c = −qa
d
1

2
C′d

bca
′ba′c−qa

dt
′d

ib
′i

and

−αi
ajq

a
bq

j
ka

′bb′k − 1

2
αi

ajq
a

bq
j
cda

′ba′ca′d − 1

6
ri

abcq
a

dq
b
eq

c
fa

′da′ea′f

= d′(qi
jb
′j +

1

2
qi

aba
′aa′b)

= −qi
jα

′j
aka

′ab′k − 1

6
qi

jr
j
abca

′aa′ba′c +
1

2
qi

abC
′b

cda
′aa′ca′d + qi

abt
′b

ja
′ab′j .

Hence
Ca

deq
d

bq
e

c + taiq
i
bc = qa

dC
′d

bc

and
taiq

i
j = qq

dt
′d

j

and
αi

ajq
q

bq
j
k = qi

jα
′j

ak − qi
abt

b
j

and

αi
djq

d
[aq

j
bc] +

1

6
ri

defq
d
[aq

e
bq

f
c] =

1

6
qi

jr
j
[abc] −

1

2
qi

[a|b|C
′b

cd] .

Here the square bracket of indices means antisymmetrization over all in-
dices included in the bracket (except for those exempted by being included
in | · |).

One can check that these are indeed the equations defining a morphism
of Lie-2-algebras. �
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B Remaining proofs

B.1 Derivation Lie algebra of (h → g)

We prove proposition 10.
Proof. Recall that the corresponding qfDGCA defined on

∧•((sg)∗⊕
(ssh)∗) has a differential defined by

dta = −1

2
Ca

bct
btc − taib

i

and
dbi = −αi

ajt
abj ,

in terms of the basis chosen in 5.1.1.
The derivation of degree -1 are

{ιXa}

and {τai}, defined on generators by

τai : ta 7→ 0

and
τai : bj 7→ δj

i t
a .

This yields Lie derivatives acting as

LXa(tb) = Cb
cat

c

LXa(bi) = −αi
ajb

j

and
Lτa

i(t
b) = tbit

a

Lτa
i(b

j) = αj
cit

cta .

From this one finds
[LXa , LXb ] = Cc

abLXc

and

[LXa , Lτb
j
](tc) = LXa(tcjt

b)− Lτb
j
(Cc

dat
d)

= tcjC
b
dat

d − Cc
dat

d
jt

b

= (Cb
daLτd

j
+ αi

ajLτb
i
)(tc)

In the last step we used the property (6) satisfied by a differential crossed
module.

Finally

[Lτa
i , Lτb

j
](tc) = Lτa

i(t
c
jt

b)− Lτb
j
(tcit

a)

= tcjt
b
it

a − tcit
a

jt
b

= (tbiLτa
j − tajLτb

i
)(tc)

39



and

[Lτa
i , Lτb

j
](bk) = Lτa

i(α
k

cjt
ctb)− Lτb

j
(αk

cit
cta)

= (tbiLτa
j − tajLτb

i
)(bk)

�

B.2 Derivation Lie algebra of gµ

We prove proposition 11.
Proof. Recall that the corresponding qfDGCA is defined on the vector

space
∧•((sg)∗ ⊕ (ssR)∗) by a differential acting as

dta = −1

2
Ca

bct
btc

db = −1

6
Cabct

atbtc ,

where {Xa} is a chosen basis of sg and {ta} the dual basis.
For each basis vector Xa let τa be the derivation of degree -1 which

acts on generators as
τa : tb 7→ 0

τa : b 7→ −2ta .

(All indices are raised and lowered with the Killing form corresponding to
µ.)

One computes

[[d, ιXa ], [d, ιXb ]] (b) = CabcC
c
det

dte

and then uses the Jacobi identity to find that the Lie derivatives

{LXa := [d, ιXa ]}

and
{LτXa := [d, τXa ]}

generate a Lie algebra g whose nonvanishing brackets are

[LXa , LXb ] = Cc
ab(LXc + LτXc ) .

This is ismomorphic to the direct sum Lie algebra

g⊕ Rdim(g) .

�
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