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Abstract

Given any 2-groupoid, we can associate to it a monoidal category
which can be thought of as the 2-monoid of observables of the 2-particle
propagating on that 2-groupoid.

Here we show that for the 2-groupoid X(String) this monoidal cate-
gory is the category

ARep(AString;)

of loops in representations of the loop groupoid of String.. We argue that
representation of AString. are twisted equivariant bundles on G.

Introduction. For various reasons, I find the following general concept use-
ful, which here I want to apply to a special case related to loop groups and
representations.

Let par be a 1-category, called the parameter space.

Let P be a smooth 2-category, called the target space.

Let tra : P — Bim(Vectc) be a smooth 2-functor to the 2-category whose
morphisms are bimodules, called a 2-vector bundle with connection on target
space.

Let 1 : P — Bim(Vectc) be the tensor unit in the monoidal 2-category of
2-vector bundles with connection, i.e. the 2-functor that sends everything to
the identity on C.

Let conf = [par, P] be the 2-category of 2-functors from parameter space to
target space, called the configuration space.

Let tra, : conf — [par, Bim] be the 2-functor on configuration space obtained
by postcomposing with tra. This can roughly be thought of as the transgressed
2-vector bundle.

Let sect = [1, tra,] be the category of morphisms from the trivial 2-vector
bundle on configuration space to the transgressed 2-vector bundle. This I call
the space of sections on configuration space.

Let C = End(1.) be the monoidal category of endomorphisms of 1, called
the monoid of observables.

Clearly, sect is a module category for C.
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Here I would like to understand the category C for the following setup.

Let G be a simple, simply connected and compact Lie group, and let k €
H?3(G,7Z) be alevel. From the centrally extended loop group, QkG, we can form
the groupoid String; = PG x (), G == PG over based paths in G.

This groupoid can be regarded from two points of view. As a centrally ex-
tended groupoid, it is the canonical bundle gerbe with class k£ over G. The
groupoid has a strict monoidal structure, with strict monoidal inverses. There-
fore it can also be regarded as a strict 2-group.

Being monoidal, we can form the suspension 3(Stringe), which is a 2-
category with a single object.

We want to regard this as our target space, in the above sense, and study
the monoid of observables on the configuration space of 2-particles propagating
on this target space.

Notice that in as far as BG ~ |XG/|, we can think of String, as a twisted
version of BG.

This means we set P = X(String) and par = 3(Z).

In this case, I seem to find the following result:

Proposition 1 The groupoid
AString = [S(Z), X(Stringg)] /~

obtained by identifying isomorphic 1-morphisms in configuration space is a cen-
tral extension of the the loop groupoid

AG = [X(Z),%(G)]
of G.
Proposition 2 The monoidal category C is
C = [2(Z),Rep(AString)] .

Proposition 3 The category Rep(String) is the category of equivariant gerbe
modules on G.

Note that for G finite, Simon Willerton argued that AG, which is nothing
but the action groupoid of the adjoint action of G on itself, plays the role of the
loop group of G, by noticing that

BAG ~ LBG.

Given a group 3-cocycle k on G, hence a groupoid 2-cocycle on AG, one can
therefore address the twisted representations Rep, (AG) both as twisted rep-
resentations of the loop group of G - in the above sense - as well as twisted
equivariant vector bundles on G.

What I describe here looks like a Lie group analog of this perspective on the
Freed-Hopkins-Teleman theorem.



Definition 1 For Gy any strict 2-group, the loop groupoid of Gy is the 1-
groupoid obtained by identifying isomorphic 1-morphisms in conf = [S(Z), £(G2)].

Proposition 4 The category of endomorphisms of 1, is, as a monoidal cate-
gory, equivalent to the category of loops in the category of representations of the
loop groupoid of G:

End(1,) ~ [S(Z), Rep(AG2)] .

Proof. An object in End(1,) is, being a pseudonatural transformation, a func-
torial assignment of 1-morphisms in conf to squares in [X(Z), Bim]
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which is compatible with 2-morphisms. This compatibility here just says that
V' is invariant on 1-morphisms that are connected by a 2-morphisms. But this
means that V is a representation of AG5.

Moreover, the mere existence of the square on the right says that
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which means that g, — Vj, (e — e) is a natural automorphism of this represen-
tation of AGs. Notice that the V; here are C-bimodules, hence vector spaces,
while V(h) is a C-bimodule homomorphism, hence a linear map.

Next, a morphism in End(1,) is a modification, hence an assignment

The tin can equation for this says that k is a natural isomorphism from the
representation V' to the representation V’. Moreover, the mere existence of



kg above says that this natural isomorphism is compatible with the natural
automorphism V(e — e) and V'(e — e).
But this means nothing but that k encodes a morphism in

[X(Z), Rep(AGy)] .
(]

Now let Gy = String, be the strict 2-group corresponding to the crossed
module QG — PG, where G is any simple, simply connected and compact Lie

group.
Proposition 5 AString is isomorphic to a central extension of AG.

Proof. It suffices to check this for the vertex groups of connected components.
So fix any element v € PG. This amounts to choosing any g € G and a path
connecting it to the neutral element. All choices of paths with fixed endpoint
correspond to the same connected component.
An automorphism in AGo
pg

[r7]

pg

is represented by a 2-cell

pg

in String,. For this to exist, the endpoints of pg and v have to commute. But
with the endpoint fixed, the path ~ is arbitrary, because the above 2-cell is to
be identitfied with

Pg——> @

for any loop a. Hence all paths v with the same endpoint are to be identified.
Choosing a fixed representative of the family of all paths with the same endpoint,



the 2-morphism r here is a uniquely determined loop, together with an element
in the U(1)-torsor over that loop.

Therefore any vertex group of AString., is a central extension of the corre-
sponding vertex group of AG. O

For any element g € G, fix an element in PG. In other words, choose a

section
S

LT
PG——G .
This will only locally be smooth, of course.

We can identify two groupoid morphisms into AString., namely

String, — AString

with
g R pg R
. 1d Z, 1d
/ [ [ ]
pg pgl
and
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with
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Proposition 6 The loop groupoid AString, is generated by the images of String,
and (PG/G)s under these two functors.

Proof. For any morphism in AString., we can choose a representative whose
vertical morphisms lie in the image of the chosen section s:

5(9) Z, s(g)




We can then write
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and the right hand side is manifestly a composite of the two types of generators.
O

Now, notice that, as a centrally extended groupoid, String. is nothing but
the canonical bundle gerbe on G. Accordingly, a groupoid representation of
String is the same as a module for that gerbe, alternatively known as a twisted
bundle on G. It is known that the decategorification of gerbe modules on a space,
Rep(String,), is the same as the twisted K-theory of that space.

But proposition 6 says that a representation of AString, is a representation
of Strings, which at the same time carries the structure of a representation of
the adjoint action of G on PG.

It hence looks as if Rep(AString) would give rise to the twisted and Adg-
equivariant K-theory of G.



