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Abstract
For any m-category C we consider the sub-n-category TC C C? of
squares in C' with pinned left boundary. This resolves the space of objects
in C in a natural way. We describe various properties of T'C' and indicate
why it deserves to be addressed as the tangent n-category of C.
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Introduction
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URS: Instead of a real introduction, at the moment I offer only the following
reflection.
Tangent categories play two different important roles, which a priori seem
to be rather unrelated:

e The tangent n-category T'C is a puffed up version of the space of objects

Cy. For C an n-groupoid, the canonical inclusion

Co—TC



is an equivalence. The canonical sequence
Mor(C) - TC — C
is the n-groupoid incarnation of the universal C-bundle [2].

e At the same time, T'C' does know about the tangency relations on Cj
induced by Mor(C): for C' an n-groupoid, G-flows

Fg<TC) = {G — F(TC) C TIdc (End(C))}

do provide a generalization of the concept of vector fields on Cj in that
for G = R and with everything taken to be smooth we have that sections

Ir(TC) ~ T'(Lie(C))
do coincide with the sections of the Lie n-algebroid associated with C.

The apparent dichotomy — universal C' spaces on one hand, differentials on
C' on the other — is resolved by noticing that T'C' is actually to be regarded as
the universal C-bundle equipped with the universal C-connection [3].

2 Tangent Categories

2.1 Definition
We write

pt := {e}
for the terminal category and

2::{0—»0}

for the category with two objects and one nontrivial morphism, going between
them. Then for C any category, we have the category

C? := Homca(2,C)

of commuting squares in C, with composition being the vertical pasting of
squares. C? has two obvious projections onto C'

dom
- >
c:T———<¢C
cod

which may be thought of as arising from pullback along the two injections
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pt ———————Z2
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in that
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Definition 1 (tangent category) For C any category, its tangent category
TC s defined to be the strict pullback

¢ ——>(C?

dom

Co C
in Cat.

Here Cjy := Obj(C) is regarded as a discrete category and ic : Cp — C sends
objects to identity endomorphisms.
Hence T'C is the co-slice category

C= P (l0).

a€Obj(C)

Objects of T'C' are morphisms f : a — b in (| and morphisms f L fin
TC are commuting triangles

in C.

Remark. The definition of the tangent category is an exact analogue of the
sum of path spaces, construed as a pullback in Top:

PX — X!
evalg .

X ———X



Here I = [0,1] is the interval, evaly is evaluation at the left boundary of the
interval and |X| is the set underlying the topological space X, equipped with
the discrete topology.

That and how T'C is still usefully thought of as a tangent bundle is discussed
in 4.

Definition 2 (tangent category functor) We write
T : Cat — Cat

for the corresponding functor.

Hence for F': C'— D any functor, the functor
TF:TC —-TD

acts by postcomposition with F', in that

. p.
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TF : 2 f cC = 2 f C
\\/4 \\/
az az
2.2 Inner automorphisms

For C' any category, the categorical tangent space
TIdc (EIld(C))

in End(C) at the identity endomorphism plays a special role. It makes good
sense to address these endomorphisms connected to the identity as inner endo-
morphisms.

Definition 3 For C any groupoid, we address

AUT(C) = Autca (C)

as the automorphism 2-group of C;

INN(C) := T4, (End(C))

as the inner automorphisms 2-group of C

Z(C) = EEndIdc
as the center of C



OUT(C) := coker(INN(C) — AUT(C))

as the outer automorphism 2-group of C'.

URS: I need to think about how to define OUT(C) properly.
These fit into an exact sequence of 2-groups

Z(C) — INN(C) — AUT(C) — OUT(C).

2.3 Properties

Proposition 1 The discrete category over the space Mor(C) arises as the pull-
back

Mor(C) cod Co

cod

TC Cc? c

We may read that as a “short exact sequence”
Mor(C) - TC — C.
Proposition 2 When C is a groupoid, then
TC ~ Cy

and in fact the projection
TC — C()

s weakly inverse to the canonical section

00 —-TC.
Definition 4 We write
I(TC)
for the category of sections
e:Co—TC

of TC' — Cj.

Proposition 3 When C is a groupoid, then we have a canonical equivalence
(isomorphism, even)
N(TC) ~ Tia. (End(C)) .



Remark. Recall from 2.2 that this equips I'(T'C') with a monoidal structure,
even the structure of a 2-group

INN(C) := Tia(End(C)) .

This monoidal structure is crucial in 4 and for relating tangent categories to
ordinary notions of tangent spaces.
Notice that for n > 1 one finds that

I(TC) — Tia. (End(C))

is no longer an equivalence but becomes a proper inclusion.

2.4 Simplicial aspects
Notice that a sequence of k composable morphisms

in T'C is, since all triangles commute, the same as a sequence

aQ—>ph—>=C > (

AN

X

of k + 1 composable morphisms in C.
This means that when passing to nerves, the tangent functor 7" becomes
what is known as décalage in the simplicial context:

Definition 5 Denote by
14 ()] A% — A
the obvious functor which acts on objects as
[n] — [n+1].

Proposition 4 We have a weakly commuting square

Cat

[A°P Set]

T / 1+

Cat ———— [A°P, Set]



Proof. Notice that n-simplices in T'C' are commuting squares

[n] 2 x [n]

[0]
but the pushout of this co-cone is [n + 1]

[n] ———=2x1[n],

0] ———[n+1]

where
0——1——=2- >k 0— 1/27 a——>=h——>cC>(
o —>T1 —> T2 > Tk

Hence we functorially assign (n + 1)-simplices in C' to n-simplices in TC

[n] 2 % [n]
/
[n+1]
0 \c

3 Tangent n-Categories
3.1 Strict tangent 2-Categories

4 Arrow-fields and Flows on n-Categories

Isham [1] coined the term arrow field on a category C for what we conceive as

a section
eeIN(TO),



thinking of it as a model for a tangent vector field on Cy. On the other hand,
such an e is far from being “infinitesimal” in any sense. We shall now make
use of the monoidal structure on T'(T'C') — also noticed by Isham — to obtain a
sensible notion of categorical vector fields. We exhibit the special cases in which
this reproduces ordinary sections of ordinary vector bundles.

4.1 (G-flows

Definition 6 For C any groupoid and G any group, we address a group homo-
morphism
v: G — INN(C)

as a G-flow on C. For each g € G we write

1d
C vg) C
\ A
Adyg(g)

for the corresponding element in INN(G). A morphism between two categories
C and D equipped with G-flows is a functor

F:C—D

which respects the flows in that

Id

C vole) C C
\\/4
Ady (g =
c(9) F F 1d
//—\\
D D vp(9) D
AdvD(y)
forall g € G.
We write

I'¢(TC) := Hom(G, INN(C))

for the collection of G-flows on C.



Example (ordinary vector fields). Let X be a smooth manifold and IT; (X)
its fundamental groupoid. Smooth R-flows on II; (X) are in canonical bijection
with ordinary vector fields on X

[(TX) ~ Tp(TT, (X)).

(Here on the left TX denotes the ordinary tangent bundle of X.)

Example (odd vector fields). Let sVect be the category of super vector
spaces. The parity shift operator

II : sVect — sVect

characterized by the fact that

V—/—/—-"7>W

ol
nv !

aw

for all morphisms V I W with V —=>TIV the canonical isomorphism
manifestly is a Zo-flow on sVect, hence an element

IT € T'z, (T'sVect) .

It might be useful to think of II as the “flow of an odd vector field” in superge-
ometry.

Example (Lie algebroids). For C any Lie groupoid with Lie algebroid
Lie(C), we have
I'r(TC) ~T(Lie(C)).

The canonical morphism
C — codisc(Cp)

induces the anchor map
Tr(TC) — Tr(TT;(Cy)) .

The Lie bracket on sections is obtained from the group commutator in INN(C')
in the usual way.



5 Universal n-Bundles

5.1 Principal 1-Bundles with connection

For the following, let
C:=3G

be the one-object groupoid given by a group G.
The sequence
Mor(C) - TC — C

which each tangent category sits in then becomes
G—-TYXG — XG,
which we also frequently denote
G — INN(G) — X£G.
This sequence is the universal G-bundle in the world of groupoids.
Proposition 5 (Segal) The geometric realization of the nerve of
G—-TYG — XG

18 a model for the universal G-bundle

G—TEG—%XG .
IH IW IW
G EG BG

But here we shall find it useful not to pass to spaces by realizing nerves. The
entire discussion can usefully be done entirely within the world of groupoids.
For X some space, choose a good cover

m:Y = X
and denote by
s
vyl —=y
T2
the corresponding groupoid. Noticing that |Y[2]\ ~ X we may take this as a

groupoid model of X.

Proposition 6 Fquivalence classes of principal G-bundles on X are in bijection
with equivalence classes
feYP,sa)/.

of functors.

10



Proof. By unwrapping the relevant definitions one finds that functors Y2 —
3G are precisely G-cocycles on X, while transformations of these functors are
precisely isomorphisms of G-cocycles. O

We may hence regard f : Y[l — SG as a classifying map. By pulling this
back along the groupoid version of the universal G-bundle

we obtain the groupoid version of the total space

Y x 56 INN(G) — INN(G)

L,

y[2] G

of the G-bundle classified by f
But there is more. Since for C' = ¥G we have that T'C' is again itself a
2-group, we may iterate the tangent category construction to obtain

Mor(C) TC C
TC ——=TXTC ——=3TC
C >Tc

This does not close strictly, but up to pseudonatural transformation

Mor(C) TC C

LA

TC T3TC —=3XTC

| A~

c 1C

Here the sequence in the middle is the universal INN(G)-2-bundle.
We may regard

11



e YTC as the fundamental 2-groupoid of the universal G-bundle;

e TYTC as the pair groupoid EG x EG of the fundamental G-bundle, pulled
back to the fundamental 2-groupoid, such that after diving out G it be-
comes the Atiyah groupoid At(EG) := EG xg EG pulled back to the
fundamental 2-groupoid.

A 2-morphism in X7T'C looks like

g

/\\
N h/
\,‘/

g9'=hg

A 2-morphism in TY¥T'C covering this looks like

where all labels are elements in G. Here one should think of ¢ and ¢’ as elements
in the fiber of EG over the chosen base point e, and of F' and F’ as two choices
of fiber isomorphisms over the paths g and ¢’, respectively.

Since TC = INN(G) is equivalent to the trivial 2-group, its universal 2-
bundle TYTC is trivializable, and we have a canonical section

STC — TYTC.

But this section of the universal INN(G) 2-bundle we can regard as a choice
of connection on the 1-bundle, namely as a splitting of the Atiyah groupoid
projection

;NG

But this is essentially nothing but the identity 2-functor

XTC — XTC.

12



We should think of this as the universal connection on the universal G-bundle:
curvgg :=1d: ¥TC — XTC'.

Write ITo(X) for the fundamental 2-groupoid of the space X (objects are the
points in X, morphisms are thin-homotopy classes of paths in X, 2-morphisms

are homotopy classes of surfaces in X).
The weak pushout C2(Y)

(Y1) —=1IL(Y) ,

| /]

H1 (Y) I C2 (Y)

addressed as the path pushout in [4] is the 2-groupoid modelling the fundamental
2-groupoid of X with respect to the covering Y. It is the 2-groupoid generated
from ITo(Y) and from Y2 modulo the relations

m1(y)
m(z) — 71 (y)

ma(y)
7o (1) — > my(y)

for all & —>y in Mor; (ITo(Y2)).
We find that extending our classifying map
yl2]
f
C——=3T1C

from points to paths
yi2l ——=Cy(Y)

\LQ \L (curv, f)

c 1c

is the same as choosing a G-connection on the bundle classified by f, by [4].
Locally, i.e. on generators of Co(Y') coming from ITo(Y?]) this 2-functor curv is
precisely the curvature 2-functor of a parallel transport

tra: P1(Y) — £G.



Notice that we may think of the connection on our bundle
(curv, f): Co(Y) —» XTC
as the pullback of the universal connection
curvgg =1d: XTC — XTC

along a refinement of our classifying map f, simply as

curveg

(curv, f): Co(Y) ——=XTC ——=XTC .

14
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Y[Q] X ¢ TC CQ (Y) X (curv, f) TYTC
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yt2 Ca(Y) / /
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Figure 1: The universal G-bundle and its pullbacks in the world of groupoids
and Lie algebroids. C = ¥G is the one-object groupoid corresponding to G,
TC = INN(G) its inner automorphism 2-group, whose underlying groupoid is
the total space of the universal G-bundle. Y — X is a good cover of base space
and C3(Y') the fundamental 2-groupoid of X relative to this cover. Assuming
Y = P to be the total space of a G-bundle itself, differentiation takes us to the
world of Lie algebroids, here presented in terms of their Koszul dual qDGCAs,
as indicated. The geometric realization | - | is indicated only for orientation
purposes. Notice that |[INN(G)| ~ EG implies that EG has the structure of a
topological group.



