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Abstract

We show that the weak cokernels of morphisms of 2-groups studied
in [CarrascoGarzónVitale:2006] are isomorphic to the corresponding con-
struction in [RobertsSchreiber:2007] which can be thought of in terms
of mapping cones. Motivated by this we adopt the discussion of weak
cokernels to Lie n-algebras, for arbitrary n, following [SchreiberStasheff].
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1 Introduction

Given two 2-groups G(2) and H(2) and a strictly injective morphism of 2-groups

t : H(2) → G(2)

[CarrascoGarzónVitale:2006] showed how to construct a weak cokernel wcoker(t)

H(2)
t // G(2) // wcoker(t)

which is a Gray 3-group. We demonstrate that one may think of this as the map-
ping cone of t in a generalization of the construction considered in [RobertsS-
chreiber:2007] and write

wcoker(t) := (H(2)
t→ G(2)) .

It follows that for any given short exact sequence of strict 2-groups

K(2)
t // G(2) // B(2)
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one obtains the setup

K(2)
t // G(2) //

��

(H(2)
t→ G(2))

f
yyrrrrrrrrrr

B(2)

't| qqqqq
qqqqq .

We want to eventually understand the obstruction to lifting a ΣB(2)-valued
2-functor

P // ΣB(2)

through the exact sequence

ΣK(2)
Σt // ΣG(2)

��
ΣB(2)

i.e. to construct
ΣK(2) // ΣG(2)

��
P //

;;

ΣB(2)

The obstruction to this should be the composite denoted obst in

ΣK(2)
Σt // ΣG(2)

i //

��

Σ(K(2)
t→ G(2)) // coker(i)

P //

;;

obst

;;

ΣB(2)

f−1

88qqqqqqqqqqq

with f−1 some suitable ”local inverse” to f . This should exist in the context of
ana-2-functors.

While we do not try to make this more precise at the level of 2-groups, we
can study the analogous situation in the context of (semistrict) Lie n-algebras.

Following [StasheffSchreiber] these we can conceives as quasi-free differential
graded commutative algebras living in the obious 2-category of algebra chain
maps and homotopies. This allows us to work with arbitrary n.

We reproduce the construction analogous to the above one for sequences

k∗(n) g∗(n)
t∗oo b∗(n)

oo

with t∗ assumed to be particularly well behaved. (A generalization away from
this assumption is certainly expected to exists, but not studied here.)
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Thinking of the weak cokernel of 2-groups as a mapping cone proves to be
useful for the generalization to Lie n-algebras:

we define the mapping cone Lie (n + 1)-algebra

(k(n)
t→ g(n))

and show that it does fit into

k∗(n) g∗(n)
t∗oo (k∗(n)

t∗← g∗(n))
oo

b∗(n)

OO

f

::t
t

t
t

t

.

Moreover, we show that in this context now the map f does have a weak inverse

f−1 : (k∗(n)
t∗← g∗(n))→ b∗(n) .

2 Mapping cones and weak cokernels of Lie n-
algebras

We conceive semistrict Lie n-algebras dually as differential graded commutative
algebras which are freely generated, as graded commutative algebras, in degree
1 ≤ d ≤ n. We refer to them as quasi-free differential graded commutative
algebras (qDGCAs).

These we take here to live in the 2-category whose morphisms are chain maps
that are at the same time algebra homomorphisms, and whose 2-morphisms are
chain homotopies.

Definition 1 (mapping cone of qDGCAs) Let

h∗(n) g∗(n)
t∗oo

be a morphism of qDGCAs such that t∗ restricts to a surjective morphism on
the underlying vector spaces, hence that it surjectively maps generators to gen-
erators.

The mapping cone of t∗ is the qDGCA whose underlying graded algebra is∧•(sg∗(n) ⊕ ssf∗(n))

and whose differential dt∗ is such that it acts on generators schematically as

dt∗ =
(

dg(n) 0
t∗ df(n)

)
.
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More in detail, dt∗ is defined as follows.
We write σt∗ for the degree +1 derivation on

∧•(sg∗(n) ⊕ ssf∗(n)) which acts
on sg∗(n) as t∗ followed by a shift in degree and which acts on sf∗(n) as 0.

Then, for any a ∈ sg∗(n) we have

dt∗a := dg(n)a + σt∗(a) .

and
dt∗σt∗(a) := −σt∗(dg(n)a) = −dt∗dg(n)a .

Proposition 1 The differential dt∗ defined this way indeed satisfies (dt∗)2 = 0.

Proof. For a ∈ sg∗(n) we have

dt∗dt∗a = dt∗(dg(n) + σt∗(a)) = σt∗(dg(n)a)− σt∗(dg(n)a) = 0 .

Hence (dt∗)2 vanishes on
∧•(sg∗(n)). Since

dt∗dt∗σt∗(a) = −dt∗dt∗dg(n)a

and since dg(n)a ∈
∧•(sg∗(n)) this implies (dt∗)2 = 0. �

We write

( h∗(n) g∗(n)
t∗oo ) :=

(∧•(sg∗(n) ⊕ ssf(n)∗), dt∗

)
for the resulting qDGCA and

(h(n)
t→ g(n))

for the corresponding Lie (n + 1)-algebra.

Proposition 2 There is a canonical morphism

g∗(n) (h∗(n)

t∗← g∗(n))
oo

with the property that

h∗(n) g∗(n)
t∗oo (h∗(n)

t∗← g∗(n))
oo

0

dd
τ��

.

Proof. On components, this morphisms is the identity on sg∗(n) and 0 on ssh∗(n).
One checks that this respects the differentials. The homotopy to the 0-morphism
sends

τ : σt∗(a) 7→ t∗(a) .

�
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Proposition 3 Let

h∗(n) g∗(n)
t∗oo f∗(n)

oo

be a sequence of qDGCAs with t∗ as above and with the property that g∗(n) f∗(n)
oo

restricts, on the underlying vector spaces of generators, to the kernel of the linear
map underlying t∗.

Then there is a unique morphism f : f∗(n) → (h∗(n)

t∗← g∗(n)) such that

h∗(n) g∗(n)
t∗oo (h∗(n)

t∗← g∗(n))
oo

f∗(n)

OO

f

::t
t

t
t

t

.

Proof. The morphism f has to be in components the same as g∗(n) ← f∗(n). By
the assumption that this is in the kernel of t∗, the differentials are respected. �

Remark. It must be possible to relax the assumptions on g∗(n) ← f∗(n) while

retaining a unique f∗(n) → (h∗(n)

t∗← g∗(n)) up to isomorphism. This would then
show that

(h∗(n)
t∗← g∗(n)) = coker(t)∗

is the weak kernel of t∗.

Proposition 4 With the assumptions as before, the morphism f∗(n) → (h∗(n)

t∗←
g∗(n)) has a – noncanonical – weak inverse

f−1 : (h∗(n)
t∗← g∗(n))→ f∗(n) .

Proof. We first construct a morphism f−1 and then show that it is weakly
inverse to f . Choose a splitting of the vector space V underlying g∗(n) as

V = ker(t∗)⊕ V1 .

Take the component map of f−1 to be the identity on ker(t∗) and 0 on V1.
Moreover, for a ∈ V1 set

f−1 : σt∗(a) 7→ −dg(n)a|∧•
ker(t∗)

.

For a ∈ ker(t∗) we have

a � //_

f−1

��

dg(n)a_

f−1

��
a � // dg(n)a

.
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For a ∈ V1 we have

a � //_

f−1

��

dg(n)a + σt∗(a)
_

f−1

��

0 � // dg(n)a|∧•
ker(t∗)

− dg(n)a|∧•
ker(t∗)

.

and
σt∗(a) � //

_

f−1

��

−σt∗(dg(n)a)
_

f−1

��
dg(n)a|∧•

ker(t∗)
� // dg(n)(dg(n)a|∧•

ker(t∗)
)

.

Hence this is indeed a morphism of qDGCAs.
Next we check that f−1 is a weak inverse of f . Clearly

f∗(n) (h∗(n)

t∗← g∗(n))
oo f∗(n)

oo

is the identity on f∗(n). What remains is to construct a homotopy

(h∗(n)

t∗← g∗(n)) f∗(n)
oo (h∗(n)

t∗← g∗(n))
oo

Id

ee
τ��

.

One checks that this is accomplished by taking τ to act on σV1 as τ : σV1
'→ V1

and extend suitably. �

Example. For µ an (n + 1)-cocycle on g and gµ the corresponding Baez-
Crans type Lie n-algebra, the qDGCA of (Σn−1u(1)∗ ← g∗µ) is based on the
vector space (

∧•(sg∗ ⊕ snR∗ ⊕ sn+1R∗)) with the differential on sg∗ being the
Chevalley-Eilenberg differential. For {b} the canonical basis of snR∗ and {c}
the canonical basis of sn+1R∗ the differential on these generators is

db = −µ + c

and
dc = 0 .

Then the morphism
f−1 : (Σn−1u(1)∗ ← g∗µ)→ g∗

is the identity on sg∗, vanishes on b and sends

f−1 : c 7→ µ .
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3 Mapping cones and weak cokernels of 2-groups

3.1 Mapping cone of the identity

In [RobertsSchreiber:2007] the mapping cone of the identity morphism on a
strict 2-group was studied.

Definition 2 The Gray groupoid which we denote either

TΣG(2)

and address it as the tangent 2-groupoid of ΣG(2), or

INN0(G(2))

and address it as the inner automorphism 2-groupoid of ΣG(2) or simply

( G(2)
Id // G(2) )

and address it as the mapping cone of IdG(2) or as the 2-crossed module induced
by IdG(2) .

This 2-groupoid TΣG(2) is defined to be the the strict pullback

TΣG(2)

��

// (ΣG(2))2

dom

��
{•} // ΣG(2)

This means the following. An object of TΣG(2) is a morphism

• q // •

in ΣG(2), hence an object of G(2).
A 1-morphism in TΣG(2) is a filled triangle

•

f

��

•

q //

q′ // •

F

��

in ΣG(2). Finally, a 2-morphism in T tΣG(2) looks like

•

f ′

��

f

��

•

q //

q′ // •

F

��

F ′

�	

L +3 .
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The monoidal structure on TΣG(2) is that induced from the embedding

TΣG(2) := INN0(ΣG(2)) ↪→ AUT(G(2))

discussion in [RobertsSchreiber:2007].
Recall for later use that this canonically sits in the sequence

G(2)
� � // TΣG(2) // // ΣG(2) .

3.2 Mapping cone of a faithful morphism

This has an obvious generalization to non-identity but faithful morphisms:
Let G(2) and H(2) be strict 2-groups and write ΣG(2) and ΣH(2) be the

corresponding strict one object 2-groupoids.
Let

t : H(2) ↪→ G(2)

be a morphism of strict 2-groups, faithful as a functor of the underlying 1-
groupoids. This means we have a strict 2-functor

Σt : ΣH(2) ↪→ ΣG(2) .

Definition 3 The morphism t defines a strict 2-groupoid with a weak monoidal
structure that makes it a Gray groupoid, which we denote either

T tΣG(2)

and address it as the tangent 2-groupoid of ΣG(2) relative to t, or

INNt
0(G(2))

and address it as the inner automorphism 2-groupoid of ΣG(2) relative to t or
simply

( H(2)
t // G(2) )

and address it as the mapping cone of t or as the 2-crossed module induced by
t.

This 2-groupoid T tΣG(2) is defined to be the the strict pullback

T tΣG(2)

uukkkkkkkkkkkkkkkkkk

�� ))TTTTTTTTTTTTTTTTTT

{•}

""EEEEEEEE
(ΣG(2))2

dom
ttt

t

zzttt
t codom

JJJ
J

$$JJJ
J

ΣH(2)

Σt

{{vv
vv

vv
vv

v

ΣG(2) ΣG(2)

where
2 := { • ' // ◦ }

is the fat point.
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Equivalently this means that T tΣG(2) is the strict pullback

T tΣG(2)
//

��

ΣG(2)

=

��
ΣH(2)

Σt // ΣG(2)

.

An object of T tΣG(2) is a morphism

• q // •

in ΣG(2), hence an object of G(2).
A 1-morphism in T tΣG(2) is a filled triangle

•

t(f)

��

•

q //

q′ // •

F

��

in ΣG(2), with f a morphism in ΣH(2), hence an object of H(2). Finally, a
2-morphism in T tΣG(2) looks like

•

t(f ′)

��

t(f)

��

•

q //

q′ // •

F

��

F ′

�	

t(L) +3

with

•

f

��

f

CC•L

��

a 2-morphism in ΣH(2), hence a morphism in H(2).
The monoidal structure on T tΣG(2) is that induced from the embedding

T tΣG(2) ↪→ TΣG(2) .

Proposition 5 The 2-groupoid T tΣG(2) is codiscrete at top level. Therefore it
is equivalent to its quotient by its 2-morphisms

T tΣG(2) ' π1(T tΣG(2)) .
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This quotient is isomorphic to what in [CarrascoGarzónVitale:2006] is called
(p. 595) the quotient pointed groupoid: G(2)/〈H(2), t〉:

π1(T tΣG(2)) ' G(2)/〈H(2), t〉 .

Proof. This is a matter of matching the items of the componentwise definition
on the top of p. 595 in [CarrascoGarzónVitale:2006] to the above definition. �

[CarrascoGarzónVitale:2006] prove that G(2)/〈H(2), t〉 is indeed the cokernel
of t. See the last paragraph on p. 595 and item 2 on p. 596.
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