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Abstract

What is the relation between parallel transport over n-dimensional
worldvolumes and the associated n-dimensional quantum field theory?
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Models of the physics of charged particles are usually formulated in terms
of vector bundles
V-X

with connection

V.

The part of this formalism most directly connected to what we actually observe
in nature is the parallel transport.
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The concept of parallel transport can be generalized from particles to 2-
particles (strings).
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There is a mystery that demands to be understood:



Mystery 1 The theory of gerbes with connection in terms of local data exhibits

a lot of structural resemblance to state sum models of 2-dimensional quantum
field theory.

Why is that?

Does this point to a deeper pattern that we might want to understand?

— two pictures go here, both showing a 2-dimensional cobordism with a dual
triangulation drawn on it. In the first case the triangulation is labeled by certain
p-form data and describes the surface holonomy of a gerbe with connection. In
the second case the triangulation is decorated by a Frobenius algebra, and encodes
a correlator in a 2-dimensional quantum field theory. —
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Our claim is that all these formulas are special cases of those describing a
locally trivialized 2-transport.
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We simply have to replace globular diagrams
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Plan.
e First understand parallel n-transport.

e Then understand its quantization.



1 n =1: The Charged Particle

Consider a particle on X, charged under a vector bunde V' — X with connection
V associated to a G-principal bundle P — X.

1.1 The Classical Structure
For each path
x % xl
in base space the connection allows us to find a path
v
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in the total space of the bundle, which is everywhere parallel to ~.
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We say that b’ is obtained from parallel transporting b along + from the fiber
B, to the fiber B, .
This way a connection assigns, by parallel transport, to each path ~ in base

space a map
tra(y) : By — By

between the fibers over the endpoints
This assignment of maps between fibers to paths in base space has some
special properties:

e The G-invariance of the choice of horizontal subspaces implies that these
maps between the fibers commute with the G-action on the fibers.

e In particular, this implies that these maps are invertible, since G acts
freely and transitively on each fiber.

e The map tra(y) is independent of the parameterization of ~.

e If 4 is obtained from v by reversing the direction, then tra(¥) is the inverse
of tra(y).



e If v is the composition of two paths ; and 79, then
tra(y) = tra(vyz) o tra(y1) .

Clearly, all this is trying to tell us that parallel transport is a functor
tra : P1(X) — GTor

that sends paths in base space to morphisms of G-torsors.

1.2 The Quantum Structure

kinematics dynamics
vector bundle V. — X connection V
space of states evolution operator
H Ut):H—H
objects morphisms
space of sections path integral
straightforward subtle

Table 1: Quantization involves a kinematical and a dynamical aspect.

Kinematics. The space of states of the charged particle is obtained by
summing the parallel transport over all points.

I(V) ~ colimytra := /tra
X

We push the functor forward to a point.

Freed emphasized how this is similar to doing the path integral itself. Ac-
cordingly, Freed and Hopkins, in their work on Chern-Simons theory, like to
write the above as

(V) = /eisobjcctsdu.

X

Dynamics. The dynamics also comes from a sum, the path integral
)= | d(1(0) e Dy,
PX
which, infinitesimally, comes from the Hamiltonian
1
-—V2.
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So quantum propagation is a functor
U : 1CObRiem — Hilb
which sends

t eitA

U:(o—tse)m (T(V) —""—1(V)).

Summary. So quantization has mapped a functor assigning classical phases
to embedded paths

tra : P1(X) — Vect

to a functor which sends abstract paths to quantum phases

U : 1Cobgrjem — Hilb.

2 n =2, The Charged 2-Particle (String)
Raising the dimension: Categorification. Paths form a category:

o — X1
l T4 — T5

!

Tr9 ——> T3

g
2-paths form a 2-category
To — T
J/ Ty —> T5
Tro — T3
V4
Y1 Te
g —T1 —>= T2 rg —— X2
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Yo——>=Y1 —=Y2 Yo —>UY1
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a group is a category with a single object and all morphisms being invertible

g1 g2 g192
o ——>0—>0 — o ——>

a 2-group is a 2-category with a single object, and everything invertible in
a suitabel sense:

g1 92 91:92
. h1 ° ho e = @ hy- oc(ql (h2)
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and
91
/m /\
g2o—> @0 —= @ h2 h1

2.1 The Classical Structure
Smooth Transport. Fact. A smooth functor

tra: P1(X) — G

comes from the path ordered exponential of a 1-form:

PexpfA
tra: (2 —=>y)—(e—— o).

Fact. A smooth 2-functor
tra: Po(X) — EGo
comes similarly from a 1- and a 2-form.
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Locally Trivializable smooth Transport We say a 2-functor tra : P2(X) —
T is p-locally i-trivializable if there is a cover

p:U—X
and an equivalence
Pa(U) : Pa(X)
tray N/t tra
T , T

This says that tra locally looks like something that takes values just in T”.
For instance for
7 Z(U(n)) L> Vect
the canonical rep, this describes a vector bundle with connection.
For
i TXU(1) —2— 2Vect

the canonical rep, this describe a line bundle gerbe with connection (and curv-
ing).



1-anafunctors 2-anafunctors

PL(U) P1(X) Po(U) ———— Pa(X)
as p-local
tray N/t tra i-trivialization trag N/t tra
T i T T i T

pitray P3

239 D339
pitray ————— pitray pitray ———— pitray
/ \p%u:/
Piag P339 as descent data/ . p;mf\ . . . . .
.. P129 P139 P349 — P129 Pasg P349
transition data . N
\U,p134 124fU,

pltrau—>p3traU pitray pitray pitray ——— pjtray
149 P149
PUU®) (tray,g) T (trav,g,f)
1 _—

P(U®) —————— 1

pi as spans P l

P1(X) P2 (X)

Table 2: We generalize 1-anafunctors to 2-anafunctors by regarding an ana-
functor as an instance of descent data or transition data.

Local Data on Triangulations This local trivialization is what gives rise to
decorated dual triangulations.

tra;(y2) Q

tra;(v1)

ti (z) \ Ky ! (Z)
° tra(S) ° = o ———> traZ(S) T °
= / \ / z
i(x) _
tral ) trai('yé) /lti(w)
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The global transport is locally expressed in terms of the i-trivial transport,
surrounded by trivialization morphisms.

N\

trag(y1)  trax(yz2) dfk("h

Along regions where two different local trivializations meet, these trivializa-
tions morphisms combine into the transition morphisms that decorate a dual
triangulation.

2.2 The Quantum Structure

We formulate the proceudre of quantization by push-forward in a way that
generalizes to the n-categorical setup.
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A charged n-particle...

. comes with
a configuration space of maps
from its parameter space
into its target space...

. and a coupling to
a transport functor
on target space...

...which induces transport functors
on configuration space
and on parameter space...

...that are known as the
transgression

and the quantization

of the n-particle.

f r
( par vEcon tar tra, phas )

conf

/

€
tar =<——— conf x par

NG
par

[conf, phas]

e

[tar, phas] e [conf x par, phas]

BN

[par, phas]

/ Conf phas

[tar, phas] —ev*> [conf X par, phas]

\ par phas

tra
quantization

Table 3: The story of the charged n-particle. A drama in three acts.
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Example. For instance: take a string coupled to a gerbe and feed it into this
machinery. The quantization step by push-forward produces the existence of
gerbe modules coupled to the endpoints of the string.

What is such a morphism like? Being a morphism of 2-functors, it is a
pseudonatural transformation. This means e is determined by an assignment

C C

C

e:((z,i) —(z,5)) +— ei(x) /eij(m) ej(x) 7

C

c C

for each point x in a double intersection of the cover, where e;(z) and e;(z)
are C-bimodules, hence vector spaces, and where e;;(z) : e;(x) — e;i(z) is a
morphism of C-bimoudles, hence a linear map.

The consistency condition this assignment has to satisfy is

c ~C ¢
) . / \(c
fij@/(m) e;(x)
c——C — eij(z) | Hulz)
ei(w) C er(z)
ei(x) /eik(x) ex () /ﬁ\\

C

for all = in triple overlaps of the cover.
If you like formulas better, think of this equivalently as saying that

€ij © €k = fijkeik -

It follows that the section e of our line-2-bundle is, over the endpoints of the
open string, much like an ordinary vector bundle, but one whose transition
cocycle involves a certain “twist” which is measured by the cocycle data of the
line-2-bundle.

Such structures are equivalently known as

e twisted vector bundles
e gerbe modules

e twisted representations of U2

13



e D-branes with Chan-Paton bundles .

In conclusion, we find that

Proposition 1 A section of a line-2-bundle (~ line bundle gerbe) with respect
to the open string {a — b} is a D-brane over a, another D-brane over b together
with a morphism of D-branes over a — b.
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3 What did we

parallel
1-transport

categorification

parallel

find?

quantization——

|
|
\
\
|
\
\
\
|
|
2-transport |
y
differential

1-cocycle
(anafunctor)

differential

2-cocycle
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2d QFT

state sum

model

quantum mechanical

evolution

. Jlocal
trivialization

———> NA



classical data quantum theory

background field n-particle
name of . .
n-functor parallel transport action quantum propagation
image of . .
n-functor monodromy classical phases quantum amplitudes
with values in phas = nVect
domain on target space on configuration space on parameter space
tar conf C [par, tar] par
in
symbols tra : tar — phas tra, : conf — [par, phas] q(tra) : par — phas
operation \_/ \—/
in physics terms - —
coupling quantization
conf X par
correspondence / \
tar par
[tar, phas] > [conf x par, phas] — > [par, phas]
operation \__// \_//
in symbols coupling quantization
tar ! ev*tar! p*ev¥tar
flat sections states
clements e: 1.—> tra P, - q(tra)
in in
I'(tra) = Hom(1, tra) Hom(1,,tra,) =~  Hom(1,,q(tra))
pairing of holonomy correlator
elements

Table 4: The charged n-particle and its quantization. The process be-
gins with a parallel transport n-functor tra for an n-bundle with connection,
modelling a physical background field. It continues by specifying certain maps
into the domain of the parallel transport and transgressing tra to the configura-
tion space of all these maps. This models the coupling of the background field
to a charged n-particle (a point particle, a string, a membrane, etc.). Finally,
the transgressed n-functor may be pushed forward to a point. This yields the
quantum theory of the charged n-particle coupled to the given background field.
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4 Application to 2d CFT

From locally trivializing 2-vector transport over the disk, we get decorations of
the form appearing in the FFRS construction of RCFT.
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