0.1 Equivalence of Anafunctors and Local id-Trivializations.

We have already seen that every smooth $\pi\text{-local}$ id-trivialization gives rise to an anafunctor

$$\begin{array}{c|c} \mathcal{C}_{1}(\pi) \xrightarrow{\mathrm{R}(g,\mathrm{triv})} & T' \\ & & \\ \pi_{c} \\ & \\ & \\ \mathcal{P}_{1}(X) \end{array}$$

Conversely, we want to find a condition which guarantees that a smooth anafunctor

$$F: \mathcal{P}_1(X) \to T'$$

is of this form, for some surjective submersion $\pi: Y \to X$.

Proposition 1 If

 $p: |F| \to \mathcal{P}_1(X)$

is a smooth surjective equivalence, whose component maps are surjective submersions, then there exists a surjective submersion

$$\pi: Y \to X$$

such that

$$|F| = \mathcal{C}_1(\pi) \,.$$

Proof. We simply define

$$Y := \operatorname{Obj}(|F|).$$

Then we need to show that indeed $C_1(\pi) = |F|$, for $\pi = p_0$.

In order to do so, we repeatedly make use of the fact that, since p is a surjective equivalence, there is, for every morphism in $\mathcal{P}_1(X)$ and every lift of its endpoints to Obj(|F|), a *unique* lift of the entire morphism.

This immediately implies that we have pullback squares of the form

which define the inclusions

$$\mathcal{P}_1(Y) \xrightarrow{\leftarrow} \operatorname{Mor}(|F|)$$

and

$$Y^{[2]} \longrightarrow \operatorname{Mor}(|F|)$$

Here r sends (x, y) to $\mathrm{Id}_{\pi(x)}$ (= $\mathrm{Id}_{\pi(y)}$).

The fact that these generators satisfy the relations that hold in $C_1(\pi)$ again follows from uniqueness of lifts. Therefore we even have an inclusion

$$\mathcal{C}_1(\pi)^{\subset} \longrightarrow |F|$$
.

Finally, by lifting any path in X piecewise to morphisms in $\mathcal{P}_1(Y)$ and in $Y^{[2]}$ we obtain a lift for each choice of lift of the endpoints. By the uniqueness of lifts, this means that $\mathcal{C}_1(\pi)$ already coincides with |F|.

Theorem 1 Let $F : \mathcal{P}_1(X) \to T'$ be a smooth anafunctor such that the component maps of

$$p: |F| \to \mathcal{P}_1(X)$$

are surjective submersions. Then there is a smoothly locally id-trivializable transport functor

$$\operatorname{tra}_F: \mathcal{P}_1(X) \to T$$

with transition data (triv, g) such that

$$\tilde{F}: |F| \to T'$$

equals

$$R_{(\operatorname{triv},q)}: \mathcal{C}_1(\pi) \to T'$$
.

Proof. According to prop. 1 there is a surjective submersion $\pi: Y \to X$ such that $|F| = \mathcal{C}_1(\pi)$, so that

$$\tilde{F}: \mathcal{C}_1(\pi) \to T'$$
.

But using the equivalence of such functors with transition data, it follows that there is $(\operatorname{triv}, g) \in \operatorname{TD}_{\pi}^{\infty}(i)$ such that $\tilde{F} = R_{(\operatorname{triv},g)}$. Finally, by applying Ex_{π} we get the corresponding transport functor $\operatorname{Ex}_{\pi}(\operatorname{triv}, g)$.

and