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1 Introduction

The concept of a groupoid is a rather natural one. As is that of a Lie groupoid.
Every Lie groupoid may be differentiated to yield a Lie algebroid. However,

maybe somewhat surprisingly, the standard definition of a Lie algebroid has an
appearence which is nowhere close to the simple elegance of the definition of a
Lie groupoid.

While one may tend to accept this as a sad fact of life, it becomes increasingly
annoying as one tries to categorify these concepts: passing from (Lie) groupoids
to (Lie) 2-groupoids is, again, the most natural thing in the world. But the
analogous step on the Lie algebroid side – which surely ought to exist – is, when
using the standard definition of a Lie algebroid, quite non-obvious.

In fact, to the best of my knowledge, no direct definition of Lie 2-algebroid
has ever appeared.

(What does exists is an “indirect” definition, using a detour through Baez-
Crans Lie-2-algebras, their relation to L∞-algebras, the relation of those to
quasi-free differential algebras and finally their known relation to Lie 1-algebroids.)

Here I would like to try to improve on this situation by re-formulating the
definition of the Lie-algebroid

Lie(Gr)

associated to any Lie groupoid
Gr

using only canonical and natural ingredients.
In order to accomplish this, I invoke the point of view that

• every Lie groupoid, Gr, is canonically a Gr-equivariant principal Gr-bundle
over its space of objects.

While possibly still sounding a little intricate, this is a very natural point of
view, since it is, as I shall make explicit, nothing but the “integrated Yoneda
embedding” of the Lie groupoid, which gives rise to the functor

traGr : Gr → C∞
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that sends objects to the target fibers over them and morphisms to the post-
composition with these:

traGr : ( x
f // y ) 7→ ( t−1(x)

f◦· // t−1(y) ) .

2 Canonical Ingredients

In this section I simply list a couple of standard facts and constructions. These
will then be used in the next section to swiftly say how a Lie algebroid arises
from a Lie groupoid.

Fact 1 Every Lie groupoid, when regarded as a span

Mor(C)
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Obj(C) Obj(C)

internal to smooth manifolds, canonically becomes a Gr-principal bundle

Mor(Gr)
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Obj(Gr) Obj(Gr)

(also known as a Gr-torsor) over its own space of objects, with the target map
playing the role of the bundle projection and the source map that of the “mo-
mentum map” (or “anchor map”).

This bundle is equivariant with respect to the canonical Gr-action on its own
space of objects.

In the language of parallel transport functors, the same fact has the following,
maybe more immediate, formulation (where GrTor denotes the category of Gr-
torsors over a point).

Fact 2 We have a smoothly locally trivializable Gr-principal parallel transport

R : Gr → GrTor

acting by “right translation”

R : ( x
f // y ) 7→ ( t−1(x)

f◦· // t−1(y) ) .

In components this reads

R( x
g // y ) : ( w

f // x ) 7→ ( w
f // x

g // y ) .
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(Notice that, while the Gr-bundle Mor(Gr) → Obj(Gr) does have a global
section, it has no equivariant global section.)

This functor encodes the target map and the composition in the groupoid,
by way of an “integrated Yoneda embedding”. The source map in Gr appears,
from this point of view, as a natural transformation on this functor:

Fact 3 Write
S : Gr → C∞

for the functor that sends everything to IdObj(Gr). Then the source map, s, of
Gr is a natural transformation

s : R → S .

(Here the application of the faithful forgetful functor GrTor → C∞, which
just forgets the groupoid action on a smooth manifold, is to be understood
implicitly.)

Fact 4 We have the following three functors.

• The tangent bundle functor

T : C∞ → VectBun

sends smooth spaces to their tangent bundle and sends smooth maps to
their differential:

T : ( X
f // Y ) 7→ ( TX

df // TY ) .

That this assignmnet respects composition is nothing but the chain rule of
calculus.

• The section functor

Γ : VectBun(M) → Vect

sends a vector bundle over M to its space of sections and sends a morphism
of vector bundles to the induced map on their sections

Γ : ( V
f // W ) 7→ ( Γ(V )

Γ(f) // Γ(W ) ) .

• The composition of both, defined on each isomorphism class,

Γ ◦ T : C∞|∼M → Vect

in fact factors through the forgetful functor

LieAlg → Vect ,

since the space of section of a tangent vector bundle TX canonically car-
ries the structure of the Lie algebra of vector fields on X.
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To combine these facts neatly, consider the following definition.
Write

I : P1(X) → Vect

for the tensor unit in the category [P1(X),Vect] of functors into vector spaces,
inherited from the standard monoidal structure on Vect.

Definition 1 Let tra : P1(X) → Vect be a smoothly locally trivializable vector
bundle with connection. A flat section or covariantly constant section of
tra is a morphism

e : I → tra .

We write
Γfl(tra) := [I, tra]

for the vector space of flat sections of tra.

It follows that to any parallel transport with values in smooth spaces we
may canonically associate the Lie algebra of flat sections of the associated vector
bundle of vector fields on the fibers.

Definition 2 Given a parallel transport with values in smooth spaces

tra : P1(X) → C∞

we write
Lie(tra) := Γfl(Γ ◦ T ◦ tra)

for the associated Lie algebra of flat sections of the associated vector
bundle of vector fields on the fibers.

3 Lie Algebroids

We have seen that, essentially by the Yoneda embedding, any Lie groupoid Gr
is encoded in a functor

R : Gr → C∞ ,

giving the right action of the groupoid on itself (encoding target and composition
maps), together with a transformation

s : R → S ,

(encoding the source map).
Applying definition 2 to this transformation yields a morphism of Lie alge-

bras
ρ := ds : Lie(R) → Lie(S) .

This is the Lie algebroid obtained from differentiating the Lie groupoid Gr.
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To see more clearly how this reproduces the standard way in which the
defintion of a Lie algebroid is formulated, notice that

Lie(S) ' Γ(TObj(Gr))

and
Lie(R) ' Γ(

⋃
x∈Obj(Gr)

TIdxt
−1(x)) .
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