Tangent Categories

David M. Roberts, Urs Schreiber and Todd Trimble

September 5, 2007

Abstract

For any *n*-category C we consider the sub-*n*-category $TC \subset C^2$ of squares in C with pinned left boundary. This resolves the space of objects in C in a natural way. We describe various properties of TC and indicate why it deserves to be addressed as the tangent *n*-category of C.

Contents

1	Introduction	1
2	Tangent Categories2.1Definition2.2Inner automorphisms2.3Properties2.4Simplicial aspects	2 2 4 5 6
3	Tangent n-Categories 3.1 Strict tangent 2-Categories	7 7
4	Arrow-fields and Flows on <i>n</i> -Categories 4.1 G-flows	7 8
5	Universal <i>n</i> -Bundles 5.1 Principal 1-Bundles with connection	10 10

1 Introduction

URS: Instead of a real introduction, at the moment I offer only the following reflection.

Tangent categories play two different important roles, which a priori seem to be rather unrelated:

• The tangent *n*-category TC is a puffed up version of the space of objects C_0 . For C an *n*-groupoid, the canonical inclusion

 $C_0 \rightarrow TC$

is an equivalence. The canonical sequence

$$Mor(C) \to TC \to C$$

is the n-groupoid incarnation of the universal C-bundle [2].

• At the same time, TC does know about the tangency relations on C_0 induced by Mor(C): for C an n-groupoid, G-flows

$$\Gamma_G(TC) := \{ G \to \Gamma(TC) \subset T_{\mathrm{Id}_C}(\mathrm{End}(C)) \}$$

do provide a generalization of the concept of vector fields on C_0 in that for $G = \mathbb{R}$ and with everything taken to be smooth we have that sections

$$\Gamma_{\mathbb{R}}(TC) \simeq \Gamma(\operatorname{Lie}(C))$$

do coincide with the sections of the Lie n-algebroid associated with C.

The apparent dichotomy – universal C spaces on one hand, differentials on C on the other – is resolved by noticing that TC is actually to be regarded as the universal C-bundle equipped with the universal C-connection [3].

2 Tangent Categories

2.1 Definition

We write

 $pt := \{\bullet\}$

for the terminal category and

$$2 := \{\bullet \to \circ\}$$

for the category with two objects and one nontrivial morphism, going between them. Then for C any category, we have the category

$$C^2 := \operatorname{Hom}_{\operatorname{Cat}}(2, C)$$

of commuting squares in C, with composition being the vertical pasting of squares. C^2 has two obvious projections onto C

$$C^2 \xrightarrow[]{\text{dom}} C$$

which may be thought of as arising from pullback along the two injections

$$pt \xrightarrow[\circ]{\circ} 2$$

in that

Definition 1 (tangent category) For C any category, its tangent category TC is defined to be the strict pullback

in Cat.

Here $C_0 := \text{Obj}(C)$ is regarded as a discrete category and $i_C : C_0 \to C$ sends objects to identity endomorphisms.

Hence TC is the co-slice category

$$TC = \bigoplus_{a \in \mathrm{Obj}(C)} (a \downarrow C) \,.$$

Objects of TC are morphisms $f : a \to b$ in C, and morphisms $f \xrightarrow{h} f'$ in TC are commuting triangles

in C.

Remark. The definition of the tangent category is an exact analogue of the sum of path spaces, construed as a pullback in Top:

Here I = [0, 1] is the interval, $eval_0$ is evaluation at the left boundary of the interval and |X| is the set underlying the topological space X, equipped with the discrete topology.

That and how TC is still usefully thought of as a *tangent* bundle is discussed in 4.

Definition 2 (tangent category functor) We write

$$T: \mathrm{Cat} \to \mathrm{Cat}$$

for the corresponding functor.

Hence for $F: C \to D$ any functor, the functor

$$TF:TC \rightarrow TD$$

acts by postcomposition with F, in that

2.2 Inner automorphisms

For C any category, the categorical tangent space

$$T_{\mathrm{Id}_C}(\mathrm{End}(C))$$

in $\operatorname{End}(C)$ at the identity endomorphism plays a special role. It makes good sense to address these endomorphisms connected to the identity as *inner* endomorphisms.

Definition 3 For C any groupoid, we address

 $\operatorname{AUT}(C) := \operatorname{Aut}_{\operatorname{Cat}}(C)$

as the automorphism 2-group of C;

•

.

•

$$\operatorname{INN}(C) := T_{\operatorname{Id}_C}(\operatorname{End}(C))$$

as the inner automorphisms 2-group of C

 $Z(C) := \Sigma \operatorname{End}_{\operatorname{Id}_C}$

as the center of C

$$\operatorname{OUT}(C) := \operatorname{coker}(\operatorname{INN}(C) \hookrightarrow \operatorname{AUT}(C))$$

as the outer automorphism 2-group of C.

URS: I need to think about how to define OUT(C) properly. These fit into an exact sequence of 2-groups

$$Z(C) \to \text{INN}(C) \to \text{AUT}(C) \to \text{OUT}(C)$$
.

2.3 Properties

•

Proposition 1 The discrete category over the space Mor(C) arises as the pullback

We may read that as a "short exact sequence"

 $\operatorname{Mor}(C) \to TC \to C$.

Proposition 2 When C is a groupoid, then

 $TC \simeq C_0$

and in fact the projection

 $TC \rightarrow C_0$

is weakly inverse to the canonical section

 $C_0 \to TC$.

Definition 4 We write

of $TC \to C_0$.

 $\Gamma(TC)$

 $e: C_0 \to TC$

for the category of sections

Proposition 3 When C is a groupoid, then we have a canonical equivalence (isomorphism, even)

 $\Gamma(TC) \simeq T_{\mathrm{Id}_C}(\mathrm{End}(C)).$

Remark. Recall from 2.2 that this equips $\Gamma(TC)$ with a monoidal structure, even the structure of a 2-group

$$INN(C) := T_{Id}(End(C))$$
.

This monoidal structure is crucial in 4 and for relating tangent categories to ordinary notions of tangent spaces.

Notice that for n > 1 one finds that

$$\Gamma(TC) \to T_{\mathrm{Id}_C}(\mathrm{End}(C))$$

is no longer an equivalence but becomes a proper inclusion.

2.4 Simplicial aspects

Notice that a sequence of k composable morphisms

in TC is, since all triangles commute, the same as a sequence

of k + 1 composable morphisms in C.

This means that when passing to nerves, the tangent functor T becomes what is known as *décalage* in the simplicial context:

Definition 5 Denote by

$$[1+(-)]:\Delta^{\rm op}\to\Delta^{\rm op}$$

the obvious functor which acts on objects as

$$[n]\mapsto \left[n+1\right] .$$

Proposition 4 We have a weakly commuting square

Proof. Notice that n-simplices in TC are commuting squares

3 Tangent *n*-Categories

3.1 Strict tangent 2-Categories

4 Arrow-fields and Flows on *n*-Categories

Isham [1] coined the term *arrow field* on a category C for what we conceive as a section

 $e \in \Gamma(TC),$

thinking of it as a model for a tangent vector field on C_0 . On the other hand, such an e is far from being "infinitesimal" in any sense. We shall now make use of the monoidal structure on $\Gamma(TC)$ – also noticed by Isham – to obtain a sensible notion of categorical vector fields. We exhibit the special cases in which this reproduces ordinary sections of ordinary vector bundles.

4.1 *G*-flows

Definition 6 For C any groupoid and G any group, we address a group homomorphism

 $v: G \to \text{INN}(C)$

as a G-flow on C. For each $g \in G$ we write

for the corresponding element in INN(G). A morphism between two categories C and D equipped with G-flows is a functor

 $F:C\to D$

which respects the flows in that

for all $g \in G$.

We write

$$\Gamma_G(TC) := \operatorname{Hom}(G, \operatorname{INN}(C))$$

for the collection of G-flows on C.

Example (ordinary vector fields). Let X be a smooth manifold and $\Pi_1(X)$ its fundamental groupoid. Smooth \mathbb{R} -flows on $\Pi_1(X)$ are in canonical bijection with ordinary vector fields on X

$$\Gamma(TX) \simeq \Gamma_{\mathbb{R}}(T\Pi_1(X)) \,.$$

(Here on the left TX denotes the ordinary tangent bundle of X.)

Example (odd vector fields). Let sVect be the category of super vector spaces. The parity shift operator

$$\Pi: sVect \to sVect$$

characterized by the fact that

for all morphisms $V \xrightarrow{f} W$ with $V \xrightarrow{\sim} \Pi V$ the canonical isomorphism manifestly is a \mathbb{Z}_2 -flow on sVect, hence an element

$$\Pi \in \Gamma_{\mathbb{Z}_2}(T \text{ sVect})$$
.

It might be useful to think of Π as the "flow of an odd vector field" in supergeometry.

Example (Lie algebroids). For C any Lie groupoid with Lie algebroid Lie(C), we have

 $\Gamma_{\mathbb{R}}(TC) \simeq \Gamma(\operatorname{Lie}(C)).$

The canonical morphism

$$C \to \operatorname{codisc}(C_0)$$

induces the anchor map

$$\Gamma_{\mathbb{R}}(TC) \to \Gamma_{\mathbb{R}}(T\Pi_1(C_0)).$$

The Lie bracket on sections is obtained from the group commutator in INN(C) in the usual way.

5 Universal *n*-Bundles

5.1 Principal 1-Bundles with connection

For the following, let

 $C := \Sigma G$

be the one-object groupoid given by a group G. The sequence

 $Mor(C) \to TC \to C$

which each tangent category sits in then becomes

$$G \to T\Sigma G \to \Sigma G \,,$$

which we also frequently denote

$$G \to \text{INN}(G) \to \Sigma G$$
.

This sequence is the universal G-bundle in the world of groupoids.

Proposition 5 (Segal) The geometric realization of the nerve of

$$G \to T\Sigma G \to \Sigma G$$

is a model for the universal G-bundle

$$\begin{array}{c} G \longrightarrow T\Sigma G \longrightarrow \Sigma G \\ \hline \downarrow |\cdot| & & \downarrow |\cdot| & & \downarrow |\cdot| \\ G \longrightarrow EG \longrightarrow BG \end{array}$$

But here we shall find it useful not to pass to spaces by realizing nerves. The entire discussion can usefully be done entirely within the world of groupoids.

For X some space, choose a good cover

$$\pi: Y \to X$$

and denote by

$$Y^{[2]} \xrightarrow[\pi_2]{\pi_2} Y$$

the corresponding groupoid. Noticing that $|Y^{[2]}| \simeq X$ we may take this as a groupoid model of X.

Proposition 6 Equivalence classes of principal G-bundles on X are in bijection with equivalence classes

$$f \in [Y^{[2]}, \Sigma G]/_{\sim}$$

of functors.

Proof. By unwrapping the relevant definitions one finds that functors $Y^{[2]} \rightarrow \Sigma G$ are precisely *G*-cocycles on *X*, while transformations of these functors are precisely isomorphisms of *G*-cocycles.

We may hence regard $f: Y^{[2]} \to \Sigma G$ as a classifying map. By pulling this back along the groupoid version of the universal G-bundle

we obtain the groupoid version of the total space

of the G-bundle classified by f

But there is more. Since for $C = \Sigma G$ we have that TC is again itself a 2-group, we may iterate the tangent category construction to obtain

This does not close strictly, but up to pseudonatural transformation

Here the sequence in the middle is the universal INN(G)-2-bundle. We may regard

- ΣTC as the fundamental 2-groupoid of the universal G-bundle;
- $T\Sigma TC$ as the pair groupoid $EG \times EG$ of the fundamental *G*-bundle, pulled back to the fundamental 2-groupoid, such that after diving out *G* it becomes the Atiyah groupoid $At(EG) := EG \times_G EG$ pulled back to the fundamental 2-groupoid.
- A 2-morphism in ΣTC looks like

A 2-morphism in $T\Sigma TC$ covering this looks like

where all labels are elements in G. Here one should think of q and q' as elements in the fiber of EG over the chosen base point \bullet , and of F and F' as two choices of fiber isomorphisms over the paths g and g', respectively.

Since TC = INN(G) is equivalent to the trivial 2-group, its universal 2bundle $T\Sigma TC$ is trivializable, and we have a canonical section

$$\Sigma TC \rightarrow T\Sigma TC$$

But this section of the universal INN(G) 2-bundle we can regard as a choice of connection on the 1-bundle, namely as a splitting of the Atiyah groupoid projection

But this is essentially nothing but the identity 2-functor

$$\Sigma TC \to \Sigma TC$$

We should think of this as the universal connection on the universal G-bundle:

$$\operatorname{curv}_{EG} := \operatorname{Id} : \Sigma TC \to \Sigma TC$$
.

Write $\Pi_2(X)$ for the fundamental 2-groupoid of the space X (objects are the points in X, morphisms are thin-homotopy classes of paths in X, 2-morphisms are homotopy classes of surfaces in X).

The weak pushout $\mathcal{C}_2(Y)$

addressed as the *path pushout* in [4] is the 2-groupoid modelling the fundamental 2-groupoid of X with respect to the covering Y. It is the 2-groupoid generated from $\Pi_2(Y^{[2]})$ and from $Y^{[2]}$, modulo the relations

for all $x \xrightarrow{\gamma} y$ in Mor₁($\Pi_2(Y^{[2]})$). We find that extending our classifying map

$$Y^{[2]} \downarrow_{f} \\ C \longrightarrow \Sigma T C$$

from points to paths

$$Y^{[2]} \longrightarrow \mathcal{C}_{2}(Y)$$

$$\downarrow^{g} \qquad \downarrow^{(\operatorname{curv},f)}$$

$$C \longrightarrow \Sigma T C$$

is the same as choosing a G-connection on the bundle classified by f, by [4]. Locally, i.e. on generators of $\mathcal{C}_2(Y)$ coming from $\Pi_2(Y^{[2]})$ this 2-functor curv is precisely the curvature 2-functor of a parallel transport

$$\operatorname{tra}: \mathcal{P}_1(Y) \to \Sigma G$$
.

Notice that we may think of the connection on our bundle

$$(\operatorname{curv}, f) : \mathcal{C}_2(Y) \to \Sigma TC$$

as the pullback of the universal connection

$$\operatorname{curv}_{EG} := \operatorname{Id} : \Sigma TC \to \Sigma TC$$

along a refinement of our classifying map f, simply as

$$(\operatorname{curv}, f): \mathcal{C}_2(Y) \longrightarrow \Sigma T C \xrightarrow{\operatorname{curv}_{EG}} \Sigma T C$$
.

References

- C. J. Isham, Quantising on a general category, Adv. Theor. Math. Phys. 7 (2003) 331-367, available as arXiv:gr-qc/0303060
- [2] D. M. Roberts, U. Schreiber, The inner automorphism 3-group of a strict 2-group, available as arXiv:0708.1741
- [3] U. Schreiber, J. Stasheff, *Connections with values in Lie n-algebras*, in preparation
- [4] U. Schreiber, K. Waldorf, *Parallel transport and functors*, available as arXiv:0705.0452

Figure 1: The universal *G*-bundle and its pullbacks in the world of groupoids and Lie algebroids. $C = \Sigma G$ is the one-object groupoid corresponding to *G*, TC = INN(G) its inner automorphism 2-group, whose underlying groupoid is the total space of the universal *G*-bundle. $Y \to X$ is a good cover of base space and $C_2(Y)$ the fundamental 2-groupoid of *X* relative to this cover. Assuming Y = P to be the total space of a *G*-bundle itself, differentiation takes us to the world of Lie algebroids, here presented in terms of their Koszul dual qDGCAs, as indicated. The geometric realization $|\cdot|$ is indicated only for orientation purposes. Notice that $|\text{INN}(G)| \simeq EG$ implies that *EG* has the structure of a topological group.