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Abstract. In two-dimensional lattice spin systems in which the spins take values in a
finite group G we find a non-Abelian "parafermion" field of the form order x disorder
that carries an action of the Hopf algebra ^(G), the double of G. This field
leads to a "quantization" of the Cuntz algebra and allows one to define amplifying
homomorphisms on the ^(G)-invariant subalgebra that create the ^(G)-charges
and generalize the endomorphisms in the Doplicher-Haag-Roberts program. The
so-obtained category of representations of the observable algebra is shown to be
equivalent to the representation category of &(G). The representation of the braid
group generated by the statistics operator and the corresponding statistics parameter
are calculated in each sector.

1. Introduction

Let G be a finite group. Consider G-valued spin configurations on the 2-dimensional
square lattice, that is maps σ : Z2 — » G. The energy or Euclidean action fucntional of

f(σ-lσ), (1.1)

where the summation runs over nearest neighbour pairs of points in Z2 and / : G —> R
is a function of the positive type. This kind of classical statistical systems or the
corresponding quantum field theories will be called G-spin models.

Our first motivation for studying such models is that they provide the simplest
examples of lattice field theories exhibiting quantum symmetry, that is a symmetry
that cannot be described by a group. If G = Z(N), G-spin models reduce to the
well known Ising and Z(N) spin models. Z(N) models, or in general G-spin models
with an Abelian group G, are known to have a symmetry group G x G, where G
denotes the Pontryagin dual of G (the group of characters of G). The factor G is the
symmetry related to the order parameters and is realized - if the temperature is not
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too low - on the Hubert space by unitary operators Q(g), g G G defined formally as
follows. Let (|σ) | σ:Z — » G} be the field diagonal basis then

Q(9)\σ) = I - - - , 9<rx,gσx+ι, - - •} (1.2)

The factor G is the disorder symmetry and is related to the existence of solitons or
kinks. If the temperature is not too high the solitons are stable therefore the Hubert
space decomposes into inequivalent sectors labelled by the (left) twist σ^σZ1^ in the
boundary conditions. Let P(h) denote the projection

P(h)\σ)=δσooιhσ_Jσ). (1.3)

Utilizing the Abelianness of G we can build up from the P-s the unitary operators

(1.4)

where g G G and ( ):ό x G — > [/(I) is the canonical pairing. In this way
(9,9) ]~^ Q(g)Q(g) becomes a unitary representation of the order-disorder symmetry
group G x G.

If the group G is non-Abelian the Pontryagin dual loses its meaning, so does the
Q, but the algebra generated by Q(g) and P(h) is still a symmetry algebra of the
model. The relations

hijh2 - P(h2) ,

that can be obtained directly from (1.2-1.3), define the algebra J^(G), the double
of G. The same algebra occurs in an apparently quite different context, in orbifold
constructions of conformal field theories [DVVV,B1]. In our context &(G) is the
generalization of G x G to non-Abelian groups and can be interpreted as the order-
disorder symmetry of G-spin models.

&(G) is a quiasitriangular Hopf algebra and its basic properties were discussed
in [DPR, Bl]. In one respect <$(G) differs from all quasitriangular Hopf algebras
obtained as deformations of Lie algebras or Lie groups [Dr]. This is the existence
of a * -operation on J^(G), which makes it a Hopf * -algebra: the coproduct A and
the counit ε are * -algebra maps and the antipode 5 also commutes with *. For the

coproduct this means that if A(a) = α(1)0α(2), then Zl(α*) = α(1) ®α(2) . Furthermore
&(G) possesses an integral and is semisimple.

Once an action of a Hopf algebra H on a Hubert space 3@ is given one can
define the "adjoint" action 7 of H on the algebra <F of operators F : 3$ — > 3@ by
the formula [M]

Ίa(F) = U(a(l})FU(Sa(2}) , α G &>(G) . (1.6)

This action satisfies the following important properties:

where α = 5α*. The first property is known under different names: the coalgebra
&(G) "measures" the algebra 3? [S] or as the module algebra property [M]. For us the

importance of this relation is that if {F^} is a Dα-multiplet, i.e. ja(F^) — F^ Dl

a

τ(a)
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for some representations Da, a = 1,2 of ^(G), then F^ = F*F| is a (Dl x D2)-
multiplet, where

(D{ x D2) (α/j/'u := £>f V1}) D3

2'
3(a™) . (1.8)

The second property allows one to show that the adjoint {F1 } of a D-multiplet {F*}
is a ϊ)-multiplet, where Z) = Dτ o S is the contragredient representation. For a D-
multiplet {F*} the action (1.6) is equivalent to the generalized commutation relations
of [BMT]

U(a)Fi = Fl> ' Dlli(a(l})U(a(2}) . (1.9)

This latter relation can be applied also in the case of quasi Hopf algebras when the
measuring relation cannot be true and therefore the adjoint action (1.6) ipso facto
cannot be used. For an even more general kind of action of a symmetry algebra see
[Rl].

Our second motivation for studying G-spin models is to carry out - at least partially
- the Doplicher-Haag-Roberts program for exploring the symmetries of the model
merely from "observable" data [DHR, DR]. In this approach the internal symmetries
are treated as superselected ones therefore one starts from the "^(G)-invariant"
subalgebra ̂  of ̂ ,

Λ:={Aε3r 7α(A) = ε(α)A, Vα e ^(G)} , (1.10)

and interprets it as the algebra of observables. Then the equivalence classes of G*-
representations of ,/& defines in an abstract way the spectrum of the charge. If the
set of representations of ̂  can be given a monoidal structure then the set of charges
becomes the dual of a symmetry group if the spacetime dimension d > 3 or the
dual of a Hopf algebra or something more general [MSI] if d — 2. Such a monoidal
structure can be given if one considers only those representations π of ̂  that can
be obtained from a fixed faithful irreducible representation TTO by the application of a
localized endomorphism ρ\,A — -> ./^, that is π = πρ = π o ρ.

In concrete models it is technically very difficult to find endomorphisms ρ that are
not automorphisms. The only examples seem to be the chiral Ising model [MS2] and
certain generalizations of it [FGV]. In the locally finite dimensional case, that is in
lattice models, where all local algebras ^4(A) of observables localized in the finite
interval A are finite dimensional, this problem turns out to be more than a technicality:
there exist no (injective) endomorphisms ρ localized in A that are not automorphisms.
Since G-spin models belong to this class of models and the presence of an action of
&(G) suggests a fairly non-Abelian superselection structure, the question naturally
arises: what kind of generalization of endomorphisms can create the ^(G)-charges?

The answer is to use amplifying homomorphisms μ:.^ — > Mn(^), that is
G* -algebra homomorphisms from .̂  to the finite matrix amplification Mn(,/^) =
Λ 0 Mn. Throughout the paper we use the notation Mn for the algebra of n x n
complex matrices and Mn(^) for the algebra of n x n matrices with entries
in .̂ Given an amplifying homomorphism μ we can define the representation
TΓμ = (τr0(g)id)oμ of J& on the Hubert space ^0(g)Cn, where ̂ 0 is the representation
space of TTO. The monoidal structure on such representations is defined by the product
π

μ

 x ^v := πμxv w^m a natural product μ x v. In G-spin models we show that for a
special class of amply if y ing homomorphisms this monoidal structure reproduces the
product of representations of J^(G). This special class of amplifying homomorphisms
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consists of μ-s that have the form μ = μF, where

(1.11)

for some multiplet Fli G ̂ ", ^, j = 1, . . . , n. F is called a multiplet matrix if for
each fixed value of i, {F^} is a multiplet under the action of 7 and the following
relations hold:

"''Fjk* . (1.12)

We call relations (1.12) the F-algebra relations and they play the role for the amplifying
homomorphisms which the Cuntz algebra [C] did for endomorphisms [DR]. Since in
our case the F-algebra relations lead to a "quantized" symmetry, namely to the Hopf
algebra ^(G), relations (1.12) could be called a quantization of the Cuntz algebra.

The concrete fields F found in the G-spin model that satisfy the F-algebra have the
form F = order x disorder and in this respect are generalizations of the parafermion
fields of Z(N) models [FZ] and especially that of the Jordan-Wigner transformation
in the Ising model. They satisfy Frohlich's braided commutation relations [Fro],

' if x y> (L13)

with numerical ^-matrices B± obtained from the universal .R-matrix of &(G) by
applying the representation of &(G) according to which the F transforms. The
representations of the braid group one obtains in this way from &(G) occurred also
in a construction of 3-manifold invariants in [AC].

The paper is organized as follows. In Sect. 2 first we review the properties of J^(G),
then we define the non-local field algebra ̂  generated by order and disorder fields
and the action 7 of &(G) on ̂ . Special multiplet matrices obeying the F-algebra
and Frohlich's braid relation are constructed here. From Sect. 3 we start analyzing
the model from the DHR point of view. In Sect. 3 the local net structure of the
observable algebra ̂  is investigated. We find algebraic generators for ̂ , study the
inclusions of local observable algebras ^(Λ), prove Haag duality and triviality of
the relative commutant of ̂  in ̂ . in Sect. 4 the notions of a multiplet matrix F
and the associated special amplifying homomorphism μF are introduced. The main
result here is the equivalence of two braided monoidal G*-categories with subobjects,
direct sums and conjugates: the category Rep0^ of representations πμ of ̂  with
μ = μp for some multiplet matrix F on the one hand and the category RepJ^(G)
of representations of &(G) on the other hand. In Sect. 5 the notions of the statistics
operator, the left inverse, and the statistics parameter are discussed in the general
"amplified" circumstances. Applying them to G-spin models we compute the statistical
dimension and statistics phase in all the ^(G)-sectors for an arbitrary finite group G.
We reproduce Longo's result [L] that the index is equal to the square of the statistical
dimension. Finally we point out that the representations of the modular group defined
in [R2] and [B2] coincide in G-spin models.

In the end let us call the reader's attention to some points that are not contained
in this paper. If we take for / in formula (1.1) a character on the group then for
non-Abelian groups the model has a larger symmetry than the one generated by
Q-s and P-s. There will be analogous symmetry operators QR and PR that act
by right translation on the group and measuring right twist σl^σ^, respectively.
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The full symmetry is then an amalgamation of two, left and right, copies of
The observable algebra becomes smaller and the structure of the sectors is more
complicated. In this paper we study only the left <£ί(G) symmetry. There is another
direction where our discussion could be generalized. In the chiral Ising model a non-
Abelian sector exists [MS2] which has to have an analogue in the lattice Ising model.
This kind of sectors, however, are out of the scope of the present paper because
&(Z(2)) is the group algebra of Z(2) x Z(2). Last but not least we would like to
warn the reader that our discussion of superselection sectors is purely kinematical.
We have not proved for any particular Hamiltonian or transfer matrix that all of the
J^(G) -sectors actually exist. All the information on the dynamics is comprised in the
assumption that the vacuum representation TTO obeys Haag duality which is the typical
condition for unbroken symmetries. Experience with Z(N) models suggests that such
a representation TTO should be found at intermediate temperatures where neither the
order nor the disorder symmetries are broken and this phenomenon is accompanied
with criticality. To our knowledge critical points in non-Abelian spin models are not
yet known. There is an indication, however, that the integrable dynamics found in
[SV] in the *S3-spin model is critical and has &(S3) symmetry.

2. The Field Algebra of G-Spin Models

After summarizing the main properties of the quasitriangular G*-Hopf algebra &(G)
we analyze G-spin models in the spirit of traditional quantum field theory. We define
its field algebra ^ then the action of the symmetry algebra &(G) on ̂  . The
observable algebra j& is obtained as the ^(G)-invariant subalgebra of & and its
charged representations can be found in the reduction of a vacuum representation
π of & . Special fields, called non-Abelian parafermions, satisfying the F-algebra
relations are introduced, the existence of which will be important in later sections
when we will analyze the model from the DHR theory point of view.

2.1. The Double &(G} of a Finite Group G

Let C(G) denote the algebra of complex functions on G and CG be the group
algebra. Then J?(G) as an algebra is defined as the crossed product of C(G) and
CG with respect to the adjoint action of the latter on the former. Using the basis
elements (g,h) = P(g)Q(h) the multiplication rule m:^(G) <8> ®(G) -> ^(G) is
the following:

) ® (92, M = (0ι Λ) ' (02 > h2) = δgιhlthιg2 - (#15 V2) . (2.1)

The unit element of &(G) is 1 — (£", e) = Σ(g, e), where E and e are the unit
g

elements of C(G) and CG, respectively. ^"(G) becomes a unital * -algebra by defining
the *-operation as (#,ft)* = (h~lgh,h~l) on the basis elements and extending
antilinearly to @ϊ(G).

The coproduct Δ:&(G) -> @(G) <8> ^(G), the counit ε:^(G) -> C and the
antipode S:&(G) — > &(G) are defined on the basis elements as

Δ(g, h) = £)(/, ft) 0 ( f ~ l g , h) = (g, ft)(1) 0 (g, /ι)(2) ,
(2.2)

e , S(g, h) - (h~lg-lh, h~l)
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and are linearly extended to J^(G). One proves that Δ and ε are * -algebra
homomorphisms, S is a linear * -algebra antihomomorphism, S2 = id^(G). Moreover,
the coproduct is coassociative and the counit and the antipode obey the relations:

λ o (ε 0 id) o Δ = id = λ o (id0ε) o Δ , (2.3)

m o (S 0 id) o A = η o ε = m o (id 05) o 4 , (2.4)

where λ denotes the map of multiplication by scalars and η : C — » J^(G) is the unit
preserving algebra homomorphism. Due to these properties &(G) becomes a Hopf
* -algebra [S].

If G is non-Abelian, the Hopf algebra &(G) is neither commutative nor cocommu-
tative. But a weaker cocommutativity holds, namely, &(G) is a quasitriangular Hopf
algebra [M]. Indeed, there exists an invertible universal ^-matrix R E

with the properties

A' (a) = R Δ(a) - R~l , Vα <Ξ ^(G) , (2.6a)

(Z\ 0 id) J2 = R13 -β23 , (id ®Z\) R = R13 R12 , (2.6b)

where Z\' is the coproduct with interchanged tensor product factors.
An integral z £ H in a Hopf algebra H is defined by the property a z = ε(α) z,

a £ H. For finite dimensional Hopf algebras the linear space of integrals is one-
dimensional. The semisimplicity of a finite dimensional Hopf algebra is equivalent

to the statement ε(z) ^ 0 [S]. The element z = -—- X)(e, #) is an integral in &(G)
\G\ 9

with the property ε(z) — 1. As a consequence ϋ&(G) is semisimple, that is, all the left

=^r(G)-modules are completely reducible. Therefore using standard results [CR] one
concludes that every simple left ^(G)-module occurs in the left regular J^(G)-module
with multiplicity equal to its dimension.

2.1. Proposition. Let C~g — {h G G hg — gh} C G be the centralίzer subgroup of
g G G and let /15 /2, . . . , fN be representatives of the left cosets of C^ with f[=e

and N = |G:G~|. Let [vl,v2, . . . , vn} C CG^ be basis vectors of an irreducible
representation π of C^ in CG^ with n = dimπ. Then

i) a linear basis of the irreducible subrepresentation D^^ can be given as

{(Ϊi9f~\ίτvt) ί= 1, . . . , N t = 1, . . . , n} C ^(G), (2.7)

ii) the matrix elements in this basis and the character of the representation D^~ π) are

D9

(£)92t2(9, h) = δgιgι δg>hg2h-i π^(f-lhf2) , figf-1 = 9i, i = 1, 2 (2.8a)

*(3,,)(3, h) - δg€Al δh€Cg χπ(f~lhf) , fgf-1 = g , (2.8b)

where the index pairs gztif ί = 1, 2 refer to the vectors (gτ, fivi.) of (2.1), χπ denotes
the character of the C ' --representation π, and A^ is the conjugacy class of g in G.

iii) The irreducible representations of &(G) are characterized by a conjugacy class
AofG and by an irreducible representation π of the centralizer subgroup C~ofg£A
inG.

Proof. Left to the reader. D
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The minimal central idempotent in <£ϊ(G) corresponding to the irreducible repre-
sentation r = (A, π) of dimension nr = \A\ - dimπ is

Mr = J77Γ Σ Σ *π(/~ V) (0, Λ) , /$/- ' = 9 , (2.9)
1 ' seA/ieC,?

where # e A is fixed, but arbitrary. Notice that the linear map μ : J^(G) — » C defined
by μ(#, h) = δh e determines a symmetric associative non-degenerate bilinear form
β:&(G) x &(G) — > C through /3(α, 6) := μ(a - b) which in turn determines a scalar
product { , } :^(G) x &(G) -* C by \G\ (α, 6) = /3(α*, 6), α, 6 e ^(G). Since the
dual of the basis element (g, /ι) with respect to β is just (p, /i)*, this scalar product is
consistent with the * -operation on ^(G). In terms of coefficients with respect to the
chosen basis the scalar product looks like

lh aih, ^ = Γ α^ (g, h) , i = l , 2 , (2.10)

where bar means complex conjugation. This scalar product makes ^(G) and its dual
to be a Hubert space. Considering the elements of ^(G) as operators on

by left multiplication they acquire an induced operator norm. This latter norm
makes ^(G) a C* -algebra and this is the unique such norm consistent with the given
* -operation.

The trivial representation of &(G) is the counit ε. The integral z is just the
central projector of the trivial representation. The contragredient representation D
of the representation D is defined by the help of the antipode S:D(ά) = D(Sά)τ ,
a e (̂G), where T refers to the transposed matrix. A representation D is unitary if it
is a * -representation, i.e. if -D(α)* = £)(α*), α £ J^(G). In the sequel a representation
of J^(G) will always mean a * -representation. The set of equivalence classes of

irreducible (unitary) representations of ^(G) is denoted by ^(G).
Using the matrix elements given in (2.8) and orthogonality relations of matrix

elements for finite groups, one verifies the following orthogonality relations:

(D? , £>;/) = - δry Sifi, . δ^, , (Φr,Φr,) = δry , (2.1 1)
n

Σ Σ nr W(9MD?(92, h2) = Sg},Ά Shl>h2 , (2-12)

where bar means complex conjugation.
The product D{ x D2 of two representations Dl and D2 is defined by the help of the

comultiplication in ^(G)\(Dl x D2)(a) = jDj(α(1)) ® L>2(α(2)). Using orthogonality
relations of irreducible characters one can decompose product representations into a
direct sum of irreducible ones:

Dr x Dr = (T) 7V;3

r Dr , N?r = (Φr ,Φr x Φr ) . (2.13)

For all representations D of ^(G) we have D x ε — D = ε x D. Moreover, the
trivial representation ε occurs in the product of two irreducible representations if and
only if they are contragredient to each other. In that case the multiplicity of ε in the
product representation is one. To prove this one notes that if r{ = (Ai^i), ί = 1,2
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then using the explicit form of the product character and the counit one gets that
NrlΓ2 — δA A-\ - <5πi)7r2, where π is the contragredient representation of π. Now the

statement follows from the relation valid for the contragredient Φ of a character Φ:

This equation also implies the equivalence between the contragredient representation
Dr of Dr and the representation Df given by f = (A~l,π). The equivalence is
induced by the map given on the basis elements of the representation spaces as

(<^,ft) i—> (g^l,vt) i = 1, . . . , \A\, t — 1, . . . , dimπ. (2.15)

The set of finite dimensional matrix representations of &(G) are the objects of a
category Rep &(G) in which the set of morphisms from D2 to D { is the space

(Dλ I D2) = {te Mat(nj x n2 C) D^t = tD2(a), a G ®(G)} (2.16)

of intertwiners from D2 to Dλ. This category is a strict monoidal braided C*-
category with direct sums, subobjects and conjugates [DR, M]. The star operation
and the conjugation are contravariant functors from RepJ^(G) to itself acting
on the objects and morphisms respectively as follows: *:D \-> D, t ι-» t*,
~ :D i—> ϊ), t i—>• tτ. The strict monoidal structure is given by the covariant functor
x : Rep^(G)xRep^(G) -> Rep^(G), DlxD2 = (D^DJoA, tlxt2 = t^t2.
The functors * and ~ are monoidal: * o x = x o (*,*), ~ o x ~ x o (~,~),
where the natural equivalence ^ is given by (Dl,D2) H-> (Dl 0 D2)(R), with the
universal ^-matrix R. The braiding structure is given by the natural equivalence
(Dl, D2) ι-> B(Dl, D2) = Pn (Dl 0 D2) (R) between the functors x and xop, where
P12 interchanges the factors in the tensor product of the representation spaces of Dl

and D2, and xop is the product in the opposite order.

2.2. The Definition of the Field Algebra

For a finite chain of length n the state space 3$n is the tensor product of n copies
of C(G). The vectors (|σ) | σ:{l, . . . , n} —>• G} form an orthonormal basis in
3@n. The full operator algebra on 3$n is generated by order parameters δg(x),
g G G, x G {1, . . . , n} and disorder or kink creating operators gg(l)9 g G G,

/ G {|, . . . , n — |} defined as follows:

<yz) σ) = δgtσχ |σ), ^(/)|σ) = |σ l 5 . . . , σ _ ι , 5 r σ + i , . . . , gσn). (2.17)

Notice that ^δg(x) — 1 = Qe(l). The multiplication and commutation relations of
9

these operators lead us to the following

2.2. Definition. The local field algebra ̂ c of a G-spin model is a unital associative
algebra over C given by the following presentation: the generators are the unit element

1 and the elements of the set {δh(x), ρ (ΐ) \ h, g G G; x G Z, / G Z-f |}. The relations
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are

δg(x)δh(x) = δg>h δh(x) , ρ g ( l ) β h ( l ) = βgh(l) , (2.18a)

δ ( x ) = l = ρe(l), (2.18b)

δ(x)δh(x') = δh(x')δ(x) , (2.18c)

β ,
9 (2.18d)

for x, z' G Z; /, /' G Z + \ and g.heG.

The *-operation is defined on the generators as δ^(x) = δh(x)9 ρ*(ΐ) = ρg-\(ΐ)
and is extended antilinearly and antimultiplicatively. In this way β[oc becomes a unital
* -algebra. J ĉ can be extended to a C* -algebra β~9 called the field algebra, in the

following way. First, for any finite subset A C ^ Z we define the subalgebra

In particular, we consider the case when Λ = Aa b = { s E 2 ̂  | α — s — b} is an

interval, α, b G | Z, α < b. Λa^b is called open (closed) from the left - and similarly

from the right - if α is half-integer (integer). Now let us consider an increasing
sequence of intervals Λn = Λln Xn, n G N, that are open from the left and are ι
from the right and have the recursion relations

4*1 =

ι

with xv = 0, l^ = — 2 « The corresponding subalgebras ^(Λn), n G N are full matrix

algebras, they can be identified with M\G\n using (2.17). Moreover, acting on the
finite dimensional Hubert space 3$n a norm is induced on ,

= sup I I F ^ H , ^G^n, Fe^(Λn). (2.21)

Therefore ^(Λn)9 n G N become finite dimensional C* -algebras. The natural
embeddings un :^(A^) — » ̂ (Λn+l), n G N, that identify the δ and ρ generators, are
norm preserving.

2.3. Definition. The field algebra 3? of a G-spin model is the C* -algebra given by
the C* -inductive limit
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2.3. The Action of &(G) on the Field Algebra

An action 7 of &(G) on the field algebra ̂  has to be compatible with the algebraic
structure of & . In ordinary cases when the symmetry algebra is a group algebra
or a Lie algebra this requirement means that a product of two field multiplets, both
carrying a representation of the symmetry algebra, is transformed by the tensor product
representation. In case of Hopf algebras the product of representations is given by the
help of the coproduct. Therefore this rule has to govern the transformation properties
of products of field multiplets.

2.4. Proposition. The map 7:^(6) x ̂ oc — > ̂ oc given on the generators of the field
algebra ,̂ c as

= δg<e δhf(x) , 7(flΛ)(β/(0) - δg>hfh-t βhfh-ι(l) , (2.22)

for x G Z, / G Z + I and g, ft, / G G, extended for products of generators inductively

in the number of generators by the rule

Ί(9,h)(f F) = 7(s,wo)(/) \9,H)(»(F) , (2.23)

where f is one of the generators in j^c and F is a finite product of them, finally,
linearly extended both in &(G) and ̂ c, defines an automorphic action of &(G) on
^Oc, that is:
i) 3\oc is a left &(G)-module algebra with respect to the map 7, which means that 7

is a bilinear map satisfying the relations

F1 ;F2e^o c, (2.24)

a, α' € ^(G) , F e Jfoc . (2.25)

ii) L ί̂ a = /S(α*). Γ/z^ action 7 6>&£>tf ί/*£ conjugation property

Jfoc . (2.26)

Proof, i) is quite elementary. To prove ii) we note that (2.26) fulfills for the generators
of 3^ . Therefore the general statement can be proved inductively in the number of
generators using the relation

7α((F,F2)*) = Ίa(F*F*) =

)* (2-27)

Here we used the identity (S 0 S) o A' = Δ o S valid for the antipode S in a Hopf
algebra [S] and the fact that the coproduct is a * -algebra homomorphism. D

We extend the action 7 to the field algebra ̂  by continuity because we have the

2.5. Lemma. The maps 7α :̂ c — > ̂ c, α e &(G) are continuous.

Proof. Let F G ̂ c. There exists a finite half open, half closed interval A such that

F G jT(yl). Let Λ° = A Π Z, Λ1 = A Π Z + i, and r^'iyl0 -̂  G, then for an

appropriate σ. Λ1 — > G the elements

= Π ^i^) Π βσjίO (2-28)



Quantum Symmetry and Braid Group Statistics in G-Spin Models 137

obey the algebra of matrix units for ^(A) = M \Λo . Since

δg^hgσh-ι Ehτ,ίhτ(Λ) , gσ = f[ *ι , (hr)x = hrx , (2.29)

it follows that \\^(g ^(F)\\ < ||F|| independently on the size of the interval Λ, which
implies that 7α is continuous. D

2.4. The Observable Algebra and its Charged Representations

Using the orthogonal projector properties of the primitive central idempotents Mr,

r E &(G) one finds that the field algebra 3? - as a linear space - can be decomposed
into a direct sum:

The subspace J^ c .̂ " corresponds to the trivial representation, where M0 is just
the integral z. Due to the property (2.3) of the counit, one obtains that ̂  is not only a
subspace, but also a subalgebra of & . Since we treat J?(G) as the symmetry algebra of
the G-spin models, the observables are the elements of the "Ji?(G) -in variant" subspace
of ̂ . Therefore we give the following

2.6. Definition. The algebra of observables ^ of a G-spin model is defined as the
subalgebra of & corresponding to the trivial representation of J^(G), that is ̂  = ̂ .

2.7. Proposition. The observable algebra ,^> — 7JZ(. '̂) is a C* -algebra.

Proof. Since jz(^) is already a subalgebra of ̂  we only have to prove that it is a
self-adjoint and closed subspace of J^". Let A G jz(^)9 then using the conjugation
property (2.26) of 7 and the z = z relation for the integral z one obtains that

7,04*) = Ί-z(Af = Ίz(Af = A* , (2.31)

therefore 7Z(^) is a self-adjoint subspace. To prove that it is closed with respect to
the norm topology of & first we note that the relation

(2.32)

valid for arbitrary F E & , implies that 7^ is a positive map on J .̂ Since 7^(1) = 1,
too, the norm of 7^ :.̂  — >• ̂  is 1 [BR]. Now an easy ε-argument shows that 7Z(J^)
is closed. D

Realizations of the symmetry algebra emerge every time a GNS representation π
of &* is given associated to a "J?(G) -invariant" state on ̂ .

2.8. Theorem. Lei π Z?£ an irreducible representation of & on the Hilbert space
with a vacuum vector Ω giving rise to a ̂  (G)-invariant state:

Ξ iϊ Σ

(β, π(7α(F)) β) - ε(α) (β, π(F) β) , α G ^(G) , F G ffi* . (2.33)
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Then there exists a unique C* -homomorphism U:&(G) — > j$(β&), with the proper-
ties:

i) U implements the action 7 on π(^) in the adjoint way:

t/(α(1))π(F) U(Sa(2}) = ττ(7α(F)) , α G ®(G) , F G & , (2.34)

ii) ί/ze vacuum vector Ω is invariant: U(a)Ω = ε(ά)Ω, a G
iii) [/ ofrey s1 ί/ze equalities

π(Λ)' , (2.35)

bar meows we<2& closure and prime denotes commutant in $)($&).

Proof. Let the action of U(a) be defined on the dense subset π(^) Ω C 3@ by

U(a)π(F)Ω = π(Ίa(F))Ω, α G ^(G) , FG^. (2.36)

This definition is meaningful since if π(F)Ω = 0 then using (2.33) the relation

= (ί2,π(75α(2)(G*7α(i)(ί1)))ί2) - (ί

(2.37)

holds for α G (̂G), F, G G ̂ , which implies that π(ja(F))Ω = 0, α G (̂G), too.
One checks that the properties of homomoφhism and of the implementation

π(F) U(SoP) π(G) β

α G < (̂G) , F,GG^, (2.38)

fulfill for a dense subset ττ(^) ί2 in ̂ . Moreover, (2.37) shows that the implemen-
tation U is unitary, that is U is a * -representation. It follows [Di] that ||ί7(α)|| < ||α||,
α G ̂ (G). Therefore one extends Z7 with the desired properties to the whole represen-
tation space 3$ by continuity. Statement ii) and uniqueness of U is obvious. Finally,
in the first equality of (2.35) U(&(G))' C π(^)~ is trivial, the reverse containment
can be proven using

7α(υ(W(α(2)) = ί/(α(1))Ft/(S(α(2))) . t/(α(3))

) = U(ά)F,

) = FU(a) . (2.39)

The second equality is obtained from the first taking the commutants in $)($$) and
using that U(^(G)\ being finite dimensional, is weakly closed. D

As a corollary we get that the irreducible subrepresentations of π\^ are in one-
to-one correspondence with the irreducible representations of &(G) because π(^$)
and U(&(G)) have the common center. To see how an irreducible subrepresentation
of 7Γ ̂  emerges let us decompose the Hubert space 3$ using the minimal central

idempotents Mr, r G ^(G) of ^(G):

(2.40)
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Since the &(G) -modules are completely reducible 3$r can be written as a tensor
product J?r = 3Kr ® Vr induced by the bijection of bases 3%τ 3 F^Ω ι->
φl

r^e^ G 3Kr ® Vr, where Vr is an irreducible ^(G)-module with basis elements
e", a = 1, . . . , nr and i G N is a multiplicity index. The multiplet fields F™ G &r,
a = 1, . . . , nr carry the same matrix representation of &(G) for all i. Then the
implementation operators C7(α), α G J^(G) act as

nr

U(ά) (φlr ®e?)=φί® < ' D^/a(a) . (2.41)

Since an observable acts only on the multiplicity index the action of observables is
given by π(A) (φl

r ® e") = τrrCA)<£* (8) e". This defines the irreducible representation
Tiv of J& on J3?L.

2.5. The Non-Abelian Parafermίon Fields

Here we shall explicitly construct charged multiplet fields that are linear subspaces
of operators in ̂  carrying irreducible representations of &(G). Since &(G) is an
internal symmetry, that is the action 7 commutes with translations, the simplest choice
is to consider the subspace spanned by products of disorder and order operators with

a fixed / e Z + \ and x e Z.

In the Ising model, G = Z(2), this product gives rise to anticommuting Majorana
fermion field, while in case of Z(N) models these products are parafermion fields
having an Abelian braid type commutation relation. In a general G-spin model we
have the following.

Let J^(/,x), / G Z + 2 > x € Z denote the linear subspace in & that is spanned

by the basis elements ρg(l) - δh(x), g,h G G. Then 3F(l,x) carries the left regular
representation of &(G) with respect to the action 7, therefore there must be exactly

as many linearly independent Dr-multiplets in ^(l,x) for each r G &(G) as the
dimension nr of Dr is. Define

F*k(l, x) = ^ Dl

r

k((g, hf) - ρg(l)δh(x) , i, fe = 1, . . . , nr , (2.42)

where the matrix elements D]? of the irreducible representation Dr have been given
in (2. 8 a). Then we have the following

2.9. Theorem. The Fr(l, x) multiplets obey the following properties
i) for each fixed i the F*k(l, x), k = 1, . . . , nr form a Dr-multiplet:

\9^(Fl

r

kd, x)} = £ if' (Z, x) - Dk

r'
k(g, ft) , (2.43)

k'=ι

ii) "orthogonality" :

nr

( l , x ) = δkk> -1, (2.44)
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iii) "completeness":

JΓ Frk(^ *)*?**(*, & = δίj 1 , (2.45)
fe=l

iv) the adjoint basis elements F*k (7, x), for each i transform according to the
contragredient representation Dr, and one has the relation

> (2.46)
ώr Fϊk(l,x), Kx,

where ί ι— » ί, k »— > k denote the map (2.15), and the phase ώr = l/n7Γ tr[π(g~1)] is the
value of the centrum element Σ (g,g~l) £ &(G) in the representation r = (A~,π).

g£G

v) the fields Fr(l,x) obey Frδhlich' s braided commutation relations: If {l^^x^} <

(2.47)

vi) the set {Fl

r

j(l, I + I1) | r G ^(G), i, j = 1, . . . , nr, / e Z + i} generates & for

arbitrary I' e Z + |,

vii) fΛe multίplets F ( l , x ) , F ( l , x ) , r l 5 r 2 e "(G) m ί/z^ cα^ of I > x obey the
following operator product expansion:

(2.48)

Proof. By straightforward computation. D

One recognizes that properties ii-iii) of the multiplets Fr(ί, x) generalize the Cuntz
algebra [C]. We shall see in Sect. 4 that these relations help to construct amplifying
homomorphisms of the observable algebra in a similar way as the Cuntz algebra leads
to the canonical endomorphism [C, DR].

3. The Structure of the Observable Algebra

In the previous section we defined the observable algebra as the ^(G)-invariant
subalgebra of ̂ \^ = jz(^). Here we shall study the question how to give a local
net structure to ̂ , which satisfies Haag duality. This will be achieved by finding
algebraic generators for Λ with local commutation relations. We will also discuss the
inclusions of the local observable algebras and find the associated Temperley-Lieb
algebra.
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3.1. The Local Net Structure of the Observables

ositon. Let Λa^b c ~ Z be afinit

b) is generated by the operators

3.1. Propositon. Let Λa^b C ~ Z be a finite interval. The &(G)-ίnvariant subalgebra

(3.1)

x, / G 4x+ι/2,b-ι/2 β/1^ 9 ^ G. That is

)) = { ( x ) , ( / ) I z ,Z e ^ ι _ ι ,0 e G> . (3.2)

We note that the meaning of the oprator vg(x) is right translation of the spin σx by g
while ι̂ (0 projects to those states that have right twist on the boundary of the link

I equal to 9'^\/2σl+l/2 = g.

Proof of 3.1. Let us write the integral of &(G) as a product z = z (e,e).
Then the invariant subalgebra can be computed in two steps ^z(^(Aa b ) ) —

7^(7(e e)(JΓ(ylα 6))). 7(e e) is the projection to operators with trivial twist. Thus

7(e e)(^"(Aι b)) ^s generated by the δ-s and v-s. Since v^(x) is already invariant under
7^, we are ready if we can show that 7^(^(1) . . Shn(ή)) can be expressed in terms
of w-s:

V-1

1 x- TT,= > I I o i
\(^\ / -j JL JL 9χ'

= J _ . ω _ , (2W _, (*ϊ / _ u D
|G | ^1 ^2^ 2 ^ ^2 ^3 V 2 / ' * /i n l 1 /in^ 2 / *

3.2. Definition. The algebra of observables localized in yl c \ Z is the C*-algebra

.= { ι ; 9 (x) ,^(/) |α; ,ZeΛ,^eG). (3.3)

The correspondence A C ^ Z ι-> ^(yl) G {C*-subalgebras of ̂ } satisfies

i) isotony: Λ{ C Λ2 ^ ̂ (A{) C Λ(Λ2)9

ii) locality: άist(Λ{, τ!2) > 1 => ^(Aλ) C

iii) ̂  = U s&(A), where the union is taken over finite intervals A and the bar denotes
A

uniform closure.
To see ii) it is enough to compute the commutation relations of the υ, w generators:

9\ 92 9\ 92 ' ^ 1 *^2 " l;^ /2 ^2

wff(a;)ωΛ(a; + i) = ωfffc(a; + |) ϋff(a;),
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Other pairs of υ and/or w fields commute. Property iii) follows from Proposition 3.1
and the continuity of the projection 72. If A e J& and ε > 0 then A — ΊZ(A) and
3B G ^(Aa b) with \\A-B\\ < ε. Then \\A-Ίz(B)\\ = \\-γz(A-B)\\ < \\A-B\\ < ε

α j _

Properties i)-iii) establish the local net structure of our observable algebra.

3.2. The Types and Inclusions of the Local Algebras

For any finite subset A c |Z and maps σ:A° — > G, τ:Al — » G let us define the
operators

Q*W = Π ^χ(x) ' P* (r) = Π wn® * (3'5)

zeΛ°

They satisfy

where (rσ)^ — σ i τlσ~l

l with the convention σ ! = e if / ± « ^ A
l"2 l+2 l±ί

If yl is an interval which is closed from one side and open from the other then for
arbitrary r, τ' : A1 — > G there exists a unique σ : Λ° — > G such that τ' — τσ . With this
σ the operators

(3.7)

satisfy the algebra of matrix units:

2(Λ) = δrι<τ,Eτ,T2(Λ) , Eτ,τ(Λf = ETT,(Λ) . (3.8)

This shows that ^(A) is a simple algebra, namely M^n, n = l/l 1 ! for this kind of

intervals. If A is an open interval then τ' = rσ has a solution for σ iff

;', (3.9)

in which case the solution is unique. Equation (3.9) expresses the fact that the total
right twist along the interval is unchanged by any operator A G ̂ (Λ). The matrix
units can be defined like in (3.7) but now r and τ' are subjected to the condition
(3.9). Therefore ^>(A) becomes a sum of full matrix algebras. If A = Λa^b is a closed
interval then r' — rσ always has a solution but it is unique only if we fix the value
of σ (let us say) at the right endpoint to be σb = e. Using this solution formula (3.7)
again defines a full matrix algebra in ^(A) but it does not generate the whole. What
are missing are related to the global right multiplication. For g G G, τ:Al — » G let
Ίx[

τι 9] be the parallel transport of g from b to x in the presence of the "gauge field"
r, that is

7jr,5] = rχ +,.....V,. f f.r-y....r;;,. (3.10)

Then
τ) (3.11)
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is a unitary operator commuting with all matrix units and such that g £ G ι— >• Q^(g)
is a homomorphism. Hence ^(A) is a full matrix algebra tensored with the group
algebra CG.

What we have found can be summarized in the following

3.3. Theorem, i) // A is a finite interval in Z then ^(A) is isomorphic to the

following finite dimensional C* -algebra:

( Mat(|G|n-1,C)0C(G f), if A is open,

^ I Mat(|G|n, C) ® CG , if Λ is closed, (3.12)

[ Mat(|G|n,C), otherwise,

where n is the length of the interval, n — \
ii) Consider the tower of local observable algebras

C . . . C

77z£ inclusion matrix for ^(A λ ) C ^(ΛQ n) is that of the unit preserving inclusion

C C CG. The inclusion matrix for ^(Λ0 n) C ^(A i ) is the transposed of that.
Similar statements hold for the tower 'n 2

Bratteli diagram for ^4(A λ ) C Λ>(Λ i λ) is that ofCc C(G).

3.4. Remark. The above mentioned Bratteli diagrams offer two ("dually" related)
presentations of our observable algebra as the operator algebra of a graph-IRF model
[P]. In either case there is a Temperley-Lieb algebra generated by the projections

j

es = < |G|

 9&G 9 2 2 ' (3.13)

Let ./&. = Λ(Λ. ,), sn = 0 or 1/2, s > sn, then e. € ̂  i Π ̂ ' . , e^ = e, = e*
b x 6 Q , o x / U 7 VJ' ί> o_(__ 1 7 6 6 έ>

with 2 s~2

The es-s induce the conditional expectations εs:^£s -^ ^s-\^ since es^es ~
εft(A)eff9 A 6 ̂ ς, where

,(/). (3.15)

The coefficient 1/|G| in (3.14) is in accordance with the Perron-Frobenius eigenvalues
of both Bratteli diagrams being
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3.3. Haag Duality

Turning to the problem of Haag duality for the observable algebra we generalize
formulae (3.15) for arbitrary finite sets A For A G ̂  let

Σ Σ QAMPA^AP^Q^σΓ1 . (3.16)

3.5. Lemma. ελ obeys the properties

* *
ii) εΛ:Λ

iii) εΛ(l) - 1, ελ(ABC) = AεA(B)C, A, C e ^(A)1 ', B e

Left to the reader. D

The above lemma implies that εA is a continuous projection onto ^(A)' . Point
iii) even states that εA is a conditional expectation.

3.6. Lemma. Let I be a closed interval, Int / be its interior (i.e. the largest open
interval contained in I), and A C Int / an arbitrary interval. Then

εΛ^(Int/)) = ̂ CA), Λ:= {s e ± Z | dist(s,Λ)< ±}. (3.17)

Proof. At first we prove the statement for open intervals A Let τ,τr \Il — > G have
the same total right twist (3.9). Then ET,T(IntI) runs over a basis of ^(Int/). /\yϊ
decomposes into two intervals /_ and /+ that are neither closed nor open. Let r+ , τ_ , f

and r|, ri, f7 denote the restrictions of r resp. τ7 onto 7+, /_ and A Then we have

εA/ί(Er,r(Int/)) - e/_(£/+(£7T/r(Int/))) = δr^τ_δτ^τ+Efl-(A) . (3.18)

Since E-,-(A) runs over a basis of Λ(Λ), (3.17) is proven for open A. If Λ is not
open it is obtained from an open one by discarding one or two of its boundary links.
Then one or two extra projections εx [see (3.15)] should be applied on both sides
of (3.18) and the result follows from the fact that εx is the appropriate conditional
expectation. D

Now we can formulate the Haag duality for the observable algebra of G-spin
models:

3.7. Theorem. Let A be a finite interval in \ Z and Ac := {s G \ Z dist(s, A) > l}.

Then

Proof. Obviously Λ(Λ) C ^(Ac}' . Let A € ^(Ac)' and ε > 0. Then there exists a
closed finite interval / and B e ,^(lntl) such that \\A — B\\ < ε. We may choose / so
large that / contains A in its interior. Since I\A is a finite subset of Ac, ε7\ A(A) = A
thus

\\A - ε^λ(B)\\ = \\ε^Λ(A - B)\\ <\\A- B\\ < έ .

Since ε^Λ(B) G Λ(Λ) by Lemma 3.6, A e Λ(Λ) = Λ(Λ). D

We note that it was essential to restrict ourselves to intervals. Theorem 3.7 is not
true for arbitrary finite subsets Λ.

We end this section by proving the triviality of the relative commutant of ./^
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3.8. Lemma. Let I be a closed interval. Then ε7(J^(/)) = C 1.

Proof. Let / = Λa^ α, b G Z. ,^(I) is generated by the fields

>> Π V'^ ^+ΪH^Γ ^+ί)' (3.19)

while σ and π run over the set of functions 7° — > G such that σα = πα and # = σbπ^1.
The ί?σσ/ obey the algebra of matrix units. For σXX':/0 -> G, τ:Il -> G,

Qf (σ)P/V) = Σ ^'σ"CO ' Sσ" σ'σ ' ^dσ" r » (3'2°)

σ',σ"

where (dσ/x)z = (σ" {)~1σ// ,, / G Z + \. Thus we have

If σα = πα then dσ = dπ on I1 implies that σ = π. Especially σ6 = πb. Therefore

3.9. Theorem. Γ/z^ commutant of \/& in ̂  is the set of scalar s: ,A>' — C 1.

Proof. For an increasing sequence {In}^=\ of closed intervals define ε:.^c — » ̂ c

by

ε(F):= lim ε7 (F) . (3.21)
n-^oo n

This ε is positive and thus can be extended to & by continuity. The extension ε also
satisfies (3.21) for all F G ̂ ". Since εln(β~) = ^(In)' is a monotone decreasing
sequence of closed sets in J^",

(3.22)

where in the last equation we used ε(.ίζ,c) = C 1 which follows from Lemma
3.8. D

This theorem implies that ,/6 has trivial center which would not be the case if we
quantized the G-spin model on a periodic chain. (Cf. the chiral Ising model [MS2]
or [Fre].)
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4. The Amplifying Homomorphisms

The aim of this section is to show - on the example of the G-spin model - that
localized amplifying homomorphisms of the type μ\^& —> Mn(^) are capable
of describing non-Abelian superselection sectors even in the case when localized
endomorphisms ρ:^ — » ^4 allow only Abelian sectors because all the local algebras
ιS$(Λ) are finite dimensional. The key for finding amplifying homomorphisms μ in the
G-spin model is the existence of multiplet matrices Fr satisfying the F-algebra defined
below. After learning how these morphisms behave and create charged representations
of the observable algebra we shall discuss the equivalence of the representation theory
of the symmetry algebra &(G) and (a subcategory of) the representation theory

4.1. Multiplet Matrices and the F -Algebra

4.1. Definition. Let F be an m x n matrix with entries Fli £ j^c and let D be an
n-dimensional (unitary) representation of &(G\ F is called a Z}-multiplet matrix if
the following two relations hold:

i = l , . . . , m ; (4.1)

j,k= 1, . . . , n. (4.2)

If D is irreducible F is called an irreducible multiplet matrix. F is called non-
degenerate if in addition to (4.1) and (4.2) F satisfies

. (4.3)

Relations (4.2-4.3) will be referred to as the F-algebra, (4.2) alone as the weak
F-algebra.

The special fields Fli = Ffi(l,x) introduced in Sect. 2.5 are examples of
irreducible non-degenerate multiplet matrices. The set of multiplet matrices is closed
under the following two operations. The product of the ml x nl matrix Fl and the
m2 x n2 matrix F2 is the πιlπι2 x nln2 matrix Fλ x F2 with entries (Fλ x F2)

M*2'-71-72 =

Fll3lF2

232. The direct sum of Fl and F2 is the (ml + m2) x (n{ +n2) block diagonal
matrix with diagonal blocks Fl and F2. The product or direct sum of non-degenerate
multiplet matrices is again non-degenerate. If Fl is a Dl -multiplet matrix, F2 is a
D2 -multiplet matrix then Fl x F2 and Fl 0 F2 are Dl x D2 and Dl 0 D2 multiplet
matrices, respectively. Examples of degenerate multiplet matrices can be obtained by
taking a product Fl x . . . x Fs of irreducible multiplet matrices Fa — FΓa(la,xa),
a = 1, . . . , s and then multiplying it from the right by a c-number intertwiner matrix
t, which intertwines from a representation D to the representation Dr x . . . x £>rs .
If t is appropriately normalized then this F satisfies the weak F-algebra but not the
F-algebra in general.

The next lemma sheds some light on the general form of multiplet matrices.
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4.2. Lemma. Let DI} D2 be equivalent representations with άimD^ — n = dim.D2

and let u G (Dl \ D2) be a unitary intertwiner from D2 to D{. If F\ and F2 are D{-
and D2-multiplet matrices of sizes ml x n and m2 x n, respectively, then

U = FλuF2 G Mat(m! x ra2, ̂ loc) (4.4)

is a partial isometry with initial and final projections U*U = F2F2 and UU* =
F^F*, respectively. Furthermore we have UF2u* = Fv and U^F^u = F2.

Proof. Using the multiplet properties of the F-s one checks that ^a(Ull/l2) =
ε(α) Ul112. This implies that U G Mat(m1 x ra2, l̂oc). To prove the further identities
one has to use only the weak F-algebra relation in matrix form: F*F^ = 1 0 Jn =
F*F2. a

From physical grounds we would like to consider two multiplet matrices equivalent
if they create the same charge. This leads to

4.3. Definition. Let Fl and F2 be DΓ and D2 -multiplet matrices, respectively. Fl is
equivalent to F2,F{ ~ F2, if Dl is equivalent to D2.

4.4. Proposition. Given an arbitrary multiplet matrix F and given x G Z and

I G Z + 2 there exists a non-degenerate multiplet matrix F equivalent to F with

entries Fli G ^(/, x). Furthermore F = UFu* for some c-number unitary matrix u
and for some observable partial isometry matrix U.

Proof. Let F be a D-multiplet matrix and D = D Θ . . . Θ DΓg for a sequence

r1 ? . . . , rs e <&(G). Let u G (D \ D 0 . . . Θ Drg) be a unitary intertwiner.
Construct the direct sum F = Frι(l,x) θ . . . θ Frs(Z,x), which is a non-degenerate

multiplet matrix, that is FF* = 1 <g> In(n = n r j + . . . + nrβ), then F ~ F. Applying

Lemma 4.2 we construct the partial isometry U — FuF* G Mat( l̂oc) and obtain
F = UFu*. D

4.2. Amplifying Homomorphisms Generated by Multiplet Matrices

For an arbitrary multiplet matrix F of size m x n we define a map μF\Λ> — »

m via the formula

n

4(A) = ΣF*AF*k* , i, j = 1, . . . , m; (4.5)
fc=l

I

or in matrix notation μF(A) = F(A 0 /n)F*. μF will be called the amplifying
homomoφhism (or amplimoφhism, for short) generated by F since we have

4.5. Lemma. μF '.,/& — » Mm(,^) w α C*-homomorphism, that is

i) M*/(A) G ̂ , μ^(A)* = μ%(A*)for all A G ,̂ ,

ii) £ μ^(A)μJ

F(B) = μ$(AB) for all A, B G ./£,

iii) μF(l) = FF* fl/^J μF w unit preserving iff F w non-degenerate.

Proof, i) Analogous to the proof of Lemma 4.2. ii) follows from the weak F-algebra.
iii) μF is unit preserving iff μF(l) = 1 0 /m, that is iff F satisfies the F-algebra. D
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4.6. Definition. Let μ:^ — > Mm(^&) be a C* -algebra map and Λ C \ Z be a finite

interval, μ is called localized in A if μ(A) = μ(l) (A 0 /m), A G ^>(AC). We say that
μ is localized if it is localized in some finite interval A.

4.7. Lemma. If μ:Λ — » Mm(^) is- α C* -algebra map, A is an interval, and μ is
localized in A then

(4.6)

Proof. If ^4 G ̂  is hermitian μu(l)^4 = Aμ^(l) because μ is localized. Since every
^4 6 ^(Ac) is a linear combination of two hermitian elements, μu(l) G

by Haag duality. Let A G ^(Ac\ B G Λ(Λ). Then

Aμ(B) = (A ® Im)μ(l)μ(B) = μ(AB) = μ(BA) = μ(£)μ(l) (A ® /m) =

Hence μij(B) G ^(Λ0)' = ^(A) by Haag duality again. D

Comparing formulae (3.2) and (3.3) we see that jz(^(Λ)) — ^(A) for any
interval A. Therefore if F is a multiple! matrix with entries Fu G ̂ (A) then μF

is an amplifying homomorphism localized in A But it leaves ^(A) "invariant", too:

μF(^(A)) C Mm(^(Λ)). When F = Fr(x + ^,x) the concrete form of the action

of μF on the generators of ̂  is

(y) , y ̂  x .
i , . (4.7a)

, g ) v ( x ) , y = x,

43. Representations of ̂  Created by μF

The physical meaning of μF defined in (4.5) is that it creates a charge equal to
the charge of F*. To make this precise let TTO be, once and for all, a fixed faithful
irreducible representation of ̂  on a Hubert space ̂ 0. TTO is thought to be a vacuum
representation with respect to some dynamics not discussed in this paper. The only
assumption on the dynamics is Haag duality for the vacuum representation,

π0(^(Λc))' = π0(^(Λ)), (4.8)

which encodes in some way the absence of symmetry breaking. We assume also that
τr0 is a subrepresentation of the restriction to ̂  of an irreducible representation π of
.̂ The other subrepresentations of ττ| ̂  are the charged representations πr introduced

after Theorem 2.8.
Given an amplimorphism μ:^ — » Mm(^) we define a representation πμ of ̂

on the Hubert space J 0̂ <g) Cm:

πμ := (TTO 0 id) o μ . (4.9)

That is for Φ G ̂ 0 and {e1? . . . , em} a fixed orthonormal basis in Cm,

= (π0 0 id) (^ μik(A) 0 e
ik

where the {elk} is the system of matrix units in Mm associated to the basis {ej.
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4.8. Theorem. Let μ — μF be the amplimorphism generated by the irreducible

multiplet matrix F = Fr(l,x) of charge r G ̂ (G). Then πμ is unitarily equivalent to
πf.

Proof. Using the notations introduced after Theorem 2.8 if Φ G ̂ 0 then π(F^Q )Φ G
3Kf 0 V f . Let {υa} be the orthonormal basis in Vr associated to the matrix
representation Dr according to which the F™ transforms. Then

\Φ) 0 va (4.10)

defines a linear map Ψ1 :̂ 0 —> J3^. Using F-algebra relations one finds for Φ l 5 Φ2 G
.^f0 that 6li (Φ!,Φ2) = 0^(Φι),^(<£2)), therefore ^(^0)_L^(^0) if ̂  j and
^ is an isometry onto its image. Now the equivalence map S: J 0̂ 0 Cnr —> J?^ is
constructed as follows. For Φ G ̂ 0, u = Y^ulei G Cnr let

S(Φ 0 u) = ^(Φ)^ . (4.11)
i=l

is an isometry onto its image because

To see that it is an intertwiner compute

Sπμ(A)(Φ®u) =

Since

= π(A)π(F}a*)Φ =

it follows that # l(7r(μ^(A))Φ) = π(A)^'(Φ) thus

)^ = πf (A) S(Φ 0

Therefore 5 is an intertwiner from πμ to πf thus Im^ is an invariant subspace in
3Kγ under the action of πf (̂ ). Since πf is irreducible by construction and 5 ^ 0, it
follows that Im S — 3Kf therefore 5 is a unitary equivalence. D

The above theorem gives us the right to interpret μF, when F = Fr(l,x), as a
morphism creating charge f . Of course one expects that for arbitrary multiplet matrix
F μF creates a charge equal to that of F*. What is more, the whole representation
theory of ̂  based on representations of the form (4.9) should be equivalent to
the representation theory of the symmetry algebra &(G). More precisely there is an
equivalence between a full subcategory Rep0 ̂  of the category of (7* -representations
of ̂  and the category Rep^(G) of (7* -representations of &(G) as we shall see
later.
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4.4. The Essential Dimension of μ

4.9. Definition. Let μ:^ — > Mm(^) and v\Λ>-* Mn(^$) be amplimorphisms. The
space of intertwiners from v to μ is

(μ I ιi) = {T G Mat(m x n, ̂ loc) | μ(A)T = Tv(A\ A £ ,̂

(4.12)

μ and i/ are called equivalent, μ ~ v, if 3t/ G (μ | z/) partial isometry such that
[/£/* = μ(l) and E7*f7 = z/(l) Such a {/ is a called an equivalence from v to μ.

The amplimorphism μ is called transportable if aχo μ o a_x ~ μ, Vx G Z, where
αx denotes the translation automorphism of ̂ .

In order to see the relation between the equivalence of multiplet matrices and that
of the generated amplimorphisms we need the following

4.10. Lemma. Let Fs be a Ds-multiplet matrix of size m x ns for s = 1,2. Then
μF = μF if and only if n{ = n2 and 3u G (Dl \ D2) c-number unitary such that
F2 = F,u.

Proof. The "if statement is obvious. Assume μFj = μF^. Then

FfF2(A <g> IU2) = F*μF2(A)F2 = F*μFι(A)F2 = (A ® Inι)F*F2 ,

thus u^i := (F*F2γ^ G ̂  = C 1 by Theorem 3.9. Using identities for the
coproduct, counit, antipode, and contragredient representation one proves that u e
(Dl I D2). Thus μFι = μF2 ^ FjF* = F2F} => F,u = F1F*F2 = F2F*F2 = F2.

Since u*u = F*FVF*F2 = F2F2F2F2 = IU2 and uu* = Jnι, u is unitary and
nl = H2 ^

4.11. Proposition. Let Fl and F2 be multiplet matrices. Then μF ~ μF if and only

Proof. If Fl ~ F2 then from Lemma 4.2 F2 — U^F^ follows for some observable
partial isometry matrix U and c-number unitary matrix u. Since UU* = F^*,
U*U = F2F2, U G (μF μF ) is a partial isometry with initial and final projections
μp (ί) and μF (1), respectively. I.e. μF ~ μF^.

If μF ~ μF2 let [7 G (μFl \ μ^2) be a partial isometry with UU* = F1F*,

U*U = F2F2*. Then F/ := t/F2 satisfies μF/ = μFj. By Lemma 4. 10 F{ = Fλu with

a c-number unitary u G (Dj | D2). Hence F2 = U*Fλu and Fl ^ F2. D

4.12. Lemma. μF is transportable for every multiplet matrix F.

Proof. ax o μ o α_x = μFα;, where Fx = ax(F). Since 7α commutes with αx

for α G ̂ (G), x G Z, Fx is a multiplet matrix which is transformed by the same
matrix representation of J?(G) as F. Hence Fx ~ F and using Proposition 4. 11
μFχ ~ μF. D

The so-called charge transporter that realizes the equivalence of μF and its translate
μFχ is the partial isometry U — FXF* G Mm(^$). U is unitary if F is non-degenerate,
i.e. if μF is unit preserving.

4.13. Theorem. Let μ:^ — > Mm(^) /?e α« arbitrary localized amplimorphism (not
necessarily generated by a multiplet matrix). Then there exists a unit preserving
amplimorphism v\^& — > Mn(^) which is equivalent to μ. The number n, called
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the essential dimension of μ, is uniquely determined by the equivalence class of μ.
If μ is generated by a multiplet matrix then v can be chosen to be such too. The
essential dimension of μ is equal to the number of columns in the multiplet matrix
generating μ.

Proof. Since μ is localized, we can choose an interval A = Λa^b with α G Z, b G Z+1

such that μ is localized in A. Then by Lemma 4.7 μ(Λ>(A)) C Mm(Λ(Λ)) and ^(A)
is isomorphic to a full matrix algebra MN by Theorem 3.3. Therefore the projection
μ(l) can be represented by a hermitian projection matrix P G Mm(MJV) = Mm7V.
In MmN two projections are equivalent iff they have the same dimension. P is
equivalent to 1 0 p with some projection p G Mm iff dim Range P = tr P is
divisible by N. /4/^(/i) *s uniquely determined by the projection pλ = μ(eπ) and

by ua = μ(eal + ela + Σ e bΛ, where eab are the matrix units in MN. Since
V 6^1,α J

N N N

α—1 α=l a=\

= N Mpl = Nn, n G Z+ ,

there exists V G Mrn(^(A)) unitary such that

* 0))v-'. (4-13)

Let '̂ = F*-7, i = 1, . . . , m, j = 1, . . . , n. Then ι;*υ = 1 0 /n, w* = μ(l)
and the formula v(A) = v * μ(A)v defines an amplimorphism v such that v ~ μ and

In order to show that the number n is independent of the choice of Λ let A! be
another half-closed, half-open interval, A! D A. Considering the above unitary V
as an element of Mm(Λ(A')\ Eq. (4.10) becomes an identity in Mm(^(A')). Thus
the number n is independent of Λ. If μ' ~ μ is another amplimorphism from the
equivalence class of μ then for a large enough Λ both μ(l) and μ'(l) belong to
Mm(^(A)) and trμ'(l) = trμ(l) — N n. Hence n depends only on the equivalence
class of μ.

If μ = μF with an m x n' multiplet matrix F then z/ = μF/, where F' = v*F is
non-degenerate: F'*F' = F*vv*F = 10 Jn/, F'F7* = v*μ(l)v = 1 0 In. But this
is possible only for n' = n. D

4.5. The Category Amp ̂

The category Amp^ is defined as follows. The objects of Amp^ are the localized,
transportable amplimorphisms μ of ?̂. The set (μ | z/) of morphisms from the
object v to the object μ is the Banach space of intertwiners defined in (4.12). If
μ:^ —> Mm^), z/:^ —> Mn(^), λ:^ —> Mz(^) are objects in Amp^ then the
composition of T G (μ | z/) and 5 G (ι/ λ) is T5 G (μ | λ) with matrix elements

n

(TS)lk = Σ T^Sjk. This composition is associative and the identity of the object
j=ι

z/ is z/(l) G (z/ z/) satisfying z/(l)5 = 5, T = Tz/(l) for T G (μ | z/), S G (z/ λ).
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Notice that equivalence in the sense of Definition 4.9 is the same as equivalence of
two objects in Amp ̂  in the category theoretical sense.

Amp ̂  has subobjects: If E G (μ \ μ) is a projection then 3 and object v and a
partial isometry U G (μ | v) with £/£/* = E9U*U = z/(l): let ι/(A) = Eμ(A)E and

has direct sums: Given the objects μ, z/ in Amp^ there exists an
object λ in Amp^ and partial isometries F G (λ μ), W £ (X \ v} such that
FT/* + WW* = λ(l), V*V = μ(l), W*W = z/(l): let X(A) = μ(A) Θ v(A) and
V, PF be the obvious partial isometries.

Thus Amp^ is a C* -category with subobjects and direct sums.
The product Fl x F2 of multiple! matrices suggests the following definiton.

The product of two amplimorphisms μ:^> — >• Mm(^), v\Λ> — > Mn(^) is the
amplimoφhism μ x z/:^ — » Mmn(^) defined by

(μ x z/^04) = μij(vkl(A)) . (4.14)

The multiplication rule (4.14) has the interpretation as the "addition" of charges. It
makes our category to be a strict monoidal category: the composition is an associative
operation with unit (= id :̂  — > Mλ(Λ£)) and for T G (μt μ2), £ G (z/j z/2)

 tnere

is an intertwiner

T x S := μjGS) (T (g) 7^) = (Γ 0 7^)^(5) G (μ! x ^ | μ2 x ι/2) , (4.15)

satisfying the identities

lxT = Γ = T x l , Γ !̂ x T2#2 = (T! x Γ2) (Λ! x ^2) , (4.16a)

(T x 5)* = T* x 5* , (Γ x S) x R = T x (S x R) , (4.16b)

whenever they are defined. Further structures on Amp^ such as braiding and
conjugation will be discussed in Sect. 5.

Amp0 Λ> is defined to be the full subcategory of Amp ̂  the objects of which are
the amplimorphisms generated by multiplet matrices.

4.6. The Category Rep

Let the category Rep^ be defined as follows. Its objects are the representations
πμ where μ runs over the set of transportable localized amplimorphisms. The set of
morphisms from π^ to π is the space of intertwiners

(τrμ I πj := {f :̂ 0 0 C^ ̂  J3f0 ® Cm | πμ(Λ)f = f π

= f = f

The conditions π μ(l)T = Γ = Tπ^ίl) stem from the fact that πμ is a degenerate
representation if μ is not unit preserving. As a matter of fact for every A G ̂  πμ(^4)
is zero on the subspace orthogonal to the range of the projection πμ(l). ττμ(l) is
nothing else but the identity morphism of the object μ. Rep0 .̂  is defined to be the
full subcategory of Rep^ the objects of which are the ττμ-s with μ = μF, where F
runs over the multiplet matrices.

The equivalence of Rep0 ^4 and Rep &(G) will be established in two steps. At first
we show - using Haag duality - that Rep0 ̂  is equivalent to the category Amp0 ̂
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of amplifying homomorphisms generated by multiplet matrices. The equivalence of
and Rep^(G) will be proven in Theorem 4. 16.

4.14. Proposition. The vacuum representation π0 of ̂  determines a covariant functor
7Γ0, of C* -categories with direct sums and subobjects, between the categories Amp0 ̂
and Rep0 Λ? (and also between Amp ̂  and Rep j&) according to the rules

π0:μ H+ πμ = (TTO <8> id) o μ , π0:T ̂  T = (π0 0 id)(Γ) . (4.17)

This functor is bijective both on the objects and on the morphisms and establishes the
isomorphism of Rep0 ̂  and Amp0 ^&.

Proof. By definition of Rep0 ̂ , π0 : μ i-» πμ is surjective. It is also injective since
the faithfulness of π0 implies that of TTO ® id, therefore πμ = πμ only if μ1 = μ2

If T G (μ I z/) then π0(T) G (πμ \ πj obviously. Furthermore T ^> (π0 0 id) (T)

is injective, since π0 is faithful. To prove that it is also surjective let T G (π π^)
and suppose that Λ is an interval such that both μ and v are localized in Λ. Then for
A e ^(Λc),

f(π0(A) 0 7n) - f π^) - πμ(A)f - (π0(A) ® /m)Γ ,

hence flj G ̂ (.^(yl0))7 = πQ(^(A)) using Haag duality for the vacuum represen-

tation π0. Thus there exists T G ^loc such that T = (τr0 0 id) (T) and surjectivity is
proven.

It remained to show that the bijective map TTO is a functor. The identity morphisms
at μ and at πμ respectively are μ(l) G (μ μ) and TT (1) G (π | π ). π0 maps
μ(l) precisely into πμ(l). Finally, π0 also preserves composition of intertwiners,
τtQ(TS) = π0(T)τr0(5r), since π0 is an algebra map. The proof of that π0 preserves
the C* -structure, direct sums, and subobjects is left to the reader. The same proof
applies for π0 as a functor from Amp ̂  to Rep ̂ . D

Amp ̂  is of course a richer category than Rep ̂ 4. It also has a monoidal product,
a braiding, and a notion of the conjugate. Since these notions do not exist a priori
for the category Rep^ one can use Proposition 4. 14 to transfer these structures to
the category Rep^. The functor π0 will then identify Rep^ and Amp^ in all
respects that a representation theory can desire. The same holds for the subcategories
Rep0 ̂  and Amp0 ̂ .

The definition of Rep ̂  contained in an essential way the notion of the amplimor-
phisms. The question naturally arises whether one can find a selection criterion which
inherently characterizes a representation π as being an object of Rep ̂ . The answer
is the following

4.15. Theorem. Let π be a representation of ^>. Assume that there exists an interval
A and a positive integer n such that

= n - πr (4.18)

That is, when restricted to ^(Ac), π is equivalent to a finite multiple ofπQ. Then there
exists a unit preserving amplimorphisms μ\,/& —> Mn(^&) localized in A such that
π = πμ.Ifπis space translation covariant then μ is transportable.

Proof. Let V : J π̂ -> J% (g) Cn be an isometry such that Vπ(A) = (πQ(A) 0 In)V
for all A G ^(Λc). Let us define μ:^ -> Mn(^) by the formula

(π0 0id)(μ(^4)) = Fπ^)!/"1 , ^4 G ̂ . (4.19)
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This definition makes sense if we show that Vπ(A)V~l G (π0 0 id) (Mn( l̂oc)) for
A G ̂ loc. Let Λl be chosen in such a way that Λl D A and A G ̂ (A^). Then for
B G

Vπ(A)V~l(πQ(B) ® IJ = Vπ(AB)V~l = Vπ(BA)V

= (πQ(B)®IJ

Hence each entry of the matrix Vπ(A)V~l belongs to πQ

which we wanted to show. The so defined map μ is obviously a *-homomorphism
and μ(A) = A 0 In f or A G ^(Λc). Hence μ is localized in Λ. and is unit preserving.
Now (4.19) implies that π = (π0 0 id) o μ.

If π is space translation covariant then let Ux be the unitary implementing the
translation automorphism ax on ̂ π. If Ux denotes the respective implementation
operator on J% then it is easy to see that the unitary (Ux®In) VU^XV~1 on J%<S>Cn

is an equivalence between πμ and πμχ , where μx = aχoμoa_x. Now Proposition 4.14
implies that μx ~ μ, too. D

The selection criterion could be weakened by allowing a certain multiple of the
zero representation on the RHS of (4.18). This would then give account for all π
equivalent to a πμ with μ being possibly not unit preserving. We have seen, however,
that every amplimorphism μ is equivalent to a unit preserving one (Theorem 4. 13).

We do not know any inherent characterization of the representations belonging to
the subcategory Rep0^. The reason might be that all localized transportable am-
plimorphisms are generated by multiplet matrices, so Rep0 ̂  is actually equivalent
to Rep ̂ . If this is the case then our main theorem below, together with Proposi-
tion 4.9, implies that &(G) is the symmetry algebra of all superselection sectors of
^ satisfying the selection criterion formulated by the conditions of Theorem 4. 15.

4.7. Reconstruction of the Category Rep^(G)

The sectors of (or equivalence classes in) Amp0 ̂  were created by field operators
that were @ϊ(G) multiplets. Therefore one expects that &(G) is the symmetry
algebra working behind the sectors of Amp0^. Theorem 4.16 below shows that
the symmetry algebra &(G) can really be recovered merely from the structure of the
category Amp0^. What we mean by "recovering" is that Rep^(G) - as a strict
monoidal braided C*-category with subobjects, direct sums, and conjugates - can be
reconstructed from Amp0 ̂  modulo isomorphisms between such categories, namely
because Amp0 ̂  and Rep &(G) are isomorphic.

The isomorphism is established if we can find functors r: Amp0 ̂  —> Rep &(G)
and a: Rep J^(G) —» Amp0 ̂  such that r o a and α o r are naturally equivalent to
the corresponding identity functors. Furthermore these functors should be bijections
between the intertwiner spaces and preserve all structures given on these categories.

There exists, however, no natural choice for these functors. A functor r = rf can
be defined for each map / that associates to an object μ of Amp0 ̂  a multiplet
matrix f(μ) generating μ, i.e. μ^(μ) = μ. If f(μ) is a L)-multiplet matrix then define

Tf(μ) := D.lfT€(μ\ v} then define τf(T) := /(μ)*T/(z/). Similarly if φ is a map
associating to each object D of Rep &(G) a D-multiplet matrix φ(D) then a functor
α = aφ can be defined as follows. Let aφ(D) := μ^(D) and for t G (Dλ D2) let

aφ(t):=φ(Dl)tφ(D2)*.
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The functors ry for different choices of the map / are all naturally equivalent.
Similarly all α are naturally equivalent.

4.16. Theorem. The categories Amp0 ̂  and RepJ^(G), considered as strict mono-
idal braided C* -categories with subobjects, direct sums, and conjugates, are isomor-
phic. The isomorphism is provided by the functors r^ : Amp0 ̂  — » Rep *2$(G) and

aφ : Rep @ί(G) — » Amp0 ̂  satisfying

τfoaφ~ idAmpo Λ , aφ o Tf ~ idRep &(G} ,

and the properties listed below.
Let μ ,μ 1 ,μ 2 'Mi 'M2 be objects of AmpQty^, Tπ/ G (μj | μ(), T22, G (μ2 μ2) 0«d

/^ D,D^D2,D(,D2 be objects o/Rep^(G), ίu, e (l^ | D(\ t22/ G (D2 D2).
Then

i) μι ^ μ2 ̂  r^) - r/(μ2), Dl^ D2<^ a^DJ ~ aφ(D2);

ii) Tj :(μ! | μ2) -* (r^) | r/(μ2)) αwd aφ:(Dl \ D2) -» (α^φ^ | aφ(D2)) are
linear isomorphisms;

iii) 3 equivalences u(μl^μ2) E (^(μj) x Ty(μ2) τ^(μj x μ2)) swc/z

r/Tj!, x T22/) = ̂ μ^V/T^) x Tf(

3 equivalences U(Dl,D2) G (α^φj) x aφ(D2) \ aφ(Dl x D2)) such that

u ) * ( * ' ) x a(t

iv) r/(ε(μ1,μ2)) = Ii(μ2,μ1)*β(τ/(μ1),r/(μ2))w(μ1,μ2) αwd aφ(B(Dl,D^) =

U(D2) D^)* ε(aφ(Dl)^ ε(aφ(D2)) U(Dl , D2) w/Y/z r/ze .sαm^ natural equivalences u and
U as in iii);

v) T/(Γ*) = r/T)*, o^(ί*) = ov(ί)*, Hr/T)!! = HΠI, ||αv(ί)|| = ||ί||;
vi) if E £ (μ \ μ) is a projection and v is the corresponding subobject then 3 an

equivalence v(μ, ϋ?) G (τy(μ) τy(z')) .s wc/z ί/zaί

7yd/) (6) = «(Aί, E)*τf(E)τf(μ) (b)τf(E)υ(μ, E) , b e

αftd analogue statement for aφ;
vii) TyO^ Θ μ2) - ̂ (μ^ Θ τ/(μ2), αy(D1 Θ £>2) - α^Φi) Θ_α̂_

viii) 3 equivalences w(μ) G (rj(μ) | r^(μ)), W(jD) G (aφ(D) \ aφ(D)) such that

τf(T) = w(v)τf(T)w(μΓ , T e (μ I i/) ,

* , ί e (£> £>

The inteφretation of i-viii) is the following, i-ii) together mean that r^ and aφ are
equivalences from one category to the other. Properties iii-viii) express the fact that
TJ and aφ preserve the monoidal structure, braiding, the C* -structure, subobjects,

direct sums, and conjugates, respectively. Although braiding ε and conjugation ~ on
Amp0 ,/& will only be introduced in Sect. 5 we included points iv) and viii) for sake
of completeness.

Proof, i) According to Proposition 4. 11 and Definition 4. 3 μλ ~ μ2 4Φ f ( μ \ ) ~
/(μ2) ̂  rf(μι) - rf(μ2\ D,~D2^ φ(Dl) - φ(D2) ^ aφ(Dλ) - aφ(D2).

ii) Since t ι— > /(μ1)t/(μ2)* is an inverse for TJ and T i-̂  φ(Dl)^Tφ(D2) is an
inverse for α , the statements follow.
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iii) The formulae can be verified by setting u(μl^ μ2) = [f(μ\) x /(μ2)]* /(Mi x A^)
and U(Dl,D2) = [φφj x φ(D2)]φ(Dl x D2)*.

iv) This follows from Eq. (5.16) and from the above expressions for u and U.
v) TJ and aψ obviously commute with *. The norm of Γ G (μ \ v} is \\T\\ :=

||T*T||1/2 and similarly for t e (Dl \ D2). Since τf:(v \ μ) -* (τf(v) \ τf(v)) is a
linear isomorphism by i), it is multiplicative because ry is a functor, and finally it

commutes with the *-operation, it is a *-algebra isomorphism. Therefore it preserves
the norm, \\τf(T*T)\\ = ||T*T||, hence \\τf(T)\\ = \\T\\. \\aφ(f)\\ = \\t\\ can be proven
analogously.

vi) Use Lemma 4.10 to conclude that since /(*/) and Ef(μ) both generate v,3v(μ, E)
such that f ( v ) = Ef(μ)v(μ, E). The rest is an easy computation. We note that degen-
erate representations in Rep &(G) must be included in order to fit the corresponding
structure in Amp ̂ .
vii) Trivial.

viii) w(μ) = /(μ)* 7θΓ) and W(D) = φ(D) [f(aφ(D))* φ(D)]τ f(aφ(D))* can be
shown to fulfill the requirements.

Notice that we used the same map / in the definition of the conjugate as in ry.
Since the functors ry are all naturally equivalent, this can be done without loss of
generality. D

5. Statistics and Conjugation

The statistics operator as it was defined by Doplicher, Haag and Roberts in [DHR]
realizes the concept of interchanging identical particles in the framework of local
quantum field theory. Besides describing the statistics of partices, the statistics operator
plays a crucial role in reconstructing the internal symmetry group [DR]. Fredenhagen,
Rehren and Schroer have shown [FRS] that in two spacetime dimensions, where the
statistics can no longer be analyzed in terms of the permutation group, the statistics
operator gives rise to a correspondence between superselection sectors and equivalence
classes of representations of the braid group. They show, furthermore, that the left
inverse of an endomorphism determines a positive Markov trace on the braid group.

In this section we extend these results to G-spin models where the sectors are
created by amplifying homomorphisms. We find that all the notions of the theory
such as the statistics operator, statistics parameter, left inverse and the associated
Markov trace and link invariant work also in these "amplified" circumstances. We
compute the values of the statistical dimensions and statistics phases as explicitly as
possible for an arbitrary finite group G. Finally, we relate the representation of the
modular group based on the general theory of superselection sectors [R2], on the one
hand, and the one based on the representation theory of &(G) [B2], on the other
hand.

5.7. The Statistics Operator

Let Λl,Λ2 C ^Z finite sets. Λl is said to lie in the left (right) complement of

Λ2,Λl -< Λ2(Λl >- Λ2), if Λl C Λ2 and Λl < Λ2(Λl > Λ2) hold. For the am-
plimorphisms μ l 5 μ 2 > me relations μ\ -< μ2 or μγ >- μ2 mean the corresponding
statements for their localization regions Λl,Λ2.



Quantum Symmetry and Braid Group Statistics in G-Spin Models 157

5.1. Definition. Let μi \Λ> — > Mm (Λξ), ί = 1, 2 be localized transportable amplify-

ing homomorphisms. Choose equivalences Ui G (μi \ μ^) from μ% to an equivalent
μ , i = 1,2, such that /^ -< μ2. Then the statistics operator of μγ and μ2 is defined
to be

ε^(μl,Ul'9μ2,U2) = (U? x U?)P12(U{ x U2)

= μ2(t/f) (172* 0 I^PU^ <8) /2)μ1(t/2) , (5.1)

where P12 e (μ2

 x Ai I Ai x A2)
 nas matrix elements pff1'3132 = μ*lJl(μ2

2J2(l)).

We note that instead of the statistics operator ε^ one can introduce the operator ε^,

ε^(μ l5 Uλ\ μ2, U2) = £^(μ2, U2\ μ l 5 C/j)* on equal right. From now on the statistics
operator ε means ε^.

5.2. Proposition, i) The statistics operator is an equivalence from μl x μ2 to μ2 x μλ :

μ2 xμl(A)'ε(μl,Ul'9μ2,U2) = ε(μl,Ui'9μ2,U2)'μl x μ2(A) , A^Λ\ (5.2)

ε(μl,Ul\μ2,U2)-ε(μl,Ul\μ2,U2f = μ2 x μ^l), (5.3a)

ε(μlJUl μ2,U2f-ε(μl,Ul',μ2,U2) = μl x μ2(l) . (5.3b)

ii) ε(μl,Ul',μ2,U2) is independent of the choice of Uλ,U2 until μl -< μ2 holds,
therefore we can write ε(μ l5 μ2) := ε(μl5 t/ j; μ2, ί/2)
iii) L^ί z/j ^ μj, z/2 ^ μ2 ί/nJ VK G (^ | μ{), x = 1,2^ equivalences. Then

ε(v{,v2) = (W2 0 Il)μ2(Wl) - ε(μ l5μ2) - μι(Wf)(W? Θ /2) . (5.4)

/V6>6>/. i) Repeating the argument in the proof of Lemma 2.2 of [DHR2] we deduce
that μl and μ2 commute:

AtΛ. (5.5)

(Only double cones have to be replaced by intervals A c 2 Z and the causal

complement by A ι— » Ac.} Applying this formula for A — 1 we conclude that
P12 G (μ2 x μ{ I μλ x μ2) and is an equivalence. Now since the statistics operator is
the product of equivalences U* x C7f, P12 and Uλ x U2, (5.2-3) follow.

ii) and iii) can be proven in one step. Choose μ l 5μ 2, z>1? z>2 equivalent to
μ 1,μ 2,z/ 1,z/ 2 respectively in such a way that μ^z^ -< μ2,^2. Let Uτ G (μi \ μ^),
Vi G (^ I ̂ ), x = 1,2 be equivalences. Then

Sl:=VtWiUfeφi\μl), i = l , 2 . (5.6)

The Haag duality argument in the proof of Proposition 4.14 implies that the localiza-
tion region of Si is contained in any interval containing the localization regions of
zλ and μr Therefore Sl -<( S2 and the matrix elements of Sl and S2 commute, i.e.
Pι2(S{ 0 52) = (^ 0 SΊ)P12. Since μ{ is localized, (5.5-6) imply that

Sl x S2 = (Sl 0 /2)μ1(52) = (S2 (8> /2)(μ!(l) Θ S2) = 5j (8) 52 .
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Similarly we have S2 x Sl = S2 0 Sl . Consequently

εd/!,Vi; ι/2,^2)

= (V?xV*)Pl2(VlxV2)

= (W2UfS$ x W^Sf^P^S^W^ x S2U2W?)

= (W2 x Wλ)(UΪ x UfnSΪ x Sf)Pl2(S{ x S2)(U{ x U2)(W? x W%)

= (W2 x W1)ε(μ1,t/1;μ2;C/2)(W1* x W*)

Choosing μl = vλ, μ2 = v2 this implies ii). One only has to take into account that
any two pairs {μl^μ2}, {vΊ,v2} satisfying μl -< μ2, ί>{ -< ΐ>2 can be connected by a
sequence of pairs in which the subsequent pairs satisfy μ{^{ -< μ'2,v2. Now iii) is
obvious. D

5.3. Proposition, i) For composition of morphisms one has the hexagonal identities:

ε(μl x μ2,μ3) = (ε(μl5 μ3) (g) I2) μ1(ε(μ2,μ3)) , (5.7a)

ε(μl , μ2 x μ3) = μ2(ε(μl , μ3)) (ε(μl , μ2) ® /3) . (5.7b)

ii) Let Tca G (μc | μα) and Tdb <G (μd \ μb) be arbitrary intertwiners. Then

ε(μc, μ6) - (Γcα 0 /6) - μ6(Tcα) - ε(μα, μ6) , (5.8a)

ε(μc, μd) - μc(Tdb) = (Tdb ® Ic) - ε(μc, μb) . (5.8b)

iii) ΓΛ^ statistics operator εab = ε(μα, μb) obeys the coloured braid relation:

* (£\2 ® J3) (5 9)

Proo/. i) Due to the statement ii) of Proposition 5.2 we can use special intertwiners
in the statistics operator: ε(μ,μ3) = (U* Θ Γ)Pμ(U3), ε(μ l5μ) = μ(ί/1*)P(C/1 (g) /).
Therefore the right-hand side of (5.7a) can be written as

RHS = ((I/* 0 /!> . P13 - μι(t73)) 0 /2) - /^((t/3* 0 I2) - P23 - μ2(ί/3))

-(t/3*0/1(g)/2)(P13(8)/2)(/1(g)P23)μ1(μ2([/3)) = ε(μ1 xμ 2,μ 3). (5.10)

(5.7b) can be verified similarly.
ii) Let the morphisms μb = Ad^ oμb and μc = Ad^ oμc obey the properties

μb >- μα,μc and μc -̂  μb, μ^ respectively. Then

/^cα) εα6 = μ6(Tcα) (̂ * ® Ia)Pabμa(Ub) = (U* 0 /c)μ6(Tcα)Pα6μα(t/6)

- ([/* 0 7C) (/, 0 Tca)Pabμa(Ub) = (U* 0 /c)Pc6(Tcα 0 Ib)μa(Ub)

= (t/* 0 Ic)Pcbμc(Ub) (Tca 0 /6) = εc6 - (Tca 0 4) , (5.11)

and similarly for (5.8b).
iii) Setting Tca = ε12, μα = μl x μ2, μb = μ3, μc = μ2 x μj in (5.8a) one obtains
that

μ3(εl2)ε(μl x μ2,μ3) = ε(μ2 x μ l 5μ 3) (ε12 0 /3) . (5.12)

Then using (5.7a) the coloured braid relation (5.9) follows. D
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5.2. The Braiding Structure on

Braiding in the monoidal category Amp^ means a natural equivalence between
the functors x and xop that satisfies the hexagonal identities. Here xop denotes the

opposite multiplication defined by μ{ xopμ2 — ̂ 2 x Mι» 1̂ x°p^2 — ̂ 2 x ^Ί A natural
equivalence between them is a map ε:Ob(AmpJ4 x AmpJ^Γ) — > Mor(Amp ̂ )
such that ε(μ l5μ2) G (μj xop μ2 I Mi x A^) *s an equivalence satisfying that if
(Γn,,Γ22/) G ((μ1,μ2) I (μΊ,μ2)), i.e. if Tn, G (/^ | μj), T22, G (μ2 | μί>) then

ε(μl,μ2)(Tnl x Γ22,) - (Γ22, x Γn,)e(μί,/4). (5.13)

This relation - called the naturalness of ε - was proven for the statistics operator in
Proposition 5.3 since (5.13) is equivalent ot the two Eqs. (5.8a) and (5.8b).

The hexagonal identities (5.7a-b) can also be comprised into one formula namely

ε(μl xμ2,μί x μ2)

= [μΊ(ε(μ1; μ2)) ® /2][ε(μl5 μ{) x ε(μ2,μ2)][μ1(ε(μ2,μ
/

1)) ® J2/] . (5.14)

The interpretation of (5.14) in terms of categories is the following. The natural equiv-
alence map ε can be extended to a functor ε: Amp^ x Amp^ —» MOR(Amp^),
which turns out to be monoidal. The objects of MOR(Amp Λ>) are the morphisms
T of Amp ̂  and its morphisms from T' G (μ; | z/) to T G (μ | z/) are the pairs
CR, S) of moφhisms of Amp,^ satisfying T.R = 5T'. The monoidal structure on
MOR(Amp ̂ ) is defined for the objects by T, T' H-> T x T' and for the moφhisms
by CR, 5), CR', S") ^(RxR',S x Sf).

Let us define the functor ε in the following way:

ε: (μj, μ2) >—» είμj, μ2) G (μ2 x μj | μj x μ2).

ε : (./ j j / , J-22r) '—^ (-i ι ι/ X -^22'' 22' ^ 11;) ^ \β\μ\ ι A^2' I ̂ (/^l 5 A^2^ '

Then the naturalness of ε is just the condition of ε being the above functor. The
comprised hexagon identity (5.14) on the other hand defines a natural equivalence
between the functors ε o (x, x) and x o (ε, ε) from the category (Amp ̂  x Amp ̂ ) x
(Amp.^ x Amp^Γ) to MOR(Amp^). That is (5.14) establishes the monoidality of
the functor ε.

From the coloured braid relation one easily derives a representation of the braid
group B^, TV = 2,3, . . . for each amplimoφhism μ. Let μ:^ —> Mm(^) be an
object of Amp.y^ and let σ1 ? . . . , CΓΛΓ_I be the standard generators of B^. Then

N-l-a
.^—m-^^^—S^m ^—^—mm*,.

where ε = ε(μ, μ), defines a unitary representation β^ of B^ in Mκ(^) with

The equivalence class of β(^ depends only on the equivalence class [μ] of μ

due to Proposition 5.2. iii). The representations β^\ N = 2,3, . . . can be united to a

representation βμ of B^ if we use the obvious inclusions Mmτv(^) 3 B H^ B®Im G

Mmjv+ι(^). In this way /?μ will be a representation in an infinite amplification ̂

of ̂  (Subsect. 5.6). The equivalence class of β is the statistics of the sector [μ].



160 K. Szlachanyi and P. Vecsernyes

5.2. The Statistics Operator in Amp0^

In this subsection we give the statistics operator in the case when the amplifying
homomorphisms are generated by multiplet matrices.

5.4. Lemma. Let μi = μF., ί = 1,2. Then

ε(μ l5μ2) - (F2 x ί\) - B(D^D2) - (Fl x F2)* , (5.16)

where B denotes the braiding in Rep^(G): B(D^D2) = P\2(
D\ ® Ότ) (R^

Proof. Using charge transfer unitaries Uλ, U2 in the definition of the statistics operator
such that U^ = F^l^xju^ ί = 1,2 and the braid commutation relation (2.50)
of the special multiplet fields F^l^x^ and F2(l2,x2)

 tne calculation is straightfor-
ward. D

Let F be an irreducible Dr -multiplet matrix and μ be the corresponding amplimor-
phism. Using (5.16) the unitary representation β^ of the braid group HN in (5.15)
can be written as

N

x (F x ... x F)*, i= 1, . . . , T V - 1, (5.17a)

N

where

i-l N-i-l

, Dr) = I < 8 > . . . ® / <g>P, i+l(Dr <8> Dr) (K) <g> / ® . . . ® / . (5.17b)

Formula (5.17a) shows explicitly that /3^ is unitary equivalent to the c-number
matrix representation given by (5.17b). We note that for the special multiplet fields
Fr(l,x) the braid representation β^ itself reduces to scalar matrices.

5.4. The Left Inverse and the Statistics Parameter

In this subsection we restrict ourselves to the subcategory Amp0 ,/&.

5.5. Definition. The left inverse of an amplifying homomorphism μ\^ —»
is a unit preserving positive linear map φ\Mm(^) —»,^ satisfying

φ(μ(A)Bμ(C)) = Aψ(B)C, A,C G ̂ , 5 G Mm(^). (5.18)

It follows that μ oφ'.M^Λ?) —> μ(̂ ) is a conditional expectation and 0 o μ ~ id .̂
For a μ generated by a multiplet matrix a left inverse exists in the following form:

. . n m

0(5) - - tr(F*5F) = - V V Fik*BτjFjk , (5.19)
n n Γ^ ,fe=l ι,j = l

where F is any m x n multiplet matrix generating μ, i.e. μF = μ. This definition is
correct since Lemma 4.10 ensures us that φ is independent of the choice of F.

The left inverse helps us to obtain a c-number characterization of the spin-statistics
properties of the superselection sectors:



Quantum Symmetry and Braid Group Statistics in G-Spin Models 161

5.6. Definition. The statistical parameter matrix of the amplimorphism μ generated
by the multiple! matrix F is defined as

Aμ - Φ(εμ) = i tr(F%F) G Mm(Λ) . (5.20)

We note that Xμ G μ(,̂ )' Π Mm(^£) because the left inverse property of φ and the

intertwiner property of εμ imply the relation [φ(εμ), μ(A)] = φ([εμ, μ
2(Λ)]) = 0. The

explicit form of the statistics parameter matrix is given by the next

5.7. Proposition. Let μ be the amplimorphism induced by the irreducible Dr-multiplet
matrix Fr . Then the statistics parameter matrix of μ is

ω 1
(5.21)

where Xr, dr and ωr are the statistics parameter, statistical dimension and statistics
phase, respectively and π is a n ̂ -dimensional unitary irreducible representation of the
centralizer subgroup Cg < G of the element g from the conjugacy class A c G.

Proof Using (5.16) one obtains that λjf = (l/n r) FikD^(R(^R^}F . Since the

element c = R^R^ = ]P (#,#) is in the center of &(G\ moreover it is invertible
gee

and c~l = c*, Dr(c) is a phase ωr times the identity operator in an irreducible
representation. Thus Xμ = Xrμ(ΐ) follows. The explicit form of ωr can be obtained

by using the irreducible characters of &(G) given in (2.8b). D

5.5. Conjugation

The conjugation on Amp0^ we want to define should be a contravariant functor
~ : Amp0 ^Ά — > Amp0 ̂  analogous to the conjugation ~ on Rep ̂ (G). (See the end
of Sect. 2.) To achieve this we first define the conjugate of a multiplet matrix.

Let / G Z + - and x G Z be fixed, x < I. For an arbitrary representation D let

FD' = Σ Dl3((9,hf)Qg(l)δh(x). (5.22)
9,heG

If F is any .D-multiplet matrix then it can be uniquely written in the form F = UFD

by Proposition 4.4. The conjugate of F is the D-multiplet matrix

F := UFD . (5.23)

This conjugation maps equivalent multiplet matrices to equivalent ones. However
Fl = F2u does not imply Fl = F2u' . Therefore fΓj* — μp is not a good definition
for the conjugate morphism. We have to fix a map / associating to each object μ of
Amp0 ̂  a multiplet matrix f ( μ ) such that μ^(μ) = μ. Then

defines the conjugate of μ. The conjugate of an intertwiner T G (μ | z/) is the
intertwiner

μ) . (5.25)
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In this way conjugation becomes a contravariant functor, which is involutive up to
natural equivalence. Since Fl x F2 ~ Fl x F2, it can be shown that ~ is a monoidal
functor.

This notion of conjugation, however, has some flaws. It depends on the choice of I
and x. In particular it does not commute with translations. A better conjugation could
have been defined by taking for F the partial isometry part in the polar decomposition
of F*τ. The reason for not choosing this conjugation is that it presumably leads out
from the class of multiple! matrices we are using in this paper.

Of course, a proper conjugation is not an arbitrary involutive monoidal contravari-
ant functor. The conjugate β has to satisfy that β x μ contains id as a subobject in a
special way described below.

5.8. Proposition. Let μ\^> — > Mu(s&) be an object in Amp0^. Then there exist
intertwiners R G (β x μ id) and R G (μ x β id) such that

(R* x //(I)) (Ml) x Λ) = Ml) , (R* x Ml)) (0(1) x R) = Ml) , (5.26)
R*R = n l = R*R, (5.27)

where n is the essential dimension of μ (and of μ) defined by Theorem 4.1 3.

Properties (5.26) describe what is called compactness of the category Amp0^
[RT].

Proof. Let F be any multiple! matrix generating μ. Define R and R by the formulae

fc=l fc=l

Using the weak F-algebra relations for F and F one easily obtains Eqs. (5.26-
5.27). D

The statistical dimension is usually the c-number R*R. Equation (5.27) therefore
tells us that the statistical dimension of μ is equal to its essential dimension, which
in turn is equal to the dimension of the representation D = Tf(μ). We shall see that
this number is also equal to the square root of the index of μ.

5.9. Proposition. Using different normalization for R and relating R to R let us define
R G (μ x μ id) and R G (μ x β id) by

1 n

Ri3 := -= Y" F*kF3k , R := ε(μ, μ) - R , (5.29)

when F generates μ. Then R* μ(B)R = φ(B), B G Mm(^), is the left inverse defined
in (5.19), R*R = 1 = R*R and

(R* x μ(l)) (μ(l) x R) = (R* Θ Im)μ(R) = - FD(c)F* , (5.30a)
Ίi

(R* x μ(l)) (Ml) x R) = (Λ* ® Im)μ(R) = ~ FD(c)F* , (5.30b)
77-

c = Σ (g, g) is a central unitary element Oj
g£G
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Proof. R*μ(B)R = φ(B) and unitarity are obvious. To obtain (5.30) we compute R
using (5.16),

= 4= [(F x F)B(D, D)γ^ss = -4= FίkFjlDkl(c*) ,

where in terms of the universal ^-matrix c* = c~l = R^SR^l\ Then an easy
F-algebra yields (5-30a-b). D

Notice that though the intertwiners R and R depend on the choice of the multiplet
matrix F, expression (5.30a) does not, because the right-hand side is invariant under
the replacement F ι— > Fu. The right-hand side of (5.30a) is nothing else but the
statistics parameter matrix of μF.

5.6. The Infinite Amplification of^ and the Index of μ

In the case of an endomorphism ρ : Λ — >• Λ> the index of the inclusion g(Λ) C Λ>
was shown to be equal to the square of the statistical dimension of ρ [L]. In
order to generalize this statement to amplimorphisms μ:^£ — > Mm(^£) we need
an amplification of ̂  on which μ acts as an endomorphism.

5.10. Definition. For a fixed positive integer m define the infinite amplification j&
of the observable algebra as the C* -inductive limit of the tower

with the inclusions of tensoring with the identity matrix Im from the right. If
μ:^£ — » Mm(^) is a homomoφhism then μ can act on the subalgebras M^\^) :=
^ (g) Mm (g) . . . (g) Mm (k pieces of Mm) as μ(A (8> 04 <8> . . . <8> a fc) = μ(A) 0 a1 0 . . . 0

aA G M^+l\^}. The continuous extension of μ to ̂  provides an endomoφhism

μ:Λ^J.

If μ and z/ are both m-dimensional amplimoφhisms then their monoidal product

μ x v extends to the ordinary composition μv — μ o v of endomorphisms of ?̂. If μ
possesses a left inverse φ then 0 can also be extended to a unit preserving positive

map φ:,yS — > ̂  that satisfies

φ(μ(A)Bμ(C)) = Aφ(B)C , A, 5, C G ./I. (5.31)

Thus μ o 0 is a conditional expectation for the inclusion μ(̂ ) c .̂
In the next proposition we shall make the following assumptions: Let μ be an

irreducible object in Amp ̂ , that is (μ \ μ) is one-dimensional. Assume the existence
of an irreducible μ and an intertwiner R G (μμ id) such that R*R = 1. Then

φ(B) = R*μ(B)R (5.32)

defines a left inverse for μ and the conditional expectation can be written as

μ o φ(B) = μ(Rf μμ(B) - μ(R) , B G ,Λ . (5.33)
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5.11. Proposition. Let μ and R be as above, and R be given by (5.29). If the statistics
parameter X of μ defined by φ(εμ) = λ μ(l) is non-zero then

R*μ(R) = X . μ(l), R*μ(R) = λ μ(l), (5.34)

every A^^& can be written as

A = —μ μ(R*)Eμμ(A)μ(R), E = RR* , (5.35)

and the only left inverse of μ is the one defined in (5.32).

Proof. Using naturality and the hexagonal identity of ε amplified to ?̂ one derives

μ(#*)ε(μμ,μ) - Ή* => μ(Ή*)ε(μ,μ)μ(εμ) - Ή*

=> ε(μ,μ)*μ(R) = μ(εμ)R ^ R*μ(R) = φ(εμ) = X μ(l).

Let λ; be given by R*μ(R) = X' - μ(l) then

λl = \R*R - R*\μμ(l)R - R*μ(R*μ(R))R = R*μ(R*)RR

so (5.34) is proven. Multiplying the identity RAR* = Eμμ(A) from the left by μ(Λ*)
and from the right by μ(^?) and then applying (5.34) one obtains formula (5.35).

In the endomorphism case μ\^& -* 1/& (5.35) implied that ̂  is generated by
μ(̂ ) and the projection E. (See the footnote in [FRS].) In the amplimorphism case

this argument does not apply since R is not a square matrix therefore μ(R) φ μ(̂ ).
Nevertheless formula (5.35) can be used to prove uniqueness of the left inverse.

Let φf be any left inverse of μ. Then φr: Mm(^£) —» ̂  can be extended not only

to a map J> -> J> but also to a map φ'\M<£>L\Λ) -+ M<£-l*L~l\.sg) between
the non-square matrices M^f'L)(^) := Mat(mκ x mL,^) by the definition

where φ υ'' \^& -+ ̂  are defined by φf(A) = φ IJ(AIJ), A e Mm(^). Now it is easy
to check that formula (5.31) holds for arbitrary (non-square) matrices of observables
provided the products exist. This allows us to apply φ' to the identity (5.35) and
yields

φ'(A) = r-L R*φ'(E)μ(A)R = -̂  φ'(E)φ(A).

The_second equation follows from φ'(E) e (μ \ μ), hence a scalar. Putting A = I,
φ'(E) = |λ|2 follows and therefore φ' = φ. Ώ

As a consequence we have a unique conditional expectation μ o φ: ̂  —> μ(̂ )

and the index of the inclusion μ(̂ ) c ̂  can be defined through the index of this

conditional expectation. The latter one is defined through a quasibasis [W]: {ba} C ̂
is a quasibasis for μ o φ if

baμ o φ(blA) = A, A e J . (5.36)
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Then the index of the conditional expectation μ o φ is defined by ^bab^9 which is
a

a central element of ^Ά and is independent of the choice of the quasibasis.

5.12. Theorem. Let μ be as in the above proposition. A quasibasis for μ o φ is
{bpq P,q = 1, > m}> where bpq G M$(j$) has matrix elements

bij — — δipRjq* (5 37)°pq ~ | Λ | ' v Jf)

Then the index [,J:μ(^)] defined by^bpqb*q = l4:μ(^)} - ί is l/|λ|2.
pq

Proof. Comparing (5.33) and (5.35) we see that a sufficient condition for {bpq} to be
a quasibasis is the equation

pq

Inserting here the ansatz (5.37) a little calculation proves that it is a quasibasis indeed.
The index is obtained from

Σ/ft ft* \ij _ V^ _ &Pftkq*cjpπkq _ _ cij . -i rη
WvqVpq* ~ 2^ \χ\2° ^ 0 ΓG - 0 1. LJ

' ' I '
pq pq

Applying this result for μ G Ob(Amp0^) we see that the square root of the
index of an irreducible μ is equal not only to the statistical dimension but also to the
dimension of the associated irreducible Hopf algebra representation

5.7. The Markov Trace and Link Invariant

For μ = μF let φ be its left inverse and consider its N-th power φN acting on
(μN μN) C M^f\^). By Theorem 4.16, ii) and v) the functor TJ provides a linear
isomoφhism

τf : (μN \μN)3T^ f(μNf Tf(μN) G (DN \DN), D^ τf(μ) ,

which commutes with the *-operation. Hence ry :(μN μN) —» (DN DN) is a C*-

algebraic isomorphism. The normalized trace (l/nN) tr on (DN DN) is obviously
a faithful trace state on (DN \ DN). Therefore (\/nN) - tror^ is also a faithful trace

state on (μN \ μN).
On the other hand f(μN) and F x . . . x F (N factors) both generate μN, thus

they differ by a unitary c-number matrix. Hence for T G (μN μN)9

φN(T) = -^ - tr(F x ... x F)* Γ(F x . . . x F) = -^ tr rf (Γ),
rrv n^ 7

where on both sides tr is the ordinary trace of n x n matrices. This proves that
φN:(μN I μN) -> C is a faithful trace state.

Obviously 0JV+1(^1^/m) = ΦN(T), that is the powers {φN} are compatible with
the inclusions (μN \ μN) C (μN+l \ μN+l). This leads to
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5.13. Theorem, i) The unique left inverse φ\^4 —> ̂  of μ e Ob(Amp0^) defines

φ(T) 1 := lim φN(T), Γ 6 M (μN \ μN)
N—vrv-i ^-^

N

a faithful trace state on the C* -subalgebra (J (μN \ μN) of A.
N

ii) If μ is irreducible then fφ = ψoβμisa Markov trace on the group algebra of the
braid group B^.

(MI): ψφfa) = ψφjj , δ^eB^, (5.38)

(Mil): ψ(bσN) = λ. ψ(b), ^(ftσ^1) = λ -^(6), b G BN , (5.39)

where X is the statistics parameter of μ. The strong Markov property, ψφ^) =
ψty^ψφ^) also holds, where bλ G B^ and b2 is a word in σN, σN+l, . . . , σM,
M>N.

Proof, i) was already shown above. (M I) follows since ψ is a trace state. (M II) is a
consequence of the strong Markov property, which in turn follows from

using that φN~l(β(

μ

N\b)) = φN(βff*\b)) μ(l) holds for 6 e BN since μ is irreduc-
ible. D

The Markov trace ψ leads to a link invariant through the same formula as in [FRS].

5.8. Representation of the Modular Group

Modular transformations and representations of the modular group are familiar notions
in conformal field theory. Motivated by orbifold models modular transformations on
the characters {Φ} of @ϊ(G) was introduced by Bantay [B2],

(§Φ) (0, A) - Φ(h~l , g) , (fφ)(0, Λ) = Φ(g, gh), g,htG. (5.40)

In a general two dimensional field theory a representation of the modular group on
the superselection sectors was constructed by Rehren [R2]:

/ \ 1/3

> 6s) ' ε(Cs> ^» , Tra = δrs . ωr ί , (5.41)

where r, 5 label the irreducible sectors, φr is the left inverse of the endomorphism ρr

in the class r, ε is the statistics operator, and σ is defined by the help of statistical
dimensions dr and statistics phases ωr:σ =

The operators 5, T are unitary matrix representations of the modular group since
TT* and the

(TS)3 = IN, S2 = C ,

in both cases £5* = IN = TT* and the relations
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fulfill, where Crs = δr § is the conjugation matrix, and TV is the cardinality of ^(G) or

{[£r]}. The S diagonalizes the corresponding fusion rules and the fusion coefficients
can be expressed in the usual way [V].

Since in the case of G-spin models there is an isomorphism between the categories
Rep^(G) and Amp0^ one expects that the above mentioned a priori different
representations of the modular group should coincide. Indeed, using the form (5.16)
of the statistics operator and the fact that |σ|2 = Σ^ί ~ Σnr = l^l2' w^m an extra

left inverse φr in S (dummy in the non-amplified case) one obtains

• (Fs x Fr) B(Dr, D8) BCDβ, Dr) - (Fs x

nr Y~^ *
\Q\ /_^ s -> r r r ι r

9,h£G

- — V Φ
~ |G| 2^ rW

thus S'rs = (Φr,SΦs). Since

σ Ξ

and Φr(^, gh) = Φr(c - (g, h)) = ωr - Φr(g, h), the T-s coincide as well.
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