0.1 Equivalence of Anafunctors and Local id-Trivializations.

We have already seen that every smooth π-local id-trivialization gives rise to an anafunctor

Conversely, we want to find a condition which guarantees that a smooth anafunctor

$$
F: \mathcal{P}_{1}(X) \rightarrow T^{\prime}
$$

is of this form, for some surjective submersion $\pi: Y \rightarrow X$.
Proposition 1 If

$$
p:|F| \rightarrow \mathcal{P}_{1}(X)
$$

is a smooth surjective equivalence, whose component maps are surjective submersions, then there exists a surjective submersion

$$
\pi: Y \rightarrow X
$$

such that

$$
|F|=\mathcal{C}_{1}(\pi)
$$

Proof. We simply define

$$
Y:=\operatorname{Obj}(|F|) .
$$

Then we need to show that indeed $\mathcal{C}_{1}(\pi)=|F|$, for $\pi=p_{0}$.
In order to do so, we repeatedly make use of the fact that, since p is a surjective equivalence, there is, for every morphism in $\mathcal{P}_{1}(X)$ and every lift of its endpoints to $\operatorname{Obj}(|F|)$, a unique lift of the entire morphism.

This immediately implies that we have pullback squares of the form

and

which define the inclusions

$$
\mathcal{P}_{1}(Y) \hookrightarrow \operatorname{Mor}(|F|)
$$

and

$$
Y^{[2] C} \longrightarrow \operatorname{Mor}(|F|) .
$$

Here r sends (x, y) to $\mathrm{Id}_{\pi(x)}\left(=\operatorname{Id}_{\pi(y)}\right)$.
The fact that these generators satisfy the relations that hold in $\mathcal{C}_{1}(\pi)$ again follows from uniqueness of lifts. Therefore we even have an inclusion

$$
\mathcal{C}_{1}(\pi) \leftharpoonup \longrightarrow|F| .
$$

Finally, by lifting any path in X piecewise to morphisms in $\mathcal{P}_{1}(Y)$ and in $Y^{[2]}$ we obtain a lift for each choice of lift of the endpoints. By the uniqueness of lifts, this means that $\mathcal{C}_{1}(\pi)$ already coincides with $|F|$.

Theorem 1 Let $F: \mathcal{P}_{1}(X) \rightarrow T^{\prime}$ be a smooth anafunctor such that the component maps of

$$
p:|F| \rightarrow \mathcal{P}_{1}(X)
$$

are surjective submersions. Then there is a smoothly locally id-trivializable transport functor

$$
\operatorname{tra}_{F}: \mathcal{P}_{1}(X) \rightarrow T^{\prime}
$$

with transition data (triv, g) such that

$$
\tilde{F}:|F| \rightarrow T^{\prime}
$$

equals

$$
R_{(\operatorname{triv}, g)}: \mathcal{C}_{1}(\pi) \rightarrow T^{\prime}
$$

Proof. According to prop. 1 there is a surjective submersion $\pi: Y \rightarrow X$ such that $|F|=\mathcal{C}_{1}(\pi)$, so that

$$
\tilde{F}: \mathcal{C}_{1}(\pi) \rightarrow T^{\prime}
$$

But using the equivalence of such functors with transition data, it follows that there is $($ triv,$g) \in \mathrm{TD}_{\pi}^{\infty}(i)$ such that $\tilde{F}=R_{(\text {triv }, g)}$. Finally, by applying Ex_{π} we get the corresponding transport functor $\mathrm{Ex}_{\pi}($ triv,$g)$.

