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1 Introduction

When generalizing some structure, it usually matters which of various equivalent
definitions of the ordinary structure one takes as the starting point.

Integration over ordinary manifolds X is often regarded as being governed
by non-degenerate “top degree” differential forms ω ∈ Ωdim(X)(X).

When saying this in a more general context, such as that of supermanifolds,
one finds that the notion of “top degree” becomes secondary, and even ill de-
fined, while what matters is that we have something “non-degenerate” of the
dimension of X:

a “non-degenerate top-form” is locally a wedge product of a basis of 1-forms.

unsuitable definition suitable definition

integration is against. . .
a nondegenerate
top-degree form

locally a wedge product
of a basis of 1-forms

If this is taken as the starting point for the ordinary definition of integration,
that definition goes through seamlessly for supermanifolds, too.
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2 Integration over supermanifolds

We define integration over Rp|q and extend it patchwise to integration over
arbitrary supermanifolds. Then we notice that integrals over Lie derivatives
vanish and deduce from that Stokes’ theorem for supermanifolds.

Plan.

• integration over Rp|qs;

• extend patchwise to integration over supermanifolds;

• notice that the intgerals over Lie derivatives vanish;

• from that and some natural defintions follows Stokes’ theorem.

2.1 Integration over Rp|qs

Just as supermanifolds are structures modeled on Rp|qs, integration over them
is modeled by integration over Rp|q.

Definition 1 Let∫
|volRp|q | : C∞cpt(Rp|q) // C∞(R0|0) = R

be the R-linear map given by∫
|volRp|q | : fI(x1, · · · , xp)θI � //

∫
f12···q(x1, · · · , xp)dx1 dx2 · · · dxn .

where on the right we have the ordinary multi-variable integral over Rn (Rie-
mann, or Lebesgue, for instance) of the coefficient f1···q of the top odd-function
power in f .

Remark: Berezinian integral. The fact that we project onto top odd-
function powers is usually called the Berezinian integration over odd coordi-
nates. On Rn|1 the Berezinian integral is often written as∫

(g0(x) + g1(x)θ) dθ = g1(x)

and motivated by observing that it is

• “normalized”:
∫
θdθ = 1

• it is “translation invariant” in that
∫

(g + ε)dθ =
∫
g for ε “another odd

parameter” (can be made precise but is not really relevant here).

We want to generalize this to things that locally look like Rp|q, i.e. to
supermanifolds. But if something is not uniquely identified, locally, with Rp|q,
but only up to isomorphism, we need to make sense of the integration measure
|volRp|q |.
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2.2 Super determinant lines

Let A be a superalgebra and L a free A module of rank p|q. This means that
there exists an isomorphism of A-modules

e : Ap|q ' // L .

This is a choice of basis of L over A. But there is in general not just one, but
many. Any other such

e′ : Ap|q ' // L

is related to the previous one by an automorphism of Ap|q:

e−1 ◦ e′ : Ap|q e′ // L
e−1

// Ap|q .

For any such automorphism we have the super determinant (Berezinian) defined
by

Det(e−1 ◦ e′) := Ber(e−1 ◦ e′) ∈ GLA(A1|0) = A×

with

Det
(

K L
M N

)
= det(K − LN−1M)det(N)−1 .

If we are just interested in the supervolume spanned by the elements of the
basis, we should consider the A×-torsor of equivalence classes

Det′(L) :=
{

[ Ap|q e

'
// L ] =

1
Det(F )

[ Ap|q F

'
// Ap|q e

'
// L ]
}
.

To get a full A-module we set

Det(L) := A⊗A× Det′(L) .

This Det(L) is, manifestly, a free A-module of total rank 1, which we take to
be of rank 1|0 if q is even and of rank 0|1 if q is odd.

This Det is a functor from the category of free A-modules with isomorphisms
between them to the category of A-lines (free A-modules of rank 1|0 of 0|1):

Det : AModfree,isos → ALines :

Det : ( L
f // L′ ) 7→ ( Det(L)

Det(f)// Det(L′) ) ,

where

Det(f) : [ Ap|q e

'
// L ] 7→ [ Ap|q e

'
// L

f

'
// L′ ] .

If A = C∞(X) and L is a locally free module over A – (the sections of) a
vector bundle –, we can perform this construction locally to get (the sections
of) a line bundle Det(L), i.e.

Γ(U,Det(L)) ' DetC∞(U)((C∞(U))p|q) .

Det : VectBundisos → LineBund .
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2.3 Volume forms and densities

In particular, let L = Ω1(X), then we write

Vol(X) := Det(Ω1(X))

for the line of oriented volume elements over X. If X is orientable, then the
sections of Vol(X) are the volume forms on X.

We want to divide out the orientation: let or(X) be the orientation bundle of
|X| regarded as a {+1,−1} ⊂ C∞(X)-module by letting −1 act by orientation
reversal.

Then define:

|Vol(X)| := Vol(X)⊗{1,−1} or(X) .

The sections of |Vol(X)| are the densities over X.
On X = Rp|q we have a canonical section of |Vol(X)|, namely

volRp|q := dt1 ∧ dt2 ∧ · · · dtp ∧ dθ1 ∧ · · · dθq ⊗ (+) ,

where (+) denotes the orientaton represented by dt1 ∧ · · · ∧ dtp.

Example. Notice how tensoring with the orientation bundle enforces the ab-
solute value | · | idea: let dt1 ∧ dt2 ⊗ + be standard density on R2. Under the
orientation reversing diffeomorphism

f : R2 → R2

f(t1) = t2 , f(t2) = t1 .

Then

f∗(dt1 ∧ dt2 ⊗C∞(R2)× (+))

= dt2 ∧ dt1 ⊗C∞(R2)× (−)

= −dt1 ∧ dt2 ⊗C∞(R2)× (−)

= dt1 ∧ dt2 ⊗C∞(R2)× (+)

Proposition 1 There is a unique R-linear map∫
X

: Γcpt(|Vol(X)|)→ R

with the property that for
φ : X|U → Rp|q

any chart of X, and for all

f |volRp|q | := (fvolRp|q ,+) ∈ Γcpt(|Vol(Rp|q)|)

we have ∫
X

φ∗(f |volRp|q |) =
∫

Rp|q
f |volRp|q | .
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Using a partition of unity

{hi ∈ C∞Cpt(X)},∑
i

hi = 1 ,

every compactly supported section of |Vol(X)| may be patched together by
pulled back sections like this:∫

X

ω =
∫

X

∑
i

hiω =
∑

i

∫
X

hiω =
∑

i

∫
X

φ∗(fi|volRp|q |) =
∑

i

∫
Rp|q

fi|volRp|q | .

If |M | is oriented it means we have chosen a global section σ ∈ Γ(or(X)).
Fixing that in the above formulas makes the integral then a map on volume
forms ∫

X

: Vol(X)→ R .

2.4 Lie derivatives

We define
L : Γ(TX)⊗ Ω•(X)→ Ω•(X)

by Cartan’s formula
Lv := [d, ιv] .

Given an even vector field v ∈ Γ(TX) its flow exp(v) : X → X is an orientation
preserving diffeomorphism and the Lie derivative along v is

Lvω =
d

dt
(exp(tv)∗ω − ω) .

The integral is invariant under orientation preserving diffeomorphisms

f : X
' // X

in that ∫
X

f∗ω =
∫

X

ω

for all ω ∈ Γcpt|Vol(X)|. Hence it follows that∫
X

Lvω = 0

for all even v ∈ Γ(TX) and ω ∈ Vol(X) on X.
This is extended to odd vector field simply by noticing that multiplying any

odd vector field with an odd scalar yields an even vector field.
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2.5 Integral forms

The main point of the discussion here is that there is a difference between top
forms and volume forms (the former don’t even exist in general) and that for
integration purposes it is the volume forms which matter.

Just as the even deRham complex is generated from any top form by con-
tractions, we can generate a complex from any volume form by contractions.
The resulting complex is called that of integral forms.

Definition 2 Let X be a supermanifold of dimension p|q such that |X| is ori-
ented. The complex I•(X) is, as a graded A-module

In(X) :=
{
∧p−nΓ(TX)⊗Vol(X) for n ≤ p

0 for n > p
.

We write wedging with v ∈ Γ(TX) as

ιv : In(X)→ In−1 .

To define the differential on I•(X), first define an operation

L : Γ(TX)⊗ I•(X)→ I•(X)

by

• letting Lv act on Ip(X) as the Lie derivative on ω (already defined):

Lv|Ip(X) : ω 7→ Lvω ;

• setting
[Lv, ιw] := ι[v,w] .

The differential d on the complex is then defined by

• setting
d|Ip = 0 ;

• setting
[d, ιv] = Lv .

Using the canonical identification

Ip(X) ' Vol(X)

we get a map ∫
X

: Ip(X)→ R .
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2.6 Stokes’ theorem

For X a supermanifold of dimension p|q, |X| oriented and for any

λ ∈ Ip−1
cpt (X)

we have ∫
X

dη = 0 .

Because by definition there is v ∈ Γcpt(TX)} such that λ = ιvω and hence∫
X

dη =
∫

X

dιvω =
∫

X

[d, ιv]ω =
∫

X

Lvω = 0 .
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