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1. ordinary connections in terms of parallel transport functors

(a) the usual definition of a connection in terms of a choice of horizontal
subspaces

(b) this allows to lift vectors and, in turn, paths, from base space to the
total space

(c) this lift amounts to a functor from paths to torsor isomorphisms

(d) functors from paths to torsor isomorphisms arising this way have the
special property of having smooth local trivializations

(e) this smooth local trivialization of a functor reproduces the familiar
differential cocycle relations

(f) we can combine paths in patches with jumps between patches to a
category that covers the original path category, and how our local
data defines a functor on that cover

(g) this is an example of an anafunctor

2. categorified parallel transport: 2-anafunctors

(a) first categorify the domain: 2-paths

(b) then categorify the codomain: 2-groups and 2-group torsors

(c) finally categorify the notion of ”smooth local trivialization”; draw the
same diagram as before, but explain how now the triangle is filled by
a 2-morphism that makes a tetrahedron 2-commute

(d) this is an example of descent data that might be addressed as a 2-
anafunctor

(e) the main example: 2-anafunctor with values in strict 2-group

(f) in particular: the issue of fake flatness

3. Chern-Simons transport

(a) warmup: 2-tranport with values in INN(G) is the same as G 1-
transport

(b) there is a general principle behind this: Schreier theory

(c) this makes us want to look at INN(G2)

(d) the curvature and Bianchi identities of INN(G2)-transport; these
characterize the corresponding Lie 3-algebra

(e) fact: there is a Lie 3-algebra, cs(g), such that connections with values
in it come from Chern-Simons 3-forms

(f) fact: cs(g) sits inside Lie(INN(String(G)))
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1 Parallel 1-Transport: the motivating example

Models of the physics of charged particles are usually formulated in terms of
vector bundles

V → X

with connection
∇ .

The part of this formalism most directly connected to what we actually observe
in nature is the parallel transport.
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1.1 Connections give rise to parallel transport functors.

One way to think of a connection of a principal bundle is to say that a connection
is a prescription that tells us at each point of a principal bundle which tangent
vectors are supposed to be parallel to the base space.

More precisely:

Definition 1 (connection in terms of horizontal subspaces) Let p : B →
X be a smooth principal G-bundle. For each point b ∈ B of the total space, let

Vb := ker(p∗b) ⊂ TbB

be the vertical subspace of the tangent space at that point. Vb is the space of
vectors at b that are tangent to the fiber.

Then a connection on the principal bundle is a smooth G-invariant choice
of complements Hb of Vb

TbB = Vb ⊕Hb

Hgb = g∗Hb

for all b ∈ B. Hb is called the horizontal subspace of the tangent space at b.
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For our purposes, the point of this definition is the following: since p∗b re-
stricted to Hb is an isomorphism, it follows that a connection allows us to lift
vectors in base space to parallel vectors on the total space.

We can integrate this procedure and find for each path

x
γ // x′

in base space a path

b
γ̃ // b′

in the total space, which is everywhere parallel to γ.
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We say that b′ is obtained from parallel transporting b along γ from the fiber
Bx to the fiber Bx′ .

This way a connection assigns, by parallel transport, to each path γ in base
space a map

tra(γ) : Bx → By

between the fibers over the endpoints
This assignment of maps between fibers to paths in base space has some

special properties:

• The G-invariance of the choice of horizontal subspaces implies that these
maps between the fibers commute with the G-action on the fibers.

• In particular, this implies that these maps are invertible, since G acts
freely and transitively on each fiber.

• The map tra(γ) is independent of the parameterization of γ.

• If γ̄ is obtained from γ by reversing the direction, then tra(γ̄) is the inverse
of tra(γ).

• If γ is the composition of two paths γ1 and γ2, then

tra(γ) = tra(γ2) ◦ tra(γ1) .
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choice of horizontal subspaces
Hb ⊂ TbB

choice of functor
P1(X) → GTor

allows to lift vectors v ∈ Tp(b)X
to parallel vectors ṽ ∈ TbB

allows to lift paths γ ∈ P1(X)
to fiber isomorphisms tra(γ) : Bx → By

differential description of connection integrated description of connection

Table 1: The ordinary definition of a connection on a principal bundle in terms
of horizontal subspaces can be understood as the differential description of the
concept of parallel transport.

Clearly, all this is trying to tell us that parallel transport is a functor

tra : P1(X) → GTor

that sends paths in base space to morphisms of G-torsors.
To make this precise, we need to specify what the groupoid of paths in base

space that we are talking about is like.

Definition 2 The objects of P1(X) are points in X. The morphisms

x
γ // y

of P1(X) are equivalence classes of smooth maps γ : [0, 1] → X with γ(0) = x
and γ(1) =, which are constant in a neighbourhood of 0 and in a neighbour-
hood of 1, and where two maps are considered equivalent if they are related by
an orientation-preserving diffeomorphism. Composition of morphisms is by the
obvious concatenation of these maps, modulo the relation that paths related by
an orientation reversing diffeomorphism are mutually inverse.

Given this definition of the groupoid of paths in X, our list of properties of
parallel transport implies

Proposition 1 Given a principal G-bundle with connection B → X, parallel
transport in that bundle is a functor

tra : P1(X) → GTor .

The entire discussion generalizes directly to associated bundles.

Proposition 2 Given a vector bundle with connection V → X, parallel trans-
port in that bundle is a functor

tra : P1(X) → Vect .

It would be nice if these statements had a converse. We cannot expect every
functor from paths to G-torsors to define a smooth principal bundle, or from
paths to vector spaces to define a smooth vector bundle.

But transport functors that are smooth and locally trivializable in some suit-
able sense should do.
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Figure 1: A morphisms of the path groupoid of X is an oriented path γ
cobounding two points x and x′ in X. Paths that differ by orientation-preserving
diffeomorphism are identified. This ensures strict associativity of composition.
Paths that differ by orientation-reversing diffeomorphism are taken to represent
mutually inverse morphisms.

1.2 Locally trivial smooth transport functors

Let us locally trivialize our principal bundle and see what this does to the
corresponding parallel transport functor.

So we choose a good cover

p : U → X

of base space by open contractible sets.
This allows us to pull back structures over X to U , where they may be

trivializable.
For the bundle B → X this means that we can choose a bundle isomorphism

t : π∗B
∼ // U ×G .

This amounts to choosing, in a smooth way, for each point (x, i) in U an iso-
morphism of G-torsors

t(x, i) : Bx
∼ // G .

We can translate this into a similar local trivialization of the corresponding
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local connection 1-form
A ∈ Ω1(U, g)

smooth transport functor
traU : P1(U) → Σ(G)

transition function
g ∈ Ω0(U [2], G)

natural isomorphism
g : p∗1traU → p∗2traU

Ai = gijAjg
−1
ij + gijdg−1

ij

•
gij(x) //

trai(γ)

��

•
traj(γ)

��
•

gij(y)
// •

gijgjk = gik

p∗2traU

p∗23g

$$J
JJJJJJJJ

p∗1traU
p∗13g

//

p∗12g
::ttttttttt

p∗3traU

Table 2: The differential cocycle data describing the local trivialization of a
principal bundle with connection is the descent data of a local smooth trans-
port functor.

transport functor. Its pullback to U is

P1(U)
p // P1(X)

tra

��
GTor

.

Which structure on U could this be isomorphic to? Notice that, using the
identifications of fibers with copies of G above, we can form a functor

traU : P1(U) → AutGTor(G)

such that

Bx

t(x,i)

��

tra(γ) // By

t(y,i)

��
G

traU (γ)
// G

for any path γ in Ui.
An automorphism of G regarded as a G-torsor over itself is nothing but an

element of G. In other words, we have a canonical injection

i : Σ(G) ⊂ // GTor
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of the category Σ(G) with a single object and G worth of morphisms into the
category of G-torsors.

Using this injection, we can think of traU as a functor with values in GTor
that factors through i:

P1(U)

traU

��
Σ(G)

ρ
// GTor

Taken together, we find that the local trivialization t : p∗B → U × G of the
principal bundle corresponds to a morphism

P1(U)

traU

��

p // P1(X)

tra

��
Σ(G)

i
// GTor

t

∼
{� ����

that relates the corresponding parallel transport functor to a functor on P1(U)
with values in Σ(G).

In contrast to the category GTor, the category Σ(G) is naturally a smooth
category, namely a category internal to smooth spaces. The same is true for
the path groupoid. Since the bundle with connection that we started with was
smooth, the functor traU is a smooth functor between smooth categories.

The smoothness of a smooth functor implies that the functor is specified
by its derivatives. Functoriality then implies that already the derivatives at all
identity morphisms suffice:

Proposition 3 Smooth functors

traU : P1(U) → Σ(G)

are in bijection with g-valued 1-forms A on U :

traU (γ) = P exp(
∫ 1

0

γ∗A) .

On double intersections of the cover, the local trivialization of our bundle
yields a smooth natural isomorphism

g := p∗2t ◦ p∗1t : p∗1traU → p∗2traU .
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Proposition 4 Such smooth natural isomorphisms between smooth functors
coming from 1-forma A and A′, respectively, are in bijection with smooth func-
tions g with values in G such that

A = gA′g−1 + gdg−1 .

These G-valued functions are nothing but the transition function describ-
ing the local trivialization of our bundle B.

The cocycle condition
gijgjk = gik

which they satisfy is an expression of the existence of this triangle:

p∗1traU p∗3traU

p∗2traU

p∗tra

p∗1 t̄sssss

99sssss
p∗3t

KKK
KK

%%KK
KKK

p∗13g
//

p∗12g

DD
























p∗23g
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44
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44
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44

44
44

44
44

44
44

p∗2t

DD

p∗2 t̄

�� .

Using the familiar fact that principal G-bundles with connection are equiva-
lent to differential 1-cocycles, we find that principal G-bundles with connection
are equivalent to descent data

Transi,p

for smooth transport functors taking values in Σ(G).
Again, all these considerations go through completely analogously for vector

bundles. All we need to do is to replace the injection

i : Σ(G) // GTor

by a representation
ρ : Σ(G) // Vect .

1.3 Anafunctors

There is an equivalent way to talk about functors on paths of a cover that are
related by isomorphisms on double intersections such that a triangle commutes
on triple intersections.

As Toby Bartels and John Baez emphasized, we can to think of this situation
as characterizing an anafunctor - a functor not directly acting on its domain,
but on a cover of that domain.

Namely, if we let
P1(U•)
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be the category whose morphisms are combinations of paths in U with jumps
from one patch into the other, then our locally trivial transport functor traU

with transitions g is encoded in the span

P1(U•)

p

��

(traU ,g) // Σ(G)

P1(X)

.

2 Parallel 2-Transport: 2-Bundles with Connec-
tion

We wish to categorify the description of bundles with connection in terms of
descent data of smooth parallel transport functors.

This requires that we

a) find suitable categorifications of the domain P1(X) and codomain, GTor
or Vect of our parallel transport functors

b) find a suitable categorification of the descent data, i.e. find a suitable
notion of 2-anafunctor.

When such a categorification is available, we can study parallel transport of
strings across surfaces:
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parallel 1-transport parallel 2-transport
domain: path groupoid

P1(X)
domain: 2-path 2-groupoid

P2(X)
codomain: vector spaces

Vect
codomain: 2-vector spaces

2Vect
structure group: G structure 2-group: G2

representation
ρ : Σ(G) → Vect

2-representation
ρ : Σ(G2) → 2Vect

trivial vector bundles with connection

smooth functors: P1(X) // Σ(G)
ρ // Vect

trivial 2-vector bundle with connection

smooth 2-functor: P2(X) // Σ(G2)
ρ // 2Vect

vector bundles with connection

smooth anafunctors: P1(U•)

p

��

// Σ(G)
ρ // Vect

P1(X)

2-vector bundle with connection

smooth 2-anafunctor: P2(U•)

p

��

// Σ(G2)
ρ // 2Vect

P2(X)

Table 3: On the left, our description of bundles with connection in terms of
parallel transport functors. On the right our categorification of this situation.

2.1 2-Paths

We want 2-morphisms in P2(X) to look like little surface elements. There
are various choices one could make concerning the degree of invertibility and
strictness of composition of the 1-morphisms involved. For our purposes, it is
useful to make

Definition 3 The 2-path 2-groupoid P2(X) has as objects the points of X, has
as morphisms classes of oriented paths in X modulo orientiation preserving
diffeomorphism, and 2-morphisms thin homotopy classes of oriented surfaces
cobounding such paths.

The 2-path 2-groupoid is a strict 2-category. Composition is strictly asso-
ciative. However, it is not a strict 2-groupoid, since a path is not strictly but
weakly inverse to its orientation-reversed path.

2.2 2-Groups

From the point of view of parallel transport, structure groups G arise as the local
trivializations of the transport groupoid. Hence the important characterizing
property is that a group is a groupoid with a single object.

This immediately suggests the kind of categorification we need

Definition 4 A 2-group is a 2-groupoid with a single object.

Here we want to work within the 3-category of strict 2-categories, strict 2-
functors between them, pseudonatural transformations between those and mod-
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Figure 2: A 2-morphisms of the 2-path 2-groupoid of X is a thin-homotopy
class of a surface S cobounding two diffeomorphism classes γ and γ′ of paths
which in turn cobound two points in x and x′.

ificatiopn between the latter. For that reason we restrict attention to strict
2-groups.

Definition 5 A strict 2-group is a strict 2-groupoid with a single object.

Strict 2-groups turn out to have a useful description in terms of crossed
modules.

Definition 6 A crossed module of groups is a pair (G0, G1) of groups, to-
gether with homomorphisms

G1
t // G0

α // Aut(G1)

such that t is equivariant with respect to the action induced by α, i.e. such that

G1
Ad //

t   A
AA

AA
AA

A Aut(G1)

G0

α

::vvvvvvvvv

⇔ α(t(h))(h′) = h h′ h−1

and such that
t(α(g)(h)) = g t(h) g−1 .

Namely we have
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Theorem 1 (classic) The 2-category of 2-groups is equivalent to the 2-category
of crossed modules.

This equivalence is induced by identifying G0 with the set of morphisms

Mor1 =
{
• g // • |g ∈ G0

}
of the 2-groupoid; G1 with the kernel of the source map, i.e. with those 2-
morphisms starting at the identity

•

Id

��

t(h)

@@ •h

��

∣∣∣∣∣∣∣∣∣∣∣
h ∈ G1


;

and the set of all morphisms with the semidirect product G1 n G0 as

Mor2 =


•

Id

��

t(h)

@@ •
g // •h

��

∣∣∣∣∣∣∣∣∣∣∣
h ∈ G1, g ∈ G0


.

The main fact to keep in mind, especially for the discussion in section ??, is the
following rule for horizontal and vertical composition of 2-group elements (their
precise form depends on some conventions that we chose to fix):

•

g1

��

g′1

AA •

g2

��

g′2

AA •h1
��

h2
��

= •

g1·g2

��

g′1·g
′
2

AA •h1·α(g1)(h2)

��

and

•

g1

��
g2 //

g3

AA •
h1��

h2��
= •

g1

��

g3

AA •h2·h1

��
,

where the dot on the right hand side indicates the ordinary product in the
respective group.

Example 1
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The two standard classes of examples for strict 2-groups and crossed modules
are the following:

• Let G be any group, regarded as a groupoid with a single object. Then the
automorphism functor 2-category AutCat(G) is a 2-group. It corresponds
to the crossed module

G
Ad // Aut(G) Id // Aut(G) .

• Every central extension

1 // K // H // G // 1

with the usual action of G on H defines a crossed module.

2.3 Transition of 2-functors and 2-anafunctors

We say a 2-functor tra : P2(X) → T is p-locally i-trivializable if there is an
equivalence

P2(U)

traU

��

p // P2(X)

tra

��
T ′

i
// T

t

∼
{� ����

.

Proposition 5 The resulting transitions

p∗1traU p∗3traU

p∗2traU
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f
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∼
��

∼
 (JJJJ

∼v~ ttt
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1-anafunctors 2-anafunctors

P1(U)

traU

��

p // P1(X)

tra

��
T ′

i
// T

t

∼
{� ����

as p-local
i-trivialization

P2(U)

traU

��

p // P2(X)

tra

��
T ′

i
// T

t

∼
{� ����

p∗1traU p∗3traU

p∗2traU

p∗13g
//

p∗12g

DD















p∗23g

��4
44

44
44

44
44

44
4

as descent data/
transition data

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗13g
�������

??��������#p∗123f

???
???

�� p
∗
134f

=

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗24g

??
??

??
?

��?
??

??
??
{�

p∗234f ��� ���

��p∗124f

P1(U•)

p

��

(traU ,g) // T ′

P1(X)

as spans

P2(U•)

p

��

(traU ,g,f) // T ′

P2(X)

Table 4: We generalize 1-anafunctors to 2-anafunctors by regarding an ana-
functor as an instance of descent data or transition data.

make a tetrahedron 2-commute

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗13g
���������

??����������#p∗123f

???
???

��
p∗134f

=

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗24g

??
??

??
??

?

��?
??

??
??

??

{�
p∗234f ����

����

��
p∗124f

.

We say tra is equipped with a smooth structure, if it is equipped with a fixed
p-local i-trivialization such that all the transition data is smooth.

We may address these transitions as differential 2-cocycles, or, taking
them as a categorification of anafunctors, as 2-anafunctors.

For different choices of i, we find various structures invented by various
authors:

Proposition 6 Principal and line bundle gerbes with connection, as well as
the differential 2-cocycles characterizing them, are p-local i-transition data for 2-
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morphism of parallel
transport codomain

name of corresponding
2-anafunctor

i : T ′ → T p-local i-transition

Σ(Σ(U(1))) Id→ Σ(Σ(U(1))) Deligne 2-cocycle
Σ(Σ(U(1))) → Σ(1dVectC) line bundle gerbe with connection (Murray)

Σ(AUT(H)) Id→ Σ(AUT(H)) fake-flat Breen-Messing 2-cocycle
Σ(AUT(H)) → Σ(HBiTor) fake-flat Aschieri-Jurčo bibundle gerbe with connection

Table 5: Whatever the entries of this table mean – an explanation of
which does not fit in here – the message is that various higher structures
that people have studied are secretly examples of 2-anafunctors.

functors, with p a given surjective submersion and i as indicated in the following
table.

The above table says in particular that smooth 2-functors

tra : P2(X) → Σ(AUT(H)

are in bijection with pairs consisting a Lie(AUT(H))-valued 1-form A and a
Lie(H)-valued 2-form B

tra :

0
γ1 //

γ3

��

x

γ2

��
y

γ4
// x + y

{� ���� 7→

•
1+A(γ1)+··· //

1+A(γ3)+···

��

•

1+A(γ2)+···

��
•

1+A(γ4)+···
// •

1+B(γ1,γ3)+···
{� ���� ,

such that
β = FA + ad(B)

vanishes. This β is the 2-form curvature or fake curvature. The true
curvature

• •

• •

• •

•

//

//
�� ��

traA(γ3)
��

��
�

����
��

�
����

��
��

��
��

�

����
��

��
��

��
�

traA (γ1) //

��

traA,B(St)
{� ����

traA,B(S1)
v~ tttt

traA,B(S2)
px jjjj

→

•

•

• •

• •

•

traA (γ2)

��

//
��

//

traA(γ3)
��

��
�

����
��

�

����
��

��
��

��
�

����
��

��
��

��
�

tra (γ1) //

��

traA,B (Ss){� ����

traA,B(S4)�� 





traA,B(S3)
px jjjj

16



is
H = dAB .

People did consider connection data on gerbes that is not fake flat. By the
above, this does not integrate to a parallel transport 2-functor with values in a
2-group.

But it does integrate to a pseudo 2-functor with values in a 3-group.

3 Parallel 3-Transport: Chern-Simons

As Danny Stevenson explains, we should expect general parallel transport with
respect to a n-group Gn to involve the (n+1)-group of inner automorphisms

Adq : G2 → G2

•

g
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g′

AA •h
��

7→ • q−1
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g
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AA •
q // •h

��

of Gn.
For G a 1-group, G-1-transport is the same as (INN(G) = (G → G))-2-

transport:

curvA :
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1+A(γ1)+··· //
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1+A(γ2)+···
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•

1+A(γ4)+···
// •

1+FA(γ3,γ1)+···
{� ���� .

Surfaces are sent to the integrated curvature of the parallel 1-transport.
But for G2 a 2-group, INN(G2)-3-transport is inherently richer than G2-2-

transport.
INN(G2) is no longer strict, but all nontrivial structure morphisms are

unique. We can consider pseudo-2-transport

P2(X) → Σ(INN(G2))

that strictly respects horizontal and vertical composition by itself.

Proposition 7 p-local IdΣ(INN(G2))-trnasitions yield the full Breen-Messing co-
cycle data, not restricted to vanishing fake curvature.
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We would like to understand INN(G2) for the case where G2 = StringG =
(Ω̂kG → PG), the strict version of the string 2-group.

This is easiest at the level of Lie 3-algebras.

Proposition 8 For any semisimple Lie algebra g, and any level k ∈ N, there
is a Lie-3-algebra

cs(g)

such that a 3-connection with values in that Lie 3-algebra is, locally, a g-valued
1-form A, a 2-form B and the Chern-Simons 3-form

H = kCS(A) + dB .

Proposition 9 The Chern-Simons Lie 3-algebra sits inside the Lie 3-algebra
of the inner automorphisms of the String 2-group

cs(g) ⊂ // Lie(INN(StringG)) .

This indicates that INN(StringG)-3-transport is in fact Chern-Simons 3-transport.
I expect that the above inclusion is in fact an equivalence, but this I could

not prove yet.
If we consider Chern-Simons 2-gerbes without connection, the situation sim-

plifies, since it is known that Chern-Simons 2-gerbes are characxterized by hav-
ing WZW transition 1-gerbes:

noticing that the maximal strict sub-3-group in INN(StringG) is (U(1)øΩ̂kG →
PG) we have

Proposition 10 Transition gerbes for (U(1) → Ω̂kG → PG)-2-gerbes (without
connection) are WZW gerbes.
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