tiny notes on tiny cubes

Schreiber*

September 11, 2006

Abstract

Let $X \simeq \mathbb{R}^n$ and let $\mathcal{P}(X)$ be the pair groupoid of X. Let G_2 be the strict 2-group coming from the crossed module

$$(G \xrightarrow{\mathrm{Id}} G) \subset \mathrm{AUT}(G)$$
.

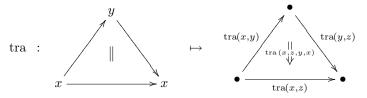
A smooth pseudofunctor

$$\operatorname{tra}: \mathcal{P}(X) \to \Sigma(G_2)$$

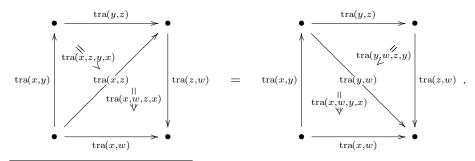
is given by a Lie(G)-valued 1-form A

tra : (
$$x \longrightarrow y$$
) \mapsto ($\bullet \xrightarrow{P \exp\left(\int_x^y A\right)} \bullet$)

and fails to respect strict composition as measured by

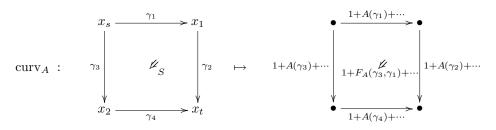


Since 2-morphisms in G_2 for given source and target are unique, this compositor necessarily satisfies its coherence law.



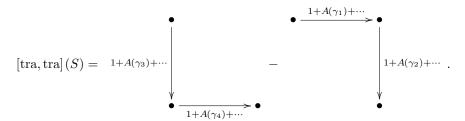
 $^{^*}$ E-mail: urs.schreiber at math.uni-hamburg.de

We know that the first order expansion for a little square yields



the curvature 2-form F_A . Hence the compositor of our pseudofunctor is given by $\frac{1}{6}F_A$.

Notice how we can write this as the supercommutator



Compare this to how, when passing from groupoids to algebroids, a connection is a morphism

$$\nabla \equiv d \text{tra} : TX \to TB/G$$

splitting the Atiyah sequence for the trivial G-bundle B

$$0 \to \operatorname{ad}(B) \to TB/G \to TX \to 0$$

whose failure to be a morphism of algebroids is measured by its curvature 2-form.

Let us further pass from

$$G_2 = (G \to G) \subset (AUT)(G)$$

to the 3-group

$$G_3 = \operatorname{Inn}(H \to G) \subset \operatorname{AUT}(H \to G)$$
.

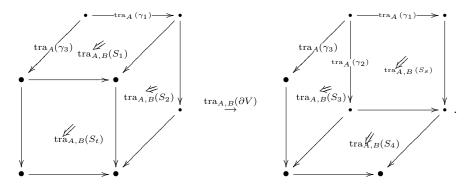
Now a pseudofunctor

$$\operatorname{tra}: \mathcal{P}(X) \to \Sigma(G_3)$$

is, as before, given by a Lie(G)-valued 1-form A, but now the compositor contains extra information and satisfies a nontrivial coherence law.

By splitting little n-cubes into n! little n-simplices, we may use our results from $\Sigma(G_3)$ -2-transport on cubical 2-paths to conclude that the compositor is now given by a Lie(H)-valued 2-form B. The above tetrahedral coherence law

is now replaced by a second order compositor filling that tetrahedron, which in cubical notation reads



So this second order compositor is given by the 3-form $H=d_AB$. Its coherence law is the Bianchi identity satisfied by H.

Notice how this may again conveniently be computed from a supercommutator, as displayed in figure 1 (p. 4).

In general, for a pseudofunctor from the pair groupoid to an n-group, we should find a 1-form given by the data on edges, then a series of compositors measuring the failure of respect for composition in the pair groupoid, the highest of which defining the curvature n-form. Finally a coherence law equation, which may be interpreted as the Bianchi identity of the curvature n-form.

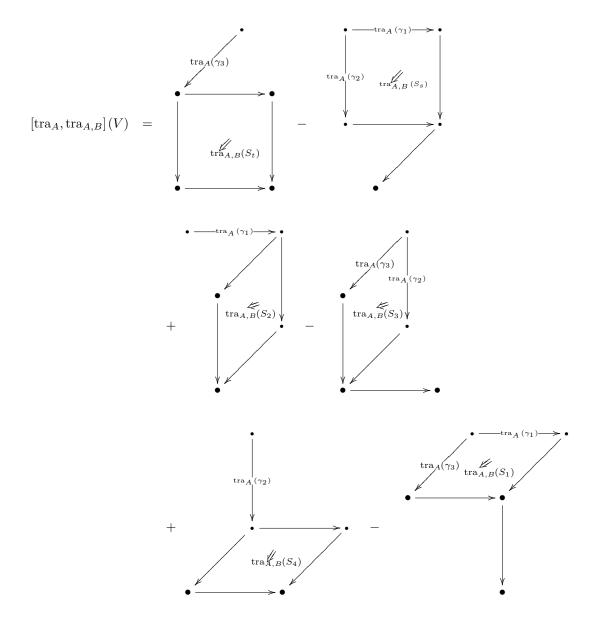


Figure 1: **Curvature 3-form** computed as the graded commutator of a transport 1-functor with a transport 2-functor.