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1 Introduction

Motivated by the desire to better understand modular tensor categories (or
whatever replaces them) in the context of (rational) superconformal 2-dimensional
field theories, the following is an attempt to capture the basic axioms of super-
algebra in a more “arrow-theoretic” way than commonly done, such that its
generalization to less familiar contexts can proceed more systematically.

One possible way to conceive this endeavour is to think of the problem of
finding the concept which is to a supergroup like a category is to a group.

single object many objects no invertibility
ordinary group groupoid category
super supergroup supergroupoid supercategory

Table 1: We are looking for an “arrow theoretic” way to talk about supersym-
metry. By this is meant an abstract diagrammatic formulation that may easily
be internalized into various contexts which may look entirely different from the
context of graded commutative algebra which is usually the starting point for
the definition of superalgebra. One way to think of this problem is to think of
completing the last two entries in the last row of the above table.
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2 Flows on Categories

We would like to understand a supercategory as a category equipped with the
“flow of an odd vector field” on it. From considerations in other contexts, one
finds that the following is a good arrow-theoretic way to talk about vector fields
and their flows:

Definition 1 (G-flow on a category). For G a group, a G-flow on a category
C is

• a (strict) G-action on C

R : ΣG → Aut(C)

• for each g ∈ G a natural transformation

C

Id

��

Rg

@@Cfg

��

respecting the action, i.e. such that

C

Id

��

Rg1

@@C

Id

��

Rg2

@@Cfg1

��

fg2

��
= C

Id

��

Rg1g2

@@Cfg1g2

��
.

In other words, a G-flow on C is a functor

F : ΣG → Σ(HomCat(IdC ,−)) .

Remark. When G is Lie and C is a smooth category, we usually want to
require everything in sight to be smooth to get the concept of a smooth flow on
C.

Remark. One should think of the component maps of these transformations
as providing the “flow lines” of the G-action. This is illustrated by the following
example.

Example (ordinary vector fields and their flows) Let X be some mani-
fold and let

P1(X)
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be the smooth path groupoid of X. Its space of objects is X and its space of
morphisms are thin-homotopy classes of smooth paths in X (compare [2]).

Every vector field v ∈ Γ(TX) on X gives rise to smooth R-flow on P1(X)

t 7→ P1(X)

Id

##

exp(tv)

;;
P1(X)

��

where the componet map of the transformation maps each point to the flow line
of length t along v starting at that point.

I think that, conversely, every smooth R-flow on P1(X) defines a vector field
on X this way. But I do not try to prove that here.

Example/Remark (ordinary Lie derivatives) A good way to understand
the principle at work here is to compare this to the infinitesimal version, which
may be more familiar.

Consider the 2-category whose objects are differential graded commutative
algebras, whose morphisms are linear maps that are both chain maps as well as
algebra derivations, and whose 2-morphisms are chain homotopies of these.

For X a smooth manifold as before, one object in this 2-category is (Ω•(X), d),
the deRham complex of X. Every vector field v on X yields an inner derivation
ιv of this, which can be regarded as a chain map

Ω•(X)

0

##

Lv :=[d,ιv ]

;;
Ω•(X)ιv

��

which connects the 0-derivation with the Lie derivative Lv := [d, ιv] induced by
v. Compare [3, 4].

The definition of a G-flow on a category is exactly modelled after this ex-
ample, supposed to capture the integrated as opposed to infinitesimal version.

Example (inner automorphisms). Among all automorphisms of a group
G, precisely the inner automorphisms are those which gives rise to flows on G,
in the above sense, in that the action of inner automorphisms

g 7→ ΣG

Id

  

Adg

>>ΣGg

��
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is connected to the identity automorphism. That’s in fact the very definition
of inner automorphism, once one looks at the naturality square for the above
natural transformation:

• g //

h

��

•
Adgh

��
• g // •

for all h ∈ G.

Definition 2 (Morphisms of categories with G-flow). For (C,R) and (C ′, R′)
two categories equipped with a G-flow, a morphism

F : (C,R) // (C ′, R′)

between them is a functor
F : C // C ′

such that

C

Id

��

Rg

@@C

f

��
C ′

��
=

C

F

��
C ′

Id

��

R′
g

??C
′

��

Example. In [4] it is discussed that the condition on an Ehresmann connec-
tion on the total space of a G-bundle is precisely of this form, albeit in the
infinitesimal context. The two categories with G-flow which appear in that
context are P1(P ) (paths in the total space of the G-bundle with the obvious
G-action on them) and ΣG itself, with the adjoint G-action.

3 Odd flows and supercategories

Definition 3 (supercategory). A supercategory is a category equipped with a
Z2-flow.

Hence a supercategory is a diagram

C

Id

��

s

AAC
��
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in Cat, such that

C

Id

��

s

AAC

Id

��

s

AAC
�� ��

= C

Id

��

Id

AACId

��

.

Here we agree, for notational convenience, that unlabeled arrows from Id to s
denote the specified transformation belonging to s.

Remark. In light of our interpretation of flows on categories as something
generalizing the notion of ordinary flows of ordinary vector fields (as described
in the examples in 2), we should think of a supercategory as being a category
equipped with an “odd vector field”.

Example (modules over graded commutative algebras). Let A be a Z2-
graded commutative algebra and let ModA be the category of right A-modules.
Any A-module V is naturally Z2-graded itself

V = V0 ⊕ V1 .

The functor
s : ModA → ModA

exchanges the degree of these modules

(sV )0 := V1

(sV )1 := V0

and there are canonical isomorphisms

sV : V
∼ // sV .

The action of s on morphisms is given by conjugations with these isomorphisms

s : ( V
f // W ) 7→

V
f // W

sW

��
sV

s−1
V

OO

sW

.

This manifestly makes the sV the components of the natural isomorphism

ModA

Id

!!

s

==ModA

��

.
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Notice that s is often denoted “Π”. It is called the parity change functor.
In fact, we can understand s here as coming from tensoring with the module

sA, which is the algebra itself, but with the degrees reversed. This will be
important in 4, when we interpret braided monoidal supercategories as certain
one-object 3-categories with extra structure.

Definition 4 (Grading operator). Given any supercategory C, we say a grading
on C is a subcategory

•
C0

� � // C

closed under s;

• together with a nontrivial transformation

C0

Id

��

Id

@@C0b

��

such that

C0

Id

��

Id

@@C0 s
// C0

Id

��

Id

@@C0 s
// C0b

��

b

��

is involutary and central with respect to horizontal composition of trans-
formations.

Remark. This condition should be thought of as saysing that “the fermion
number operator (−1)fermion number anticommutes with the parity change oper-
ator”.

Remark. The maximal subcategory C0 with the above property has the same
objects as C and all even-graded morphisms of C, but no odd-graded morphisms.
In applications we are mostly interested in working with such a maximal C0.
Usually this still remembers the odd-graded morphisms as the corresponding
internal Hom-spaces. But the existence of C is actually crucial for the notion of
supersymmetry: there are categories C0 as above, which do not come from any
supercategory C, namely if there is no bijection between even and odd objects
of C0.
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Example. For C = ModA the supercategory of modules for the graded com-
mutative algebra A, let

C0 = Ceven ⊕ Codd

be the subcategory of all even graded morphisms. Let the component map bV

of the grading operator
bV : V → V

be the identity if V is even graded and be multiplication with −1 if V is odd
graded. Then the above condition says that the natural transformation whose
components are

sV
sbV // sV

bsV // sV

has to square to the identity and commute with all other natural transforma-
tions. Indeed, we have

sV
sbV //

·−1

88sV
bsV // sV .

4 Braided monoidal supercategories

We formulate the concept of a braided monoidal supercategory by making use
of the considerations in [1].

Definition 5. A braided monoidal supercategory is a supercategory C such that

the graded subcategory C0 comes from a ( Z2
Id // Z2) -stabilized 3-category K:

C0 = HomK(Id•,−−) .

Let us unwrap this definition. That K is a ( Z2
Id // Z2) -stabilized 3-

category means that there are precisely two 1-morphisms

• Id // •

and
• σ // • ,

which form the group Z2. In addition, there is a singled-out 2-morphism

•

Id

��

σ

BB•J∼

��

between the identity 1-morphism and the nontrivial 1-morphism, together with
its inverse.
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The presence of this 2-morphism J makes HomK(Id•,−−) naturally the
C0-part of a supercategory C:

the parity operator is simply postcomposition with J

s : •

Id

��

Id

BB•U

��

7→ •

Id

��

Id

__

σ

GG•U

��
J��

.

Remark. Notice that not every Z2-equivariant category C is automatically
a supercategory: a necessary condition for C to be super is that there is a
bijection beween its odd and its even graded objects. It is this bijection (the
very supersymmetry) which makes a Z2-graded category a supercategory.

Example. Our previous example, the supercategory C = ModA of modules
for a graded commutative algebra A, is in fact a braided monoidal supercategory
in the obvious way. The object J here is the module sA, namely the algebra A
itself, but in odd grade.
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