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Abstract

We show that the weak cokernels of morphisms of 2-groups studied
in [CarrascoGarzénVitale:2006] are isomorphic to the corresponding con-
struction in [RobertsSchreiber:2007] which can be thought of in terms
of mapping cones. Motivated by this we adopt the discussion of weak
cokernels to Lie n-algebras, for arbitrary n, following [SchreiberStasheff].
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1 Introduction
Given two 2-groups G (2) and H(yy and a strictly injective morphism of 2-groups
t: H(Q) — G(g)

[CarrascoGarzénVitale:2006] showed how to construct a weak cokernel wcoker(t)

H) —> Gy weoker (t)

which is a Gray 3-group. We demonstrate that one may think of this as the map-
ping cone of ¢ in a generalization of the construction considered in [RobertsS-
chreiber:2007] and write

WCOkeI‘(t) = (H(Q) i> G(Q))
It follows that for any given short exact sequence of strict 2-groups

K —— G(y) B(a)




one obtains the setup

t
K G(Q)/ (Hiay & Ga) -
Vi
Ba)

We want to eventually understand the obstruction to lifting a ¥B(y)-valued
2-functor

P — ZB(Q)
through the exact sequence

YK (g) —> £G(o)

l

EB(Q)

i.e. to construct
EK(Q) E—— ZG(g)

7 l

YB2)

P
The obstruction to this should be the composite denoted obst in

EK(Q) Zt; ZC;(Q) : > E(K(Q) i> G(2)) e COkeI‘(i)

obst

with f~! some suitable "local inverse” to f. This should exist in the context of
ana-2-functors.

While we do not try to make this more precise at the level of 2-groups, we
can study the analogous situation in the context of (semistrict) Lie n-algebras.

Following [StasheffSchreiber| these we can conceives as quasi-free differential
graded commutative algebras living in the obious 2-category of algebra chain
maps and homotopies. This allows us to work with arbitrary n.

We reproduce the construction analogous to the above one for sequences

By < 8wy = Ol)

with ¢* assumed to be particularly well behaved. (A generalization away from
this assumption is certainly expected to exists, but not studied here.)



Thinking of the weak cokernel of 2-groups as a mapping cone proves to be
useful for the generalization to Lie n-algebras:
we define the mapping cone Lie (n + 1)-algebra
t
(E) = ()

and show that it does fit into

* t* * * [
by =8y = (€, < 80) -
7

e
VT
7

bl

Moreover, we show that in this context now the map f does have a weak inverse
-1 t* *

2 Mapping cones and weak cokernels of Lie n-
algebras

We conceive semistrict Lie n-algebras dually as differential graded commutative
algebras which are freely generated, as graded commutative algebras, in degree
1 < d < n. We refer to them as quasi-free differential graded commutative
algebras (QDGCAs).

These we take here to live in the 2-category whose morphisms are chain maps
that are at the same time algebra homomorphisms, and whose 2-morphisms are
chain homotopies.

Definition 1 (mapping cone of ¢qDGCAs) Let
* t* *
On) <— 9(m)

be a morphism of ¢qDGCAs such that t* restricts to a surjective morphism on
the underlying vector spaces, hence that it surjectively maps generators to gen-
erators.

The mapping cone of t* is the gDGCA whose underlying graded algebra is

and whose differential di= is such that it acts on generators schematically as

_ dg(n) 0
e = ( t* df<n) .



More in detail, d;« is defined as follows.

We write ot* for the degree +1 derivation on A* (s9(,,) ® ssf{,,)) which acts
on sg’(*n) as t* followed by a shift in degree and which acts on sfz‘n) as 0.

Then, for any a € sgz‘n) we have

dp~a = dg, a+ot*(a).

and
dp-0t™(a) := —ot*(dg, a) = —d-dg, a.

Proposition 1 The differential dy- defined this way indeed satisfies (dg-)? = 0.
Proof. For a € sgfn) we have
dpsdp=a = dy» (dg(n) +ot*(a)) = Jt*(dg(“)a) — Jt*(dg(n)a) =0.
Hence (d;+)? vanishes on /\'(sg?n)). Since
dt* dt*O't* (a) = —dt* dt* dg(n)a
and since dg ,,a € /\'(sgz‘”)) this implies (d+)? = 0. O
We write

* t* * . *

for the resulting qDGCA and
¢
By = 9m)

for the corresponding Lie (n + 1)-algebra.

Proposition 2 There is a canonical morphism

* * t* *
8(n) < (h(n) A g(n))
with the property that

* t* * *
by <— 80w <~ (b7, & 0f,)) -
0
Proof. On components, this morphisms is the identity on ng‘n) and 0 on sshz‘n).
One checks that this respects the differentials. The homotopy to the O-morphism
sends
7:ot*(a) — t*(a).



Proposition 3 Let

Bin) <— 80y <— ()

be a sequence of ¢qDGCAs with t* as above and with the property that gfn) -~ f?n)

restricts, on the underlying vector spaces of generators, to the kernel of the linear
map underlying t*.

Then there is a unique morphism f : fZ‘n) — (hZ‘n) b g?n)) such that

* t* * « T .
Bin) <8y < (b}, < 80n) -

fin

Proof. The morphism f has to be in components the same as gz‘n) — fz‘n). By
the assumption that this is in the kernel of ¢*, the differentials are respected. [J

Remark. It must be possible to relax the assumptions on gz‘n) — fz‘n) while

retaining a unique f?‘n) — (f)z‘n) r g’(kn)) up to isomorphism. This would then
show that

* [ A *
(h(n) < 8(n)) = coker(t)

is the weak kernel of ¢*.
Proposition 4 With the assumptions as before, the morphism fZ‘n) — (bZ‘n) b
gfn)) has a — noncanonical — weak inverse
—1 . * t* * *
f . (h(n) — g(n)) - f(n) .

Proof. We first construct a morphism f~! and then show that it is weakly
inverse to f. Choose a splitting of the vector space V underlying gfn) as

V=ker(t")®V;.

Take the component map of f~! to be the identity on ker(t*) and 0 on V;.
Moreover, for a € V7 set

f ot (a) — —dg(ma\/\'ker(t*) '

For a € ker(t*) we have



For a € V; we have

a—————>dg, a+ot*(a)

fll fll
OF—— dg(")a|/\.ker(t*) - dg(")a|/\.ker(t*)

and
ot*(a) ————— —ot*(dy,,,a)

I ]I f 11
dg(n)a|/\‘ker(t*) — dg, (dg<n)a|/\‘ker(t*))
Hence this is indeed a morphism of gDGCAs.
Next we check that f~! is a weak inverse of f. Clearly
fiwy == (07, & 00,)) = Tlm)
is the identity on ffn). What remains is to construct a homotopy

+*

* . * * *
(h(n) <_El(n)) < f(jj) < (b(n) ‘_G(n)) :

Id

One checks that this is accomplished by taking 7 to act on oV; as 7 : oVi — V4
and extend suitably. O

Example. For p an (n + 1)-cocycle on g and g, the corresponding Baez-
Crans type Lie n-algebra, the qDGCA of (2" 'u(1)* < g,) is based on the
vector space (\°(sg* @ s"R* @ s"T1R*)) with the differential on sg* being the
Chevalley-Eilenberg differential. For {b} the canonical basis of s"R* and {c}
the canonical basis of s"*1R* the differential on these generators is

db=—u+c

and
dc=0.

Then the morphism
e E (1) ) — o

is the identity on sg*, vanishes on b and sends

e p.



3 Mapping cones and weak cokernels of 2-groups

3.1 Mapping cone of the identity

In [RobertsSchreiber:2007] the mapping cone of the identity morphism on a
strict 2-group was studied.

Definition 2 The Gray groupoid which we denote either
TG (2
and address it as the tangent 2-groupoid of ¥.G 2y, or
INNo(G2))

and address it as the inner automorphism 2-groupoid of ¥.G 2y or simply
(G —>G))

and address it as the mapping cone of Idg,, or as the 2-crossed module induced
by ldg,,-
This 2-groupoid TYG (3) is defined to be the the strict pullback

TYG o) —— (ZG(Q))Q

-

{o} ————=¥G(9
This means the following. An object of TG ) is a morphism

q
o ——> 0

in G (g, hence an object of G y).
A 1-morphism in TG 3 is a filled triangle

in ¥G(g). Finally, a 2-morphism in TtEG(Q) looks like



The monoidal structure on TG (9) is that induced from the embedding

discussion in [RobertsSchreiber:2007].
Recall for later use that this canonically sits in the sequence

3.2 Mapping cone of a faithful morphism

This has an obvious generalization to non-identity but faithful morphisms:
Let G(2) and H(s) be strict 2-groups and write ¥G(2) and X H ) be the
corresponding strict one object 2-groupoids.
Let
t: H(g) — G(g)

be a morphism of strict 2-groups, faithful as a functor of the underlying 1-
groupoids. This means we have a strict 2-functor

it EH(Q) — ZG(Q) .

Definition 3 The morphism t defines a strict 2-groupoid with a weak monoidal
structure that makes it a Gray groupoid, which we denote either

TtEG(Q)
and address it as the tangent 2-groupoid of XG 2y relative to t, or
INN{(G(2))

and address it as the inner automorphism 2-groupoid of ¥.G ) relative to t or
simply

(Hp) ——G))

and address it as the mapping cone of t or as the 2-crossed module induced by
t.

This 2-groupoid T*SG 9y is defined to be the the strict pullback

where

is the fat point.



Equivalently this means that TtZG(Q) is the strict pullback
TtEG(Q) —_— EG(Q)
SHep) —2L > XG (o
An object of T*XG (9) is a morphism

q
e ——>o

in G (3), hence an object of G y).
A I-morphism in T*XG 5y is a filled triangle

in ¥G(g), with f a morphism in ¥H ), hence an object of H(,. Finally, a
2-morphism in TtEG(z) looks like

/

* F‘KF’ t(fj):> t(f")

with

a 2-morphism in ¥ H ), hence a morphism in Hy).
The monoidal structure on T*XG 5y is that induced from the embedding

Proposition 5 The 2-groupoid TtEG(g) is codiscrete at top level. Therefore it
s equivalent to its quotient by its 2-morphisms

thG(g) ~ (TtEG(Q)) .



This quotient is isomorphic to what in [CarrascoGarzénVitale:2006] is called
(p. 595) the quotient pointed groupoid: G(2)/(H(g),t):

T (TtEG(Q)) ~ G(2)/<H(2)a t> .

Proof. This is a matter of matching the items of the componentwise definition
on the top of p. 595 in [CarrascoGarzénVitale:2006] to the above definition. O

[CarrascoGarzénVitale:2006] prove that G(2)/(H(2),t) is indeed the cokernel
of t. See the last paragraph on p. 595 and item 2 on p. 596.
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