3-category of twisted bimodules

Schreiber*

November 3, 2006

Abstract

For \mathcal{C} an abelian monoidal category, functors into $\operatorname{Bim}(\mathcal{C})$ are lax functors into $\Sigma(\mathcal{C})$. On the other hand, lax functors into $\operatorname{End}(\Sigma(\mathcal{C}))$, for \mathcal{C} braided, yield bimodules, the action on which is twisted by over- or under-braiding past objects of \mathcal{C}. Here we want to describe aspects of the resulting 3 -category of twisted bimodules.

1 Introduction

For \mathcal{C} an abelian and braided monoidal category, there should be a weak 3 category

whose objects are special Frobenius algebra objects internal to \mathcal{C}, whose 1morphisms are bimodules for these, whose 2-morphisms are triples $\left(N \xrightarrow{\rho} N^{\prime}, U, V\right)$, where ρ is a homomorphism of bimodules from $N \otimes U$ to $V \otimes N^{\prime}$, and where 3-morphisms are pairs (f, g) of morphisms going between the twisting objects U and V.

Here the right module structure on $N \otimes U$ is understood to be by overbraiding U, and the left module structure on $V \otimes N^{\prime}$ by underbraiding V.

This structure can be motivated by looking at lax functors into $\Sigma(\operatorname{End}(\mathcal{C}))$.
Below we give the precise definition of the morphisms and their composition and check some of the required properties.

[^0]
2 The definition of $\operatorname{TwBim}(\mathcal{C})$

Write

$$
A \xrightarrow{N} B
$$

for an object N of \mathcal{C} with the structure of an $A-B$ bimodule, for A and B algebra objects internal to \mathcal{C}.

If we assume that all algebras are special Frobenius, then the relations we need for checking the exchange law below are easily obtained.

Write

for the twisted or induced bimodule object $N \otimes U$ whose action is that of N combined with braiding under U

Similarly, write

for the bimodule obtained by braiding over V

Write

for a morphism

of such induced bimodules.
Write

for

Write

for

Write

for

Write

for

Proposition 1 From the above definitions it follows that horizontal composition with identity 2-morphisms satisfies the exchange law strictly:

and

Proof.

Proposition 2 The composition

is isomorphic to

The isomorphism is is given by the braiding on $U_{1} \otimes U_{2}$ and $V_{1} \otimes V_{2}$, respectively. It is unique.

Proof.

Definition 1 Given the above, there are different but isomorphic ways to define the horizontal composition of 2-morphisms. For definiteness, we set

Proposition 3 Composition of 2-morphisms satisfies the exchange law up to isomorphism.

Proof.

Remark. There is an obvious associator in $\operatorname{TwBim}(\mathcal{C})$ induced from the associator in $\operatorname{Bim}(\mathcal{C})$. The twisting of bimodules does affect neither its existence nor its coherence.

Since the isomorphism replacing the exchange law is unique, it should automatically be coherent.

Hence $\operatorname{TwBim}(\mathcal{C})$ should be weak 3-category.

[^0]: *E-mail: urs.schreiber at math.uni-hamburg.de

