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Abstract

For any n-category C we consider the sub-n-category TC ⊂ C2 of
squares in C with pinned left boundary. This resolves the space of objects
in C in a natural way. We describe various properties of TC and indicate
why it deserves to be addressed as the tangent n-category of C.
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1 Introduction

URS: Instead of a real introduction, at the moment I offer only the following
reflection.

Tangent categories play two different important roles, which a priori seem
to be rather unrelated:

• The tangent n-category TC is a puffed up version of the space of objects
C0. For C an n-groupoid, the canonical inclusion

C0 → TC
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is an equivalence. The canonical sequence

Mor(C) → TC → C

is the n-groupoid incarnation of the universal C-bundle [2].

• At the same time, TC does know about the tangency relations on C0

induced by Mor(C): for C an n-groupoid, G-flows

ΓG(TC) := {G → Γ(TC) ⊂ TIdC
(End(C))}

do provide a generalization of the concept of vector fields on C0 in that
for G = R and with everything taken to be smooth we have that sections

ΓR(TC) ' Γ(Lie(C))

do coincide with the sections of the Lie n-algebroid associated with C.

The apparent dichotomy – universal C spaces on one hand, differentials on
C on the other – is resolved by noticing that TC is actually to be regarded as
the universal C-bundle equipped with the universal C-connection [3].

2 Tangent Categories

2.1 Definition

We write
pt := {•}

for the terminal category and

2 := {• → ◦}

for the category with two objects and one nontrivial morphism, going between
them. Then for C any category, we have the category

C2 := HomCat(2, C)

of commuting squares in C, with composition being the vertical pasting of
squares. C2 has two obvious projections onto C

C2
dom //

cod
// C

which may be thought of as arising from pullback along the two injections

pt
• //
◦

// 2
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in that

dom : 2

a1

��

a2

BBCf

��

7→ pt • // 2

a1

��

a2

BBCf

��

.

Definition 1 (tangent category) For C any category, its tangent category
TC is defined to be the strict pullback

TC //

��

C2

dom

��
C0

iC // C

in Cat.

Here C0 := Obj(C) is regarded as a discrete category and iC : C0 → C sends
objects to identity endomorphisms.

Hence TC is the co-slice category

TC =
⊕

a∈Obj(C)

(a ↓ C) .

Objects of TC are morphisms f : a → b in C, and morphisms f
h // f ′ in

TC are commuting triangles

b

h

��

a

f //

f ′ // b′

in C.

Remark. The definition of the tangent category is an exact analogue of the
sum of path spaces, construed as a pullback in Top:

PX //

��

XI

eval0

��
|X| // X

.
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Here I = [0, 1] is the interval, eval0 is evaluation at the left boundary of the
interval and |X| is the set underlying the topological space X, equipped with
the discrete topology.

That and how TC is still usefully thought of as a tangent bundle is discussed
in 4.

Definition 2 (tangent category functor) We write

T : Cat → Cat

for the corresponding functor.

Hence for F : C → D any functor, the functor

TF : TC → TD

acts by postcomposition with F , in that

TF : 2

a1

��

a2

BBCf

��

7→ 2

a1

��

a2

BBC
F // Df

��

.

2.2 Inner automorphisms

For C any category, the categorical tangent space

TIdC
(End(C))

in End(C) at the identity endomorphism plays a special role. It makes good
sense to address these endomorphisms connected to the identity as inner endo-
morphisms.

Definition 3 For C any groupoid, we address

•
AUT(C) := AutCat(C)

as the automorphism 2-group of C;

•
INN(C) := TIdC

(End(C))

as the inner automorphisms 2-group of C

•
Z(C) := ΣEndIdC

as the center of C
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•
OUT(C) := coker(INN(C) ↪→ AUT(C))

as the outer automorphism 2-group of C.

URS: I need to think about how to define OUT(C) properly.
These fit into an exact sequence of 2-groups

Z(C) → INN(C) → AUT(C) → OUT(C) .

2.3 Properties

Proposition 1 The discrete category over the space Mor(C) arises as the pull-
back

Mor(C) cod //

��

C0

iC

��
TC // C2 cod // C

.

We may read that as a “short exact sequence”

Mor(C) → TC → C .

Proposition 2 When C is a groupoid, then

TC ' C0

and in fact the projection
TC → C0

is weakly inverse to the canonical section

C0 → TC .

Definition 4 We write
Γ(TC)

for the category of sections
e : C0 → TC

of TC → C0.

Proposition 3 When C is a groupoid, then we have a canonical equivalence
(isomorphism, even)

Γ(TC) ' TIdC
(End(C)) .
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Remark. Recall from 2.2 that this equips Γ(TC) with a monoidal structure,
even the structure of a 2-group

INN(C) := TId(End(C)) .

This monoidal structure is crucial in 4 and for relating tangent categories to
ordinary notions of tangent spaces.

Notice that for n > 1 one finds that

Γ(TC) → TIdC
(End(C))

is no longer an equivalence but becomes a proper inclusion.

2.4 Simplicial aspects

Notice that a sequence of k composable morphisms

a // b // c // d

x

__????????

OO ??��������

77oooooooooooooo

in TC is, since all triangles commute, the same as a sequence

a // b // c // d

x

__????????

of k + 1 composable morphisms in C.
This means that when passing to nerves, the tangent functor T becomes

what is known as décalage in the simplicial context:

Definition 5 Denote by

[1 + (−)] : ∆op → ∆op

the obvious functor which acts on objects as

[n] 7→ [n + 1] .

Proposition 4 We have a weakly commuting square

Cat

T

��

N // [∆op,Set]

[1+(−)]∗

��
Cat

N
// [∆op,Set]

∼

x� yy
yy

yy
yy

yy
yy

yy
yy

y

yy
yy

yy
yy

yy
yy

yy
yy

y

.
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Proof. Notice that n-simplices in TC are commuting squares

[n] //

��

2× [n]

��
[0] // C

but the pushout of this co-cone is [n + 1]

[n] //

��

2× [n]

f

��
[0] // [n + 1]

,

where

f :

0 // 1 // 2 // k

x0 //

OO

x1 //

OO

x2 //

OO

xk

OO
7→

0 // 1 // 2 // k

x0

``@@@@@@@@

OO >>~~~~~~~~

77oooooooooooooo
7→

a // b // c // d

x

__????????
.

Hence we functorially assign (n + 1)-simplices in C to n-simplices in TC

[n] //

��

2× [n]

��

f

zzuuuuuuuuu

[n + 1]
!

$$IIIIIIIIII

[0] //

<<yyyyyyyyy
C

.

�

3 Tangent n-Categories

3.1 Strict tangent 2-Categories

4 Arrow-fields and Flows on n-Categories

Isham [1] coined the term arrow field on a category C for what we conceive as
a section

e ∈ Γ(TC) ,
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thinking of it as a model for a tangent vector field on C0. On the other hand,
such an e is far from being “infinitesimal” in any sense. We shall now make
use of the monoidal structure on Γ(TC) – also noticed by Isham – to obtain a
sensible notion of categorical vector fields. We exhibit the special cases in which
this reproduces ordinary sections of ordinary vector bundles.

4.1 G-flows

Definition 6 For C any groupoid and G any group, we address a group homo-
morphism

v : G → INN(C)

as a G-flow on C. For each g ∈ G we write

C

Id

��

AdvC (g)

BBCv(g)

��

for the corresponding element in INN(G). A morphism between two categories
C and D equipped with G-flows is a functor

F : C → D

which respects the flows in that

C

Id

��

AdvC (g)

BBC

F

��
D

vC(g)

��
=

C

F

��
D

Id

��

AdvD(g)

BBDvD(g)

��

for all g ∈ G.

We write
ΓG(TC) := Hom(G, INN(C))

for the collection of G-flows on C.

8



Example (ordinary vector fields). Let X be a smooth manifold and Π1(X)
its fundamental groupoid. Smooth R-flows on Π1(X) are in canonical bijection
with ordinary vector fields on X

Γ(TX) ' ΓR(TΠ1(X)) .

(Here on the left TX denotes the ordinary tangent bundle of X.)

Example (odd vector fields). Let sVect be the category of super vector
spaces. The parity shift operator

Π : sVect → sVect

characterized by the fact that

V
f //

∼

��

W

∼

��
ΠV

Πf // ΠW

for all morphisms V
f // W with V

∼ // ΠV the canonical isomorphism
manifestly is a Z2-flow on sVect, hence an element

Π ∈ ΓZ2(T sVect) .

It might be useful to think of Π as the “flow of an odd vector field” in superge-
ometry.

Example (Lie algebroids). For C any Lie groupoid with Lie algebroid
Lie(C), we have

ΓR(TC) ' Γ(Lie(C)) .

The canonical morphism
C → codisc(C0)

induces the anchor map

ΓR(TC) → ΓR(TΠ1(C0)) .

The Lie bracket on sections is obtained from the group commutator in INN(C)
in the usual way.
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5 Universal n-Bundles

5.1 Principal 1-Bundles with connection

For the following, let
C := ΣG

be the one-object groupoid given by a group G.
The sequence

Mor(C) → TC → C

which each tangent category sits in then becomes

G → TΣG → ΣG ,

which we also frequently denote

G → INN(G) → ΣG .

This sequence is the universal G-bundle in the world of groupoids.

Proposition 5 (Segal) The geometric realization of the nerve of

G → TΣG → ΣG

is a model for the universal G-bundle

G //
_

|·|
��

TΣG //
_

|·|
��

ΣG_

|·|
��

G // EG // BG

.

But here we shall find it useful not to pass to spaces by realizing nerves. The
entire discussion can usefully be done entirely within the world of groupoids.

For X some space, choose a good cover

π : Y → X

and denote by

Y [2]
π1 //
π2

// Y

the corresponding groupoid. Noticing that |Y [2]| ' X we may take this as a
groupoid model of X.

Proposition 6 Equivalence classes of principal G-bundles on X are in bijection
with equivalence classes

f ∈ [Y [2],ΣG]/∼

of functors.
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Proof. By unwrapping the relevant definitions one finds that functors Y [2] →
ΣG are precisely G-cocycles on X, while transformations of these functors are
precisely isomorphisms of G-cocycles. �

We may hence regard f : Y [2] → ΣG as a classifying map. By pulling this
back along the groupoid version of the universal G-bundle

G

��
INN(G)

��
Y [2]

f // ΣG

we obtain the groupoid version of the total space

Y [2] ×ΣG INN(G) //

��

INN(G)

��
Y [2]

f // ΣG

of the G-bundle classified by f
But there is more. Since for C = ΣG we have that TC is again itself a

2-group, we may iterate the tangent category construction to obtain

Mor(C) //

��

TC //

��

C

TC

��

// TΣTC

��

// ΣTC

C ΣTC

.

This does not close strictly, but up to pseudonatural transformation

Mor(C) //

��

TC //

��

C

��
TC

��

// TΣTC

��

// ΣTC

C // ΣTC

'
}� ��

��
��

��

��
��

��
��

'
x� zz

zz
zz

zz

zz
zz

zz
zz

.

Here the sequence in the middle is the universal INN(G)-2-bundle.
We may regard
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• ΣTC as the fundamental 2-groupoid of the universal G-bundle;

• TΣTC as the pair groupoid EG×EG of the fundamental G-bundle, pulled
back to the fundamental 2-groupoid, such that after diving out G it be-
comes the Atiyah groupoid At(EG) := EG ×G EG pulled back to the
fundamental 2-groupoid.

A 2-morphism in ΣTC looks like

•

g

��

g′=hg

CC•h

��

.

A 2-morphism in TΣTC covering this looks like

•

g′

��

g

��

•

q //

q′ // •

F

��

F ′

�	

h +3 7→

•

g′

��

g

��
•

h +3 ,

where all labels are elements in G. Here one should think of q and q′ as elements
in the fiber of EG over the chosen base point •, and of F and F ′ as two choices
of fiber isomorphisms over the paths g and g′, respectively.

Since TC = INN(G) is equivalent to the trivial 2-group, its universal 2-
bundle TΣTC is trivializable, and we have a canonical section

ΣTC → TΣTC .

But this section of the universal INN(G) 2-bundle we can regard as a choice
of connection on the 1-bundle, namely as a splitting of the Atiyah groupoid
projection

TΣTC → ΣTC .

•

g′

��

g

��
•

h +3 7→

•

g′

��

g

��

•

Id
//

Id // •

g

��

g′

�	

h +3 ,

But this is essentially nothing but the identity 2-functor

ΣTC → ΣTC .
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We should think of this as the universal connection on the universal G-bundle:

curvEG := Id : ΣTC → ΣTC .

Write Π2(X) for the fundamental 2-groupoid of the space X (objects are the
points in X, morphisms are thin-homotopy classes of paths in X, 2-morphisms
are homotopy classes of surfaces in X).

The weak pushout C2(Y )

Π2(Y [2]) //

��

Π2(Y )

��
Π1(Y ) // C2(Y )

'
~� ��

��
��

�

��
��

��
�

,

addressed as the path pushout in [4] is the 2-groupoid modelling the fundamental
2-groupoid of X with respect to the covering Y . It is the 2-groupoid generated
from Π2(Y [2]) and from Y [2], modulo the relations

π1(x)
π1(γ) //

��

π1(y)

��
π2(x)

π2(γ) // π2(y)

for all x
γ // y in Mor1(Π2(Y [2])).

We find that extending our classifying map

Y [2]

f

��
C // ΣTC

from points to paths

Y [2]

g

��

// C2(Y )

(curv,f)

��
C // ΣTC

is the same as choosing a G-connection on the bundle classified by f , by [4].
Locally, i.e. on generators of C2(Y ) coming from Π2(Y [2]) this 2-functor curv is
precisely the curvature 2-functor of a parallel transport

tra : P1(Y ) → ΣG .
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Notice that we may think of the connection on our bundle

(curv, f) : C2(Y ) → ΣTC

as the pullback of the universal connection

curvEG := Id : ΣTC → ΣTC

along a refinement of our classifying map f , simply as

(curv, f) : C2(Y ) // ΣTC
curvEG// ΣTC .

14



References

[1] C. J, Isham, Quantising on a general category, Adv.Theor.Math.Phys. 7
(2003) 331-367, available as arXiv:gr-qc/0303060

[2] D. M. Roberts, U. Schreiber, The inner automorphism 3-group of a strict
2-group, available as arXiv:0708.1741

[3] U. Schreiber, J. Stasheff, Connections with values in Lie n-algebras, in
preparation

[4] U. Schreiber, K. Waldorf, Parallel transport and functors, available as
arXiv:0705.0452

15



Y [2] ×f TC

��

��		
		

		
		

		
		

		
		

		
		

		
	

// C2(Y )×(curv,f) TΣTC

����
��

��
��

��
��

��
��

��
��

��
��

�

��
TC

		
		
		
	

��		
		

		
		

		
		

		

// TΣTC
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EG //

����
��
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��
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��

��
��

��
��

�
EEG

����
��

��
��

��
��

��
��

��
��

��
��

Y [2]

f

��

// C2(Y )

(curv,f)

��
C = ΣG //

�

|·|

55ΣTC

curvEG

PP

BG // BEG

Ω•
li(G) Ω•(P )i∗oo

g∗

'

OO

inn(g)∗oo

(A,FA)

OO

}

Lie

��

Figure 1: The universal G-bundle and its pullbacks in the world of groupoids
and Lie algebroids. C = ΣG is the one-object groupoid corresponding to G,
TC = INN(G) its inner automorphism 2-group, whose underlying groupoid is
the total space of the universal G-bundle. Y → X is a good cover of base space
and C2(Y ) the fundamental 2-groupoid of X relative to this cover. Assuming
Y = P to be the total space of a G-bundle itself, differentiation takes us to the
world of Lie algebroids, here presented in terms of their Koszul dual qDGCAs,
as indicated. The geometric realization | · | is indicated only for orientation
purposes. Notice that |INN(G)| ' EG implies that EG has the structure of a
topological group.
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