universal transition of transport

Urs Schreiber*

October 9, 2006

Abstract

To any morphism $p: \mathcal{P}_{2}(Y) \rightarrow \mathcal{P}_{2}(X)$ of domains of 2-transport, we may associate a universal p-local transition. The associated object turns out to be the category of 2 -paths in the 2 -groupoid Y^{\bullet}. The associated factorization morphism turns out to be the descending trivialized transport.

[^0]Universal local trivialization. Fix a morphism of transport domains

$$
\mathcal{P}_{2}(Y) \xrightarrow{p} \mathcal{P}(X) .
$$

We would like to understand in which sense there can be a universal p-local trivialization, such that every p-local trivialization factors through this universal one.

Definition 1 For a given morphism of transport domains

$$
\mathcal{P}_{2}(Y) \xrightarrow{p} \mathcal{P}(X)
$$

we denote the corresponding weak 2-colimit by

$$
\mathcal{P}_{2}(p) \equiv \mathcal{P}_{2}(Y) \oplus_{p} \mathcal{P}_{2}(X)
$$

More precisely, $\mathcal{P}_{2}(p)$ comes with an adjoint equivalence

such that for any other

we have

Proposition $1 \mathcal{P}_{2}(p)$ is given in terms of generators and relations as follows. The generators are the 2-morphisms of $\mathcal{P}_{2}(Y)$ and those of $\mathcal{P}_{2}(X)$, together with further morphism

and

as well as

and

subject to the relations which make t an adjoint equivalence.
For instance for every 2-morphism

in $\mathcal{P}_{2}(Y)$ we have a relation

Proof. Given

we define

by using a on the generators $\mathcal{P}_{2}(X), b$ on the generators $\mathcal{P}_{2}(Y)$, and f on the generators involving t.

The adjoint equivalence obtained by the horizontal composition

is obtained by applying $\mathcal{P}_{2} \stackrel{(a, b, f)}{-} Q$ to all the diagrams defining t. By construction, the result if f. For instance

Example 1

Using the universal p-local trivialization, we may now factor any p-local i trivialization

of a transport tra $: \mathcal{P}_{2}(X) \rightarrow T$ as

Notice that the functor

$$
\left(\operatorname{tra}, i_{*} \operatorname{tra}_{Y}, t\right): \mathcal{P}_{2}(p)-->T
$$

is built precisely from the data of an object in the category Triv ${ }_{i, p}$ of p-local i-trivializations.

Universal local transition. By similar reasoning, we may find the univsersal p-local transition.

Notice that to the universal p-local trivialization

like to any other local trivialization, we may associate the corresponding transition:

giving rise to a transition triangle and a tetrahedron law, as usual. But $\mathcal{P}_{2}(p)$ will not be the universal object for these transitions. This motivates

Definition 2 Denote by $\mathcal{P}_{2}\left(Y^{\bullet}\right)$ the object sitting in a diagram

together with a morphism

satisfying a tetrahedron law, such that $\mathcal{P}_{2}\left(Y^{\bullet}\right)$ is universal in the sense that for any other

and a corresponding triangle making a tetrahedron 2-commute, we have

Proposition $2 \mathcal{P}_{2}\left(Y^{\bullet}\right)$ is given in terms of generators and relations as follows. The generators are the 2-morphisms of $\mathcal{P}_{2}(Y)$, together with further morphisms

and

subject to the relations familiar from 2-transitions.
Proof. The construction is entirely analogous to that in the proof of prop. 1.

Remark. $\quad \mathcal{P}_{2}\left(Y^{\bullet}\right)$ is nothing but the 2-category of 2-paths within the 2-groupoid

$$
Y^{\bullet}=Y^{[3]} \Longrightarrow \xi Y^{[2]} \Longrightarrow Y \text {. }
$$

Morphism here are free combinations of pieces of path in Y combined with jumps between parts of Y with the same projection p to X.

Example 2 (factorization of transition)

Given any p-local i-transition of 2 -transport

with corresponding transition triangle

we may factor it through the universal transition as

Notice that the functor

$$
\left(\operatorname{tra}_{Y}, g, f\right): \mathcal{P}_{2}\left(Y^{\bullet}\right)-->T
$$

is built precisely from the data of an object of the category $\operatorname{Trans}_{i, p}$ of p-local i-transitions.

Example 3

We may factor the transition obtained from the universal local trivialization through the universal transition:

Now the morphism

$$
\mathcal{P}_{2}\left(Y^{\bullet}\right)-->\mathcal{P}_{2}(p)
$$

embeds $\mathcal{P}_{2}\left(Y^{\bullet}\right)$ as a sub-2-category into $\mathcal{P}_{2}(X)$, namely that which is obtained from $\mathcal{P}_{2}(p)$ by removing all generators coming from $\mathcal{P}_{2}(X)$.

Iterated trivializations. In example 2 we associate to any p-local i-trivialization of 2-transport

$$
\operatorname{tra}: \mathcal{P}_{2}(X) \rightarrow T
$$

the 2 -functor

$$
\left(\operatorname{tra}_{Y}, g, f\right): \mathcal{P}_{2}\left(Y^{\bullet}\right) \rightarrow T
$$

The latter has, by construction, the special property that it becomes i-trivial when pulled back along

$$
\mathcal{P}_{2}(Y) \rightarrow \mathcal{P}_{2}\left(Y^{\bullet}\right)
$$

It need not, however, in general be i-trivial itself. But it may be i-trivializable

In this case, we might want to address $\left(\mathcal{P}_{2}(Y), g, f\right)_{Y}$ as a full p-local i trivialization.

Example 4 (from line bundle gerbes to Deligne cocycles)

For i being the obvious injection

$$
i: \Sigma(U(1) \rightarrow) \rightarrow \Sigma\left(1 D \text { Vect }_{\mathbb{C}}\right)
$$

a p-local i-trivialization of some

$$
\operatorname{tra}: \mathcal{P}_{2}(X) \rightarrow \Sigma\left(1 D \operatorname{Vect}_{\mathbb{C}}\right)
$$

is a line bundle gerbe with connection. The fact that the corresponding ($\operatorname{tra}_{Y}, g, f$) is not itself i-trivial reflects the fact that the line bundle gerbe consists of transition bundles instead of transition functions.

For sufficiently well-behaved Y (for instance for any good covering of X) the second trivialization step, leading to the full i-trivilization, amounts to passing to Deligne cocycles $\left(\operatorname{tra}_{Y}, g, f\right)_{Y}$ for the line bundle gerbe $\left(\operatorname{tra}_{Y}, g, f\right)$.

[^0]: *E-mail: urs.schreiber at math.uni-hamburg.de

