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Abstract

We propose a setup of concepts that is supposed to neatly capture the notions of smooth spaces, Lie
∞-groupoids and Lie ∞-algebras and the relations between these.
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1 Introduction

We are after a general framework and tool set for smooth analysis neatly adapted to encompassing

smooth spaces55

uullllllllllllll hh
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Lie ∞-groupoids oo // Lie ∞-algebras

and suited for the description of quantum field theories of Σ-model type: representations of cobordism
categories induced from homs into smooth ∞-bundles with connection.

The following approach has its roots in, and is hoped to eventually be a useful synthesis of,

• the emerging Lie ∞-theory of [4, 5, 11];

• the notion of Chen-smooth [6] and diffeological spaces [3] and in particular of Frölicher spaces [13];

• the notion of C∞-algebras [8];

• long discussion with John Baez, Andrew Stacey and Todd Trimble [9, 13, 14].

As Todd Trimble points out, various of the following constructions are special cases of general concepts
that Lawvere has taught are important [7].

Lawvere: space oo
conjugation

// quantity

presheaf oo Hom(−,−) // co-presheaf

here:
smooth
space

oo // smooth
functions

Lawvere: space oo

ambimorphic
object

// dual
object

here: space oo Ω•(−) // differential
forms

As emphasized by Andrew Stacey, of particular importance are those spaces, which are stable under
conjugating back and forth. Here we will identify such stable spaces as smooth spaces, generalizing the
notion of Frölicher spaces.

2 Space and quantity

In [7] Lawvere describes the very general setup of which we want to consider a special realization here.
For V any monoidal category and S any V -enriched category (a category whose Hom-things are objects

of V ) the category
V Sop
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of V -functors Sop → V plays the role of spaces that can be probed by A while the category

V S

of V -functors S → V plays the role of quantities on these spaces.
We will concentrate on the familiar simple case where V = Set, so that V -enriched categories are just

ordinary categories. In this case SetSop
is just the category of ordinary presheaves on S, while SetS is the

category of ordinary co-presheaves on S.

Definition 1 (Isbell conjugation) Isbell conjugation is the contravariant adjunction

V Sop
F //

oo
G

V S

given by
F : X 7→ HomV Sop (X,−)

and
G : S 7→ HomV S (S,−) .

Here we are, for convenience, implicitly using the Yoneda embedding in order to regard objects s ∈ S as
objects HomS(−, s) ∈ SetSop

or objects HomS(s,−) ∈ SetS .
We can think of F as sending a space to the collection of functions on it.
The notion of a space probeable by S expressed by V Sop

is very general. Usually one is therefore interested
in finding subcategories

S
� � // NiceSpaces � � // V Sop

S
� � // NiceQuantities � � // V S

which still respect the above conjugation in that we have

SL l

zztttttttttt
� s
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NiceSpaces� _

��

F ′
//

oo
G′

NiceQuantities� _

��
V Sop

F //
oo

G
V S

.

Often one wants to consider chains of such inclusions
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VeryNiceSpaces� _

��

F ′′
//

oo
G′′

VeryNiceQuantities� _

��
NiceSpaces� _

��

F ′
//

oo
G′

NiceQuantities� _

��
V Sop

F //
oo

G
V S

.

In our application we take S to be the category whose objects are the simplest objects we may want to
probe a general smooth space with: open subsets of Euclidean spaces.

A presheaf on S is a very general notion of a smooth space.
Our “nice spaces” will be proper sheaves on S. Our “very nice spaces” will be sheaves on S which are

stable under Isbell conjugation: a morphisms of those is the same as a morphism of their function algebras.
One can think of Isbell conjugation as a special case of a general “duality” operation induced by “ambi-

morphic objects” Amb (originally called “schizophrenic objects” [12]) which can be regarded as carrying two
different “commuting” structures. For Isbell conjugation this ambimorphic object is the tautological one,

C∞(−) = Hom(−,−) ,

regarded as a co-presheaf valued presheaf.
It so happens that Lie theory is closely related to differential algebras (at the bottom of this phenomenon

is another grand duality: Koszul duality for operads) and therefore we will wish to refine the algebra C∞(X)
of plain functions on a space X by the differential N-graded-commutative algebra (DGCA) of differential
forms Ω•(X).

The presheaf
Ω•(−) : Sop → Set

which sends each test domain to the set
U 7→ Ω•(X)

of differential forms on it is naturally equipped with the structure of a DGCA itself, induced from the the
DGCA structure on each test domain. The DGCA-valued presheaf Ω• is an ambimorphic object and the
two functors

Ω• : SetSop
→ DGCAs

X 7→ HomSetop(X, Ω•(−))

and
S : DGCAs → SetSop

A 7→ HomDGCAs(A,Ω•(−)))

it induces do form an adjunction

SetSop
Ω• //

oo
S

DGCAs .
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3 Smooth spaces and smooth differential forms

The following long definition lists the collection of concepts which we want to use. It essentially amounts to
fixing a category S of suitable “test domains” and identifying various categories of maps into and out of S
as usefully representing spaces and functions on them.

Our choice of S is mostly motivated from its convenience for the particular applications we are headed
to. Various other choices should be possible with only minor effect on the resulting theory.

Definition 2 ((smooth) spaces and (smooth) function algebras) We write

• S for the category of open subsets of Euclidean spaces, whose objects are open subsets of
⊔

n∈N Rn

and whose morphisms are smooth maps between these;

– S′ ⊂ S for the full subcategory of Euclidean spaces on the objects Rn, n ∈ N, which we shall
always regard as a symmetric monoidal category (S′,⊗) using the standard cartesian product
Rn ⊗ Rm = Rn+m;

• C∞Algebras for the smooth commutative algebras being the category of monoidal functors S′ →
Set;

– evR : C∞Algebras → CommAlgebras for the functor evR : A 7→ A(R) which sends each C∞-
algebra A to its underlying commutative algebra A(R) which comes naturally equipped with

the structure of an ordinary commutative algebra, the product being A( R× R · // R );

– C∞(U) := HomS(U,−) : S′ → Set for the smooth algebra of smooth functions on U ∈ S;

• Spaces for the category of spaces “probeable by S”, defined to be the category of sheaves on S;

– X × Y : U 7→ X(U)× Y (U) for the cartesian product of spaces X, Y ∈ Spaces;

– hom(X, Y ) : U 7→ HomSpaces(X×U, Y ) for space of maps of spaces X, Y ∈ Spaces (the internal
hom of Spaces);

– C∞(X) := HomSpaces(X,−) : S′ → Set for the smooth algebra of smooth functions on
X ∈ Spaces;

– C∞Spaces for the category of smooth spaces, being the full subcategory of Spaces on saturated
or Frölicher spaces, which are those spaces X satisfying

X ' HomC∞Algebras(C∞(X), C∞(−)) .

• Ω• : S → DGCAs for the DGCA-valued sheaf of differential forms;

– Ω•(X) := HomSpaces(X, Ω•) for the DGCA of differential forms on X ∈ Spaces; or Ω•(X) :=
homSpaces(X, Ω•) if we want to regard Ω•(X) itself as a space;

– S(A) := HomC∞Algebras(A,Ω•(−)) for the space obtained by regarding A ∈ C∞Algebras as a
DGCA of differential forms.
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3.1 Examples

3.1.1 Chen-smooth spaces

Definition 3 A space X is a Chen space [13] or a quasi-representable space if there exists a set Xs such
that

X(U) � � //
OO

X(φ)

HomSet(U,Xs)OO

HomSet(φ,Xs)

X(V ) � � // HomSet(V,Xs)

for all morphisms ( U
φ // V ) in S, where the inclusions

X(U) � � // HomSet(U,Xs)

are required to contain all constant maps.

So Chen spaces consist of a set of points equipped with the information which maps of sets from test
domains into this set are regarded as smooth maps.

Chen spaces together with those morphisms of spaces X → Y between them which come from maps of
the underlying sets Xs → Ys form a closed subcategory

ChenSpaces ⊂ Spaces

of the category of all spaces. More details are in [6, 13].

3.1.2 L∞-algebras and their classifying spaces

Definition 4 A finite dimensional L∞-algebra g is a codifferential structure on a cofree coalgebra over a
finite-dimensional N+-graded vector space V . By dualizing this corresponds bijectively to DGCAs whose
underlying graded commutative algebra is freely generated over a finite dimensional N+-graded vector space
V ∗. These are called the corresponding Chevalley-Eilenberg algebras CE(g).

The mapping cone of the identity of CE(g) is the Weil algebra W(g). By the above it corresponds to an
L∞-algebra itself:

W(g) =: CE(inn(g)) .

Observation 1 Since CE(g) is trivial in degree 0, these Chevalley-Eilenberg algebras are naturally C∞DGCAs:
the degree 0 part is the algebra of smooth functions on the point.

Definition 5 (L∞-algebra valued forms) For g an L∞-algebra, g-valued forms on a space Y are mor-
phisms

(A,FA) : W(g) → Ω•(X) .

Flat g-valued forms are morphisms
A : CE(g) → Ω•(X) .

We write
Ω•(Y, g) := Hom(W(g),Ω•(Y ))

and
Ω•

flat(Y, g) := Hom(CE(g),Ω•(Y )) .
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CE(g)

(A,0)

��

W(g)oooo

(A,FA)

��
Ω•(Y ) = Ω•(Y )

Observation 2 (classifying spaces for g-valued differential forms) By proposition 1 we have that S(CE(g))
is the classifying space for g-valued differential forms:

Ω•(Y, g) ' Hom(Y, S(CE(g))) .

3.2 Various relations

3.2.1 Passing between spaces and DGCAs

Proposition 1 The functors

C∞ : Spaces oo // C∞Algebras : S

and
Ω• : Spaces oo // DGCAs : S

each form an adjunction.

So for all spaces X and C∞-algebras A we have

Hom(X, S(A)) ' Hom(A,C∞(X)) ,

and for all DGCAs A we have
Hom(X, S(A)) ' Hom(A,Ω•(X)) .

Definition 6 (conjugation monad) The monad

S ◦ C∞ : Spaces // Spaces

we call the conjugation monad.

The unit
u : IdSpaces → S ◦ C∞

of this monad is, by definition, an isomorphism on (Frölicher) smooth spaces X:

uX : X 7→ HomC∞Algebras(C∞(X), C∞(−)) .

Proposition 2 There is a canonical map

HomSpaces(X, Y ) // HomC∞Algebras(C∞(X), C∞(Y )) .

If Y is a Frölicher smooth space then this map is an ismorphism.

Proof. The map is

Hom(X, Y )
Hom(X,uY ) // Hom(X, S(C∞(Y ))) ' // Hom(C∞(Y ), C∞(X)) .

�
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3.2.2 The tensor product of C∞DGCAs

For C∞(X) and C∞(Y ) smooth function algebras on manifolds X and Y , their ordinary tensor product as
vector spaces

C∞(X)⊗ C∞(Y ) ⊂ C∞(X × Y )

in general does not exhaust the space of smooth functions on X × Y . Often such problems are dealt with
by completing a tensor product.

If however we regard C∞(X) not just as an object in CommAlgebras but as an object in C∞Algebras,
then this completed tensor product arises naturally simply as the canonical coproduct.

Definition 7 Denote by

⊗∞ : C∞Algebras× C∞Algebras → C∞Algebras

the coproduct in C∞Algebras
A

� � //

f

��8
88

88
88

88
88

88
8 A⊗∞ B

f⊗∞g

��

B?
_oo

g

����
��

��
��

��
��

��

C

.

Analogously for
⊗∞ : C∞DGCAs× C∞DGCAs → C∞DGCAs .

Proposition 3 For all spaces X and Y we have

C∞(X)⊗∞ C∞(Y ) ' C∞(X × Y )

Proof. First consider this for all X = U, Y = V ∈ S. Then for all F ∈ C∞Algebras we have

Hom(C∞(U)⊗∞ C∞(V ), F ) ' Hom(C∞(U), F )×Hom(C∞(V ), F )
universal property
of the coproduct

' F (U)× F (U) Yoneda

' F (U × V ) since F is monoidal

' Hom(C∞(U × V ), F ) Yoneda

Since this is true for all F , again by the Yoneda lemma it follows that C∞(U)⊗∞ C∞(V ) ' C∞(U × V ).
From this the proposition follows by general facts about Day convolution. (** apparently, somehow...**)

�

Proposition 4 The C∞-algebra of smooth functions on Rn is free on n generators.

This means that for any C∞-algebra A we have

HomC∞Algebras(C∞(Rn), A) ' An .
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3.3 Fundamental ∞-groupoids of spaces

For every space X we can form various flavours of path groupoids.

• The simplicial set of singular simplices in X

S•(X) = {Sn(X) = HomSpaces(∆n, X)}

plays the role of the weak fundamental ∞-groupoid Πwk
∞ (X) of X.

• For each integer n we can form a strict globular n-groupoid Πstr
n (X), the strict fundamental n-groupoid

of X.

But it is useful to observe that even without forming n-groupoids this way, a space itself, in our sense,
behaves a lot like an ∞-category already:

U -shaped
1-morphism overlap

V -shaped
1-morphism

� � f∈X(U) _?� � g∈X(V )/o/o/o/o/o/o/o/o/o/o _?/o/o/o/o/o/o/o/o/o/o

� � f◦g∈X(U∪V ) _?

Figure 1: Spaces and ∞-groupoids. A sheaf X on open subsets of Rn behaves not entirely unlike a
presheaf on ∆ (a simplicial set) satisfying the Kan condition: for each object U ⊂ Rk there is a collection
X(U) of “U -shaped k-morphisms” and the sheaf condition says that whenever these overlap with V -shaped
k-morphisms, there is a (unique) composite (U ∪ V )-shaped k-morphism. We see that this is more than a
faint analogy when discussing integration of L∞-algebras in 4.1.

for X a space and U ⊂ Rk an open subset, an element in X(U) is like a “U -shaped k-morphism”.
Given another V -shaped k-morphism we can ask whether both overlap, i.e. whether there is “source-target
matching” between both. This is the case if their restriction to U ∩ V coincides. If it does then, by the
fact that a space is a sheaf, there is guaranteed to be a unique (U ∪ V )-shaped element in X. This we can
regard as the composite k-morphism obtained by composing the U -shaped and the V -shaped k-morphism
we started with. See figure 1.

Therefore one can take the standpoint that a space X is already nothing but its own fundamental
∞-groupoid: the relation between spaces and ∞-groupoids is blurred to a tautology from this point of view.

We shall come back to this later in 4.1.

4 Integration

4.1 Integration of L∞-algebras

Definition 8 Fix some notion of Lie ∞-groupoids and the corresponding notion of the fundamental Lie
∞-groupoid Π∞(X) of any space X.

Then the Lie ∞-groupoid integrating an L∞-algebra g is

B(
∫

g) := Π∞S(CE(g)) .
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Examples. Let g be an ordinary Lie algebra and Π1(X) the strict fundamental 1-groupoid of a space X
(morphisms are homotopy classes of paths). Let G be the simply connected Lie group integrating g. Then

Π1(S(CE(g))) = BG ,

where the right hand side denotes the strict one object 1-groupoid obtained from G.
Now let g be an ordinary Lie algebra with a bilinear invariant form on it and let µ be the associated

canonical Lie algebra 3-cocycle. The corresponding String Lie 2-algebra is gµ. Let Π2(X) be the strict
fundamental 2-groupoid of a space X: morphisms are thin homotopy classes of paths and 2-morphisms are
homotopy classes of paths [10].

Then, I am claiming, the 2-group Gµ defined by

BG2 := Π2(S(CE(gµ)))

is essentially the strict version of the String Lie 2-group presented in [1], only that the horizontal composition
of paths is not pointwise multiplication, but concatenation. This is, I am claiming, the strict 2-group secretly
underlying the discussion in [?].

Forming instead Πwk
∞ (S(CE(g))) leads to the integration discussed in [5].

4.2 Integration and basic forms on mapping spaces

Definition 9 (integral of a g-valued form) Let g be any L∞-algebra and fix a g-valued differential form

Ω•(Y ) W(g)
(A,FA)oo .

For any smooth space Σ, we say that the integral of A over Σ is the morphism∫
Σ

A : Ω•
basic(hom(Σ, S(W(g)))) // Ω•(hom(Σ, X))

in
Ω•(hom(Σ, S(CE(g))))

Ω•(hom(Σ, X)) Ω•(hom(Σ, S(W(g))))
Ω•(hom(Σ,S(A,FA)))oo

OO

Ω•
basic(hom(Σ, S(W(g))))

?�

OO

R
Σ A

kkXXXXXXXXXXXXXXXXXXXXXX

Example. Elsewhere I sketched the proof of the obvious consistency condition: let g = bn−1u(1). Then A
is an ordinary n-form on X. Let Σ be n-dimensional. Then

∫
Σ

A coincides with the ordinary integral of A
over Σ.

10



References

[1] J. Baez, A. Crans, U. Schreiber, D. Stevenson, From loop groups to 2-groups

[2] , J.-L. Brylinski and D. McLaughlin, A geometric construction of the first Pontryagin class , Quantum
Topology, 209-220

[3] P. Eglesias

[4] E. Getzler

[5] A. Henriques

[6] A. Hoffnung (on Chen-smooth spaces, in preparation)

[7] F. Lawvere, Taking categories seriously, Reprints in Theory and Applications of Categories, No. 8
(2005) pp. 1-24

[8] I. Moerdijk and E. Reyes

[9] n-Category Café
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