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1 Introduction

Let G be a compact, simple and simply connected Lie group and let π : P →
M be a principal G bundle over a smooth manifold M . Let ν denote the
universally transgressive generator ofH3(G; Z) = Z and let c ∈ H4(BG; Z) =
H3(G; Z) be the transgression of ν. By regarding H4(BG; Z) as a lattice in
(S2g∗)G we will allow ourselves to confuse c and the basic inner product 〈 , 〉
on g. Recall [23] that 〈 , 〉 is the Killing form on g, normalised so that the
longest root θ has length

√
2. In the physics literature, M is said to be string,

or admit a string structure, if a certain characteristic class in H3(LM ; Z)
vanishes (here LM denotes the free loop space of M). This characteristic
class is the obstruction to lifting the structure group of the principal LG-
bundle LP → LM to L̂G — the Kac-Moody group. As has been observed
by several authors [12, 13, 19] the obstruction in H3(LM ; Z) is closely related
to the characteristic class c ∈ H4(M ; Z): if M is 2-connected a lift of the

structure group to L̂G exists precisely when the map c : M → K(Z, 4) is null-
homotopic. As is well known, if G = Spin(n) then 2c = p1. This obstruction
problem on LM can be phrased in the language of homotopy theory down on
M . Recall [25] that G fits into a short exact sequence of topological groups

1 → K(Z, 2) → Ĝ→ G→ 1
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where Ĝ is the 3-connected cover of G. Ĝ is a topological group which can
be defined in a homotopy theoretic manner as the homotopy fibre of the
canonical map G → K(Z, 3) classifying ν. When G = Spin(n) the group
Ĝ is called String(n). Ĝ has vanishing third homotopy group and therefore
cannot have the homotopy type of any Lie group. The obstruction problem
on LM of finding a lift of the structure group of LP to L̂G translates into
the problem down on M of finding a lift of the structure group of P from G
to Ĝ (from this perspective it is slightly easier to see that if M is 2-connected
a lift exists precisely when the characteristic class c on M vanishes).

Suppose that M is string, and a lift P̂ of P to a principal Ĝ-bundle exists.
In the work [25] of Stolz and Teichner on elliptic objects it is important to
make sense of the geometry of the bundle P̂ . Since Ĝ is only a topological
group and not a Lie group, connections and curvature cannot be understood
in the conventional sense. To get around this problem, Stolz and Teichner
introduce the notion of a string connection, which appears to be closely
related to the notion of higher dimensional parallel transport studied in [4, 9].
In this note we want to promote the point of view that one can make sense
of the geometry of the bundle P̂ by replacing the topological group Ĝ, by
the Fréchet Lie 2-group Ĝ considered in [2], and study the geometry of what
one might well call a ‘principal Ĝ-bundle’ P̂ with Ĝ as its ‘structure 2-group’.
The notion of a principal bundle for a 2-group is introduced in Definition 9.
It is essentially a groupoid version of the notion of G-torsor for a gr-stack
introduced by Breen in [7]. We recall [7] that isomorphism classes of G-torsors
parametrise the degree non-abelian cohomology set H1(M ; G) in the same
way that isomorphism classes of principal G-bundles parametrise H1(M ;G)
for G a topological group. If G is the gr-stack associated to a crossed module
t : H → G, then G-torsors correspond bijectively to (G,H)-gerbes. Our main
result is

Theorem 15. Suppose that M is 2-connected and that the class c ∈ H4(M ; Z)
vanishes. Then there is a principal Ĝ-bundle P on M, together with a mor-
phism of principal bundles

P //

Ĝ
��

P

G
��

M // M

P corresponds to a (Ω̂G,P0G)-gerbe on M which we call the string gerbe
on M .
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Here t : Ω̂G → P0G is the crossed module defining the 2-group Ĝ. The
point of doing this is that one can then make sense of the geometry of this
torsor through the theory of connections on non-abelian gerbes as developed
by several authors [1, 4, 9] but most notably Breen and Messing. It would be
very interesting to see how such an approach is related to Stolz and Teichner’s
notion of a string connection.

The subject of gerbes by now barely needs an introduction. Suffice it
to say that U(1)-gerbes and their higher dimensional analogues, U(1)-n-
gerbes, provide geometric realisations of H3(M ; Z) and Hn+2(M ; Z) respec-
tively, generalising the correspondence between H2(M ; Z) and isomorphism
classes of line bundles provided by the Chern class. In this sense U(1)-gerbes
and their higher analogues should be thought of as ‘higher line bundles’.
Classically, one thinks of Hn+2(M ; Z) as isomorphism classes of principal
K(Z, n)-bundles. From the point of view of differential geometry however
such a description is not quite what one would hope for, as for increasing n
it is progressively more difficult if not impossible to realise K(Z, n) as a Lie
group in any conventional sense. What one would of course like is a higher di-
mensional analogue of the classical Weil-Kostant theory of line bundles with
connection; one would like to realise the characteristic class in Hn+2(M ; Z)
associated to a principal K(Z, n)-bundle P as the ‘curvature (n + 2)-form’
of some ‘connection’ on P , and for this one needs K(Z, n) to be a Lie group.
As pointed out to me by John Baez, it is profitable to think of K(Z, n) as
the n-group U(1)[n− 1], i.e the group object in (n− 2)−Gpd(Man) . . .

• explain this

In this picture, aK(Z, n)-bundle corresponds to a torsor in (n−2)−Gpd(Man)
over M for the group object U(1)[n − 1]. According to one’s taste and the
applications at hand, one may consider weak or strict (n−2)-groupoids. The
classical picture in terms of principal K(Z, n)-bundles may be recovered by
taking geometric realisations of the nerves of these objects. The point of
this approach is that the n-group U(1)[n − 1] is a Lie n-group and one can
thus hope to adapt methods of differential geometry to this setting. This
approach has been carried out, at least for n = 3 and 4, beginning with
the work of Brylinski [10] and Murray [21] and continuing with the work of
Brylinski and McLaughlin [11] (see also [24] for a continuation of the ideas
in [21] to n = 4). To our mind this theory of higher U(1)-gerbes is just
a convenient language for interpreting the geometry of higher degree coho-
mology classes, and there certainly exist other languages which do the same
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task, sometimes more efficiently, for instance the Hopkins-Singer language of
differential functions [16].

Of course, just as one should not restrict attention to principal U(1)-
bundles alone but instead consider also principal G-bundles for other groups
G, one should also replace the 2-group U(1)[1] and its higher analogues by
other 2-groups G, and consider torsors in Gpd(Man) for G. This leads one
into the study of non-abelian gerbes. In fact, for gerbes to be anything other
than such a convenient language, the theory of non-abelian gerbes should be
developed in analogy with the theory of principal bundles. Such a develop-
ment has begun to be undertaken by the authors cited above, particularly
Larry Breen. However, it is to the detriment of the subject, we feel, that
hitherto examples of non-abelian gerbes of interest in mathematical physics
and differential geometry have not been forthcoming. The traditional exam-
ple of a non-abelian gerbe described in [7] is the Schreier gerbe associated to
an extension of groups 1 → G→ H → K → 1, but we are not aware of any
other examples significantly different from this one. One of the purposes of
this note is to present a novel example of a non-abelian gerbe — the so-called
‘string gerbe’ — which we feel is worthy of further study.

The main theme of this paper is internalisation. Recall that if C is a
category, then one can consider the notion of a category in C or a category
internal to C. A category E is said to be a category in C if the objects and
morphisms E0 and E1 respectively of E are objects of C. The structural
maps of E are also required to be morphisms in C. In this paper we will
focus on the cases where C is the category of groups and the category of
torsors. In §2 we review the notion of a group object in a category and the
notion of a 2-group, i.e a category internal to the category of groups. In §3
we review various notions of torsors and corresponding gr-stacks following
the discussion in [6]. In §4 we review the definition of the non -abelian
cohomology set and describe various geometric objects giving rise to classes
in this set. The geometric objects we focus on here can be thought of as
torsor objects or as categories internal to the category of torsors. We relate
these objects to the torsors of [6] and the crossed module bundle gerbes of [1].
§3 and §4 owe an obvious debt to the paper [6] of Breen. To our mind this is
the classic work on a geometric description of non-abelian cohomology but it
dosen’t seem to have been as widely quoted as it should. In §5 we recall the
construction of the string 2-group Ĝ from [2]. We show how this 2-group is
related to the group Ĝ of [25]. Finally in §6 we describe the construction of
the string gerbe.
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2 Internal Groups

2-groups are an important example of internal categories. Rather than giving
a hackneyed exposition of the theory we will just recall the main points and
refer the interested reader to [3]. Let E be a category with finite products and
a terminal object, for instance E could be a topos T . Recall that a group
object in E is an object G of E together with morphisms in E

m : G×G→ G, e : 1 → G, i : G→ G

where 1 is the terminal object in E such that the following diagrams commute:

G×G×G

m×1
��

1×m // G

m

��
G×G m

// G

G
(1,i) //

1
##GGGGGGGGG G×G

m

��
G

G //(1,e) //

1
##GGGGGGGGG G×G

m

��
G

Write Grp(E) for the category of group objects in E.

Definition 1. A (strict) 2-group in E is category internal to Grp(E), the
category of group objects in E. Therefore a 2-group is a category G with

• a group object of objects G0

• a group object of morphisms G1

together with

• source and target homomorphisms of group objects s, t : G1 → G0

• a composition homomorphism ◦ : G1 ×G0 G1 → G1

• an identity assigning homomorphism i : G0 → G1

making the usual diagrams commute.

For example E could be the category Set of sets, in which case a 2-group
in E would be more usually called a 2-group. Or E could be the category
Man of manifolds, then a 2-group in E would more usually be called a Lie
2-group. It is straightforward to see that for any of these categories E,
the 2-groups in E are precisely the group objects in Cat(E). The notion of
a group object in Cat is the starting point for various weakenings of the
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notion of 2-group described in [3]. One can for instance require that the
diagrams above do not commute on the nose, but instead commute up to
some coherent natural isomorphism — this leads one to the notion of a weak
2-group (see [3]). 2-groups can also be described in terms of crossed modules.

• give definition of crossed module

Recall that a crossed module of groups consists of a pair of groups H
and G together with a homomorphism t : H → G, and a left action of G
on H described by a homomorphism α : G→ Aut(H) which satisfy the two
conditions

t(α(g)(h)) = gt(h)g−1

α(t(h))(h′) = hh′h−1

A prime example of a crossed module of groups is the crossed module i : G→
Aut(G) associated to any group G. Here the homomorphism α is just the
identity.

3 Torsors and Gr-stacks

Let E be a site, for definiteness, suppose that E = Top, with the local
section topology. The notion of a torsor under a group object makes sense
in any topos, in particular the Grothendieck topos Sh(E) of sheaves on E.
In [15] Giraud defines a torsor in E under a group object G in E to be an
object P representing a torsor in Sh(E). This is equivalent to the following
requirements:

Definition 2. A G-torsor in E, for G a group object in E, consists of an
object P of E together with

• an epimorphism P � ∗, where ∗ is the final object of E, (in other words
there is a cover Ui → ∗ such that the sets Hom(Ui, P ) are non-empty),

• a (right) action P ×G→ P of G on P ,

such that

• the natural map P ×G→ P × P is an isomorphism.
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If M is an object of E then a G-torsor in E over M is a torsor in E/M .

We have chosen to use the language of sites and Grothendieck topologies
even when it is clear that we are just interested in topological spaces, because
we want to illustrate how, through the process of internalisation, the later
Definition 9 is just a special instance of the present definition. If E = Top
then a torsor in E over M is the same thing as a topological principal bundle
over M . The G-torsors in E together with the morphisms between them form
a groupoid G-TORS. Similarly, the G-torsors over objects in E together with
the morphisms between them form a fibred category G − TORS/E → E. If
E = Top then this fibred category is just the usual classifying stack BG of
topological principal G-bundles.

Suppose that G is a groupoid in E with objects G0 and morphisms G1.
A G-torsor in E is a non-empty object P over G0 in E (i.e there is an
epimorphism P � 1 in E/G0) together with a free and transitive action

P ×G0 G1 → P.

If G is a groupoid in Sh(E) then the G-torsors in Sh(E) provide a realisation
of the stack associated to G. If G is the 2-group associated to a crossed
module of groups t : H → G in E, torsors for the groupoid G are the same
as (G,H)-torsors in the sense of the following definition of Breen.

Definition 3. Suppose that t : H → G is a crossed module of groups in
E. We say that (G,H)-torsor in E is a (right) H-torsor P together with a
morphism φ : P → G which satisfies φ(uh) = t(h)−1φ(u) on sections. Simi-
larly, if M is an object of E, then we say that a (G,H)-torsor over M is a
(G,H)-torsor in E/M .

Again, in the case where E = Top, a (G,H)-torsor over M in E is the
same thing as a (G,H)-principal bundle over M in the sense of the following
definition:

Definition 4. Let t : H → G be a crossed module of topological groups. We
say that a (G,H)-principal bundle on a topological space M consists of a
local section admitting surjection π : P →M together with

• a right action P ×H → P of H on P

• a map φ : P → G
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such that

• the H-action preserves the fibres of π in the sense that the diagram

P ×H //

��?
??

??
? P

����
��

��

M

commutes

• the H-action is free and transitive in the sense that the canonical map

P ×H → P ×M P

is a homeomorphism

• φ satisfies the equivariance property φ(uh) = t(h)−1φ(u) for all u ∈ P
and h ∈ H.

Clearly (G,H)-principal bundles can be understood as principalH-bundles
P equipped with a trivialisation of the principal G-bundle P ×HG associated
to P via the homomorphism t : H → G. It is then clear that isomorphism
classes of principal (G,H)-bundles on X correspond bijectively to homotopy
classes of maps from X into the homotopy fibre of the map BH → BG.
In [18] Jurčo shows that this homotopy fibre is homotopy equivalent to the
space EH ×H G which in turn identifies with |G|, the geometric realisation
of the nerve of the 2-group G associated to the crossed module t : H → G.
Here the quotient EH ×H G is formed with respect to the right action of H
on EH ×G in the usual way by

(x, g) · h = (xh, t(h)−1g) (1)

Notice that the projection EH×G→ EH×HG is a (G,H)-torsor, where the
equivariant map φ : EH × G → G is just projection onto the second factor
in EH ×G. This is in fact the universal (G,H)-torsor.

In the special case where t : H → G is the crossed module i : G→ Aut(G)
associated to a group G in E an (Aut(G), G)-torsor is the same thing as a
G-bitorsor. Recall that a G-bitorsor is a (right) G-torsor P in E equipped
with a left action G×P → P of G, commuting with the right G-action and is
such that P is a left G-torsor for this action. Given a G-bitorsor P , we define
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an equivariant map φ : P → Aut(G) making P into a (Aut(G), G)-torsor as
follows: if g ∈ G and u ∈ P then gu = uφ(u)(g). Conversely, given a right
G-torsor P together with such an equivariant map φ : P → Aut(G) we define
a left G-action on P by the same formula. It is easy to check that this left
G-action is free and transitive and also commutes with the right G-action.

Given two G-bitorsors P and Q, we can form their product P
G
∧ Q which is

the G-bitorsor defined by

P
G
∧ Q =

P ×Q

G

where G acts on the product P ×Q by (u, v)g = (ug, g−1v). We see therefore
that the collection of all G-bitorsors in E, together with the morphisms
between them, forms a (weak) 2-group G−BITORS. Similarly, the collection
of G-bitorsors over objects in E togther with the morphisms between them,
forms a fibred category G− BITORS/E → E, which in fact is a gr-stack.

Suppose now that t : H → G is a crossed module and (P, φ) is a (G,H)-
torsor. Composing φ with the homomorphism α : G → Aut(H) defines an
equivariant map P → Aut(H) making P into an H-bitorsor. We can use this

fact to define the product P
H
∧ Q of two (G,H)-torsors (P, φ) and (Q,ψ). As

a right H-torsor P
H
∧ Q is the product of the H-bitorsors P and Q in the

above sense. It is easy to check that φ× ψ descends to a map

φ
H
∧ ψ : P

H
∧ Q→ G

satisfying the equivariance property of Definition 3. Again the (G,H)-torsors
form the objects of a weak 2-group (G,H)−TORS and similarly the (G,H)-
torsors over objects in E form the objects of a fibred category (G,H) −
TORS/E → E which is in fact a gr-stack.

The group structure on |NG| arising from the simplicial group structure
on G can be understood as follows (see [18]). First observe that the action ofG
on H by automorphisms extends to an action of G on EH by automorphisms.
We can therefore define a ‘semi-direct product’ structure on EH ×G by

(x1, g1) · (x2, g2) = (x1α(g1)(x2), g1g2)

It is then easy to check that this product descends to a product on EH×HG
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4 Non-abelian Cohomology and Higher Tor-

sors

LetX be a topological space and let T = Sh(X) be the Grothendieck topos of
sheaves onX. Suppose that G is a category internal to Grp(T ) corresponding
to a crossed module t : H → G of groups in T . In [6] it is explained how
to define the non-abelian cohomology H1(T ; G) of T with coefficients in G.
Recall that one first regards G as a 2-category with one object and one then
forms the nerve BG of G. This is a simplicial object in T . Illusie [17] defines
a quasi-isomorphism in Simp(T ) to be a morphism f : X → Y in Simp(T )
which induces isomorphisms on homotopy groups. He defines D(T ) to be
the localisation of the category Simp(T ) at the quasi-isomorphisms. Breen
[6] defines H1(T ; G) as

H1(T ; G) = HomD(T )(e,BG)

where e is the final object of D(T ). We usually write H1(X; G) for H1(T ; G).
This definition simplifies substantially in the case where the sheaves of groups
H and G are representable by group objects. In this case we have

H1(X,G) = lim−→
V•→X

[V•, BG]

the directed limit of the set of homotopy classes of simplicial maps from
hypercoverings V• of X into BG. If X is paracompact then we can compute
the limit using ordinary coverings instead of hypercoverings.

Theorem 5 (Jurčo [18]). Let X be a paracompact topological space and
suppose that t : H → G is a crossed module of topological groups. Then there
is an isomorphism

H1(X; G) = [X, |BG|]

where the right hand side denotes homotopy classes of maps from X into the
geometric realisation |BG| of the simplicial topological space BG.

Having given a combinatorial description of H1(G) we would now like a
geometric description of the elements in this set. Just as there is an interpre-
tation of H1(G) where G is a group in T as the set of isomorphism classes of
G-torsors in T , there is a similar interpretation of H1(G) in terms of G-torsors
in T due to Breen in [6].

10



Definition 6 (Breen [6]). Let G be a gr-stack in T . A torsor under G is
a stack P together with

• an epimorphism P � 1

• a morphism of stacks
m : P× G → P

• a natural transformation µ between the two morphisms in the diagram:

P× G× G
m×1 //

1×m
��





�
 µ

P× G

m

��
P× G m

// P

which is required to be compatible with the associativity natural isomorphism
for G in the sense described by Breen in (6.1.3) of [6]. We also require that
the morphism of stacks m : P × G → P induces an equivalence of stacks
(m, p2) : P× G → P×P. There is a further constraint on unit objects which
we will not bother to write down.

The quintessential example of this kind of structure is the stack TORS(G)
of G-torsors in T : this is a torsor under the gr-stack BITORS(G) associated
to the crossed module G→ Aut(G). The action TORS(G)×BITORS(G) →
TORS(G) is

(P,Q) 7→ P
G
∧ Q

where P is a G-torsor in E and Q is a G-bitorsor in E. The importance of the
notion of G-torsor comes from the following Theorem of Breen [6], showing
that G-torsors provide a geometric realisation of H1(G).

Theorem 7 (Breen [6] Proposition 6.2). Let G be a 2-group in T . Then
there is a bijective correspondence between the pointed set H1(G) and equiv-
alence classes of torsors under the gr-stack (G,H)−TORS associated to G.

As part of his proof of this theorem, Breen shows that every (G,H)−TORS-
torsor P has a ‘cocyclic description’ as follows. Let S → ∗ be a covering of
the final object ∗ of Sh(X). Then there exist (G,H)-torsors P → S ×∗ S
over S[2] = S ×∗ S together with isomorphisms

d∗0P
H
∧ d∗2P → d∗1P

11



over S[3] = S ×∗ S ×∗ S which satisfy the obvious coherency condition over
S[4]. The ‘crossed module bundle gerbes’ considered by [1] are clearly special
instances of this cocyclic description.

Definition 8 ([1]). Let t : H → G be a crossed module of topological groups.
A crossed module bundle gerbe on X, or a (G,H)-bundle gerbe con-
sists of the following data:

• a local section admitting surjection π : Y → X

• a (G,H)-principal bundle Q→ Y [2] (see Definition 4)

together with

• an isomorphism

d∗0Q
H
∧ d∗2Q→ d∗1Q

of (G,H)-principal bundles over Y [3] satisfying the obvious coherency
condition over Y [4]. When we want to make the dependence on π : Y →
X clear we sometimes say that Q is a crossed module bundle gerbe over
Y → X.

There are of course many examples of these objects when t : H → G
is the crossed module U(1) → 1, in which case a crossed module bundle
gerbe is just a U(1)-bundle gerbe in the sense of Murray [21]. We want to
recast the definition of a crossed module bundle gerbe in a slightly different
form, one in which we feel is more conceptually closer to the definition of a
principal bundle. To this end, suppose that M is an object of Gpd(Top),
i.e a topological groupoid. For instance M could be the groupoid

M : Y [2] //
//
Y (2)

associated to a local section admitting surjection Y → X. We make the
following definition.

Definition 9. A principal bundle object in Gpd(Top) over M for a 2-
group G in Top, or simply a G-principal bundle over M, is an object P
in Gpd(Top) together with

• a local surjection admitting surjection π : P → M

• an action of G on P in the sense described above
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such that

• the diagram P×G //

��?
??

??
P

����
��

�

M

commutes,

• the natural map
P×G → P×M P

is an isomorphism.

We could of course think of this definition as just a special instance of
Definition 2 for, if (E, J) is a site, then there is an induced topology on
the category Gpd(E), where we say that an E-functor F : G → H be-
tween groupoids G and H belongs to J iff the morphisms F0 : G0 → H0 and
F1 : G1 → H1 belong to J . In our case we take Top equipped with the local
section topology J and say that a Top-functor admits local sections if it
belongs to the induced topology J on Gpd(Top). Then a torsor object in
Gpd(Top) over M for the group object G in Gpd(Top) is exactly a princi-
pal bundle object in Gpd(Top) over M in the sense of the above definition.
Let TORS(Top) denote the category of torsors in Top for groups in Top.
We have the following straightforward proposition.

Proposition 10. There is an isomorphism of 2-categories between the 2-
category of torsor objects in Gpd(Top) and the 2-category of groupoids in-
ternal to TORS(Top).

We would like to relate G-principal bundles for 2-groups G associated to
crossed modules t : H → G to the G-torsors of Breen (Definition 6). We first
need to remind the reader of the relevant part of the theory of stacks. If X
is a topological groupoid, it gives rise to a stack X on Top in the following
manner. X represents a pre-sheaf of groupoids on Top, which in turn gives
rise to a fibration over Top. We let X denote the associated stack. This
construction defines a functor

St : Gpd(Top) → Stack/Top

Another way of viewing this functor is that it sends X to the pesudo-functor
X : Topop → Gpd defined by setting X(M) equal to the groupoid of X-
torsors over M. This pseudo-functor is easily seen to define a stack on Top.
Note that the image of the 2-group G under this functor is the gr-stack
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(G,H) − TORS on Top. Applying this functor to the principal G-bundle
P → M yields a (G,H)−TORS torsor P over M in the sense of Definition 6.
An obvious direction in which to generalise this notion is to consider ‘weak’
principal bundle objects in which the diagrams ?? above are only required to
commute up to coherent natural isomorphism. This is the approach taken in
[5] which is in turn closely related to Definition 6. Note that the 2-bundles
considered in [5] have a strong local triviality condition which is not required
in the framework considered here.

Notice that any U(1)-bundle gerbe P → Y [2] over X can be thought of as
a U(1)[1]-principal bundle. More generally, if t : H → G is a crossed module,
then a crossed module bundle gerbe Q on X for t : H → G in the sense
of Definition 8 gives rise to a G-principal bundle on M, for the 2-group G
associated to the crossed module t : H → G, as follows (here M denotes the
groupoid (2) above). We define a topological groupoid P with objects P0 and
P1 where P0 is the trivial G0-bundle Y ×G0 on Y . The principal G1-bundle
P1 over Y [2] is defined by setting P1 = Q × G, where the right G1-action is
defined by

(u, g) · (g1, h1) = (uα(g)(h1), gg1)

for u ∈ Q, g ∈ G and (g1, h1) ∈ G1 = G nH. It is immediate that this G1-
action is free and transitive on the fibres of P1, making P1 into a principal
G1-bundle. Define source and target maps s : P1 → P0 and t : P1 → P0

respectively by

s(u, g) = (s(π(u)), g)

t(u, g) = (t(π(u)), φ(u)−1g)

where π : Q → Y [2] denotes the projection (so that π1 : P1 → Y [2] is defined
by π1(u, g) = π(u)). It is easy to check that these maps are equivariant for
the source and target homomorphisms in G respectively. To define composi-
tion, suppose we have composable morphisms (u, g) : (y1, g) → (y2, φ(u)−1g)
and (u′, φ(u)−1g) : (y2, φ(u)−1g) → (y3, φ(u′)−1φ(u)−1g); then the composite
morphism (u′, φ(u)g) ◦ (u, g) is given by

(u′, φ(u)−1g) ◦ (u, g) = (m(u′
H
∧ u), g).

One can check that this map is equivariant for the composition homomor-
phism ◦ in G. Finally one defines identity morphisms for P using the identity
section e of Q. So we have seen that every crossed module bundle gerbe on
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X gives rise to a principal bundle object over the groupoid M associated to
π : Y → X. Every principal bundle object P → M for a 2-group G in Top,
gives rise to a G-torsor P over X where P and G are the stacks associated
to P and G respectively. Therefore one may expect that P is the principal
bundle object associated to some crossed module bundle over π : Y → X.
However, this is not quite true, in general the covering Y → X may not be
fine enough to construct Breen’s cocyclic description (Theorem 7) of the G-
torsor P. Clearly, a necessary condition for P to arise from a (G,H)-bundle
gerbe in the above fashion is that the principal G0-bundle P0 → Y should
be trivialised. That this is also a sufficient condition is the subject of the
following Lemma, whose proof is left to the reader.

Lemma 11. Let t : H → G be a crossed module of topological groups with as-
sociated 2-group G. Then there is a bijective correspondence between principal
bundle objects P on M for the 2-group G such that the G0-bundle P0 → Y is
equipped with a trivialisation and (G,H)-bundle gerbes over Y → X.

5 The String 2-group

Let G be a compact, simple and simply connected Lie group. We first explain
our conventions regarding loop groups. For us, LG will denote the group of
free loops in G, i.e. the piece-wise smooth maps from the circle S1 into G
under pointwise multiplication. The based loop group ΩG will mean for us
something slightly different than usual. ΩG will denote the group of smooth
maps f from the interval [0, 2π] into G such that f(0) = f(2π) = 1. The
group P0G of based paths will denote the smooth maps f : [0, 2π] → G with
f(0) = 1 under pointwise multiplication.

In [2] the authors construct a Fréchet Lie 2-group Ĝ arising from a crossed

module Ω̂G→ P0G associated to an action1 of P0G on the Kac-Moody group
Ω̂G covering the action of P0G on ΩG by conjugation. It is easily seen that
there is a short exact sequence of 2-groups

1 → K(Z, 2) → Ĝ → G→ 1 (3)

where K(Z, 2) is the 2-group associated to the crossed module Ω̂G → ΩG.

Here the action of ΩG on Ω̂G lifts the adjoint action of ΩG on itself (this

1Although I would be amazed if this action were not well-known to experts, I have
been unable to find a reference in the literature where it is described.
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is well defined because 1 → T → Ω̂G → ΩG → 1 is a central extension).
Notice that the 2-group K(Z, 2) is Morita equivalent to the 2-group U(1)[1]:

using the homomorphism p : Ω̂G→ ΩG we can pullback the 2-group K(Z, 2)

to obtain a 2-group with objects Ω̂G and morphisms Ω̂G× Ω̂G× U(1). We
therefore have a homomorphism of 2-groups

Ω̂G× Ω̂G× U(1)

��

//
// Ω̂G

��
Ω̂Gn ΩG

//
// ΩG

which is clearly a Morita equivalence. Similarly we have a homomorphism of
2-groups

Ω̂G× Ω̂G× U(1)

��

//
// Ω̂G

��
U(1) //

// ∗

which is also clearly a Morita equivalence. Therefore the 2-groups K(Z, 2)
and U(1)[1] are Morita equivalent as 2-groups (this accounts for our choice of
name K(Z, 2)). The relation of Ĝ to the group Ĝ is described in the following
theorem from [2].

Theorem 12 ([2]). Let |Ĝ| denote the geometric realisation of the nerve of
the 2-group Ĝ. |Ĝ| fits into a short exact sequence of topological groups

1 → K(Z, 2) → |Ĝ| → G→ 1

Moreover |Ĝ| ' Ĝ, the 3-connected cover of G.

To fix notation, we briefly recall the construction of the 2-group Ĝ from
[2]. We first construct the Kac-Moody group, following [22] (we remind the

reader that Jouko Mickelsson in [20] gave the first construction of Ω̂G, the
construction given later in [22] closely parallels his). Equip P0ΩG × T with
the product

(f, z) · (g, w) = (fg, c(f, g)zw)

for z, w ∈ T. Here we write f = f(t, θ) and g = g(t, θ) for based paths in
ΩG (so that t refers to the path variable and θ refers to the loop variable, we
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sometimes suppress the dependence on t or θ). Here c(f, g) is the 2-cocycle

c(f, g) = exp

(∫ 2π

0

∫ 2π

0

〈f(t)−1f ′(t), g′(θ)g(θ)−1〉dθdt
)
.

It is easy to check that the subset N of P0ΩG×T consisting of all pairs (γ, z)
where γ : [0, 2π] → ΩG is a loop based at 1 in ΩG and

z−1 = exp

(∫
Dγ

ω

)
is a normal subgroup of P0ΩG× T, for the product structure defined above.
Here ω : Ωg× Ωg → iR is the Kac-Moody 2-cocycle

ω(f, g) =

thought of as a left invariant 2-form on ΩG. Ω̂G is defined as a quotient as
in the following diagram

P0ΩG× T //

��

Ω̂G

��

= (P0ΩG× T)/N

P0ΩG // ΩG = P0ΩG/ΩΩG

The action of P0G on Ω̂G is defined by first defining an action of P0G on
P0ΩG× T by

α(p)(f, z) = (pfp−1, z exp(i

∫ 2π

0

∫ 2π

0

〈f(t)−1f ′(t), p(θ)−1p′(θ)〉dθdt)

and then observing that this action preserves the normal subgroup N and
hence descends to an action on the quotient Ω̂G = (P0ΩG × T)/N . This

action of P0G on Ω̂G defines a crossed module t : Ω̂G→ P0G, where t is the
projection Ω̂G → ΩG onto the base, followed by the inclusion of the based
loops ΩG into the based paths P0G.

In [25] Stolz and Teichner give a construction of the group Ĝ in terms of
von Neumann algebras. The main purpose of this section is to compare their
construction with the 2-group Ĝ (Theorem 14). We start by reviewing Stolz
and Teichner’s construction. Choose first of all a positive energy representa-
tion ρ̃ : T n L̃G→ U(H) of the free loop group LG on some complex Hilbert
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space H at the ‘basic level’ c, i.e. corresponding to the basic inner product
〈 , 〉. We identify the interval I = [0, 2π] with the upper semi-circle of S1

consisting of all z ∈ S1 with non-negative imaginary part. We can regard
ΩG as contained in the subgroup of LG consisting of those smooth loops in
LG with support in I. Ω̃Gpw is then the pre-image in L̃G of ΩGpw , where

the subscript pw here denotes piece-wise smooth loops. Here T acts on L̃G
by rotating loops. Stolz and Teichner define

Ac = ρ̃(Ω̃Gpw)′′ ⊂ B(H)

to be the von Neumann algebra generated by the operators ρ̃(γ̂) with γ̃ ∈
Ω̃Gpw . ρ̂ induces a U(1)-equivariant homomorphism ρ̃ : Ω̂G → U(Ac), the
unitary group of the von Neumann algebra Ac, and thus descends to a homo-
morphism ρ : ΩG→ PU(Ac). Stolz and Teichner make the observation that
the action of the group of based paths P0G on ΩG by conjugation extends
to an action of P0G on PU(Ac). This action is constructed as follows: given
a path δ ∈ P0G, extend δ to a piece-wise smooth loop γ ∈ LG and choose a
lift γ̃ ∈ L̃G of γ. An action of δ on PU(Ac) is then defined via the formula
[a] 7→ [ρ̃(γ̃)aρ̃(γ̃−1)]. It is shown in [25] that this well-defined. Observe that
this in fact gives an action α : P0G→ Aut(U(Ac)) of P0G on U(Ac). It is not
hard to see at this stage that this action α just described extends the action
of P0G on Ω̂G described earlier, in the sense that we have a commutative
diagram

Ω̂G× P0G
ρ̃×1 //

α

��

U(Ac)× P0G

α

��

Ω̂G ρ̃
// U(Ac).

Observe that for any p ∈ P0G we can define a function fp : ΩG→ U(1) by

ρ̃(α(p)γ̂) = α(p)ρ̃(γ̂)fp(γ)

where γ̂ is a lift of γ to Ω̂G. Clearly this is independent of the choice of lift
γ̂. It is easy to see that fp : ΩG → U(1) is a homomorphism. However, ΩG
is a perfect group ([23] Proposition 3.4.1) and hence fp = 1. Returning to

the construction of Ĝ in [25], the authors show in Lemma 5.4.7 that one can
regard ΩG as a normal subgroup of the semi-direct product P0Gn PU(Ac),
where the semi-direct product structure is given by the action of P0G on
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PU(Ac) described above. Finally, Stolz and Teichner define

Ĝ = (P0Gn PU(Ac))/ΩG, (4)

the quotient by this normal subgroup. It is clear, however, that Ĝ could also
be obtained as a quotient of (P0GnU(Ac))/Ω̂G. We state this as a Lemma.

Lemma 13. There is an isomorphism of topological groups

(P0Gn PU(Ac))/ΩG = (P0Gn U(Ac))/Ω̂G

To be completely honest here, the group Ĝ defined above is slightly
smaller than the group defined by Stolz and Teichner; they use piecewise
smooth loops and paths throughout, so that Ĝ is defined as ((P0G)pw n
PU(Ac))ΩGpw . The group defined in (4) above is homotopy equivalent to

the group Ĝ defined in [25]. Another perspective on the relation of Ĝ to Ĝ
can be obtained by thinking of the 2-group Ĝ as a groupoid presentation of a
gr-stack. In fact, from the point of view of gr-stacks, Ĝ and Ĝ are equivalent,
as the next theorem shows (note incidentally that this theorem allows for a
very easy proof of the preceding one).

Theorem 14. Ĝ is Morita equivalent as a 2-group to the discrete 2-group
Ĝ.

Proof. First of all, since the group Ĝ is constructed as a quotient Ĝ = (P0Gn
U(Ac))/Ω̂G, it is Morita equivalent (when considered as a 2-group with only
identity morphisms) to the 2-group

(P0Gn U(Ac)) n Ω̂G
// // P0Gn U(Ac)

It is clear that this 2-group is Morita equivalent to the 2-group PG: we have
a forgetful morphism of 2-groups

(P0Gn U(Ac)) n Ω̂G

�� ��

// P0Gn Ω̂G

�� ��
P0Gn U(Ac) // P0G

which is obviously a Morita morphism. This establishes the Theorem.
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6 The String Gerbe

Suppose that P is principal G-bundle where G is a compact, simple and
simply connected Lie group. By choosing a connection on P with connection
1-form A we can represent the image of characteristic class c ∈ H4(M ; Z) in
de Rham cohomology by the Chern-Weil 4-form

c =
1

8π2
〈FA, FA〉

where 〈 , 〉 is the basic inner product on g and FA is the curvature 2-form of
A. Recall that the pullback of c to P is exact: π∗c = dCS(A), where CS(A)
is the Chern-Simons form

CS(A) =
1

8π2
〈A,FA〉 −

1

48π2
〈A, [A,A]〉. (5)

Note that CS(A) restricts to the basic 3-form ν = −1/48π2〈θL, [θL, θL]〉 on
the fibres of P so that c is the transgression of ν. Let M denote the topological
groupoid (2) associated to the submersion π : P0M → M where P0M is the
space of based paths in M and π is the map which evaluates a path at its
endpoint. We have the following Theorem.

Theorem 15. Suppose that M is 2-connected and that the class c ∈ H4(M ; Z)
vanishes. Then there is a principal Ĝ-bundle P on M, together with a mor-
phism of principal bundles

P //

Ĝ
��

P

G
��

M // M

P corresponds to a (Ω̂G,P0G)-gerbe on M which we call the string gerbe
on M .

We construct P as follows. Choose a basepoint m0 in M and a compatible
base point p0 in P so that the projection π : P → M is a based map. Form
the based path fibration p : P0P → P , where P0P is the space of all smooth
maps f : [0, 2π] → P such that f(0) = p0. P0P is a Fréchet manifold.
Note that P0P is a Fréchet principal P0G-bundle over P0M where P0M is
the space of smooth based paths in M . Notice that the connection on P
provides a natural trivialisation of this P0G-bundle: if f is a smooth path
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in M beginning at m0 then we can uniquely lift it to a horizontal path f̂ in
P beginning at p0. This defines a trivialisation of the principal P0G-bundle
P0P → P0M .

Now we would like to construct a principal G1-bundle P1 → P0M
[2] in

such a way that P1 forms the space of morphisms of a topological groupoid P
with objects P0 = P0P . We construct P1 by first constructing a U(1)-bundle
gerbe Q → P0P ×P P0P . The bundle gerbe product on Q will provide the
composition law for the groupoid P.

So, we first construct a principal U(1)-bundle Q→ P0P
[2] where P0P

[2] =
P0P×P P0P is the space of pairs of based paths (f1, f2) with f1(2π) = f2(2π).
P0P

[2] is a Fréchet submanifold of P0P ×P0P since the map P0P → P which
evaluates a path at its endpoint is a submersion. The principal U(1)-bundle
Q will have a product, in other words a morphism of U(1)-bundles which on
the fibres looks like

Q(f2,f3) ⊗Q(f1,f2) → Q(f1,f3)

where (f1, f2, f3) ∈ P0P
[3]. In other words this is a morphism π∗1Q⊗ π∗3Q→

π∗2Q of principal U(1)-bundles where πi : P0P
[3] → P0P

[2] are the maps which
omit the i-th factor in the triple fibre product P0P

[3] = P0P ×P P0P ×P P0P .
Here ⊗ stands for the contracted product of U(1)-bundles. Thus Q→ P0P

[2]

is a U(1)-bundle gerbe on P . Q is obtained from the tautological construction
described by Murray in section 10 of [21]. Note that it is important that P
is 2-connected, this follows from our assumptions on M and G. Under our
hypotheses we can write c = dµ for some 3-form on M . As already noted,
the pullback π∗c of c to P is always exact; π∗c = dCS(A) where CS(A) is the
Chern-Simons form (5) associated to A. Therefore on P we have the closed
3-form ω = CS(A)−π∗µ. Notice that the class in H3(P ) represented by the
3-form ω = CS(A) − π∗µ is unchanged if we change µ by a closed 3-form.
This observation allows us to suppose that ω is an integral 3-form (this is
precisely the same argument used by the authors in [12] — in fact this whole
construction owes a great deal to that paper).

Q is defined as follows. Let D0P be the space of maps φ : [0, 1]× [0, 2π] →
P from the rectangle [0, 1] × [0, 2π] into P such that φ(t, 0) = p0 for all
0 ≤ t ≤ 1. D0P is a Fréchet manifold. We have a smooth map D0P → P0P

2

which just evaluates such a map φ at either t = 0 or t = 1. Let D0Q
denote the restriction of D0P to the submanifold P0P

[2] ⊂ P0P
2. Thus the

fibre of D0Q over a point (f1, f2) ∈ P0P
[2] is the set of all smooth maps

φ : [0, 1]× [0, 2π] → P such that φ(0, θ) = f1(θ), φ(1, θ) = f2(θ) and φ(t, 0) =
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p0 for all θ ∈ [0, 2π] and all t ∈ [0, 1]. D0Q is also a Fréchet manifold. Q is
constructed as a quotient

Q = (D0Q× U(1))/ ∼

by a certain equivalence relation ∼. Two pairs (φ1, z1) and (φ2, z2), where
φ1, φ2 ∈ D0Q and z1, z2 ∈ U(1), are related under ∼ if

z2 = exp(2πi

∫
B

ψ∗ω)z1

where B denotes the ball in R3 with boundary S2 and ψ : B → P is an
extension of the map S2 → P formed from φ1 and φ2. It is easy to see that
∼ is an equivalence relation. The product π∗1Q⊗π∗3Q→ π∗2Q described above
is constructed as follows. If [φ1, z1] ∈ Q(f1,f2) and [φ2, z2] ∈ Q(f2,f3) then their
product [φ1, z1] · [φ2, z2] ∈ Q(f1,f3) is defined to be

[φ1, z1] · [φ2, z2] = [φ1 ◦ φ2, z1z2]

where φ1 ◦ φ2 is the map from the rectangle [0, 1] × [0, 2π] into P obtained
by gluing φ1 and φ2 along their common boundary. In other words,

(φ1 ◦ φ2)t, θ) =

{
φ1(t, 2θ) if 0 ≤ θ ≤ π

φ2(t, 2θ − 2π) if π < θ ≤ 2π

The condition on the angular derivatives ensure that this is still a smooth
map from [0, 1]× [0, 2π] into P . It follows from the discussion in [21] that this
is well defined and that we have a groupoid P with objects P0 = P0P and
morphisms P1 = Q where source and target are defined by the projection
Q→ P0P

[2] and where composition is defined via the product in Q.
Define an action of P0Gn (P0ΩG× U(1)) on D0P × U(1) by

(φ, z)·(p, (g, w)) = (φgp, zw exp(
i

4π

∫
D

〈φ∗A, g∗θR+ad(g)p∗θR〉+〈g∗θL, p
∗θR〉))

The product φgp here requires a little explanation. As remarked above, we
can think of φ as a map from the square [0, 1] × [0, 2π] into P which sends
the top edge to p0 and which is constant along the bottom edge. We can
form the product φg by regarding φ in this fashion and then re-interpreting
the resulting map φg from [0, 1]× [0, 2π] into P as a map from the unit disk
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D into P . If φ is an element of D0P and p ∈ P0G then φp is just the product
(φp)(r, θ) = φ(r, θ)p(θ). It is a long and tedious calculation to show that this
is an action.2 We have the following Lemma (which is just an extension of
the properties 1–4 on page 447 of [12]).

Lemma 16. The following statements are true

1. The action of P0G n (P0ΩG × U(1)) respects the equivalence relation
∼ and hence descends to an action on Q.

2. The isotropy subgroup of P0Gn (P0ΩG×U(1)) at any point of Q is the

normal subgroup 1×N . Therefore P0Gn Ω̂G acts on Q.

3. The orbits of the free action of P0G n Ω̂G on Q are the fibres of the
projection Q→ P0M

[2].

4. The action of P0Gn Ω̂G on Q covers the action of P0GnΩG on P0P
[2]

5. Suppose that u ∈ Q(f1,f2), u
′ ∈ Q(f2,f3), (p, γ̂) ∈ P0GnΩ̂G and (pt(γ̂), γ̂′) ∈

P0G n Ω̂G so that we can form the composites u′ ◦ u and (pt(γ̂), γ̂′) ◦
(p, γ̂). Then

u′(pt(γ̂), γ̂′) ◦ u(p, γ̂) = (u′ ◦ u)(p, γ̂γ̂′)

Proof. We will prove 1 and 5, the other statements are easy and are left to
the reader. To prove 1 we must show that if (φ, z) ∼ (φ′, z′) then (φ, z) ·
(p, (g, w)) ∼ (φ′, z′) · (p, (g, w)) for all (p, (g, w)) ∈ P0G n (P0ΩG × U(1)).
Since (φ, z) ∼ (φ′, z′) we have

z′ = z exp(2πi

∫
B

ψ∗ω)

for any extension ψ : B → P of the map S2 → P formed from φ and φ′. By
the integrality of the differential forms involved, it is enough to establish the
identity∫

B

ψ∗ω +
i

4π

∫
D

〈(φ′)∗A, g∗θR + ad(g)p∗θR〉 =

i

4π

∫
D

〈φ∗A, g∗θR + ad(g)p∗θR〉+ 2πi

∫
B

(ψgp)∗ω

2We respect the tradition of leaving such calculations to the reader.
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This follows immediately from the identity

(Rg)
∗CS(A) = CS(A) +

1

8π2
d〈A, g∗θR〉 −

1

48π2
g∗〈θL, [θL, θL]〉

and Stokes’ Theorem.

7 Conclusion

We have presented here a definition of a notion of a ‘higher-dimensional
principal bundle’ and discussed how these are related to familiar objects
such as gerbes. In particular we have given an example of such an object
which we believe is worthy of further study. In work in progress we have
developed a parallel theory of higher dimensional vector bundles, using the
notion of internalisation. In particular we believe that this theory provides
a very useful language with which to discuss higher dimensional notions of
connection and curvature [1, 4, 9] (we point out that in this note we have
made no attempt to study the geometry of the Ĝ-bundle P̂). In particular,
to make contact with Stolz and Teichner’s notion of a string connection it
would be necessary to consider some sort of associated vector bundle to P̂;
this would involve a consideration of the representation theory of Ĝ.
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in Math 239, Springer-Verlag, 1971.
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