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Abstract

We propose and study a notion of a tangent (n + 1)-bundle to an
arbitrary n-category. Despite its simplicity, this notion turns out to be
useful, as we shall indicate.
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1 Introduction

Various applications of (n-)categories in quantum field theory indicate that (n-
)categories play an important role over and above their more traditional role as
mere organizing principles of the mathematical structures used to describe the
world: they appear instead themselves as the very models of this world.

For instance there are various indications that thinking of configuration
spaces and of physical processes taking place in these as categories, with the
configurations forming the objects and the processes the morphisms, is a step of
considerably deeper relevance than the tautological construction it arises from
seems to indicate.

While evidence for this is visible for the attentive eye in various modern
mathematical approaches to aspects of quantum field theory – for instance [1],
[2] but also [3] – the development of this observation is clearly impeded by the
lack of understanding of its formal underpinnings.

If we ought to think of configuration spaces as categories, what does that
imply for our formulation of physics involving these configuration spaces? In
particular: how do the morphisms, which we introduce when refining tradi-
tional spaces from 0-categories to 1-categories, relate to existing concepts that
must surely secretly encode the information contained in these morphisms. Like
tangent spaces for instance.

Possibly one of the first places where this question was at all realized as
such is Isham’s [4]. That this is a piece of work which certainly most physicists
currently won’t recognize as physics, while mathematicians might not recognize
it as interesting mathematics, we take as further indication for the need of a
refined formal analysis of the problem at hand.

Several of the things we shall have to say here may be regarded as an at-
tempt to strictly think the approach indicated in Isham’s work to its end. Our
particular goal here is to indicate how we may indeed naturally, generally and
usefully relate morphisms in a category to the wider concept of tangency.

For instance his “arrow fields” on categories we identify as categorical tan-
gents to identity functors on categories and find their relation to ordinary vector
fields as well as to Lie derivatives, thereby, by the nature of arrow-theory, gen-
eralizing the latter concepts to essentially arbitrary categorical contexts.

While there is, for reasons mentioned, no real body of literature yet, which we
could point the reader to, on the concrete question we are aiming at, the reader
can find information on the way of thinking involved here most notably in the
work of John Baez, the spiritus rector of the idea of extracting the appearance
of n-categories as the right model for the notion of state and process in physics.
In particular the text [7] as well as the lecture notes [8] should serve as good
background reading.

On the other hand, there are indications that possibly large parts of the n-
categorical picture of n-dimensional quantum field theory which we have in mind
already secretly exist in disguise: some of the most sophisticated approached
to quantum field theory known, like BV-quantization methods, heavily rely on
L∞-algebras as well as, dually, quasi-free differential graded algebras. But, as
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discussed for instance in [5], L∞-algebras concentrated in the first n degrees
are canonically equivalent to n-categorical analogues of ordinary Lie algebras –
called Lie n-algebras. While equivalent, in many cases realizing the n-categorical
structure behind n-term L∞-algebras is necessary to obtain a coherent concep-
tual picture of what is really going on.

Here we shall demonstrate this by describing the theory of n-connections
and their (n + 1)-curvature in two parallel ways: once in the integral picture of
tangent n-groupoid and once in the corresponding differential picture [6] of Lie
n-algebra and Lie n-algebroids.

The work that our particular developments here have grown out is described
in [9]. Our discussion of the Bianchi identity for n-functors should be compared
with the similar but different constructions in the world of n-fold categories
given in [10] and in the context of posets in [16].

I thank Bruce Bartlett, David Roberts, Jim Stasheff, Sean Tilson for general
discussion of the notion of tangent categories described here. Special thanks go
to Roberto Conti for pointing out the work by Roberts and Ruzzi to me, part
of which we shall reproduce below, and to Calin Lazaroiu for pointing out his
work [17] to me, which happened to have secretly some overlap with other parts
of our discussion here.

2 Main results

Our working model for all concrete computations in the following is 2Cat, the
Gray category whose objects are strict 2-categories, whose morphisms are strict
2-functors, whose 2-morphisms are pseudonatural transformations and whose 3-
morphisms are modifications of these. It is clear that all our statements ought to
have analogs for weaker, more general and higher n versions of n-categories. But
with a good general theory of higher n-categories still being somewhat elusive,
we won’t bother to try to go beyond our model 2Cat.

So we shall now set n = 2 once and for all and take the liberty of using n
instead of 2 in our statements, to make them look more suggestive of the general
picture which ought to exist.

2.1 Tangent (n + 1)-bundle

We define for any n-category C an n-category TC which is an (n + 1)-bundle
p : TC → Obj(C) over the space of objects of C. This we address as the tangent
bundle of C.

The definition of this tangent bundle is morally similar to but in detail some-
what different form the way tangent bundles are defined in synthetic differential
geometry and in supergeometry:

we consider the category

pt := { • ∼ // ◦ }
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as an arrow-theoretic model for the “infinitesimal interval” or the “superpoint”
in that it is a puffed-up version of the mere point

pt := { • }

to which it is equivalent, by way of the injection

pt � � // pt ,

but not isomorphic. This suble difference, rooted deeply in the very notion of
category theory, we claim usefully models the notion of tangency as “extension
which hardly differs from no extension”. Concretely, we consider

TC ⊂ HomnCat(pt, C)

to be that subcategory of morphisms from the fat point into C which collapses
to a 0-category after pulled back to the point pt.

The characteristic property of the tangent (n+1)-bundle is that it sits inside
the short exact sequence

Mor(C) → TC → C .

For later use notice that dual to its realization as a projection

TC → Obj(C)

the tangent bundle may be thought of as an n-functor

TC : Cop → nCat

which sends objects a to the tangent categories TaC over them and sends mor-
phisms the the pullback of these along them

TC : ( a b
foo ) 7→ ( TaC

Tf C // TbC ) .

2.2 G-Flows on Categories

It is important that the notion of tangent category does not necessarily involve
the concept of the infinitesimal. We find that one strength of the notion of
tangent categories is that it captures ordinary vector fields on manifolds just as
well as exotic generalizations of these, like tangent stacks or odd vector fields
as they appear in supergeometry.

The crucial property of the n-category of sections

Γ(TC)

of the tangent n-category is that it inherits a monoidal structure, in fact the
structure of an (n + 1)-group, through a canonical inlcusion

Γ(TC) ↪→ TIdC
(Aut(C)) .
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We speak of the right hand here as the inner automorphism (n + 1)− group

INN(C) := TIdC
(Aut(C))

of C. In this context the image of the above inclusion is denoted

Γ(TC) := INN0(C) .

We find that different notions of vector fields and their generalizations cor-
respond to different kinds of group homomorphisms

v : G → Γ(TC)

of this group of sections of the tangent category.
Ordinary vector fields correspond to smooth R-flows on path groupoids.

Tangent stacks of orbifolds correspond to R-flows of the corresponding Lie
groupoids. Images of Z2 and other abelian groups in the category of sections of
the tangent category appear in the context of supergeometry (playing the role
of certain “odd vector fields”).

2.2.1 Vector fields and Lie derivatives

Let X be a smooth manifold and let P1(X) be the groupoid of thin homotopy
classes of paths in X.

Then ordinary vector fields v ∈ Γ(TX) on X are in canonical bijection with
smooth 1-parameter families of categorical tangent vectors to the identity map
on P1(X):

Γ(TX) ∼→
{

R → TIdP1(X)(Aut(P1(X)))
}

.

Relation to Chris Isham’s work On a general category C, it may be useful
to consider generalizations of this where R is replaced by some other group G.

The “arrow fields” on a category C, considered by Isham in [4], are Z-flows

{Z → TIdC
(End(C))}

on C.

Lie derivatives There is a differential analog of all the structures we are
discussing here, with Lie n-groupoids replaced by Lie n-algebroids.

Possibly a helpful way, in this context, to appreciate the above conception
of a vector field as a smooth group homomorphism

t 7→ P1(X)

Id

!!

Adexp(v)(t)

==
P1(X)exp(v)(t)∼

��
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integrally t 7→ P1(X)

Id

!!

Adexp(v)(t)

==
P1(X)exp(v)(t)∼

��

exp(v) : R → INN(P1(X))

differentially Ω•(X)

0

!!

Lv=[d,ιv ]

==
Ω•(X)ιv∼

��

d exp(v) ∈ inn(Ω•(X))

Figure 1: That families of categorical inner automorphisms can usefully
be thought of as vector fields is made particularly plausible by noticing
that, in the differential picture corresponding to a vector field flow by inner
automorphisms on the path groupoid, the Lie derivative on differential forms is
a derivation connected, by Cartan’s famous formula, to the 0-derivation.

is to notice that an ordinary Lie derivative on differential forms is itself a deriva-
tion of the graded-commutative algebra of differential forms which is, by Car-
tan’s famous formula, connected by a chain homotopoy (given by contraction
with the vector field) to the 0-derivation:

Ω•(X)

0

!!

Lv=[d,ιv ]

==
Ω•(X)ιv∼

��

.

More on that in [6].

2.2.2 Inner automorphism n-groups

Of particular importance are the tangent bundles, in our sense, to n-categories
which are 1-object (n−1)-groupoids ΣG(n), hence n-groups G(n). In our context
these (n − 1)-groupoids must be thought of as 1-point orbifolds. Accordingly,
they have just a single “tangent space” (tangent n-category)

T•ΣG(n) .

This turns out to have interesting properties [15]:

• For G an ordinary group, one has that

T•ΣG ' TIdΣG
(Aut(ΣG))

6



is a 2-group, which we call INN(G). It sits inside the exact sequence

Z(G) // INN(G) // AUT(G) // OUT(G)

of 1-groupoids. Here Z(G) is the categorical center of ΣG (which coincides
with the ordinary center of G), regarded as a 1-object groupoid. This
identifies INN(G) as the 2-group of inner automorphisms of G.

But INN(G) also sits inside the exact sequence

G // INN(G) // ΣG .

Moreover, it is equivalent to the trivial 2-group, hence “contractible”. This
identifies INN(G) as the categorical version of the universal G-bundle.

• For G(2) a strict 2-group, one finds that

TIdΣG(2)
(Aut(ΣG(2)))

is a 3-group, which we call INN(G(2)). It sits inside the exact sequence

Z(G(2)) // INN(G(2)) // AUT(G(2)) // OUT(G(2))

of 2-groupoids. Here Z(G(2)) is the 2-categorical center of ΣG, regarded
as a 1-object 2-groupoid.

Inside INN(G(2)) we have INN0(G(2)), the image of the inclusion

T•ΣG(2) ⊂ TIdΣG(2)
(2Cat) .

This sits inside the exact sequence

G(2) // INN0(G(2)) // ΣG(2) .

Moreover, it is equivalent to the trivial 3-group, hence “contractible”.
This identifies INN0(G(2)) as the categorical version of the universal G(2)-
2-bundle.

2.2.3 Supercategories

In the context of supergeometry one encounters categories which exhibit actions
by certain abelian groups, usually extensions G // // Z2 of Z2. But often
more is true: there are specified graded isomorphisms relating any object with
its shifted copies.

The basic example for this is the category Vect[Z2]s of ordinary super-vector
spaces i.e. the symmetric braided monoidal category of Z2-graded vector spaces
equipped with the unique nontrivial symmetric braiding:

Z2 acts on this category by changing the degree of all vector spaces V 7→
sV . The existence of the canonical isomorphisms sV : V → sV distinguishes
Vect[Z2]s from the generic category with a Z2-action.
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In our arrow-theoretic differential language, we can express this by the fact
that on Vect[Z2]s there is an “odd vector field” in that we have a Z2-flow.

s : Z2 → Γ(TVect[Z2]s) .

One finds that the 2-category of categories with G-flow is canonically iso-
morphic to the 2-category of “categories with G-shifts” defined in [17] and found
useful there for the discussion of categories of graded D-branes.

2.2.4 Categorical flows and quotients

The existence of a G-flow on a category C is essentially distinguished by that
of a mere G-action by the fact that there exists morphisms in C (the “G-flow
lines”) which connect the objects that are related by the G-action.

For C any 1-category and

ρ : G → Aut(C)

an action of the group G on C by automorphisms, the weak coequalizer of this
action

C
Id //

ρ(g)
// C // C/G

is the category generated from C and from a collection of new morphisms

a
sag // ρ(g)(a)

for all a ∈ Obj(C) and all g ∈ G, subject to the relations

a
f //

sa(g)

��

b

sb(g)

��
ρ(g)(a)

ρ(g)(f) // ρ(g)(b)

and
ρ(g)(a)

g′

%%KKKKKKKKKK

a

sa(g)
<<zzzzzzzzz

sa(g′g)

// ρ(g′g)(a)

for all g, g′ ∈ G and all f ∈ Mor(C).
This is essentially the descent through the G-action as discussed in [11].

8



The quotient category C/G obtained this way is special in that, while it still
canonically admits a G-action, now this G-action is inner, in that we have a
G-flow

G → INN(C/G) .

In [17] C/G is called the “skew category” associated with the category C
with G action.

2.3 Curvature and Bianchi Identity for functors

We give a purely arrow-theoretic definition of the differential of an arbitrary
n-functor, show that this notion satisfies some of the general properties one
would wish such a differential to satisfy and demonstrate that in the suitable
special case it does indeed reproduce the exterior derivative on differential forms,
including its nonabelian generalizations.

2.3.1 General functors

Using the functorial incarnation TC : Cop → nCat of the tangent bundle, we
may push forward any n-functor

F : C → D

to a connection on the tangent bundle of C, simply by postcomposing

δF : C
F // D

TD // nCat .

The crucial point of this construction is that it extends uniquely (up to equiva-
lence) to an (n + 1)-functor

δF : C(n+1) → nCat

on the (n + 1)-category
C(n+1) := Codisc(C)

which is obtained from C by replacing all Hom-(n− 1)-categories by the corre-
sponding codiscrete n-groupoids over them.

By introducing the terminology

• δF is the curvature of F

• F is flat if δF is degenerate (sends all (n + 1)-morphisms to identities)

we obtain the technically easy but conceptually important generalization of the
Bianchi identity : for any functor F

• δF is flat

or equivalently

• δδF is degenerate .
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2.3.2 Curvature and inner automorphisms

By combining our defintion of curvature of an n-functor using the arrow-theoretic
differential with the discussion in 2.2.2 we arrive at the statement that the cur-
vature of an n-functor

tra : C → ΣG(n)

taking values in an n-group G(n) is an (n + 1)-functor

curv = δtra : C → ΣINN0(G(n))

taking values in the inner automorphism (n + 1)-group of G(n).
Accordingly, the curvature of the curvature, hence the Bianchi identity, takes

values in INN0INN0(G(n)).

Comparison with Roberts-Ruzzi. For n = 1 almost this statement had
been proposed in [16] as the right framework for discussing curvature and
Bianchi identities.

The 1-, 2- and 3-groupoids 1G, 2G and 3G which they use are the quotients
of our inner automorphism (n + 1)-froups by the respective categorical centers

1G = ΣG (1)
2G = Σ(INN(G)/Z(G)) (2)
3G = Σ(INN0(2G)/Z(2G)) . (3)

We shall indicate in 2.4 that by forming these quotients here one loses some
crucial properties.

We now describe how our abstract arrow-theoretic notion of curvature does
reproduce the familiar one on differential forms in suitable smooth context.

2.3.3 Parallel transport functors and differential forms

When F : C → D is the smooth parallel transport functor [11] in an n-bundle
with connection [12, 13, 14], the arrow-theoretic notion of curvature described
above does reproduce the theory of curvature forms of connection forms. The
general Bianchi identity we have discussed then reduces to the ordinary Bianchi
identity familiar from differential geometry.

More precisely, let C := P3(X) be the strict 3-groupoid of thin homotopy
classes of k-paths in a smooth manifold X. And let G(2) be a strict Lie 2-group

coming from the Lie crossed module H
t // G

α // Aut(H) .
Then, according to [13, 14, 15, 18] we have the following bijections of smooth

n-functors with differential forms

• {smooth 1-functors P1(X) → ΣG } ∼→
{
A ∈ Ω1(X, Lie(G))

}
•

{
smooth 2-functors P2(X) → ΣG(2)

} ∼→
{

(A,B) ∈ Ω1(X, Lie(G))× Ω2(X, Lie(H))
FA + t∗ ◦B = 0

}
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•
{
smooth 3-functors P3(X) → ΣINN(G(2))

} ∼→


(A,B, C) ∈ Ω1(X, Lie(G))

×Ω2(X, Lie(H))
×Ω3(X, Lie(H))

C = dAB


Now let

tra : P1(X) → ΣG

be a smooth 1-functor with values in the Lie group G. Then, under these
bijections, we find that its curvatures correspond to the following differential
forms at top level

tra 7→ A
curv = δtra 7→ FA := dA + A ∧A

δcurv = δδtra 7→ dAFA = 0
.

This way the ordinary Bianchi identity for the curvature 2-form FA of A
is reproduced. Notice that for this result come out the way it does, just by
turning our abstract crank for differential arrow-theory, the result of 2.2.2 is
crucial, which says that the curvature (n + 1)-functor of a G(n)-transport is
itself an INN(G(n))-transport.

2.4 Sections and covariant derivatives

The curvature curv = dtra of a parallel transport n-functor is typically trivial-
izable, in that it admits morphisms

e : I
∼ // curv

for I some “trivial” (n+1)-transport. As with the inner automorphism (n+1)-
groups INN(G(n)), this trivializability, far from making these objects uninter-
esting, turns out to control the entire theory.

(Compare this to the contractibility of the universal G-bundle: while equiva-
lent to a point, it is far from being an uninteresting object, due to the morphisms
which go into and out of it. According to 2.2.2, this comparison is far more than
an mere analogy.)

A basic fact of n-category theory has major implications here:
recall that for F and G n-functors, a transformation

G → F

is given in components itself by an (n− 1)-functor. Now if G is trivial in some
sense to be made precise, and if the transformation is an equivalence

I
f

∼
// F ,

then this implies that the n-functor F is entirely encoded in the (n− 1)-functor
f .
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We show that for F = curv = δtra the curvature (n + 1)-functor of a trans-
port n-functor tra, the latter essentially encodes the component map of the
transformation

I
tra
∼

// curv .

In components this is nothing but a generalization of Stokes’ law∫
X

dω =
∫

∂X

ω .

Moreover, it turns out that there may be other trivializations of curv, not
by isomorphisms but by mere equivalences. On objects, the component func-
tions of these correspond to sections of the original bundle. On morphisms it
corresponds, under the identification of smooth functors and differential forms
mentioned in ??, to the covariant derivative of these sections.

In [9] it is indicated how all these statements have a quantum analogue as we
push our n-functors forward. There it is indicated how the fact that transport n-
functors have sections which are themselves transport (n−1)-functors translates
in the context of extended functorial quantum field theory to essentially what
is known in physics as the holographic principle. This needs to be discussed
elsewhere, clearly.
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3 Differential arrow theory

3.1 Tangent categories

Definition 1 (the point). The point is the n-category

pt := {•}

with a single object and no nontrivial morphisms. We shall carefully distinguish
this from the n-category

pt := { • ∼ // ◦ } ,

consisting of two objects connected by a 1-isomorphism.

The category pt might be called the “fat point”. It is of course equivalent
to the point – but not isomorphic. We fix one injection

i : pt � � // pt

i : • 7→ •

once and for all.
It is useful to think of morphisms

f : pt → C

from the fat point to some codomain C as labeled by the corresponding image
of the ordinary point

pt� _

��

f // C

=

��
pt f // C

.

3.1.1 The tangent (n + 1)-bundle as a projection

Definition 2 (tangent (n + 1)-bundle). Given any n-category C, we define its
tangent (n + 1)-bundle

TC ⊂ HomnCat(pt, C)

to be that sub n-category of morphisms from the fat point into C which collapses
to a 0-category when pulled back along the fixed inclusion i : pt � � // pt : the
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morphisms h in T C are all those for which

pt� _

��
pt

f

��

f ′

@@ Ch

��

=

pt� _

��
pt f // C

.

The tangent (n + 1)-bundle is a disjoint union

TC =
⊕

x∈Obj(C)

TxC

of tangent n-categories at each object x of C. In this way it is an (n+1)-bundle

p : TC // Disc(C)

over the space of objects of C.

Example (slice categories). For C any 1-groupoid, i.e. a strict 2-groupoid
with only identity 2-morphisms, its tangent 1-category is the comma category

TC = ((Disc(C) ↪→ C) ↓ IdC) .

This is the disjoint union of all co-over categories on all objects of C

TC =
⊕

a∈Obj(C)

(a ↓ C)

Objects of TC are morphisms f : a → b in C, and morphisms f
h // f ′ in

TC are commuting triangles

b

h

��

a

f //

f ′ // b′

in C.
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Example (strict tangent 2-groupoids). The example which we are mainly
interested in is that where C is a strict 2-groupoid. For a any object in C, an
object of TaC is a morphism

a
q // b .

A 1-morphism in TaC is a filled triangle

b

f

��

a

q //

q′ // b′

F

��

in C. Finally, a 2-morphism in TaC looks like

b

f ′

��

f

��

a

q //

q′ // b′

F

��

F ′

�


L +3 .

The composition of these 2-morphisms is the obvious one.

Proposition 1. The tangent (n + 1)-bundle of C fits into the short exact se-
quence

Mor(C) → TC → C .

Proposition 2. The tangent (n + 1)-bundle TC is a “deformation retract” of
the underlyin space of objects in that it is equivalent to the discrete n-category
over the set of objects of C

TC ' Obj(C) .

This equivalence goes through also if everything is internal to smooth spaces.

Proof. This is to say that each tangent n-groupoid TaC, for all a ∈ Obj(C),
is equivalent to the trivial n-category

TaC ' pt .

To establish this, it is sufficient to exhibit an invertible transformation from the
identity on TaC to the functor which sends everything to the identity morphism
on a. Now making explicit use of our assumption that we are working with
strict 2-categories, we can take the components of this on objects

a
f // b
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to be simply the morphism

(
a

f // b

)
7→

b

f−1

��

a

f //

Id // a

� �
� �
� �
� �
�

� �
� �
� �
� �
�

.

There is then a unique choice for the component of the transformation on mor-
phisms. �

Remark. This result shows in which sense one should think of our tangent
n-categories: the right intuition is to think of the space of objects of C as
the space in question, and of the morphisms and higher morphisms of C as
encoding ”tangency relations” among these objects. This means that the way
we are to think here of (n-)categories as spaces is the way in which in the theory
of stacks orbifolds are regarded as groupoids, rather than, say, the identification
of categories with spaces induced by the nerve construction.

3.1.2 The tangent (n + 1)-bundle as a fiber-assigning functor

The tangent (n + 1)-bundle of a category comes equipped with a canonical
parallel transport over the opposite of the category:

Definition 3. For any n-category C, let

TC : Cop → nCat

be the n-functor which sends
x 7→ TxC

for each x ∈ Obj(C) and which sends a morphism x
f // y to the n-functor

TfC : TyC → TxC

given by

z

r

��

y

h
//

h′ // z′

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

7→

z

r

��

x
f // y

h
//

h′ // z′

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

.
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Proposition 3. This functor respects the morphism TC → C from proposition
1 in that

TxC
Tf C //

!!CC
CC

CC
CC

TyC

}}{{
{{

{{
{{

C

commutes for all morphisms f in C.

This way we even get an n-functor T : Cat → T ∗
Cat(nCat) as follows.

Definition 4. Define an n-functor

T : Cat → T op
Cat(nCat)

as follows. It sends any n-category C to the morphism

TC : Cop → nCat .

It sends any n-functor
F : C → D

to the triangle
Cop

TC

��
F

��

nCat

Dop TD

AA

��

,

with the only obvious transformation filling this triangle.

The fact mentioned in proposition 2, that

TC ' Obj(C)

reads in terms of the functor TC : Cop → Cat as follows.

Proposition 4. For any n-groupoid C, let

pt : Cop → nCat

be the n-functor which sends everything to the identity on the n-category pt.
Then there is an equivalence

Cop

pt

!!

TC

==nCat∼

��
.
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3.2 Differentials of functors

For any n-functor

C
F // D

with D an n-groupoid, let

C(n+1) := Codisc(C)

be the (n + 1)-category whose Hom-categories are the codiscrete n-groupoids
over the Hom-(n− 1)-categories of C (i.e. with a unique n-morphism for every
pair of parallel (n− 1)-morphisms) and set

(δF )n :

Cop

F

��

nGrpd

Dop TD

@@

.

Proposition 5. (δF )n extends essentially uniquely to an (n + 1)-functor

δF : C(n+1) → nGrpd .

Proof. As a warmup, to see the idea, consider n = 1. Then for any two
parallel morphisms

x y

γ

��

γ′

]]
��

in C we need a transformation

TF (x)(D)

TF (γ)D

$$

TF (γ′)D

::
TF (y)(D)∼

��
.

By writing out what this must be like, and using the fact that D is assumed to
be an n-groupoid, one finds that there is, up to equivalence, only one possible
choice.

The case n = 2 is entirely analogous. �
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Notice that δ commutes with pullbacks: given an n-functor p : C ′ → C and
a n-functor F : C → D we write

p∗F : C ′ p // C
F // D

and call this the pullback of F along p. Then we trivially have the following
important statement:

Proposition 6. The operation δ commutes with pullbacks.

Hence
p∗(δF )n = δ(p∗F )n

for all p and all F .

Definition 5 (curvature). We say that

• δF is the curvature of F .

• An n-functor is degenerate if it sends all n-morphisms to identity n-
morphisms.

• An n-functor F is flat if its curvature (n + 1)-functor δF is degenerate.

Proposition 7 (Bianchi identity). Let F : C → D be a 1-functor with values
in a groupoid D. Then

• δF is flat

or equivalently

• δδF is degenerate.

Definition 6 (Stokes’ theorem). The curvature (n + 1)-functor is canonically
trivialized by the functor it comes from, by combination of the transformations
from definition 4 and proposition 4:

Cop

pt

��

dF

??nCat∼F

��

:=

Cop

pt

��
TC

PPPPPP

((PPPPP

F

��

nCat

Dop TD

AA

∼
�� �
��
��

��
��
�

∼


�
##
##
##
#

##
##
##
# .
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3.3 Sections of functors

In our context, we may think of an n-functor

F : C → D

as encoding [11, 13, 14] an n-bundle with connection on Obj(C). From this
point of view one is interested in determining the space of n-sections of this
n-bundle, as well as the covariant derivative of these sections with respect to
the given n-connection.

Definition 7 (sections). A section of F is a morphism into δF .

Hence a section of an n-functor is a pair, consisting of an n + 1-functor
F : C → D

Cop

E

((PPPPPPPPPPPPP

nGrpd

together with a transformation

(δF )n :

Cop

F

��

E

((PPPPPPPPPPPPP

nGrpd

Dop TD

@@
e

�� ��
��

��
��

��

��
��

��
��

�� .

4 Parallel transport functors and their curva-
ture

4.1 Principal parallel transport

4.1.1 Trivial G-bundles with connection

Let S be a category playing the role of the path groupoid of some space.
For us, a trivial G-bundle with connection on S is a functor

tra : S → ΣG

which we interpret as sending each morphism in S to the parallel G-transport
along it.

The differential of this functor we may think of as the curvature of the
parallel transport

curv = dtra
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in that the component map of the transformation which it assigns to a 2-
morphism Σ is essentially the parallel transport tra(∂Σ) around the boundary
of that 2-morphism.

Notice that curv sends every point to a fiber of the form

T•ΣG = INN(G)

over it. Moreover, by proposition 3 this assignment respects the morphism
INN(G) → ΣG

INN(G)
curv(γ) //

$$IIIIIIIII
INN(G)

zzvvvvvvvvv

ΣG

.

It turns out that curv is trivializable in various ways. There is interesting
information in the morphisms that trivialize it.

To see this, consider two special bundles with connection over S, the trivial
point bundle

J : S // {•} .

and the trivial G-bundle with trivial connection

I : S // {•} // ΣG .

Proposition 8. There is an isomorphism (not just an equivalence)

S2

dI

��

curv

@@Cat∼

��

whose component map is essentially a map Mor(S) → G and as such coincdes
with tra.

Hence we write, with conventient and suggestive abuse of notation,

dI ∼
tra // curv .

Gauge equivalent transport functors

g : tra → tra′

correspond to different but equivalent trivializations of the same curvature 2-
functor

dI

tra

��

tra′

@@curv∼g

��

.
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There may also be trivialization of curv which correspond to sections of the
original bundle. These come from equivalences of curv with the trivial point
bundle J

S2

δJ

��

curv

@@Cat∼e

��

.

Their component maps pick out an element of G over each object of S.

5 The last section

in which I admit that I am running out of steam for the moment.
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