Lie ∞ -Connections and applications to String- and Chern-Simons n-transport

Urs Schreiber

on joint work with Hisham Sati Jim Stasheff

with an introduction involving joint work with
John Baez
David Roberts
Konrad Waldorf

February 18, 2008

What we want to do.

- We want to understand n-dimensional QFTs that arise as Σ-models: those that come from transgression of n-dimensional parallel transport;
 - for instance the **charged** (n-1)-**brane**, but also (higher) **gauge theory**.
 - **finite description**: n-bundles ((n-1)-gerbes) with connection in terms of n-groupoid valued parallel transport n-functors [Baez-S., S.-Waldorf I, II , II]
 - **differential description**: *n*-bundles with connection in terms of L_{∞} -algebra-valued connections [Sati-S.-Stasheff].
- Then use this to describe
 - (generalized) Chern-Simons forms;
 - (generalized) Chern-Simons (n + 1)-bundles (n-gerbes)
 - possibly related phenomena like Green-Schwarz mechanism.

fundamental object	background field
(n-1)-brane	(n-1)-gerbe
<i>n</i> -particle	<i>n</i> -bundle

Table: The two schools of counting higher dimensional structures. Here n is in $\mathbb{N} = \{0, 1, 2, \cdots\}$.

Plan

- 11 The result to be discussed
- 2 Parallel *n*-transport
 - Σ-models
 - 2 Background fields
 - 3 Parallel *n*-transport
- **3** L_{∞} -connections
 - 1 L_{∞} -algebras
 - $\overline{L_{\infty}}$ -valued differential forms
 - 1 L_{∞} -connections
- 4 Applications
 - 1 Obstructing (n+1)-bundles
- 5 Literature

The result to be discussed

The result to be discussed

- We recall L_{∞} -algebras, which are a categorified version of ordinary Lie algebras.
- We discuss how Lie algebra cohomology generalizes to L_{∞} -algebras by looking at their Chevalley-Eilenberg differential algebras.
- We notice that for every L_{∞} -algebra $\mathfrak g$ and every degree n cocycle μ on it, there is an extension

$$0 o b^{n-1} \mathfrak{u}(1) o \mathfrak{g}_{\mu} o \mathfrak{g} o 0$$

- of \mathfrak{g} by (n-1)-tuply shifted $\mathfrak{u}(1)$, which includes and generalizes the *String extension*.
- We define for arbitrary L_{∞} -algebras $\mathfrak g$ a notion of higher bundles with L_{∞} -connection and define characteristic classes for these.

We obtain the following theorem:

Let the degree (n+1) cocycle μ on the L_{∞} -algebra $\mathfrak g$ be in transgression with the invariant polynomial P on $\mathfrak g$.

Theorem

The obstruction to lifting a \mathfrak{g} -connection (A, F_A) to a \mathfrak{g}_{μ} -connection $(A', F_{A'})$ is a $b^n\mathfrak{u}(1)$ -connection whose single characteristic class is that of

$$P(F_A)$$
.

Applied to the special case that $\mathfrak g$ is an ordinary Lie algebra with bilinear invariant form $\langle\cdot,\cdot\rangle$ and corresponding 3-cocycle $\mu=\langle\cdot,[\cdot,\cdot]\rangle$ we get

Corollary

The lift of an ordinary \mathfrak{g} -connection (A, F_A) to a String 2-connection is obstructed by a $b^2\mathfrak{u}(1)$ 3-connection whose local connection 3-form is the Chern-Simons 3-form

$$CS(A, F_A) = \langle A \wedge dA \rangle + \frac{1}{3} \langle A \wedge [A \wedge A] \rangle$$

and whose single characteristic class is hence the Pontryagin class of (A, F_A)

$$p_1 = \langle F_A \wedge F_A \rangle$$
.

Parallel *n*-transport

One way of understanding what we are after here is to ask:

An n-dimensional Σ -model is a quantum field theory which comes from assigning phases to maps of some n-dimensional parameter space into some target space, but -

■ What is a Σ -model, really?

Such phase assignments come from **background fiels** like gauge connections, Kalb-Ramond fields, supergravity 3-forms fields –

■ What is a background field, really?

Our answer to these questions is:

■ It is a parallel *n*-transport.

Finally, an L_{∞} -connection is the differential description of parallel n-transport: skip parallel transport and jump to L_{∞} -connections

_ Σ-models

To set the scene:

What is a Σ -Model?

_ Σ-models

The charged (n-1)-brane

The input

target space: X

background field: $\nabla: \mathbf{X} \to \mathbf{T}$

parameter space **\Sigma**

The output

config. space: X^{Σ}

transgression: $\nabla^{\Sigma}: X^{\Sigma} \to T^{\Sigma}$

_ Σ-models

The charged (n-1)-brane

The input

target space: \mathbf{X} (an n-groupoid) background field: $\nabla: \mathbf{X} \to \mathbf{T}$ (an n-functor) parameter space $\mathbf{\Sigma}$ (an n-groupoid)

The output

config. space: \mathbf{X}^{Σ} (internal hom object) transgression: $\nabla^{\Sigma}: \mathbf{X}^{\Sigma} \to \mathbf{T}^{\Sigma}$ (internal hom morphism)

Example: the charged particle

The input

target space: $\mathbf{X} = \mathcal{P}_1(X)$ (paths in spacetime X) background field: $\nabla : \mathcal{P}_1(X) \to \mathrm{Vect}$ (gauge connection)

parameter space $\Sigma = \Pi_1(S^1)$ (gating connection)

The output

config. space: $\mathbf{X}^{\Sigma} = \mathcal{P}_1(LX)$ (thin paths in loop space) transgression: $\nabla^{\Sigma} : \mathcal{P}_1(LX) \to \Lambda \mathrm{Vect}$ (holonomy)

 $\bigvee_{\begin{subarray}{c} Vect \\ \begin{subarray}{c} \begin{subarra$

In an analogous manner one can describe

- the (Kalb-Ramond) charged string;
- the $(C_3$ -field) charged membrane;

and also

gauge theory.

(skip further examples)

Example: the charged string

The input

target space: $\mathbf{X} = \mathcal{P}_2(X)$ (2-paths in spacetime X)

 $\nabla: \mathcal{P}_2(X) \to 2 \text{Vect}$ (Kalb-Ramond field) background field: $\Sigma = \Pi_1(S^1)$ parameter space (path in the circle)

The output

config. space: $\mathbf{X}^{\Sigma} = \mathcal{P}_1(LX)$ (paths in loop space)

 $\nabla^{\Sigma}: \mathcal{P}_1(LX) \to \Lambda 2 \text{Vect}$ transgression: (connection on loop space)

_ Σ-models

Example: the charged membrane

The input

target space: $\mathbf{X} = \mathcal{P}_3(X)$ (3-paths in spacetime X)

background field: $\nabla : \mathcal{P}_3(X) \to 3\mathrm{Vect}$ (SUGRA C_3 -field) parameter space $\mathbf{\Sigma} = \Pi_2(\Sigma)$ (2-paths in Σ)

The output

config. space: $\mathbf{X}^{\Sigma} = \mathcal{P}_2(X^{\Sigma})$ (paths in Σ -space)

transgression: $\nabla^{\Sigma}: \mathcal{P}_1(X^{\Sigma}) \to \Lambda 3 \mathrm{Vect}$ (connection on Σ -space)

Example: gauge theory

The input

target space: X = BG(G regarded as groupoid)

background field: $\nabla : \mathbf{B}G \to \mathbf{T}$ (field on $\mathbf{B}G$, eg. CS 3-bundle)

 $\mathbf{\Sigma} = \mathcal{P}_1(\Sigma)$ (paths in Σ) parameter space

The output

config. space: $\mathbf{X}^{\Sigma} = \operatorname{Bund}_{\nabla}(G)$ transgression: $\nabla^{\Sigma} : \operatorname{Bund}_{\nabla}(G) \to \mathbf{T}^{\Sigma}$ (G-bundles with connection)

transgression: (gauge field action)

Background fields

More precisely, in this context:

What is a background field?

The notion of background field

The background field is a mechanism to consistently assign

 ∇ : worldvolumes ightarrow phases

Familiar from

- Cheeger-Simons differential characters;
- ≃ Deligne cohomology;
- ightharpoonup \simeq bundle gerbes with connection.

But here we want a little more:

- localization to all d-dimensional submanifolds;
- generalization to arbitrary gauge n-groups.

We want

parallel transport n-functors.

What we have to do is:

■ Task: Characterize those n-functors that qualify as parallel transport.

The solution we find is:

- An *n*-functor is a parallel transport if it is
 - smoothly;
 - locally trivializable;
 - with respect to a structure Lie *n*-group $G_{(n)}$.

Local trivialization of *n*-transport

Local trivialization of n-transport

We shall say that an (n+1)-functor

is a parallel transport with respect to a structure n-group $G_{(n)}$ if it admits a smooth local trivialization in the following sense.

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is. . .

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

$$\Pi_{n+1}(X)$$

on the fundamental (n+1)-groupoid of X...

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

$$\Pi_{n+1}(X)$$
 an $(n+1)$ -functor. . .

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

$$\Pi_{n+1}(Y) \xrightarrow{\pi} \Pi_{n+1}(X)$$

$$\nabla$$

$$T$$

such that locally, when pulled back to $Y \xrightarrow{\pi} X$ with n-connected fibers. . .

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

to a locally defined *n*-functor . . .

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

with values in inner automorphisms of the structure *n*-group.

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

which are embedded into the fibers...

n-Transport

Definition

An n-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

$$\Pi_{n+1}^{\text{vert}}(Y) \stackrel{\longrightarrow}{\longrightarrow} \Pi_{n+1}(Y) \stackrel{\pi}{\longrightarrow} \Pi_{n+1}(X)$$

$$\nabla_{\text{loc}} \qquad \qquad \nabla_{\text{loc}} \qquad \qquad$$

such that restricted to vertical paths...

Local trivialization of *n*-transport

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

it factors through the structure group itself...

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

which sits canonically inside the inner automorphisms.

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

The vertical part is the cocycle/ descent data...

n-Transport

Definition

An *n*-transport

- \blacksquare on the smooth space X
- with structure Lie *n*-group $G_{(n)}$

is

While the horizontal part is the connection/curvature data.

Local trivialization of *n*-transport

One checks that this definition encompasses the examples one would expect:

- ordinary bundles with connection
- (nonabelian) gerbes with connection

(skip further details)

Local trivialization of *n*-transport

Parallel transport and bundles with connection

Parallel 1-transport and its equivalence to bundles with connection is discussed in [S.-Waldorf I].

Here we need the following version of the statement:

Parallel transport and bundles with connection

Theorem

For G simply connected, the category of G-bundles with connection on X is equivalent to diagrams

of smooth 2-functors, for $Y \rightarrow X$ having connected and simply connected fibers.

Local trivialization of *n*-transport

Parallel transport and 2-bundles with connection

Parallel 2-transport and its equivalence to bundles with connection is discussed in [Baez-S.,S.-Waldorf II, S.-Waldorf III].

Here we need the following version of the statement:

Parallel transport and 2-bundles with connection

Theorem (unpublished)

For $G_{(2)}=\mathrm{AUT}(G)$, the category of G-gerbes with connection on X is equivalent to diagrams

$$\Pi_3^{\mathrm{vert}}(Y)$$
 \xrightarrow{g} $\mathbf{B}G_{(2)}$ cocycle/descent data
$$\Pi_3(Y)$$
 $\xrightarrow{(A,F_A)}$ $\mathbf{B}\mathrm{INN}_0(G_{(2)})$ local connection data
$$\Pi_3(X)$$

of smooth 3-functors, for $Y \rightarrow X$ having 2-connected fibers.

The sequences of *n*-groups

$$G_{(n)} \hookrightarrow \operatorname{INN}(G_{(n)}) \longrightarrow \mathbf{B}G_{(n)}$$

appearing here is noteworthy.

Its L_{∞} -version will play a crucial role.

$$CE(\mathfrak{g})$$
 \leftarrow $W(\mathfrak{g})$ \leftarrow $inv(\mathfrak{g})$

(skip further details)

Lie ∞ -Connections and applications to String- and Chern-Simons n-transport

Parallel n-transport

Universal *n*-bundles in their groupoid incarnation

Universal *n*-bundles

in their *n*-groupoid incarnation

Universal *n*-bundles in their groupoid incarnation

Theorem (Segal, interpreted following Roberts-S.)

 \bigsqcup Universal *n*-bundles in their groupoid incarnation

Theorem (Roberts-S., Baez-Stevenson, Roberts-Stevenson)

Universal *n*-bundles in their groupoid incarnation

Strategy from here on.

We will now pass from Lie *n*-groups and their morphisms to Lie *n*-algebras ($\simeq L_{\infty}$ -algebras) and their morphisms.

This will make many things more powerfully tractable, at the cost of potentially losing "integral" information.

L_{∞} -connections

Parallel *n*-transport is a morphism of Lie (n + 1)-groupoids.

Parallel *n*-transport is a morphism of Lie (n + 1)-groupoids.

This morphism may be differentiated...

This morphism may be differentiated...

... to produce a morphism of Lie (n+1)-algebras.

... to produce a morphism of Lie (n+1)-algebras.

These are best handled in terms of their dual maps,

which are morphisms of quasi-free differential-graded algebras.

Lie ∞ -Connections and applications to String- and Chern-Simons n-transport Lie ∞ -connections $-L_{\infty}$ -algebras

L_{∞} -algebras

Ordinary Lie algebras as codifferential coalgebras

 L_{∞} -algebras are easiest understood by way of the following

Observation

A bracket

$$[\cdot,\cdot]:\mathfrak{g}\otimes\mathfrak{g}\to\mathfrak{g}$$

induces a degree -1 codifferential

$$D: \vee^{\bullet} \mathfrak{g} \to \vee^{\bullet} \mathfrak{g}$$

on the free graded-cocommutative coalgebra $\vee^{\bullet} \mathfrak{g}$ (with \mathfrak{g} regarded as being in degree 1) and the Jacobi identity is equivalent to

$$D^2 = 0.$$

L_{∞} -algebras are quasi-free codifferential coalgebras

Definition

An L_{∞} -algebra is a \mathbb{N}_+ -graded vector space \mathfrak{g} together with a degree -1 codifferential

$$D: \vee^{\bullet} \mathfrak{g} \to \vee^{\bullet} \mathfrak{g}$$

such that

$$D^2 = 0$$
.

The original definition in terms of k-ary brackets can be seen to be equivalent to this concise definition [LadaStasheff, LadaMarkl] using the fact that codifferentials on free coalgebra are fixed by their action on "cogenerators".

L_{∞} -algebras are Lie ∞ -algebras

Fact

$$L_{\infty}$$
-algebras generated in degrees $\simeq 1, 2, \cdots n$

(semistrict) Lie n-algebras $\simeq n$ -vector space with skew and coherently Jacobi bracket functor

Towards an ∞-Lie theorem

 L_{∞} -algebras are to Lie ∞ -groupoids as ordinary Lie algebras are to ordinary Lie groups.

- L_{∞} -algebras may be integrated to Lie ∞ -groupoids [Getzler, Henriques]
- Lie ∞ -groupoids may be differentiated to yield Lie ∞ -algebras [Ševera].

Chevalley-Eilenberg-algebras of L_{∞} -algebras

Definition (L_{∞} -Chevalley-Eilenberg algebra)

For ${\mathfrak g}$ a finite dimensional L_∞ -algebra, its Chevalley-Eilenberg algebra

$$CE(\mathfrak{g})$$

is the free graded-commutative algebra $\wedge^{\bullet}\mathfrak{g}^*$ equipped with the degree +1 differential

$$d_{\mathrm{CE}(\mathfrak{g})}: \wedge^{\bullet}\mathfrak{g}^* \to \wedge^{\bullet}\mathfrak{g}^*$$

given by

$$d_{\mathrm{CE}(\mathfrak{g})}\omega = \omega(D(\cdot))$$
.

Remark on terminology

- We say quasi-free differential graded commutative algebras (qDGCAs) for DGCAs which are free as GCAs but not necessarily as DGCAs.
- In the physics literature these qDGCAs are, somewhat imprecisely, often addressed as "free differential algebras" (FDAs).

Weil-algebras of L_{∞} -algebras

The Weil algebra

$$\mathrm{W}(\mathfrak{g}) = \left(\wedge^{\bullet}(\mathfrak{g}^* \oplus \mathfrak{g}^*[1]), d_{\mathrm{W}(\mathfrak{g})} = \left(\begin{array}{cc} d_{\mathrm{CE}(\mathfrak{g})} & 0 \\ \sigma & \sigma \circ d_{\mathrm{CE}(\mathfrak{g})} \circ \sigma^{-1} \end{array} \right) \right)$$

of a (finite dimensional) L_{∞} -algebra is

- the mapping cone of the identity on $CE(\mathfrak{g})$;
- the CE-algebra of inn(g);
- the Lie (n+1)-algebra of $INN(G_{(n)})$.

 L_{∞} -valued forms

L_{∞} -algebra valued forms

L_{∞} -algebra valued forms

Definition

For $\mathfrak g$ any L_∞ -algebra, a $\mathfrak g$ -valued form on Y is a DGCA morphism

$$\Omega^{\bullet}(Y) \leftarrow (A, F_A) \qquad W(\mathfrak{g})$$
.

A flat \mathfrak{g} -valued form is such a morphism which factors through the canonical projection

$$CE(\mathfrak{g})$$
 \leftarrow $W(\mathfrak{g})$

$$CE(\mathfrak{g}) \longleftarrow W(\mathfrak{g})$$

$$(F,F_A=0) \qquad \qquad \downarrow (A,F_A)$$

$$\Omega^{\bullet}(Y) \longrightarrow \Omega^{\bullet}(Y)$$

 L_{∞} -valued forms

Example

shiftet $\mathfrak{u}(1)$: $b^{n-1}\mathfrak{u}(1)$

 $b^{n-1}\mathfrak{u}(1)$ -valued forms are just ordinary *n*-forms.

$$CE(\mathfrak{g}) \longleftarrow W(\mathfrak{g})$$

$$A, F_A = 0 \qquad (A \in \Omega^n(Y), F_A = dA)$$

$$\Omega^{\bullet}(Y) \longrightarrow \Omega^{\bullet}(Y)$$

 L_{∞} -valued forms

Example

strict Lie 2-algebras
$$(\mathfrak{h} \stackrel{t}{\rightarrow} \mathfrak{g})$$

$$CE(\mathfrak{h} \xrightarrow{t} \mathfrak{g}) \stackrel{\longleftarrow}{\longleftarrow} W(\mathfrak{h} \xrightarrow{t} \mathfrak{g})$$

$$(A,B) \qquad (A,B,\beta,H) \qquad \qquad ($$

$$A \in \Omega^1(Y, \mathfrak{g}), B \in \Omega^2(Y, \mathfrak{h})$$

 L_{∞} -valued forms

Example

String Lie *n*-algebras

 $A \in \Omega^1(Y, \mathfrak{g}), B \in \Omega^{2n}(Y), C \in \Omega^{2n+1}(Y)$

 L_{∞} -valued forms

Examples

The ordinary String Lie 2-algebra

$$CE(\mathfrak{g}) \hookrightarrow CE(\operatorname{string}(\mathfrak{g})) \longleftarrow W(\operatorname{string}_{k}(\mathfrak{g}))$$

$$\parallel \qquad \qquad \parallel \simeq \qquad \qquad \parallel \simeq$$

$$CE(\mathfrak{g}) \hookrightarrow CE(\mathfrak{g}_{\mu}) \longleftarrow CE(\operatorname{cs}_{k}(\mathfrak{g})) \longleftarrow CE(\operatorname{ch}_{P}(\mathfrak{g}))$$

$$(A) \qquad \qquad (A,B) \qquad \qquad (A,B,C) \qquad \qquad (A,C) \qquad \qquad (A,C)$$

4 □ → 4 □ → 4 □ → 4 □ → 9 へ ○

Lie ∞ -Connections and applications to String- and Chern-Simons n-transport Lie ∞ -connections $\bot L_{\infty}$ -connections

L_{∞} -connections

Lie ∞-Connections and applications to String- and Chern-Simons *n*-transport

Lie ∞ -connections L_{∞} -connections

Differentiating

$$\infty$$
Grpd $\xrightarrow{\text{Lie}} L_{\infty} \xrightarrow{(\cdot)^*} \text{qDGCAs}$

we obtain from the definition of *n*-transport:

Definition

For $\mathfrak g$ an L_∞ -algebra and X a smooth space, a $\mathfrak g$ -connection descent object with respect to $Y \longrightarrow X$ is a diagram

object with respect to
$$Y \xrightarrow{\longrightarrow} X$$
 is a diagram
$$(\cdot)^* \circ \operatorname{Lie} \left(\begin{array}{c} \prod_{n+1}^{\operatorname{vert}}(Y) \xrightarrow{g} & \mathbf{B}G \\ & \downarrow & \\ & \prod_{n+1}(Y) \xrightarrow{\nabla_{\operatorname{loc}}} & \mathbf{B}\operatorname{INN}(G) \\ & \downarrow & \\ & \prod_{n+1}(X) \xrightarrow{} & T \end{array} \right)$$

Lie ∞ -Connections and applications to String- and Chern-Simons n-transport

Lie ∞ -connections L_{∞} -connections

Differentiating

$$\infty$$
Grpd $\xrightarrow{\text{Lie}} L_{\infty} \xrightarrow{(\cdot)^*} \text{qDGCAs}$

we obtain from the definition of *n*-transport:

Definition

For $\mathfrak g$ an L_∞ -algebra and X a smooth space, a $\mathfrak g$ -connection descent object with respect to $Y \longrightarrow X$ is a diagram

$$(\cdot)^* \left(\begin{array}{c} T_{\text{vert}} Y \xrightarrow{dg} & \mathfrak{g} \\ \downarrow & \downarrow & \downarrow \\ TY \xrightarrow{d\nabla_{\text{loc}}} & \text{inn}(\mathfrak{g}) \\ \downarrow & \downarrow & \downarrow \\ TX \xrightarrow{} & k \end{array} \right)$$

Lie ∞ -Connections and applications to String- and Chern-Simons n-transport

Lie
$$\infty$$
-connections
$$L_{\infty}$$
-connections

Differentiating

$$\infty$$
Grpd $\xrightarrow{\text{Lie}} L_{\infty} \xrightarrow{(\cdot)^*} \text{qDGCAs}$

we obtain from the definition of *n*-transport:

Definition

For $\mathfrak g$ an L_∞ -algebra and X a smooth space, a $\mathfrak g$ -connection descent object with respect to $Y \longrightarrow X$ is a diagram

$$\Omega^{\bullet}_{\mathrm{vert}}(Y) \xleftarrow{A_{\mathrm{vert}}} \mathrm{CE}(\mathfrak{g})$$

$$\Omega^{\bullet}(y) \xleftarrow{(A,F_A)} \mathrm{W}(\mathfrak{g})$$

$$\Omega^{\bullet}(X) \xleftarrow{\{P_i\}} \mathrm{inv}(\mathfrak{g})$$

descent data

first Cartan-Ehresmann condition

connection data

second Cartan-Ehresmann condition

characteristic forms

Chern-Weil homomorphism

Lie ∞ -connections L_{∞} -connections

Example

Ordinary Cartan-Ehresmann connections

Let $P \to X$ be an ordinary principal G-bundle and $A \in \Omega^1(P, \mathfrak{g})$ a Cartan-Ehresmann connection 1-form on the total space. Choosing Y := P, this is a \mathfrak{g} -connection descent object Lie ∞-connections

 L_{∞} -connections

Example

Interesting examples of (n+1) g-connection descent objects arise as obstruction to lifting an ordinary 1-connection to a String-like n-connection.

These obstructing (n+1)-bundles with connection are (generalized) Chern-Simons (n+1)-bundles.

- Applications

Application: Obstructing (n+1)-bundles

Let $\mathfrak g$ be an ordinary Lie algebra with bilinear invariant form $\langle \cdot, \cdot \rangle$ and let $\mu = \langle \cdot [\cdot, \cdot] \rangle$ the corresponding cocycle.

Definition

The Chern-Simons 3-bundle (CS 2-gerbe) of a \mathfrak{g} -bundle with connection is a $b^3\mathfrak{u}(1)$ -connection whose characteristic 4-class is the Pontrjagin 4-class

$$P = \langle F_A \wedge F_A \rangle$$

of the g-bundle.

Theorem

Chern-Simons 3-bundles are the obstructions to lifting \mathfrak{g} -bundles to String 2-bundles, i.e. to \mathfrak{g}_{μ} -2-bundles.

One computes this obstruction in a systematic manner by first lifting into the weak cokernel of

$$(b^{n-1}\mathfrak{u}(1)\to\mathfrak{g}_{\mu})$$
,

which is always possible, and the projecting out the shifted copy

$$(b^{n-1}\mathfrak{u}(1) o \mathfrak{g}_{\mu})$$
 $wo b^n\mathfrak{u}(1)$

which contains the failure of the potential lift to just \mathfrak{g}_{μ} . Applying this procedure to the diagram describing a \mathfrak{g} -connection as a whole yields...

Applications

☐ The computation

- Applications

☐ The computation

By chasing the generators of $W(b^n\mathfrak{u}(1))$ through this diagram one obtains the claimed result.

Literature

Literature

n-Bundles

- 1 T. Bartels, 2-Bundles, [arXiv:math/0410328v3]
- 2 I. Baković Bigroupoid bitorsors, PhD. thesis

Gerbes with connection

- 1 P. Aschieri, B. Jurčo
- 2 Breen

n-Transport

- J. Baez and U. Schreiber, Higher gauge theory, in Contemporary Mathematics, 431, Categories in Algebra, Geometry and Mathematical Physics, [arXiv:math/0511710].
- D. Roberts and U. Schreiber, The inner automorphism 3-group of a strict 2-group, to appear in Journal of Homotopy and Related Structures, [arXiv:0708.1741].
- **3** H. Sati, U. Schreiber, J. Stasheff, L_{∞} -connections and applications to String and Chern-Simons n-transport, [arXiv:0801.3480]
- 4 U. Schreiber and K. Waldorf, *Parallel transport and functors*, [arXiv:0705.0452v1].
- U. Schreiber and K. Waldorf, 2-Functors vs. differential forms, [arXiv:0802.0663v1]
- **6** U. Schreiber and K. Waldorf, *Parallel transport and 2-functors*, to appear.