the 1 -dimensional 3 -vector space

Schreiber*

November 23, 2006

Abstract

We explain how, for any braided abelian monoidal category \mathcal{C}, the 3 -category $\Sigma(\operatorname{Bim}(\mathcal{C}))$ plays the role of the 3 -category of canonical 1dimensional 3 -vector spaces. We make some comments on the resulting concept of line-3-bundles with connection and show how the 3-category of twisted bimodules arises from morphisms of almost-trivial line-3-bundles with connection.

Let \mathcal{C} be a braided abelian monoidal category.
You may want to think of the examples $\mathcal{C}=$ Vect $_{k}$ for some field k, or $\mathcal{C}=\operatorname{Mod}_{R}$, for some commutative ring R. But for the applications we have in mind, we will have a nontrivial braiding. In particular, \mathcal{C} might be a modular tensor category.

I denote the 2-category whose objects are algebras internal to \mathcal{C}, whose morphisms are bimodules and whose 2 -morphisms are bimodule homomorphisms by $\operatorname{Bim}(\mathcal{C})$.

We can think of this as a 2-category of 2-vector spaces, due to the canonical inclusion

$$
\operatorname{Bim}(\mathcal{C}) \stackrel{\smile}{\rightarrow} \operatorname{Mod}_{\mathcal{C}}
$$

Remarkably, since \mathcal{C} is assumed to be braided, we get that $\operatorname{Bim}(\mathcal{C})$ is a monoidal 2-category.

For A and A^{\prime} two algebras, their tensor product $A \otimes A^{\prime}$ is the algebra which is $A \otimes A^{\prime}$ as an object in \mathcal{C} and equipped with the product obtained by using the braiding to exchange A with A^{\prime} :

[^0]Accordingly, the left A-module N and the left A^{\prime}-module N^{\prime} are tensored to form the $A \otimes A^{\prime}$-module $N \otimes N^{\prime}$ with the action given by using the braiding:

Similarly, if N is a right B-module and N^{\prime} is a right A^{\prime}-module, the right action of $B \otimes B^{\prime}$ on $N \otimes N^{\prime}$ is

A simple special case of this turns out to be interesting in applications. The tensor unit $\mathbb{1}$ of \mathcal{C} with the trivial algebra structure on it is always an algebra internal to \mathcal{C}. Any object of \mathcal{C} is a $\mathbb{1}-\mathbb{1}$ bimodule. This yields a canonical inclusion

$$
\Sigma(\mathcal{C}) \xrightarrow{\subset} \operatorname{Bim}(\mathcal{C})
$$

This means that for any $A-B$ bimodule N, and any object U in \mathcal{C}, we may consider $N \otimes U$ as another $A-B$ bimodule, with the obvious left action and with the right action given by

Similarly, for V any object of \mathcal{C}, we obtain the $A-B$ bimodule $V \otimes N$ with the obvious right action and the left action given by

Quite literally, we can think of the tensor structure on $\operatorname{Bim}(\mathcal{C})$ as obtained from arranging bimodules in front of each other.

The formal expression of this geometric intuition is that from the monoidal 2-category $\operatorname{Bim}(\mathcal{C})$ we can form the suspension, $\Sigma(\operatorname{Bim}(\mathcal{C}))$, which is the 3 category with a single object \bullet, such that $\operatorname{End}(\bullet)=\operatorname{Bim}(\mathcal{C})$, and such that composition across that single object is the tensor product on $\operatorname{Bim}(\mathcal{C})$.

If

is a 2 -morphism in $\operatorname{Bim}(\mathcal{C})$, we draw the corresponding 3-morphism in $\Sigma(\operatorname{Bim}(\mathcal{C}))$ as

Since \mathcal{C} is braided, by assumption, it can itself be regarded as a 3 -category with a single object and a single morphism. This is the double suspension $\Sigma(\Sigma(\mathcal{C}))$ of \mathcal{C}. As before, we have a canonical inclusion

$$
\Sigma(\Sigma(\mathcal{C})) \xrightarrow{\mathcal{C}} \Sigma(\operatorname{Bim}(\mathcal{C})) .
$$

This inclusion should be thought of as analogous to the canonical inclusion

$$
\Sigma(\mathbb{C}) \xrightarrow{\subset} \text { Vect }_{\mathbb{C}} .
$$

Notice that we may think of $\Sigma(\operatorname{Bim}(\mathcal{C}))$ as the 3 -category obtained by acting with $\operatorname{Bim}(\mathcal{C})$ on itself. The single object then corresponds to $\operatorname{Bim}(\mathcal{C})$ itself, a morphism colored by an algebra A then corresponds to the 2 -functor

$$
A \otimes:: \operatorname{Bim}(\mathcal{C}) \rightarrow \operatorname{Bim}(\mathcal{C}),
$$

and so on.
Therefore we have a canonical embedding

$$
\Sigma(\operatorname{Bim}(\mathcal{C})) \xrightarrow{\subset} \operatorname{Mod}_{\operatorname{Bim}(\mathcal{C})} .
$$

I suspect that under suitable conditions the similar inclusion $\operatorname{Bim}(\mathcal{C}) \xrightarrow{\complement}$ $\operatorname{Mod}_{\mathcal{C}}$ is in fact an equivalence. It seems that Ostrik has at least shown that for well behaved \mathcal{C} this inclusion is at least essentially surjective on objects.

We might even be tempted to define the well-behaved part of $\operatorname{Mod}_{\mathcal{C}}$ to be that in the image of this inclusion.

Just suppose for the moment this were so. Then

$$
\operatorname{Mod}_{\operatorname{Bim}(\mathcal{C})} \simeq \operatorname{Mod}_{\operatorname{Mod}_{\mathcal{C}}}
$$

and

$$
\Sigma(\operatorname{Bim}(\mathcal{C})) \xrightarrow{\subset} \operatorname{Mod}_{\operatorname{Mod}_{\mathcal{C}}} .
$$

But here the right hand side is rightly addressed as the 3 -category of 3 -vector spaces.

For that reason, just like we may address \mathcal{C} itself as the canonical 1-dimensional \mathcal{C}-module category, it seems right to address $\operatorname{Bim}(\mathcal{C})$ as the canonical 1-dimensional $\operatorname{Mod}_{\mathcal{C}}$-module 2-category. Or, more suggestively, as the canonical 1-dimensional 3 -vector space.

Adopting this point of view, we make the following definitions, all with respect to a fixed choice of braided abelian monoidal category \mathcal{C}.

Definition 1 A 3-vector-bundle with connection is a transport 3-functor

$$
\mathcal{P} \rightarrow \operatorname{Mod}_{\operatorname{Mod}_{\mathcal{C}}}
$$

Recall that we have talked about this chain of inclusions:

$$
\Sigma(\Sigma(\mathcal{C})) \xrightarrow{j} \Sigma(\operatorname{Bim}(\mathcal{C})) \xrightarrow{i} \operatorname{Mod}_{\operatorname{Mod}_{\mathcal{C}}}
$$

If \mathcal{C} is itself already a category of modules, for instance if $\mathcal{C}=$ Vect $_{\mathbb{C}}=\operatorname{Mod}_{\mathbb{C}}$, we get yet another inclusion:

For each such inclusion, we get a notion of trivial, or locally trivial, 3-vector bundle.

Definition 2 An i-trivial 3-vector bundle with connection, called a line-3bundle with connection, is a transport 3-functor

$$
\mathcal{P} \rightarrow \Sigma(\operatorname{Bim}(\mathcal{C}))
$$

The $i \circ j \circ k$-trivial n-vector bundle shall be denoted by 1 . It plays a role for defining the spaces of (flat) sections of a 3 -vector bundle. In general, we say

Definition 3 The 3-functor

$$
1: \mathcal{P} \rightarrow \Sigma(\operatorname{Bim})
$$

is that which sends everything to the identity.
Proposition 1 Let the domain \mathcal{P} be a 2-category, i.e. a 3-category with only identity 3-morphisms. Endomorphisms of the trivial 3-vector bundle 1 on \mathcal{P} are the same as 2-functors to $\operatorname{Bim}(\mathcal{C})$.

$$
\operatorname{End}(1) \simeq[\mathcal{P}, \operatorname{Bim}(\mathcal{C})]
$$

Proof. This will become clear, shortly.
A degenerate but interesting example in between general line 3- bundles and the completely trivial bundle 1 are those that are $i \circ j$-trivial.

We shall be interested in those especially for the case where the domain \mathcal{P} is what we call the (open, disklike) 2-particle.

Definition 4 The 3-particle is, for the present purpose, the 2-category

that consists of two objects, two nontrivial 1-morphisms and one nontrivial 2morphism, as shown.

Example 1 (morphisms of $(i \circ j)$-trivial line 3-bundles over the open 3-particle)

A general line-3-bundle on par is nothing but any bimodule.
An $(i \circ j)$-trivial line-3-bundle with connection on par is nothing but any $\mathbb{1 1}$ - $\mathbb{1}$-bimodule, hence nothing but any object of \mathcal{C}.

Let's write

$$
1_{U}: \operatorname{par} \rightarrow \Sigma(\operatorname{Bim}(\mathcal{C}))
$$

for the $(i \circ j)$-trivial 3-bundle with connection that assigns $U \in \operatorname{Obj}(\mathcal{C})$ to S :

A morphism $\rho 1_{U} \rightarrow 1_{V}$ is a filled tin can 3-morphism

in $\Sigma(\operatorname{Bim}(\mathcal{C}))$.
Cutting this open, this is a 3 -morphism ρ from

to

In other words, ρ is a morphism from the $A \otimes \mathbb{1}-B \otimes \mathbb{1}$-bimodule $N \otimes U$ to the
$\mathbb{1} \otimes A$ - $\mathbb{l} \otimes B$-bimodule $V \otimes N^{\prime}$:

All tin cans ρ in $\Sigma(\operatorname{Bim}(\mathcal{C}))$ of this kind, with top and bottom a $\mathbb{1}-\mathbb{1}$ bimodule, form a 2-category in the obvious way. We will address this as

Definition 5 The 2-category $\operatorname{TwBim}(\mathcal{C})$ of twisted bimodules is the 2-category of tin cans in $\Sigma(\operatorname{Bim}(\mathcal{C}))$ whose top and bottom are $\mathbb{1}$ - $\mathbb{1}$-bimodules,

Here

Sometimes it is useful to think of TwBim as a 3-category, too. The 3morphisms then come from composing 3-morphisms in $\Sigma(\operatorname{Bim}(\mathcal{C}))$ at the top and bottom of those tin cans.

[^0]: *E-mail: urs.schreiber at math.uni-hamburg.de

