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Abstract

Let X ~ R™ and let P (X) be the pair groupoid of X.
Let G2 be the strict 2-group coming from the crossed module

Id

(G = G) C AUT(G).
A smooth pseudofunctor
tra: P(X) — X(Ga)
is given by a Lie (G)-valued 1-form A

tra:(xﬂy)H(oMo)

and fails to respect strict composition as measured by
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Since 2-morphisms in G5 for given source and target are unique, this compositor
necessarily satisfies its coherence law.
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We know that the first order expansion for a little square yields
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the curvature 2-form F4. Hence the compositor of our pseudofunctor is given
by 5Fa
Notice how we can write this as the supercommutator
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Compare this to how, when passing from groupoids to algebroids, a connec-
tion is a morphism

V =dtra: TX — TB/G
splitting the Atiyah sequence for the trivial G-bundle B

0—ad(B)—-TB/G—-TX — 0,

whose failure to be a morphism of algebroids is measured by its curvature 2-
form.
Let us further pass from

Gy = (G — G) C (AUT)(G)

to the 3-group
Gs =Inn(H — G) C AUT(H — G).

Now a pseudofunctor
tra: P(X) — X (Gs)

is, as before, given by a Lie(G)-valued 1-form A, but now the compositor con-
tains extra information and satisfies a nontrivial coherence law.

By splitting little n-cubes into n! little n-simplices, we may use our results
from ¥ (G3)-2-transport on cubical 2-paths to conclude that the compositor is
now given by a Lie(H)-valued 2-form B. The above tetrahedral coherence law



is now replaced by a second order compositor filling that tetrahedron, which in
cubical notation reads
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So this second order compositor is given by the 3-form H = d4B. Its coherence
law is the Bianchi identity satisfied by H.

Notice how this may again conveniently be computed from a supercommu-
tator, as displayed in figure 1 (p. 4).

In general, for a pseudofunctor from the pair groupoid to an n-group, we
should find a 1-form given by the data on edges, then a series of compositors
measuring the failure of respect for composition in the pair groupoid, the highest
of which defining the curvature n-form. Finally a coherence law equation, which
may be interpreted as the Bianchi identity of the curvature n-form.
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Figure 1: Curvature 3-form computed as the graded commutator of a trans-
port 1-functor with a transport 2-functor.



