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Abstract

Given a notion of sections of a 2-bundle (with connection) and given
a 2-particle charged under that 2-bundle, I would like to ”transgress” the
2-bundle to the configuration space of the 2-particle. Then I would like to
understand if the category of sections of the transgressed 2-bundle induces
something like an extended QFT on parameter space.

Here I propose an approach to this program and spell out the details
in the simple example where target space is a strict 2-group.

1 Introduction

I would like to find a systematic and natural understanding of how to obtain
an extended QFT from an n-vector bundle with connection coupled to an n-
particle.

Slightly more precisely: for T some n-category of n-vector spaces, and P
some n-category thought of as target space, an n-vector bundle with connection
on P is an n-functor

tra : P → T .

Coupling this n-bundle to an n-particle means picking an (n − 1)-category
par, forming the configuration space conf ⊂ [par,P], and ”transgressing” the
n-vector bundle to that configuration space:

tra∗ : conf → [par, T ] .

Given this data, I would like to construct in a canonical fashion an (n− 1)-
functor

QFT(par, tra) : par → T

which can be thought of as sending parameter space to the space of states of
the charged n-particle.

For instance, for n = 1, we might choose P to be the category of thin-
homotopy classes of path in some manifold X, choose tra to be an ordinary line
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bundle with connection, choose par to be the discrete category par = {•} on a
single element. Then

QFT(par, tra) : • 7→ H

should simply yield the Hilbert space H of the electromagnetically charged
particle known from ordinary quantum mechanics.

Eventually we want to extend QFT(·, ·) to an n-functor that also describes
the propagation of the n-particle. But here I shall just be concerned with
understanding n-spaces of states.

While probably not completely understood yet, quite a few things about how
extended QFTs should behave are known. In particular, QFTs should roughly
send circles in parameter space to something like a trace in n-vector spaces.

A proposal for what the trace in a 2-vector space should be has been made
by Kapranov and Ganter, in the context of representations of groups on 2-vector
spaces. For the moment, this proposal shall serve as a first consistency check
for my proposed solution of the above construction, setting n = 2, assuming
target space to be a 2-group, regarded as a 2-groupoid with a single object,
P = Σ(G2), and taking tra to be a 2-rep of that 2-group.

This is not exactly what Kapranov and Ganter consider, but it’s similar. On
the other hand, the structures that I find in the space of sections in this setup
are not exactly what Kapranov and Ganter consider – but they are similar.

2 Sections

For all of the following, we place ourselves in the world of Gray, the 3-category
whose objects are strict 2-categories, whose morphisms are strict 2-functors,
whose 2-morphisms are pseudonatural transformations and whose 3-morphisms
are modifications.

Let some 2-category P2 be given, to be addressed as target space.
Let another 2-category, T , be given, that is equipped with a monoidal struc-

ture. T will play the role of the 2-category of 2-vector spaces.
A (suitably well behaved) 2-functor

tra : P2 → T ,

with T some 2-category of 2-vector spaces represents for us a 2-vector bundle
with connection on P.

Let
1 : P2 → T

be the tensor unit in [P, T ], which sends everything to the identity on the tensor
unit in T .

It makes sense to think of
[1, tra]

as the space of flat sections of the 2-bundle.
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Let par be some 1-category, regarded as a 2-category with only identity
2-morphisms, and to be thought of as the parameter space of a 2-particle.

The configuration space of our 2-particle should be the space of maps of the
2-particle into target space, modulo gauge transformations.

Definition 1 Given a 1-category par and a 2-category P2, we say the config-
uration space of maps from par to P2 is the 2-functor 2-category

conf ⊂ [par,P2]

whose objects are functors c : par → P2, whose morphisms are those pseudonat-
ural transformations

c
L // c′

between these functors that are given by identity 2-cells

L : ( a
s // b ) 7→



c(a)
c(s) //

L(a)

��

c(b)

L(b)

��
c′(a)

c′(s)

// c′(b)

Id
{� ����


and whose 2-morphisms are modifications between these.

Postcomposition with tra is a 2-functor

tra∗ : conf → [par, T ] ,

which we regard as a 2-bundle with connection on configuration space.
This allows to consider the space of sections over configuration space

[1∗, tra∗] .

Denote by
sect

the sub-2-category

sect
⊂ // [conf, [par, T ]]

containing only the two objects 1∗ and tra∗ and all morphisms between these:

sect =



1∗

��

��
tra∗

···


.
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This is the setup.
The problem now is to find from this a functor on par that would suitably

rearrange the space of sections over configuration space into a space of sec-
tions over each point of parameter space, a morphism between these for each
morphisms of parameter space, and so on.

Notice that the embedding

sect
⊂ // [conf, [par, T ]]

is an object in
[sect, [conf, [par, T ]]]

and that there is a canonical equivalence

[sect, [conf, [par, T ]]] ' [par, [sect, [conf, T ]]] .

This means that there is a canonical way to get a 2-functor on par given a space
of sections sect, namely the image of sect under the above equivalence.

In the following I will try to construct this image in a certain simple case.
I will do this by extracting all the data encoded in sect and showing how this
data can be rearranged to yield a 2-functor

par → [sect, [conf, T ]] .

As 2-functors into 2-functors into 2-vector spaces should form a 2-vector space
themselves, this 2-functor would be my proposal for QFT(par, T ).

I shall show that this 2-functor, for the case that target space is a strict
2-group, is rather similar to what Kapranov and Ganter call a 2-character of a
2-representation of a 2-group.

While similar, it is different. But on the other hand, also my assumptions
are different, since I am considering strict reps of strict 2-groups instead of lax
reps of discrete 2-groups, as Kaparanov and Ganter do.

3 Sections of 2-representations

Let’s specialize the above general setup to the case where target space is a strict
2-group G2, coming from a crossed module H

t→ G and regarded as a 2-category
with a single object

P = Σ(G2) ,

and where
T = Bim

is the 2-category whose objects are algebras, whose morphisms are bimodules
and whose 2-morphisms are bimodule homomorphisms. This has a canonical
associator, and I will think of it is a strict 2-category.
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A 2-vector bundle with connection on this target space is nothing but a 2-rep
of G2

ρ : Σ(G2) → Bim .

By the canonical embedding

Bim ⊂ VectMod

I am thinking of Bim as a 2-category of 2-vector spaces. But this is not crucial
for the main point to be made here. Other notions of 2-vector spaces could be
used.

Let
par ≡ {a → b}

be a model for the parameter space of the open 2-particle, or let

par ≡ Σ(Z)

be a model for the closed 2-particle.
If this 2-particle propagates on Σ(G2), the corresponding configuration space

is the 2-functor category
conf ⊂ [par,Σ(G2)] .

The representation ρ then pulls back to a 2-functor

ρ∗ : conf → [par,Bim] .

Let
1 : Σ(G2) → Bim

be the trivial rep, which sends everything to the identity on C, regarded as a
C-algebra over itself.

We say a section of the 2-transport ρ∗ on configuration space is a 2-morphism

conf

1∗

##

ρ∗

;;
[par,Bim]e

��
.

the 2-vector space structure of sections over target space.

Proposition 1 The category of endomorphisms of the trivial 2-rep of Σ(G2) is,
as a monoidal category, equivalent to the category of ordinary reps of G/Im(t):

End(1) ' Rep(G/Im(t)) .
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Proof. An object in End(1) is, being a pseudonatural transformation, a func-
torial assignment

V : ( •
g // • ) 7→

C Id //

V•

��

C

V•

��
C

Id
// C

V (g)
{� ���� .

This means in particular that V is a C-bimodule, hence an ordinary vector
space.

Compatibility of this assignment with 2-morphisms then says exactly that

V (g) = V (t(h)g)

for all h ∈ H.
This means that g 7→ V (g) (op-)represents G/Im(t) on V•.

A morphism V1
k // V2 of two such transformations is a modification,

hence a 2-morphism

C

V1•

��

V2•

@@Ck•
��

such that

C Id //

V2•

��

C

V2•

��

V1•

{{
C

Id
// C

V2(g)
{� ����

k
ks =

C Id //

V1•

��

V2•

##

C

V1•

��
C

Id
// C

V1(g)
{� ����

k
ks .

This is nothing but a morphism of the corresponding representations.
Finally, composition in End(V ) of two transformations V1 and V2 is the
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transformation given by the assignment

V2 ◦ V1 : ( •
g // • ) 7→

C Id //

V1•

��

C

V1•

��
C Id //

V2•

��

C

V2•

��
C

Id
// C

V1(g)
{� ����

V2(g)
{� ����

.

The composition

C
V1• // C

V2• // C

in Bim is the bimodule tensor product over the algebra C, hence nothing but the
ordinary tensor product V1• ⊗ V2• of these vector spaces. So V2 ◦ V1 is exactly
the tensor product of two representations of V . �

Proposition 2 The space of sections [1, ρ] over target space is a Rep(G/Im(t))
module category.

Proof.
The space of sections

Hom(1, ρ)

on Σ(G2) is, manifestly, acted on by the endomorphisms

End(1)

of the trivial rep. According to prop. 1, these are equivalent to Rep(G/Im(t)).
�

Configuration space. It pays to briefly pause to spell out what configuration
space looks like, precisely. We will first describe all of [par,Σ(G2)] for par =
{a → b} the open 2-particle. After that we to conf ⊂ [par,Σ(G2)].

An object in [par,Σ(G2)] is a morphism

• g // •
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in Σ(G2). A morphism in [par,Σ(G2)] is a 2-morphism

• g1 //

ha

��

•

hb

��
•

g2
// •

H
{� ����

in Σ(G2). Finally, a 2-morphism in [par,Σ(G2)] between two such morphisms
is a pair of 2-morphism

•

ha

��

h′a

AA •aa

��

•

hb

��

h′b

AA •ab

��

in Σ(G2) such that

• g1 //

ha

��

h′a

!!

•

hb

��
•

g2
// •

H
{� ����

aaks =

• g1 //

h′a

��

•

h′b

��

hb

}}•
g2

// •

H′

{� ����
abks .

We should write this 2-morphism in [par,Σ(G2)] as

g1

(h,H)

��

(h′,H′)

@@g2a
��

.
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Notice that ρ∗ sends this 2-morphism to a corresponding 2-morphism

ρ(g1)

(ρ(h),ρ(H))

""

(ρ(h′),ρ(H′))

<<
ρ(g2)ρ(a)

��

in [par,Bim]. In particular, we get

•
ρ(g1) //

ρ(ha)

��

ρ(h′a)

!!

•

ρ(hb)

��
•

ρ(g2)
// •

ρ(H)

{� ����
ρ(aa)
ks =

•
ρ(g1) //

ρ(h′a)

��

•

ρ(h′b)

��

ρ(hb)

}}•
ρ(g2)

// •

ρ(H′)

{� ����
ρ(ab)
ks .

The configuration space of the open 2-particle, par = {a → b}, is just like
that, but with H = Id and H ′ = Id everywhere.

The configuration space of the closed 2-particle, par = Σ(Z), in turn, is
obtained from that of the open 2-particle by in addition setting ha = hb every-
where.

the 2-vector space structure of sections on configuration space. We
can give a characterization of the space of sections over configuration space
similar to that of the space of sections over target space. These will form a
module category for representations of the loop 1-groupoid of G2.

Simon Willerton has introduced the loop groupoid of any ordinary group:

Definition 2 For any group G, the functor category

ΛG ≡ [Σ(Z),Σ(G)]

is called the loop groupoid of G.

In the language used here, we could say that the loop groupoid of G is the
configuration space of the closed 2-particle propagating on Σ(G), with Σ(G)
regarded as having only identity 2-morphisms.

Objects of the loop groupoid are morphisms

• g // •
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in Σ(G) and morphisms g1
h // g2 of the loop groupoid are commuting squares

• g1 //

h

��

•

h

��
•

g2
// •

in Σ(G).
In this sense, the configuration space of the closed 2-particle on an arbitrary

2-group G2 is like a loop 2-groupoid. By taking isomorphism classes of 1-
morphisms in that 2-groupoid, we get a loop 1-groupoid for any strict 2-group
G2, generalizing the definition of the loop groupoid above:

Definition 3 For G2 any strict 2-group coming from a crossed module t : H →
G, define the loop groupoid ΛG2 of G2 to be the 1-groupoid obtained by start-
ing with the configuration space

conf ⊂ [Σ(Z),Σ(G2)]

of the closed 2-particle on Σ(G2) and dividing out all 2-isomorphisms.

Proposition 3 The loop groupoid of G2 has objects elements of G. Morphisms

g1
[r] // g2 are equivalence classes of commuting squares

• g1 //

r

��

•

r

��
•

g2
// •

Id
{� ���� ,

with [r] = [t(h)r] for all h ∈ H that satisfy h = α(g1)(h).

Now let configuration space be that of the closed 2-particle on Σ(G2) and
consider the trivial 2-functor

1∗ : conf → [par, T ] .

Proposition 4 The category of endomorphisms of 1∗ is, as a monoidal cate-
gory, equivalent to the category of loops in the category of representations of the
loop groupoid of G2:

End(1∗) ' [Σ(Z),Rep(ΛG2)] .
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Proof. An object in End(1∗) is, being a pseudonatural transformation, a func-
torial assignment

V : ( g1
h // g2 ) 7→

IdC
Id //

Vg1

��

IdC

Vg2

��
IdC

Id
// IdC

V (h)
{� ���� ,

which is compatible with 2-morphisms. This compatibility here just says that
V is invariant under shifts h 7→ t(k)h for all k with k = α(g1)(k).

Therefore functoriality of V says that V (h) is a representation of ΛG2.
Moreover, the mere existence of the square on the right says that

C Id //

Vg1•

��

C

Vg1•

��

Vg2•

{{
C

Id
// C

Vg1 (•→•){� ����
V (h)ks =

C Id //

Vg1•

##

Vg2•

��

C

Vg2•

��
C

Id
// C

V (h)ks
Vg2 (•→•){� ���� ,

which means that g1 7→ Vg1(• → •) is a natural automorphism of this represen-
tation of ΛG2.

Next, a morphism in End(1∗) is a modification, hence an assignment

g 7→ IdC

Vg

��

V ′
g

BBIdCkg
��

.

The tin can equation for this says that k is a natural isomorphism from the
representation V to the representation V ′. Moreover, the mere existence of
kg above says that this natural isomorphism is compatible with the natural
automorphism V (• → •) and V ′(• → •).

But this means nothing but that k encodes a morphism in

[Σ(Z),Rep(ΛG2)] .

�
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3.1 the pointwise data of the space of sections on config-
uration space

Recall that our goal is to use the inclusion

sect ⊂ [conf, [par, T ]]

to construct a 2-functor

par → [sect, [conf, T ]] .

As a preparation for that, we now write out explicitly all the assignments
encoded in a section on configuration space and in a morphism of such sections.
After that we will rearrange these assignments to construct the desired 2-functor.

the sections themselves. First, we spell out the data that is encoded in a
section

conf

1∗

##

ρ∗

;;
[par,Bim]e

��

on configuration space. Again, we will write everything first in terms of [par,Σ(G2)],
for par the open 2-particle, not explicitly setting H = Id, H ′ = Id and ha = hb.

Being a pseudonatural transformation, a section is a functorial assignment
of 2-morphisms

g1
(h,H) // g2 7→

IdC
Id //

e(g1)

��

IdC

e(g2)

��
ρ(g1)

ρ(h,H)
// ρ(g2)

e(h,H)

{� ����

in [par,Bim] to 1-morphisms in conf such that

IdC
Id //

e(g1)

��

IdC

e(g2)

��
ρ(g1)

ρ(h′,H′)

// ρ(g2)

e(h′,H′)

{� ���� =

IdC
Id //

e(g1)

��

IdC

e(g2)

��
ρ(g1)

ρ(h,H) ((

ρ(h′,H′)

;;
ρ(g2)

e(h,H)

{� ����

ρ(a) ��

.
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The left hand side of this equation, in turn, is an equation between 2-morphisms
in Bim

C C //

ea(g1)

��

C

eb(g1)

��
eb(g2)

��

A ρ(g1) //

ρ(h′a)

��

A

ρ(h′b)

��
A

ρ(g2)
// A

e(g1)

{� ����

ρ(H′)

{� ����

e(h′,H′)bks
=

C C //

e1(g2)

��

ea(g1)

��~~
~~

~~
~

C

eb(g2)

��

A

ρ(h′) ��@
@@

@@
@@

A ρ(g2) // A

e(g2)

{� ����e(h′,H′)aks

(1)

as is the right hand side

C C //

ea(g1)

��

C

eb(g1)

��
eb(g2)

��

A ρ(g1) //

ρ(h′a)

��

A

ρ(hb)

��

ρ(h′b)

��
A

ρ(g2)
// A

e(g1)

{� ����

ρ(H′)

{� ����

e(h,H)bks

ρ(ab)
ks

=

C C //

e1(g2)

��

ea(g1)

��~~
~~

~~
~

C

eb(g2)

��

A

ρ(ha)

@@@

��@
@@

ρ(h′a) 33 A ρ(g2) // A

e(g2)

{� ����e(h,H)aks

ρ(aa)
{� ����

(2)

and the condition is that these coincide:

C Id //

eb(g1)

��

C

eb(g2)

��
A

ρ(h′b)

// A

e(h′,H′)b

{� ���� =

C Id //

eb(g1)

��

C

eb(g2)

��
A

ρ(hb)
$$

ρ(h′b)

??A

e(h,H)b

{� ����

ρ(ab) ��

. (3)
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Functoriality of the section e means that

IdC
Id //

e(g1)

��

IdC
Id //

e(g2)

��

IdC

e(g3)

��
ρ(g1)

ρ(h,H)
// ρ(g2)

ρ(h′,H′)

// ρ(g3)

e(h1,H1)

{� ����
e(h2,H2)

{� ���� =

IdC
Id //

e(g1)

��

IdC

e(g2)

��
ρ(g)

ρ((h2,H2)◦(h1,H1))
// ρ(g2)

e((h2,H2)◦(h1,H1))

{� ����

which is equivalent to the equation

C Id //

ea(g1)

��

C Id //

ea(g2)

��

C

ea(g3)

��
A

ρ(h1a)
// A

ρ(h2a)
// A

e(h1,H1)a

{� ����
e(h2,H2)a

{� ���� =

C Id //

e(g1)

��

C

e(g2)

��
A

ρ((h2◦h1)a)
// A

e((h2,H2)◦(h1,H1))

{� ���� (4)

together with the analogous one with the subscript a replaced by b. In particular,
this implies that

C Id //

ea(g1)

��

C Id //

ea(g2)

��

C

ea(g3)

��
A

ρ(h1a)

""

ρ(h′1a)

??A

ρ(h2a)

""

ρ(h′2a)

??A

e(h1,H1)a

{� ����
e(h2,H2)a

{� ����

a1a

��
a2a

��

=

C Id //

e(g1)

��

C

e(g2)

��
A

ρ(h1a)

""

ρ(h′1a)

??A

ρ(h2a)

""

ρ(h′2a)

??A

e((h2,H2)◦(h1,H1))

{� ����

a1a

��
a2a

��

.

morphisms of sections. A morphism between sections on configuration space

1∗ ρ∗

conf

[par, T ]

e1

��

e2

D
M

>>
q

z

  vv

V
��
�
�
�
�
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is an assignment

g 7→

IdC

e1(g)

��

e2(g)

��
ρ(g)

V (g)ks

such that

IdC
Id //

e2(g1)

��

IdC

e2(g2)

��

e1(g2)

}}
ρ(g1)

ρ(h,H)
// ρ(g2)

e2(h,H)

{� ����
V (g2)ks =

IdC
Id //

e2(g1)

!!
e1(g1)

��

IdC

e1(g2)

��
ρ(g1)

ρ(h,H)
// ρ(g2)

e1(h,H)

{� ����
V (g1)ks .

The mere existence of V (g) says that

C C //

e2a(g)

��

C

e2b(g)

��

e1b(g)

yy
A

ρ(g)
// A

e2(g)

{� ����
V (g)bks =

C C //

e1a(g)

��

e2a(g)

%%

C

e1b(g)

��
A

ρ(g)
// A

e1(g)

{� ����
V (g)aks . (5)

The compatibility condition amounts to

C C //

e2a(g1)

��

C

e2a(g2)

��

e1a(g2)

yy
A

ρ(h)
// A

e2(h,H)a

{� ����
V (g2)aks =

C C //

e1a(g1)

��

e2a(g2)

%%

C

e1a(g2)

��
A

ρ(h)
// A

e1(h,H)a

{� ����
V (g1)aks (6)

and similarly for b.

multiples of sections. Consider multiplying a section e by an element V in
End(1∗)

e 7→ V e .
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Then V e comes from the assignment

g1
(h,H) // g2 7→

IdC
Id //

V (g1)

��

IdC

V (g2)

��
IdC Id //

e(g1)

��

IdC

e(g2)

��
ρ(g1)

ρ(h,H)
// ρ(g2)

V (h,H)

{� ����

e(h,H)

{� ����

.

Write the 2-morphisms that V (g) comes from as

C Id //

Va(g)

��

C

Vb(g)

��
C

Id
// C

V (g)
{� ���� ,

as before.
Then we see that under e 7→ V e we get

C Id //

ea(g1)

��

C

ea(g2)

��
A

ρ(ha)
// A

e(h,H)a

{� ���� 7→

C Id //

Va(g1)

��

C

Va(g2)

��
C Id //

ea(g1)

��

C

ea(g2)

��
A

ρ(ha)
// A

V (h,H)a

{� ����

e(h,H)a

{� ����
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3.2 The map from parameter space to sections

Above we have characterized the data encoded in

sect ⊂ [conf, [par, T ]] .

We now want to rearrange this data such as to obtain a functor

par → [sect, [conf, T ]] .

This is discussed first for the open, then for the closed 2-particle.

spaces of sections over the open 2-particle. The functor that we are after
is supposed to assign an image of the category of sections to a, another such
image to b and a morphism between these images to the a → b.

To obtain that we will, roughly, re-read the above equations after rotating
all diagrams by π/2.

First of all, equation (3), for g1 = g2 and H = Id, H ′ = Id is the naturality
condition for a section over target space. Moreover, equation (4) then is the
compatibility of that section with composition.

Restricting to this case means restricting the section e to 2-morphisms in
configuration space of the form

• g //

ha

��

h′a

��

•

g−1

��
•

ha

��
•

g

��
•

g
// •

aa

ks
Id
{� ����

=

• g //

h′a

��

•

g−1

��
•

ha

xx
h′a

'' •
g

��
•

g
// •

aa

ks
Id
{� ����

.

More precisely, for each section e on configuration space and for each mor-
phism g ∈ Mor(Σ(G2)) we get a section

ea,g :
1

��
ρ

17



on target space, defined by

( • h // • ) 7→

C Id //

ea(g)

��

C

ea(g)

��
A

ρ(h)
// A

e(h,Id)a
{� ���� .

Using equation (6) for the special case g1 = g2, we get a morphism

1

e1a,g

}}

e2a,g

!!
ρ

Va(g)ks

between these sections over target space from every morphism

1∗

e1

~~

e2

  
ρ∗

Vks

between the original sections on configuration space.
So consider now the 2-category over a consisting of all sections of type ea,g:

secta =



1

ea,g

��		

e′
a,g′

��
ρ

···


(7)

with all 2-morphisms as above.
Each g ∈ Mor1 (Σ(G2)) determines a morphism

sect
sa // secta ⊂ [P, T ] .

18



by 

1∗

e1

~~

e2

  
ρ∗

Vks


7→



1

e1a,g

}}

e2a,g

!!
ρ

Va(g)ks


.

That this map functorially respects morphisms of sections follows from the con-
siderations leading to equation (6).

Now we similarly construct a category of sections for the endpoint b. For
the moment this will look slightly different than the above construction of secta,
which makes the discussion of morphisms more convenient. At the end we should
merge both constructions and get secta ' sectb.

Notice that we may define a new representation

ρg = ρ ◦Adg

for each g ∈ Mor1(Σ(G2)). We have an isomorphism

ρ
∼→ ρg

given by the assignment

( • h // • ) 7→

A
ρ(h) //

ρ(g)

��

A

ρ(g)

��
A

ρ(g−1hg)
// A

Id
{� ���� .

Now for each section e on configuration space and each g ∈ Mor1(Σ(G2)), define
a section

eb,g :
1

��
ρg

of ρg on target space by

( • h // • ) 7→

C Id //

eb(g)

��

C

eb(g)

��
A

ρ(g−1hg)
// A

e(g−1hg,Id)b
{� ���� .

19



Let for the moment a 2-category sectb be defined that contains all sections of
this type and all isomorphisms ρg1

∼→ ρg2 , with 2-morphisms analogous to those
in secta:

sectb ≡



1

e′
b,g′

����
��

��
��

��
��

�

eb,g

33
33

33

��3
33

33
3

eb,Id

!!D
DD

DD
DD

DD
DD

DD
DD

DD
D

ρg′ · · · ρg ρ∼oo


.

Trivially, we again have a (non-canonical) morphism from the sections over
configuration space to the sections over target space associated to the endpoint
b

sect
sb // sectb ⊂ [P, T ]

obtained by fixing any g ∈ Mor1 (Σ(G2)) and sending
1∗

e

��
ρ∗

 7→


1

ea,g

��
ρg

 .

The point of setting up sectb this way for the moment is that it makes it
easiest to see how from our given data we obtain a morphism from secta to
sectb, or rather a natural isomorphism

sectdsc

sa

""

sb

<<
[P, T ]

��
.

To do that, we use more of the data encoded in equation (1). I claim
that after a couple of trivial manipulations, making use of the fact that all
2-morphisms involved are invertible, this equation can equivalently be rewritten

20



like this:

C Id //

ea(g1)

��

C

ea(g2)

��
eb(g2)

��

A ρ(h′a) //

ρ(g1)

��

A

ρ(g2)

��
A

ρ(h′b)

// A

e(h′,H′)a
{� ����

ρ(H′)−1{� ����

e(g2)
ks

=

C Id //

eb(g1)

��

ea(g1)

��~~
~~

~~
~

C

eb(g2)

��

A

ρ(g1) ��@
@@

@@
@@

A
ρ(h′b)

// A

e(h′,H′)b
{� ����

e(g1)
ks

. (8)

It might be helpful to think of this as, roughly, obtained by rotating the
diagrams in (1) by π/2, with the role played by e(h, H)b and that played by
e(g)b interchanged.

But for g1 = g2 = g and H ′ = Id the equation in this form manifestly defines
a 2-morphism

1
Id //

ea,g

��

1

eb,g

��
ρ ∼ // ρg

e(g)
{� ���� .

But the assignment

(
1∗

e // ρ∗
)

7→



1
ea,g //

Id

��

ρ

∼

��
1 eb,g

// ρg

e(g)−1{� ����


,

in turn, defines a pseudonatural transformation,

sect

sa

!!

sb

==
[P, T ]

��
. (9)

21



Compatibility with 2-morphisms

1

e1a,g

��
e2a,g //

Id

��

ρ

∼

��
1 e2b,g

// ρg

e2(g)−1{� ����

V (g)a��

=

1
e1a,g //

Id

��

ρ

∼

��
1 e1b,g //

e2b,g

CC
ρg

e(g)−1{� ����

V (g)b��

is a direct consequence of (5).
In conclusion, this does establish a construction of a morphism

q : par → [sect, [P, T ]]

from the data of the embedding morphism

sect ⊂→ [conf, [par, T ]] .

This q sends the endpoints a and b of parameter space to categories of sections
secta and sectb naturally associated to these endpoints, and it sends the single
nontrivial morphism

a → b

of parameter space to a map between these categories (really a natural transfor-
mation between these categories regarded as images of sa and sb) that amounts
to a bijection of the isomorphism classes of secta and sectb.

We can now easily enlarge both secta and sectb such that they become equal
and we still have a morphism between them. To do that, we simply pre-compose
everything above by an adjoint action of G2 on itself. So with each section

Σ(G2)

1

!!

ρ

==Bimea,g

��

we now also inlude

Σ(G2)

1

!!

ρq

==Bimeq
a,g
��

≡ Σ(G2)
Adq // Σ(G2)

1

!!

ρ

==Bimea,g

��

22



in secta.
Similarly, to each

Σ(G2)

1

!!

ρ

==Bimeb,g

��

we now also include

Σ(G2)

1

!!

ρqg

==Bimeq
b,g��

≡ Σ(G2)
Adq // Σ(G2)

1

!!

ρg

==Bimeb,g

��

in sectb. This way we get secta = sectb. The morphisms between sa and sb

constructed previously extend in the obvious way to these enlarged categories
of sections.

a similarity with Kapranov-Ganter 2-characters While the details are
different, the morphism q, interpreted this way, is similar to the 2-character of
a 2-representation as defined by Kapranov and Ganter.

To see this, restrict attention to those sections e on configuration space such
that e(g)a = Id and e(g)b = Id. The image of those, under q(a), in secta are a
collection of 2-morphisms

C

Id

��

ρ(h)

@@Ce(h,Id)b

��
,

one for each h ∈ Mor1 (Σ(G2)) (and compatible with the composition in Σ(G2)).
Under the map induced by q(a → b) from secta to sectb these are mapped,

according to (8), to sections over b which are given on each h by the 2-morphism

C

Id

��

ρ(g−1hg)

@@Ce(g−1hg,Id)b

��
= C

Id

��

ρ(g−1)

@@C

Id

��

ρ(h)

@@C

Id

��

ρ(g)

@@Ce(g)−1

��
e(h,Id)a

��
e(g)

��
.

In other words, in that special case an element in the space of sections associated
to the point a of parameter space is a collection over g ∈ Obj(G2) of 2-morphisms
from the identity on the representation space to the given ρ(g), and under
the map q(a → b) these 2-morphisms are conjugated by reps of given 2-group
elements.
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spaces of sections over the closed 2-particle. As a category internal to
Set, every groupoid is equivalent to the disjoint union of the vertex groups of its
connected components. (For Lie groupoids, though, there may not be a smooth
equivalence).

The connected components of the loop groupoid of G correspond to the
conjugacy classes of G. The corresponding vertex group is the commutant of
any one representative.

This motivates us to restrict attention to the following situation:
Let G be the group of objects of the strict 2-group G2. For each conjugacy

class [g] of G choose one representative g and consider the disjoint union

confsk ≡
⋃

[g]∈G/G

confg

of vertex 2-groups

confg =


g

h

��

h′

AA ga
��


.

Notice that the 2-morphisms here are those 2-morphisms

•

h

��

h′

AA •a
��

that commute with g, in the sense that

•

h

��

h′

AA •a
��

= • g // •

h

��

h′

AA •
g−1
// •a

��

As 2-groupoids in Set, we have

confsk ' conf .

Therefore we now restrict attention to sections over confsk. For these, the
discussion is very much analogous to that given above, for configuration space
of the open particle, but everything simplifies considerably.

In particular, due to the above commutativity of 2-morphisms with 1-morphisms,
we now have ρg = ρ on confsk.
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This means that the space of sections

sect•

over the single point • of the configuration space par = Σ(Z) of the closed 2-
particle is precisely of the form (7). Moreover, the morphism (9) now becomes
an automorphism.

I think I can hence prove the following main result.

Proposition 5 The category sect• is a Rep(ΛG) module category. Its auto-
morphism described above does respect this module structure.

sketch of a proof:
By prop. 4 the sections over configuration space are a ΛRep(ΛG2)-module.

The subcategory of that which preserves the structure of equation (8) defining
the automorphism of sect• is precisely the subcategory whose objects are trivial
loops in Rep(ΛG2). This is equivalent to Rep(ΛG2) itself. �

As a corollary we get

Proposition 6 The funcor on parameter space which we have constructed from
the space of sections on configuration space takes values in Rep(ΛG2)-modules:

par → Rep(ΛG2)Mod .
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