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String(n) is some topological group, to be described in a moment. For
various reasons it appears to be of interest to understand what a String(n)-
bundle with connection would be. Here are some of these reasons.

1 The need for String(n)-Bundles

Killingback and others noticed [1, 2] that

1 super particles couple to Spin(n)-bundles with connection

like

2 super strings couple to String(n)-bundles with (?)

Using the Atiyah-Segal observation that

1 quantum (super) particles are functors 1CobS → HilbS

like

2 quantum (super) strings are functors 2CobS → HilbS

this should translate into a precise statement (about representations of cobor-
disms categories). Back then few people thought of categorification. But
Stolz and Teichner later made two remarks.

First Remark. First, following Dan Freed, Segal’s original viewpoint should
be refined to

1 quantum (super) particles are functors 1CobS → HilbS

like

2 quantum (super) strings are 2-functors Cobext
S → 2HilbS

This is nowadays known as extended quantum field theory.
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Second Remark. Moreover, it should be true that

1 Spin(n) bundles with connection are related to K-cohomology

like

2 String(n)-bundles with connection are related to elliptic cohomology

All in all, this is supposed to be considerable reason to be interested in
String(n)-bundles with connection.

2 What is String(n), anyway?

There is the classical definition of String(n), and there is a “revisionist” one.
The latter is maybe intuitively more accessible.

Revisionist definition: String(n) as stringy Spin(n). Superstrings (in
their RNS incarnation) are sometimes called spinning strings. Indeed, a
superstring is much like a continuous line of spinors.

This suggests that the corresponding gauge group is the loop group

ΩSpin(n)

or maybe its Kac-Moody central extension

Ω̂kSpin(n)

or maybe the path group
PSpin(n) .

Or maybe all of these. In fact, there are canonical group homomorphisms

Ω̂kSpin(n)
t // PSpin(n) α // Aut(Ω̂kSpin(n)) .

These satisfy two compatibility conditions which say that the groups here
conspire to form a (strict Fréchet-Lie) 2-group

G(2) .
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A 2-group is a category which behaves like a group.
Every toplogical category like this may be turned into a big ordinary

topological space by taking its nerve and forming its geometric realization.

nerve of category:
(simplicial set)

0-simplices 1-simplices 2-simplices etc.

g g1 g2
h // g1 g2

g3
h1

??�������

h2

��???????

h1·h2 //

geometric
realization:

fill with standard simplices in Rn – glue along common faces

If the category is a 2-group, the realization of its nerve is a topological group.

For G(2), this nerve is [8, 9]

|G(2)| ' String(n) .

ON FIRST READING, SKIP TO 3, NOW

Classical definition. This is all that is needed about String(n) in the follow-
ing. But for completeness, here is the classical definition.

Definition 1 The string group StringG of a simple, simply connected, compact
topological group G is (a model for) the 3-connected topological group with the same
homotopy groups as G, except

π3(StringG) = 0 ,

which, furthermore, fits into the exact sequence

1 // (BU(1) ' K(Z, 2)) // StringG // G // 1

of topological groups.

The string group proper is obtained by setting G = Spin(n).

String(n) := StringSpin(n) .
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The way to see that such a group is a plausible candidate for something gen-
eralizing the Spin-group, which, recall, fits into the exact sequence

1→ Z2 → Spin(n)→ SO(n)→ 1 ,

is to note that the first few homotopy groups πk of O(n) are

k = 0 1 2 3 4 5 6 7
πk(O(n)) = Z2 Z2 0 Z2 0 0 0 Z

.

Starting with O(n), we can successively “kill” the lowest nonvanishing homotopy
groups, thus obtaining first SO(n) (the connected component), then Spin(n) (the
universal cover) and finally String(n) (the 3-connected cover). Notice that with
π3 vanishing, String(n) cannot be a Lie group – but it can be a Lie 2-group.

Usually (see [5]), the definition of StringG includes also a condition on the

boundary map π3(G) ∂ // π2(K(Z, 2)) . Our definition above is really geared
towards the application where G = Spin(n), for which we find it more natural.

Namely, recall that every short exact sequence of topological groups

0→ A→ B → C → 0 ,

which happens to be a fibration, gives rise to a long exact sequence of homotopy
groups:

· · · // πn(A) // πn(B) // πn(C) ∂ // πn−1(A) // · · · .

In our case this becomes

· · · // πn(K(Z, 2)) // πn(StringG) // πn(G) ∂ // πn−1(K(Z, 2)) // · · · .

Demanding that π3(StringG) = 0 and assuming that also π2(StringG) = 0 (which
we noticed above is the case for G = Spin(n)) implies that we find inside this long
exact sequence the short exact sequence

0 // (π3(G) ' Z) ∂ //
Z

// 0 .

But this implies that the boundary map ∂ here is an isomorphism, hence that it
acts on Z either by multiplication with k = 1 or k = −1. (This number is really
the “level” governing this construction. If I find the time I will explain this later.)

In [5] this logic is applied the other way around. Instead of demanding that
π3(StringG) = 0 it is demanded that the boundary map

π3(G) ∂ //
Z

is given by multiplication with the level, namely a specified element in H4(BG).
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3 Connections, functorially: from here to there

Our statement

1 quantum (super) particles are functors 1CobS → HilbS

like

2 quantum (super) strings are 2-functors Cobext
S → 2HilbS

should be thought of as the quantization of the statement

1 parallel transport of particles is a functor P1(X)→ Vect

like

2 parallel transport of strings is a 2-functor P2(X)→ 2Vect

Here Pn(X) is the n-groupoid of n-paths in the space X.

C
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tra(γ2)

��

e1(y)

��

ē2(y′)��

tra(γ1)

��

e1(x)

��

ē2(x′) ��

//

//

33

33

�� ����

�� ����

tra(Σ)�� ����

In fact, a smooth spinor bundle with connection is enirely encoded [17]
in a smooth functor

tra : P1(X)→ Vect
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which sends paths to the parallel transport along them

tra : ( x
γ // y ) 7→ ( Vx

tra(γ) // Vy

(fiber over x)
identitfy along path γ // (fiber over y)

)

and which factors locally through a functor with values in Spin(n):

P1(Y ) π //

triv

(local structure)
��

P1(X)

tra
(global structure)

��
ΣSpin(n)

ρ

(representation)
// Vect

∼{� ������
.

4 2-Connections on String(n)-2-bundles

The above has a straightforward categorification. But first let’s look at what
Stolz and Teichner did.

Stolz-Teichner’s definition of a connection on a String(n)-bundle.
They observe the following important

Fact. To every String(n)-bundle is canonically associated a vonNeu-
mann algebra bundle.

But algebras, vonNeumann or not, naturally live not in a 1-category, but
in the 2-category

Bim .

So with the String(n)-associated algebra bundle given, Stolz and Teichner
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consider parallel transport 2-functors

x

γ

��

γ′

@@ yΣ
��

7→ Ax

Nγ

!!

Nγ′

==
Ay��

(fiber over x)

bimodule for path γ

!!

bimodule for path γ′

==
(fiber over y)

iso of bimodules
��

Why? Remember: String(n) is the realization of the nerve of a 2-group
G(2).

To get a G(2)-associated 2-vector bundle,

P2(Y ) π //

triv

(local structure)
��

P2(X)

tra
(global structure)

��
ΣG(2)

ρ

(representation)
// 2Vect

∼{� ������
,

we just need a 2-representation

ρ : ΣG(2) → 2Vect .

5 The canonical 2-Representation

What is a 2-Vector space? Noticing that

VectC = CMod
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and that Vect is again monoidal, we set

nVect = (n−1)VectMod .

General 2Vect is large and unwieldy. But we have a chain of canonical
inclusions

Intertwin
� � // Bim

� � //
VectMod

algebras
homomorphisms

intertwiners

algebras
bimodules

bimod. homom.

(and, by the way KV2Vect
� � // Bim

� � //
VectMod ).

Canonical strict 2-Rep on Intertwin. Every strict 2-group G(2) comes
from a crossed module of two ordinary groups

G(2) = ( H
t // G

α // Aut(H) ) .

For an ordinary representation

ρ0 : ΣH → Vect

of H and with
A := 〈im(ρ0)〉

the algebra generated from that we get a 2-functor

ρ : ΣG(2) → Intertwin ↪→ Bim ↪→ 2Vect

by

ρ : •

g

��

g′

AA•h
��

7→ A

α(g)

��

α(g′)

@@A·ρ0(h)
��

.

So:
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For every strict 2-group G(2) = (t : H → G) an ordinary representation ρ0

of H induces a notion of G(2)-associated 2-vector bundles.
Their typical fiber is (the module category of) the algebra generated from the

image of ρ0.

For the standard reps of Ω̂kSpin(n) this algebra is a von Neumann type
III factor.

6 Line 2-bundles versus String(n)-2-bundles

A simple example to keep in mind are rank-1 2-vector bundles – “line 2-
bundles”. These are the 2-vector bundles canonically associated to the 2-
group

G(2) = ΣU(1) = (U(1)→ 1)

by the standard representation of U(1) on C:

• Let G(2) = ΣU(1),

• then |G(2)| ' PU(H);

• local semi trivialization of ρ-associated ΣU(1)-2-bundles are line bundle
gerbes [18];

• indeed, these have the same classification as PU(H)-bundles, namely
by classes in H3(X,Z).

• The typical fiber is (Morita!)-equivalent to C, hence these are K(H)-
bundles (where K(H) is the algebra of finite rank operators.)

We can essentially send this example from G(2) = ΣU(1) to the string
2-group by using three results (two of which we already discussed):

Three results that clarify the situation for String(n) :

• [9, 8]: There is a strict Fréchet Lie 2-group

G(2) = Spin(n)k = (t : Ω̂kSpin(n)→ PSpin(n))

such that String(n) is the geometrical realization of its nerve

String(n) ' |Spin(n)k| .
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• [6, 7]: G(2)-2-bundles have the same classification as |G(2)|-1-bundles.

• For every strict Lie 2-group there is a canonical 2-representation

G(2)
ρ // Intertwin

� � // Bim
� � // 2Vect .

Caveat : Extending the canonical 2-rep from Lie to Fréchet is technically
subtle. One has to pass from finite-dimensional vector spaces to Hilbert
spaces and replace bimodule tensor products by Connes fusion.

line 2-bundle String 2-bundle

structure 2-group (U(1)→ 1) (Ω̂Spin(n)→ PSpin(n))

nerve of that PU(H) String(n)

associated 2-vector bundle finite-rank operators von-Neumann algebras

Bottom line: 2-Vector bundles with 2-connection associated by the canon-
ical 2-rep to G(2)-principal 2-bundles give a good definition for String(n) '
|G(2)| connections.

This definition is, in many respects, very similar to that by Stolz-Teichner
(for instance: fake flatness!).

Is it equivalent? I don’t know.
But it is useful, for instance for the following considerations.

7 Cartan connection with values in Lie n-

algebras

When passing from the topological group String(n) to the 2-group G(2), we
pass from the realm of pure topology to the realm of differential geometry.
But it’s still infinite-dimensional (Fréchet) differential geometry. We might
want to go one step further and describe connections on String(n)-bundles
in terms of plain old differential forms.
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←− topological —–Fréchet Lie—– Lie −→

2-functors on
String(n)-associated

bundles

associated
G(2)-2-vector

transport

Lie(G(2))-Cartan
connection

Stolz-Teichner BCSSW Stasheff-S.

This can be done by passing from Lie n-groups to Lie n-algebras.

Differentiating parallel n-transport. For differentiating a parallel trans-
port 2-functor

P2(X)→ ΣG(2)

it is convenient to first pass to the corresponding curvature 3-transport
[19, 18, 20].

transport curvature Bianchi

n (n+ 1) (n+ 2)

tra : Pn(X)→ ΣG(n) curvtra : Πn+1(X)→ ΣINN(G(n)) curvcurvtra

arbitrary
flat

(as (n+ 1)-transport)
= Bianchi identity

trivial
(as (n+ 2)-transport)

n = 1 A ∈ Ω1(Y, g) FA ∈ Ω2(Y, g) dAFA ∈ Ω3(Y, g)

n = 2
(
A,
B

)
∈ Ω1(Y,g)
×Ω2(Y,h)

(
β:=FA+t∗B,
H:=dAB

)
∈ Ω2(Y,g)
×Ω3(Y,h)

(
dAβ−t∗H,
dAH−β∧H

)
∈ Ω3(Y,g)
×Ω4(Y,g)

For one, smooth (n+1)-functors on the fundamental (n+1)-groupoid Πn+1(Y )
are related, differentially, to pseudo-1-functors on the pair groupoid.
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(illustration goes here)

So upon differentiation, our parallel transport n-functors turn into mor-
phisms from the tangent algebroid

Vect(Y )

to the Lie (n+ 1)-algebra
inn(g(n))

of inner derivations of the Lie n-algebra

g(n) := Lie(G(n)) .

Lie n-groupoids �differentiation//

Lie n-algebras
(' n-term
L∞-algebras)

'

quasi free
differential

graded commutative
algebras

(qfDGCAs)

morphism

Σ(INN(G(n)))

Πn+1(P )

F

OO
inn(g(n))

Vect(P )

f

OO
(
∧•sg∗(n), dinn(g(n)))

f∗

��
(Ω•(P ), d)

description

smooth pseudofunctor
from pair groupoid
of X to inner
automorphisms of
structure Lie n-group
G(n)

morphism of
Lie n-algebroids
' n-term
L∞-algebras
from tangent
algebroid of X
to inner derivation
Lie (n+ 1)-algebra
g(n) := Lie(G(n))

dual morphism
of qfDGCAs

The n-connections which factor through g(n) itself, however, are the flat n-
connections: all their curvature k-forms vanish:
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n=1 n=2

g � � // inn(g)

Vect(X)

(A)

FA=0

OO

Vect(X)

(A)

OO

n=2 n=3

(h→ g) � � // inn(h→ g)

Vect(X)

(A,B)

FA+t∗B=0
dAB=0

OO

Vect(X)

(A,B)

OO

8 String and Chern-Simons connections

In fact, in terms of Lie 2-algebras, that big scary topological group String(n)
becomes a small, handy Lie 2-algebra [8, 9]

string(g) := gµ ,

which is essentially just a simple Lie algebra g together with a multiple of
the canonical 3-cocycle µ.

This is just a first example of a general pattern [11, 13]:

• For every Lie (n+ 1)-cocycle µ on g there is a Lie n-algebra

gµ .

• For every invariant degree (n + 1)-polynomial k on g there is a Lie
(2n+ 1)-algebra

chk(g) .
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• For every transgressive element (Chern-Simons form) there is a short
(weakly) exact sequence

0 // gµk
� � // csk(g) // // chk(g) // 0 .
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G // EG // BG top. spaces

Disc(G) � � i //
_
|·|

OO

_

Lie

��

INN(G)
p // //

_
|·|

OO

_

Lie

��

ΣG
_
|·|

OO

_

��

Lie groupoids

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))oooo (
∧•(ssg)∗)? _oo free graded comm.

algebras

g � � //

∼(·)∗

inn(g)

∼(·)∗

Lie 2-algebras

elements in
cohomology

��

cocycle
Chern-Simons

element
inv. polynomial

0

0 p∗kI

τ

��

_
dinn(g)

OO

k
�p∗oo

µ
_
dg

OO

cs�i∗oo
_
dinn(g)

OO

g � � // inn(g) = // inn(g)

gµ � � //

OOOO

csk(g) // //

OOOO

chk(g)

OOOO

Lie (2n+ 1)-algebras

inn(gµ)

∼

Baez-Crans Chern-Simons Chern
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The Lie (2n+ 1)-algebra
csk(g)

is essentially defined by the fact that a connection form with values in it is
the corresponding Chern-Simons form CSk(A):

Baez-Crans Chern-Simons Chern

1 2n 2n+ 1 2n+ 1

g gµkoooo � � // csk(g) // // chk(g)

Vect(X)

(A)

FA=0

OO

Vect(X)

(A,B)

FA=0

dB+CSk(A)=0

OO

Vect(X)

(A,B,C)

C=dB+CSk(A)

OO

Vect(X)

(A,C)

dC=k((FA)n+1)

OO

.

For the special case of interest here, String(n), where everything is con-
trolled by the canonical 3-cocycle

µ = 〈·, [·, ·]〉

and the corresponding characteristic class

k(FA) = 〈FA ∧ FA〉
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we have

n = 1 n = 2 n = 3 n = 3

g stringk(g)oooo � � //

∼

inn(stringk(g))
as strict
as possible

g gkoooo � � // csk(g)

∼

// // chk(g)
as small
as possible

Vect(X)

(A)

FA=0

OO

Vect(X)

(A,B)

FA=0

dB+kCS(A)=0

OO

Vect(X)

(A,B,C)

C=dB+kCS(A)

OO

Vect(X)

(A,C)

dC=〈FA∧FA〉

OO ,

for
(A,B,C) ∈ Ω1(X, g)× Ω2(X)× Ω3(X) .

This should be one incarnation of the statement found in [5]:

String connections trivialize Chern-Simons theory.
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