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Abstract

We introduce nonabelian differential cohomology classifying ∞-bundles with smooth connection and
their higher gerbes of sections, generalizing [138]. We construct classes of examples of these from lifts,
twisted lifts and obstructions to lifts through shifted central extensions of groups by the shifted abelian
n-group Bn−1U(1). Notable examples are String 2-bundles [9] and Fivebrane 6-bundles [133]. The
obstructions to lifting ordinary principal bundles to these, hence in particular the obstructions to lifting
Spin-structures to String-structures [13] and further to Fivebrane-structures [133, 52], are abelian Chern-
Simons 3- and 7-bundles with characteristic class the first and second fractional Pontryagin class, whose
abelian cocycles have been constructed explicitly by Brylinski and McLaughlin [35, 36]. We realize
their construction as an abelian component of obstruction theory in nonabelian cohomology by ∞-Lie-
integrating the L∞-algebraic data in [132]. As a result, even if the lift fails, we obtain twisted String 2- and
twisted Fivebrane 6-bundles classified in twisted nonabelian (differential) cohomology and generalizing
the twisted bundles appearing in twisted K-theory. We explain the Green-Schwarz mechanism in heterotic
string theory in terms of twisted String 2-bundles and its magnetic dual version – according to [133] –
in terms of twisted Fivebrane 6-bundles. We close by transgressing differential cocycles to mapping
spaces, thereby obtaining their volume holonomies, and show that for Chern-Simons cocycles this yields
the action functionals for Chern-Simons theory and its higher dimensional generalizations, regarded as
extended quantum field theories.

Handle with care. This is stuff we are still working on.
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Nonabelian cohomology generalizes the cocyclic description of fiber bundles (with or without connection) to
bundles whose fibers are ∞-categories and whose sections form ∞-gerbes.

A familar example arises in the obstruction theory of Spin(n)-bundles: An SO(n)-principal bundle may
be lifted to a Spin(n)-bundle only if a well known obstruction class vanishes. But more can be said: there
is a higher order bundle, a 2-bundle or gerbe, canonically associated with the original SO(n)-bundle and
the obstruction class is the characteristic class of this “lifting gerbe” [118]. In a context of nonabelian 2-
bundles this picture can be refined one step further [138]: the original SO(n)-bundle can always be lifted to a
“twisted” SO(n)-bundle – really a nonabelian 2-bundle – and the lifting gerbe is just the abelian component
of that nonabelian structure.

We show that this phenomenon is just the lowest dimensional example of classes of examples of higher
nonabelian bundles (with connection) which arise as

1. lifts;

2. twisted lifts;

3. obstructions to lifts

of structure ∞-groups (“gauge ∞-groups”) G of G-principal bundles through shifted central String-like
extensions Bn−1U(1)→ Ĝ→ G , where Bn−1U(1) is the n-group which is trivial everywhere except in
degree n− 1, where it has a copy of U(1). Examples include
(a) ordinary central extensions of groups U(1)→ Ĝ→ G , whose twisted lifts are the twisted vector bundles
appearing in twisted K-theory (section 5.7.1) and the obstructions to the lift of which are line 2-bundles, or
equivalently bundle gerbes;
(b) the String extension itself [9, 68] BU(1)→ String(n)→ Spin(n) , with String(n) the String 2-group
(section 5.2.3) the obstructions to the lift of which are abelian Chern-Simons 3-bundes (equivalently Chern-
Simons bundle 2-gerbes [40]) and whose twisted nonabelian 2-bundle lifts (generalizing the twisted nonabelian
1-gerbes in [3]) we discuss in section 5.7.2;
(c) and the Fivebrane-extension B5U(1)→ Fivebrane(n)→ String(n) which we obtain in section 5.2.4 by
∞-Lie-integrating the corresponding extension b5u(1)→ fivebrane(n)→ string(n) of  L∞-algebras [132].

We had discussed this lifting problem at the rationalized level in terms of L∞-algebraic cocycles in [132].
Here we present a framework of ∞-Lie theory (section 4, motivated by [60, 68, 140, 44]), using which we
integrate these L∞-algebraic cocycles to cocycles in nonabelian cohomology. We find that at the level of
abelian obstruction cocycles this general procedure reproduces central aspects of the abelian constructions
presented in [35, 36], thus embedding that work in a more general nonabelian setting.

The main results of our concrete applications are

1. the diagram

H̄(−,Spin(n)) twistedLift //

obstr= 1
2p1

44
H̄(−,String(n)//BU(1)) twist // H̄(−,B2U(1)) // // H4(−,Z)

which says that the twist of a twisted lift of a Spin(n)-bundle with connection to a String(n)-2-bundle
with connection is a Chern-Simons B2U(1)-3-bundle with connection (an abelian Chern-Simons 2-
gerbe) whose characteristic 4-class is the first fractional Pontryagin class 1

2p1 of the original Spin(n)-
bundle;
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2. the diagram

H̄(−,String(n)) twistedLift //

obstr= 1
6p2

44H̄(−,Fivebrane(n)//B5U(1)) twist // H̄(−,B6U(1)) // // H8(−,Z)

which says that the twist of a twisted lift of a String(n)-2-bundle with connection to a Fivebrane(n)-6-
bundle with connection is a Chern-Simons B6U(1)-7-bundle with connection (an abelian 6-gerbe) whose
characteristic 8-class is the second fractional Pontryagin class 1

6p2 of the original String(n)-2-bundle.

We explicitly construct all the items appearing here.

We develop the differential nonabelian cohomology theory used to phrase these constructions in 3. The
abstract nonsense prerequisites needed are treated in section 2.

The various ingredients of these lifting problems crucially appear in string theory, as discussed in [132]
and [133], where they govern the higher gauge theoretic nature of the theory where the bulk and brane
structures interact.

obstruction char. class G-bundle Ĝ-bundle
Line 2-bundles
Line 3-bundles
Line 7-bundles

with class 1
2p1
1
6p2

obstruct the lift of
PU(H)-bundles
Spin(n)-bundles

String(n) 2-bundles
to

U(H)-bundles
String(n)-2-bundles

Fivebrane(n)-6-bundles

Table 1: Obstruction problems in nonabelian cohomology appearing in string theory. A concise
review of the relevant string-theoretic concepts is in section 6.7.

A brief account of the relevant string-theoretic concepts is given in section 6.7. The cohomological
description of these phenomena has found a clean formulation in terms of generalized differential cohomology
by Freed, Hopkins and Singer in [56, 74]. Nonabelian differential cohomology further refines this description
in that not only the abelian obstructing fields (the Neveu-Schwarz field, the supergravity C-field as well as
their magnetic dual) are represented, but also the nonabelian structures twisted by them are provided as
well. Given the important role played by twisted U(H) bundles in string theory, the twisted String 2-bundles
and twisted Fivebrane 6-bundles which we introduce can be expected to be of comparable relevance. Further
discussion of this application is in preparation [2].
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1 Overview

We proceed as follows.

• To set ourselves up in a suitably general context of differential geometry we model Spaces as sheaves on
CartesianSpaces, with DiffeologicalSpaces [10] and SmoothManifolds contained as subcategories of tame
objects.

• To have manifest close contact to familiar constructions in homological algebra, differential geometry
and physics which we want to reproduce and generalize, the model for ∞-categories which we choose
is strict ∞-categories, known as ωCategories (figure 1). This turns out to be not only convenient,
admitting all tools of nonabelian algebraic topology [34], but also sufficient.

• To handle the homotopy theoretic context of ω-categories internal to Spaces, equivalently: ω-category
valued sheaves,

ωCategories(Spaces) ' Sheaves(CartesianSpaces, ωCategories) ,
we obtain from the known homotopy model category structure on ωCategories [28, 94] by stalkwise
refinement the structure of a category of fibrant objects [26]. This yields a homotopy (bi-)category
Ho(ωCategories(Spaces)) whose Hom-spaces realize cohomology in this context, analogous to [81].

• To establish contact with ordinary abelian Čech cohomology with coefficients in complexes of sheaves of
abelian groups we consider descent for ω-category valued presheaves [151] and the corresponding notion
of ω-stacks. Dually this leads to a notion of codescent for ω-category valued co-presheaves, which serves
to translate from cohomology in terms of descent to cohomology in terms of the homotopy category.

• In this context we set up our central definition of twisted differential nonabelian cohomology:
– nonabelian cohomology for structure ω-group G is cohomology with coefficients in hom(Π(−),BG),

for Π an ω-category valued copresheaf;

– twisted cohomology is a refinement of the obstruction to lifting
of cocycles through extensions BĜ // // BG (figure 6);

– differential cohomology is a refinement of the obstruction to the extension
of cocycles along the inclusion of copresheaves P0(−) � � // Πω(−)
of discrete ω-groupoids into fundamental ω-groupoids (figure 9);

BĜ

����
P0(X) |

g //
� _

��

lifting problem
99rrrr
BG

Πω(X)
extension problem

99rrrr

• As a tool for explicitly constructing (twisted, differential) nonabelian cocycles we describe∞-Lie theory
of smooth ω-groupoids and Lie∞-algebroids, following [140, 60, 68, 141], as the theory of two consecu-
tive adjunctions relating ωGroupoids(Spaces) to Spaces and Spaces to L∞Algebroids. Both adjunctions
are examples of Stone dualities induced by ambimorphic objects. The first adjunction is induced by the
object of finite paths, Πω(−), while the second is induced by the object of infinitesimal paths, Ω•(−)
(figure 7).

• Using these adjunctions we ∞-Lie integrate the L∞-algebraic cocycles from [132] from L∞Algebroids
to ωGroupoids(Spaces) to obtain nonabelian differential cocycles when certain integrability conditions
are met (figure 9).

• Applied to the String- and Fivebrane- L∞-algebraic cocycles and their Chern-Simons obstructions of
[132] this yields an explicit construction of twisted differential cocycles representing twisted String
2- and twisted Fivebrane 6-bundles with connection. The twist itself is the obstruction to obtaining
untwisted such bundles and lives in abelian Deligne cohomology where it represents Chern-Simons
connections and their higher analogs (figure 3).

• Finally we transgress the differential cocycles thus obtained to mapping spaces and show that the
transgressed differential cocycles exhibit the holonomy [137, 138] and can be interpreted as the action
functionals for extended Chern-Simons quantum field theories.
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1.1 General subject of nonabelian cohomology

This article is primarily interested in the classification of geometric objects over spaces, which are locally
related to constructions involving fixed (nonabelian) groups, called coefficients, as well as their higher cate-
gorical analogues. The gluing conditions of such objects (e.g. higher principal bundles) and the coefficients
will also be of higher categorical nature: (higher) stacks rather than sheaves. One often conceives such
objects by means of abstractly defined equivalence classes of data, called cocycles; sometimes one can realize
these classes also as the homotopy classes of maps from the base space into some distingushed space, which
is then said to classify the geometric objects in question.

A collection of related notions, comprising a subject called “nonabelian cohomology”, allows, in various
frameworks, all of the characters of the above story – spaces, coefficients, cocycles, (cohomology) classes,
homotopy, gluing, higher categorical analogues, stacks – to be generalized in an appropriate sense; the word
“nonabelian” pertains to the coefficients C in H∗( , C).

Geometric and topological objects are usually filtered by some notion of a dimension, and combinatorial
devices such as simplicial or globular sets are suitable for inductive constructions. It is a fascinating fact, first
observed in algebraic topology and nowdays prevalent in mathematics, that nicely structured functors into
nice (“algebraic”) categories usually respect dimension-like order; the appearance of chain-complexes and
cohomology sequences are typical instances. When the target is in an abelian category (or something not far
from it, e.g. a Quillen exact category), a systematic treatment of such functors follows familiar patterns. For
example, one has cohomology classes for every degree n (not only in low dimension), the sheaf cohomology
as a derived functor is, for paracompact spaces, the same as the Čech cohomology with coefficients in that
sheaf; once we have the cocycles it is easy to pass to cohomology classes etc.

Digression: derived functors. This article is concerned with the generalizations to nonabelian coho-
mology of the Čech approach rather than the derived functor approach. Let us mention, however, that
there are several approaches to nonabelian derived functors, i.e. nonabelian homological algebra (distinguish
this phrase from the subject of nonabelian cohomology!). Quillen defined nonabelian derived functors in
the setup of model categories; category theorists have studied the categories similar to abelian categories
but with weakened axioms, with many elements of homological algebra (e.g. semiabelian and homological
categories, studied by Bourn, Janelidze, Inassaridze [79]). In Abelian (and Quillen exact) categories one
treat homology on the same footing with cohomology. It seems this is not possible in general: the two are
not necessarily definable in the same category. With this observation in mind (suggested by the notion of
suspended categories of B. Keller, which are a nonsymmetric generalization of triangulated categories), A.
Rosenberg introduced [127, 129] right exact and left exact categories as categories with a distinguished class
of morphisms (deflations, resp. inflations) suited for the theory of derived functors in the nonabelian setup.

Experience from low dimensions; other categories. Low-dimensional examples are usually driven by
very concrete and tangible problems and give much insight. Schreier’s theory of extensions of nonabelian
groups ([139, 54, 25]) is a prime example. The classification of extensions 1→ K

i→ G
p→ B → 1 is given in

terms of equivalence classes of cocycles which are constructed using elementary constructions. One starts with
a set-theoretic section σ : B → G of p and the corresponding cocycle is B ×B 3 (a, b) 7→ σ(a)σ(b)σ−1(ab) ∈
i(K) ∼= K. The equivalence class will not depend on σ. This works because there is a forgetful functor from
(the category of) groups to sets, while in sets one can always find a set-theoretical section. For topological
groups one cannot do this: one cannot find continuous sections. Similarly, an extension of representable
group functors may be not representable. Similarly, groups or Lie algebras in arbitrary monoidal category
may have bad properties in this sense. Moral: the nonabelian classification problem may exist even when
the cocycles (in the more algebraic sense of maps given by cocycle equations) do not. (Similarly a derived
functor may exist even if no cocycle description exists) In this article, a “nonrepresentability” comes as the
appearance of lifts which are given by integrated infinite-dimensional or even more general objects even when
the original objects are finite-dimensional.
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The categorical approach to nonabelian cohomology by Giraud, Breen, Street and others [63, 25, 122,
125, 149], provides a natural interpretation of the cocycles when the coefficient n-group is in the category
of sets or in some topos. Similar cocycle conditions for group-like objects (e.g. Lie algebras, Hopf algebras,
groups in other monoidal categories), are known and useful in some special cases, but a systematic general
theory is missing (cf.6.6).

1.2 Descent

Suppose we are given some category of spaces in which each space X equipped with a fiber, i.e. a category CX
of objects of some type over it. For example, a space can be a smooth manifold and the fiber is the category
of vector bundles over it; or a space is an object of the category dual to the category of rings and the fiber
is its category of left modules. Given a map f : Y → X, one often has an induced functor f∗ : CX → CY
(pullback, inverse image functor, extension of scalars). The basic questions of classical descent theory are:

1. When an object E in CY is in the image of an object in CX , what is the fiber (f∗)−1(E).

2. Classify all forms of object G ∈ CY , that is find all E ∈ CX for which f∗(E) ∼= G.

Grothendieck introduced pseudofunctors and fiberd categories to formalize an ingenious method to deal with
descent questions. He introduces additional data on an object E in CY to have a chance of determining an
isomorphism class of an object in CX . Such an enriched object over X is called a “descent datum”. f is an
effective descent morphism if the morphism f induces a canonical equivalence of the category of the descent
data (for f over X) with CX . It is a nontrivial result that in the case of rings and modules, the effective
descent morphisms are preciselly pure morphisms of rings. Grothendieck’s flat descent theory tells a weaker
result that faithfully flat morphisms are of effective descent. In algebraic situations one often introduces
a (co)monad Tf : CX → CX (say with multiplication µ : Tf ◦ Tf → Tf ) induced by the morphism f
([37, 103, 128, 145]). The category of descent data is then nothing else than the “Eilenberg-Moore” category
Tf−Mod of (co)modules (also called (co)algebras) over Tf . Then, by the definition, f is of an effective
descent if and only if the comparison map (defined in (co)monad theory) between CX and Tf−Mod is an
equivalence. Several variants of Barr-Beck theorem give conditions ([102, 103, 129]) which are equivalent or
sufficient to the comparison map for a monad induced by a pair of adjoint functors being an equivalence.
Generically such theorems are called monadicity (or tripleability) theorems. One can describe most of (but
not all) situations of 1-categorical descent theory via monadic approach; comparison of monadic descent
with the approach of Grothendieck-Gabriel-Giraud via fiberd categories is made in a short note [20], where a
so-called Beck-Chevalley condition is introduced. A version of Barr-Beck theorem for 2-categories has been
studied in [97] (see also appendix to [69]), Barr-Beck theorem for (∞, 1)-categories has been proved by Lurie
in [101], and for triangulated categories by Kontsevich and Rosenberg (cf. [129]; the proof is via Verdier’s
abelianization functor).

A Grothendieck (pre)topology τ on a category with pullbacks is a collection of distinguished morphisms,
called ’covers’, which satisfy a list of 3 axioms. One of the conditions for a fiberd category to be a stack is
that all covers in τ are of effective descent. Thus the basic theory of stacks (and ∞-stacks) may be partly
viewed as a subset of descent theory. The equivariance data for a sheaf and generalizations (like 2-equivariant
objects [146], Hopf modules [98] etc.) also correspond to a certain kind of descent data. Considering the
pullback f∗(G) as a “trivial” object over Y , one is concerned with identifying “trivial” structures with
certain relations, the “gluing relations”, on covers Y → X from space X to space Y which are such that
they correspond to possibly nontrivial structures but without extra relations down on X: they descend from
Y down to X. Since Y may be regarded as a local description of X, the structures on X thus obtained
are “locally trivial”. For categorically low-dimensional structures, i.e. for those which live in sets or at
best in categories, this situation is described by the concept of sheaves and stacks, respectively, and is well
understood; see for instance [87]. More generally, however, the structures in question will live in an ∞-
category. The purpose of descent theory and the theory of∞-stacks is to encode the right descent conditions
on a structure on Y , which is an object in an ∞-category.
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2 Underlying Machinery: Space and Quantity

Given a category S of test objects the most general notion of a space modeled on S is a presheaf on S, while
the most general notion of a quantity modeled on S is a co-presheaf on S [95]: a space is something probed
by mapping test spaces in S into it.

space quantity

general concept presheaf co-presheaf

nice version
smooth space

(sheaf condition)
C∞-algebra

(monoid structure)

higher degree
version

∞-groupoid
internal to Spaces

differential graded-commutative
C∞-algebra

Table 2: Space and quantity. For a given category S of test objects, spaces probeable by objects of
S are presheaves on S, whereas quantities with values in S are co-presheaves on S. Here we take S :=
CartesianSpaces which comes naturally with the structure of a site. Sheaves on this S are generalized
smooth spaces. Monoids in co-presheaves on S are generalized smooth algebras. Higher categorical degree
is obtained by passing to ∞-categories internal to Spaces and, respectively, passing to quasi-free differential
graded-commutative algebras (qDGCAs) over C∞-algebras.

For the differential geometric and Lie theoretic context that we are interested in we choose S to be
the category of cartesian spaces. Other choices are possible without changing the essence of much of our
discussion. In particular one could consider taking S to be ∆, the simplicial category, which is a popular
choice in much of the literature in the context of cohomology theory. One advantage of using cartesian spaces
instead is that these are also well suited as “co-probes” for function algebras and modules of sections, as
discussed in section 2.3. This gives rise to dualities (Isbell duality, as in [95]) between spaces and quantities
which are at the heart of the ∞-Lie theory in section 4.

Definition 2.1 (cartesian spaces) Write CartesianSpaces for the full subcategory of Manifolds on the man-
ifolds Rk equipped with their standard smooth structure, for all k ∈ N. This category comes with the standard
notion of cover that makes it a site.

2.1 Spaces

Definition 2.2 (smooth spaces) The category of smooth spaces is the category Spaces := Sheaves(CartesianSpaces)
of sheaves on CartesianSpaces.

Terminology. For brevity and since for some of our applications CartesianSpaces could be replaced by
some other site, we often write just space instead of smooth space. For X ∈ Spaces and U ∈ CartesianSpaces
we say X(U) ∈ Sets is the set of plots from U into X or the set of probes of X by U . By the Yoneda lemma,
X(U) ' Hom(U,X) is the set of maps of smooth spaces from U to X. See for instance [95] and [10] for some
general background on the concept of sheaves on test domains as generalized spaces.

We have a canonical chain of inclusions

Manifolds
� � // FrechetManifolds

� � // ConcreteSpaces � � // Spaces .

Concrete spaces / diffeological spaces. Since objects in Spaces are only required to be probeable by
cartesian spaces, and not required to be locally isomorphic to cartesian spaces, they can be quite a bit
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more general than manifolds. Classes of spaces far from manifolds are in particular the classifying spaces of
L∞-algebra valued differential forms ([141]), smooth models of K(G, 1)s for G a smooth ∞-group, discussed
in section 4.1. A special class of spaces still more general than manifolds but more restrictive than general
smooth spaces are concrete spaces, which are given by concrete sheaves that have an underlying set of points.
As discussed in [10], these are the diffeological spaces [77] or Chen-smooth spaces. Reference [147] gives a
comparative discussion of the various notions of generalized smooth spaces.

Definition 2.3 (indiscrete spaces) For S ∈ Sets the indiscrete space over S is indiscrete(S) := HomSets(−, S).
This yields an injection indiscrete : Sets ↪→ Spaces. the image of which is the category IndiscreteSpaces ⊂
Spaces.

Definition 2.4 (concrete spaces) Concrete spaces X are the subobjects, in Spaces of indicrete spaces S,
X ↪→ indiscrete(S).

Remark. In words this means that a concrete space X is a set S together with a rule which says which
maps of sets from objects of CartesianSpaces into S are regarded as homomorphisms, i.e. as continuous
or smooth maps. Notice the difference of the notion of concrete spaces to (possibly infinite-dimensional)
manifolds: those are required to be locally isomorphic to some object in CartesianSpaces. A concrete space
is just required to be probeable by all objects of CartesianSpaces.

Every space has an underlying concretization.

Definition 2.5 (concretization) For X,Y, Z ∈ Spaces let

post(X,Y, Z) : HomSpaces(Y,Z)→ HomSets(HomSpaces(X,Y ),HomSpaces(X,Z))

be the image under the Hom-adjunction in Sets of the composition operation

◦X,Y,Z : HomSpaces(X,Y )×HomSpaces(X,Y )→ HomSpaces(X,Z)

in Spaces. Let

ConcreteHomSpaces := Image(post(pt,−2,−1)) : Spacesop × Spaces→ Sets .

For X ∈ Spaces we say ConcreteHom(−, X) : CartesianSpacesop → Sets is the concretely representable presheaf
of X. The concretization functor is the sheafification of the concrete representation

concretize := sheafify ◦ ConcreteHomSpaces(−2,−1) : Spaces→ Spaces .

Remark. This means the set underlying the concretization concretize(X) of a space X is HomSpaces(pt, X).

Proposition 2.6 The concretization operation produces concrete spaces

concretize : Spaces→ ConcreteSpaces ↪→ Spaces .

Remark. Notice that concretization is far from being injective. There are important objects in Spaces
which have only a single underlying point but still have many nontrivial higher dimensional probes. These
are notably the classifying spaces of L∞-algebra valued forms discussed in section 4.1.

For an exhaustive description of operations on (concrete) spaces see [10]. We need the following opera-
tions.
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Quotients.

Definition 2.7 (equivalence relation on an object in a category) ([1] and [15], beginning) Given an
object X in some category C an equivalence relation on X is a triple (R, p1, p2) where R is an object in C

and p1, p2 morphisms in C as in R
p1 //
p2
// X satisfying

1. reflexivity: There exist a morphism j : X → R which is a section of both p1 and p2: p2◦j = p1◦j = idX .

2. transitivity: A pullback R̄
q1 //

q2

��

R

p2

��
R

p1 // X

exists, together with a morphism t : R→ R̄ such that

p1 ◦ t = p1 ◦ q1 and p2 ◦ t = p2 ◦ q2.

3. symmetry: There exists s : R→ R such that p1 = p2 ◦ s and p2 = p1 ◦ s.

If C = Set we get the equivalence relation in usual sense. We use the definition however for C = Spaces.

Definition 2.8 (quotient by equivalence relation) For X ∈ Spaces and ∼= (R, p1, p2) an equivalence
relation on X, we write X/ ∼ for the pushout

R
p1 //

p2

��

X

��
X // X/ ∼

.

For details on quotient spaces of equivalence relations on concrete spaces see [10].

2.2 ∞-Categories

We choose here to model ∞-categories as strict ∞-categories – called ω-categories (as introduced in [149]
– in terminology we follow section 2.2 of [47]). Their advantage is that in our examples and applications
in section 5, they lead to comparably concrete structures familiar in differential geometry and physics, via
the equivalence of ω-groupoids with crossed complexes of ordinary groups [34], recalled in section 2.2.1.
ω-categories carry a natural homotopy model structure; using this model structure we can capture (sections
2.2.3 and 2.2.4) their weak and generalized (“Morita”) morphisms what makes them behave like weak ∞-
categories. This leads to a (weak) homotopy category of ω-categories, section 2.2.5, which is the home of
the cohomology theory described in section 3. Furthermore, the correspondence sending a simplicial set to
the ω-category freely generated from it, extends to a functor from the category of simplicial sets into the
category of ω-categories; using this functor one can transport many constructions from simplicial sets to
ω-categories. Notice that after a conjecture by Simpson [144], there has been growing evidence [90, 85, 121]
that for the full generality it is indeed sufficient to extend strict ∞-categories by just allowing weak units.

The original definition of ω-categories is given in [149] (p. 305), recalled for instance in [47] and [94]. A
conceptual introduction is provided in section 1.4 of [96]. The basic idea is simple: an ω-category has, for
each k ∈ N, a set of k-morphisms, each going from a source to a target (k − 1)-morphisms which both, in
turn, share the same source and target (k−2)-morphism. This means that k-morphisms are usefully thought
of geometrically as k-dimensional disks – called globes in this context – as indicated in figure 1.
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Ambient context. Fix once and for all a topos K equipped with a faithful functor Sets → K. Write ∅
for the initial and pt for the terminal object in K.

In our applications we usually set K = Spaces. const(S) : Sets → K will denote the functor U 7→ S fro
all U in Sets.

Definition 2.9 (globular object / ∞-graph) The globular category G is the category whose objects are

the integers and whose morphisms are generated from n
σn //oo ιn

τn
// n+ 1 for all n ∈ N subject to the relations

σn+1 ◦ σn = τn+1 ◦ σn

σn+1 ◦ τn = τn+1 ◦ τn
ιn ◦ σn = Id

ιn ◦ τn = Id .

A globular object S in K is a functor S : Gop → K. For n ∈ N we write

Sn
oo sn

in //oo
tn

Sn+1 := S( n
σn //oo ιn

τn
// n+ 1 )

and call sn the (n+ 1)st source map and tn the (n+ 1)st target map and in the nth identity assigning map.
The relations

sn ◦ sn+1 = sn ◦ tn+1

tn ◦ sn+1 = tn ◦ tn+1

sn ◦ in = Id

tn ◦ in = Id

which these satisfy by functoriality for all n ∈ N are called the globular identities.
A morphism of globular objects is a natural transformation of the corresponding functors. For the resulting
category of globular objects in K we write GlobularObjects(K) := KGop

or simply GlobularObjects.

γ1 γ2

x

y

Σ1

��

Σ2

D
M

>>
q

z

'' ss

V
��

�
�

�
�

Figure 1: A (“globular”) 3-morphism in an ω-category. The 3-morphism V : Σ1 ⇒ Σ2 goes between the
2-morphisms Σ1,Σ2 : γ1 → γ2 which in turn both have as source the object x and as target the object y.

Definition 2.10 (standard n-globe) The standard 0-globe is the point R0. The standard n-globe for n ∈
N, n ≥ 1 is the standard n-disk Dn ⊂ Rn regarded as a cell complex with two boundary components being
the upper and the lower semi-(n− 1)-sphere, both regarded as standard (n− 1)-globes.

See figure 1 for a picture of a 3-globe.
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Remark. Globular objects are to standard globes as simplicial objects are to standard simplices. The
standard n-globe, taken as a cell complex, is naturally regarded as a globular set concentrated in the first n
degrees. This is definition 2.18 further below.

Notation for composite globular maps. The globular identities ensure that

• two sequences of boundary maps

fn ◦ · · · ◦ fn+m−1 ◦ fn+m : Sn+m+1 → Sn

with n,m ∈ N and for fk,∈ {sk, tk} are equal if and only if their last term fn coincides;

• for all n,m ∈ N we have

sn · · · sn+1 ◦ · · · ◦ sn+m ◦ in+m ◦ · · · ◦ in+1 ◦ in = Id

tn · · · tn+1 ◦ · · · ◦ tn+m ◦ in+m ◦ · · · ◦ in+1 ◦ in = Id .

We therefore write

Sn+m+1

sn //oo in

tn
// Sn

with in, sn, tm the sequence of m consecutive identity-assigning, source or target maps, respectively.

Definition 2.11 (ω-categories) An ω-category C internal to K is a globular K-object {Ck}k∈N equipped

for all i > j with the structure of a category internal to K (definition 6.8) on Ci

sj //oo ij
tj
// Cj , i.e. with a

composition morphism ◦j : Ci ×tj ,sj Ci → Ci satisfying the associativity and unity constraints, such that for
all i > j > k this makes

Ci

sj //oo ij
tj
// Cj

sk //oo ik
tk
// Ck

with horizontal composition ◦k and vertical composition ◦j a strict 2-category (definition 6.14) in that ◦k
and ◦j satisfy the exchange law.

A morphism of ω-categories in K, called an ω-functor, is a morphism of the underlying globular K-objects
preserving this extra structure and property. The category of ω-categories in K obtained this way we call
ωCategories(K) and often just write ωCategories.

Terminology. We write Obj(C) := C0 for the K-object of objects and Mork(C) = Ck for the K-object of
k-morphisms or k-cells of C. We say ◦k is composition along k-morphisms.

Lemma 2.12 Write U : ωCategories(K)→ GlobularObjects(K) for the obvious forgetful functor which sends
every ω-category to its underlying globular object. This functor has a left adjoint F : GlobularObjects(K)→
ωCategories(K) which sends a globular object to the free ω-category over it. And U is in fact monadic.

We are grateful to Tom Leinster for discussion of this standard fact, which implies the following standard
fact about monadic functors, useful for computations.

Corollary 2.13 (limits in ωCategories) U preserves limits and all limits exist in ωCat.

So for D any small category and f : D → ωCategories any D-diagram in ω-categories, we have

U(limDf) ' limD(U ◦ f) .
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Lemma 2.14 (initial and final ω-category) The initial globular object is the globular object constant on
∅, while the terminal globular object is the globular object constant on pt. The initial ω-category and the
terminal ω-category are the unique ω-categories whose underlying globular objects are the initial and terminal
globular object, respectively. We denote all these initial objects by ∅ and all these terminal objects by pt.

Definition 2.15 (Hom-ω-category) For C ∈ ωCategories(K) and a, b : pt // C we write C(a, b) for
the Hom ω-category whose underlying globular object is given for all k ∈ N by the top front row of

Ck+2

sk+1 //
oo ik+1

tk+1

//
s0×s0

��

Ck+1

s0×t0

��

C(a, b)k+1

88qqqqqqqqqq

��

sk //
oo ik

tk
// C(a, b)k

99rrrrrrrrrr

��

C0 × C0
= // C0 × C0

pt //

a×b
88pppppppppppp

pt

a×b
88rrrrrrrrrrr

,

where the left and right squares are pullbacks and the top front morphisms are the universal morphisms
induced by these pullbacks from the top rear globular morphisms. Similarly the composition operations ◦k on
C(a, b) are induced from ◦k+1 of C.

Definition 2.16 (n-graphs and n-categories) Globular objects S satisfying Sk = Sk−1 and sk−1 = Id,
tk−1 = Id for all k ∈ N, k > n, for some n ∈ N are called n-graphs, forming the full subcategory nGraphs(K) ⊂
GlobularObjects(K).
ω-categories C whose underlying globular object is an n-graph are called n-categories, forming the full sub-
category nCategories ⊂ ωCategories.
There are obvious truncation functors GlobularObjects(K)→ nGraphs(K) and ωCategories(K)→ nCategories(K).

There are two alternative equivalent perspectives on ω-categories internal to categories of sheaves, such
as Spaces:

Proposition 2.17 ωCategories(Spaces) is equivalent to ω-category valued sheaves on CartesianSpaces:

ωCategories(Spaces) ' Sh(CartesianSpaces, ωCategories(Sets)) .

Proof. This is a special case of proposition 2.3 (iii) of [17]. �

Remark. In the context of ∞-Lie theory the point of view of smooth ω-categories or Lie ω-categories as
ω-categories internal to smooth spaces is useful. On the other hand, in the context of cohomology the point
of view of sheaves with values in ∞-categories is useful.

Globes.

Definition 2.18 (n-globe) The (−1)-globe G−1 is the initial ω-category G−1 := ∅. For n ∈ N the n-globe
Gn is the unique ω-category on the globular set Gn := HomSetG

op (−, n)

This is unqiue because there are no nontrivial compositions.
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Remark. By Yoneda the ω-functors between the n-globe and the (n+ 1)-globe for n ∈ N are

Gn

σn //oo ιn

τn
// Gn+1

and satisfy the globular identities. It makes sense and is convenient in the following to write σ−1 = τ−1 for
the unique morphism

σ−1, τ−1 : G−1
// G0 .

The n-globe has a single nontrivial n-morphism. Discarding the single nontrivial n-morphism of the n-globe
yields the boundary of the n-globe:

Definition 2.19 (boundary of the n-globe and generating cofibrations, [94]) The boundary of the 0-globe
is ∂G0 := G−1 and we write i0 : ∂G0 → G0 for the unique morphism.
By induction over n ∈ N the boundary of the (n+ 1)-globe, ∂Gn+1, is the pushout

∂Gn
in //

in

��

Gn

��
Gn // ∂Gn+1

.

and in+1 : ∂Gn → Gn is the universal morphisms in

∂Gn
in //

in

��

Gn

�� σn

��

Gn //

τn ..

∂Gn+1

in+1

I
I

$$I
I

Gn+1

.

The {in}n∈N are the generating cofibrations of ω-categories.

Remark. Gn is a combinatorial model for the n-disk Dn and ∂Gn is a combinatorial model for the (n−1)-
sphere Sn−1.

Discrete ω-categories.

Definition 2.20 (discrete ω-category) For X ∈ K, write P0(X) for the discrete ω-category with Obj(P0(X)) =
X and every k-morphism for k ≥ 1 being an identity.

Remark. The notation P0(X) is meant to allude to “0-dimensional paths in X”. This is explained in
section 4.2.1. When the context is clear we write just X for the ω-category P0(X). Notice the different
meaning of “discrete” in ω-categories and in spaces.

ω-Monoids.

Definition 2.21 (ω-monoids) An ω-monoid is an ω-category of the form C(a, a), definition 2.15, for C
an ω-category and a : pt→ C. For A an ω-monoid we write BA for the ω-category with (BA)0pt and such
that A = BA(•, •).
Morphisms of ω-monoids K → G are the morphisms of the corresponding ω-categories, BK → BG. We
write ωMonoids for the corresponding full subcategories of ωCategories.

Definition 2.22 (n-tuply monoidal ω-categories) ω-Categories of the form C = BkK for k ∈ N are
called k-fold degenerate and K is then called a k-tuply monoidal ω-category.
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Remark. In particular, doubly monoidal ω-categories are abelian ω-monoids: the crossed complex, section
2.2.1, characterizing doubly monoidal ω-groupoids, i.e. monoidal ω-groups is a complex of abelian groups.
For a discussion of the general phenomenon of k-tuply degenerate and k-tuply monoidal ω-categories and
the periodic table of n-categories see [12] and [42].

Definition 2.23 (kernel and cokernel of morphisms of ω-monoids) Write 1 for the trivial ω-monoid,
such that pt = B1, with pt the terminal ω-category. For K an ω-monoid, C any ω-category and f : C → BK
an ω-functor, the kernel of f is the pullback

ker(f) //

��

C

f

��
pt // BK

and the cokernel of f is the pushout
C //

f

��

pt

��
BK // coker(f)

.

Tensor product. The n-globe can be obtained from the n-cube by collapsing faces. Accordingly globular
sets are special kinds of cubical sets, which are presheaves on the cubical category � whose objects are the
standard n-cubes �n and whose morphisms are the standard injection and collaps maps between these, see
section 2 of [48].

The globular category G has the advantage of having the minimum of face and degeneracy maps, where �
has much more, but � has the advantage of admitting an obvious monoidal structure with �k ⊗�l = �k+l,
modeled after the cartesian product of the standard k-cubes [0, 1]k in topology. The Day convolution product,
definition 6.20, canonically induces from this a biclosed monoidal structure on cubical sets which in turn
induces one on globular sets and then on ω-categories. This is the Crans-Gray tensor product on ω-categories
generalizing the Gray tensor product on 2-categories.

Theorem 2.24 ([48]) ωCategories(Sets) is monoidal biclosed, definition 6.11.

A brief review is given in [151]; details are spelled out in [48].

Corollary 2.25 ωCategories(Spaces) is biclosed.

Restricted to ω-groupoids and crossed complexes (section 2.2.1) the bicolosed structure becomes a sym-
metric monoidal closed structure and reproduces the tensor product treated in part II of [34] (see p. xv of
[45]). Instead of reproducing the explicit description of ⊗, which involved tedious combinatorics, we list a
handful of crucial properties from which all the facts we shall need follow. The crucial property of ⊗, which
distinguishes it from the naive cartesian tensor product, is that it raises dimension in analogy to the way
the product of an n-dimensional with an m-dimensional space is an (n+m)-dimensional space.

Definition 2.26 (cylinder, cone and globe) The two boundary inclusions σ0, τ0 : G0 → G1 induce for
any C ∈ ωCategories two morphisms

C ⊗ σ0 : C
= // C ⊗G0

Id⊗σ0 // C ⊗G1

C ⊗ τ0 : C
= // C ⊗G0

Id⊗τ0 // C ⊗G1 .

• We call Cyl(C) := C ⊗G1 the cylinder over C;
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• we call the pushout Cone(C) in
C ⊗G0

//

C⊗σ0

��

G0

��
C ⊗G1

// Cone(C)

the cone over C;

• we call the pushout Globe(C) in

C ⊗ (G0 tG0) //

C⊗(σ0tσ1)

��

G0 tG0

��
C ⊗G1

// Globe(C)

the globe over C.

Remark. The cone construction for ω-groupoids is discussed in detail in section 9.9 of [34].

Lemma 2.27 (cylinders over globes) • The 0-globe G0 = pt is the strict unit under ⊗: C⊗pt = C.
The (-1)-globe G−1 = ∅ is the strict zero under ⊗: C ⊗ ∅ = ∅.

• The cylinder over the 1-globe is the 2-category “free on a square” in that

G1 ⊗G1 =


(a, 0) //

��

(a, 1)

��
(b, 0) // (b, 1)

�� �������

�������

 .

• The cylinder over the 2-globe

G2 =


a

f

��

g

@@ bρ

��


is the 3-category “free on an ordinary cyclinder” in that

G2 ⊗G1 =



(f, 0) (g, 0)

(a, 0)

(b, 0)

(f, 1) (g, 1)

(a, 1)

(b, 1)

(ρ,0) //

## tt

(ρ,1)__ //__

l
y




N
;

+

## tt��

���
�
�
�
�
�
�
�
�

}}
��

�
�! �

�
�
�

��
�
�

�
�



.

[** need to adjust the relative orientation of arrows **]
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Proof. See [49] and [48]. �

[** need discussion here of left/right closed using lax or symmetric closed using pseudo **]
[** the following lemma needs attention – what we really need is corollary 2.29 below, and we really just

need if for the ω-groupoid case, where it follows from stuff in [34] **]

Lemma 2.28 (globe over the n-globe) The (n+ 1)-globe is the globe over the n-globe: for all n ∈ N this
diagram is a pushout:

Gn tGn
(Gn⊗σ0)t(Gn⊗τ0) //

��

Gn ⊗G1

��
pt t pt // Gn+1

.

Proof. By induction on n: For n = 0 the left leg of the diagram is the identity, so that the claim is that
G1 = G0 ⊗G1. By lemma 2.27 G0 is indeed the tensor unit.

Now assume the statement has been proven for n ∈ N. Using that the boundary of Gn+1 is two glued
copies of Gn we get the pushout

∂Gn+1 t ∂Gn+1
(∂Gn+1⊗σ0)t(∂Gn+1⊗τ0)//

��

∂Gn+1 ⊗G1

��
pt t pt // ∂Gn+2

.

Then use that Gn+1⊗I as well as Gn+2 have a single nontrivial (n+2)-morphism. [** complete details **] �

Corollary 2.29 For C an ω-category, for all a, b ∈ Obj(C), the Hom-ω-category C(a, b) is the pullback

C(a, b) //

��

CI

d0×d1

��
pt a×b // C × C

.

Proof. Using lemma 2.13 and applying to proposition 2.28 the fact that the contravariant Hom-functor
Hom(−, D) takes colimits to limits, we obtain for all C ∈ ωCategories and n ∈ N, that

Hom(Gn+1, C) //

��

Hom(Gn ⊗ I, C)

d0×d1

��
Obj(D)×Obj(C) � � // Hom(Gn, C)×Hom(Gn, C)

is a pullback. [...] �

Remark. In the context of ω-groupoids this is a consequence of the structure of the path object CI in
definition 15.1.1. There is a many-object version of proposition 7.1.19 and applied to CI it yields the above
statement.

We are grateful to Ronnie Brown for discussion of this point.
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2.2.1 ω-Groupoids and crossed complexes

Of particular interest are ω-categories in which all cells have inverses: either strict inverses, in which case
we speak of ω-groupoids, or weak inverses, in which case we speak of weak ω-groupoids.

Definition 2.30 (ω-equivalence, def. 4 in [94]) For C ∈ ωCategories(Sets) we call two k-morphisms f
and g, k ∈ N, parallel if either k = 0 or if they have the same source and source and target (k−1)-morphisms
a and b

a

f

��

g

AA b .

There is an equivalence relation on parallel k-morphisms defined by coinduction as follows.

• The k-morphisms f and g are ω-equivalent, f ∼ g, if there exists a k + 1-morphism

a

f

��

g

AA b
ρ

��

which is weakly invertible.

• A k-morphism, f
ρ // g , k ≥ 1, is weakly invertible if there exists a k-morphism g λ // f such

that ρ ◦ λ ∼ i(g) and λ ◦ ρ ∼ i(f).

Definition 2.31 (core of ω-category in Sets) For C ∈ ωCategories(Sets) let Core(C) ↪→ C, the core of
C, denote the restriction of the ω-category to the globular subset of all weakly invertible morphisms of C.

Proposition 2.32 Core(C) is indeed an ω-category. Every ω-functor C → D in ωCategories(Sets) restricts
to an ω-functor Core(C)→ Core(D). Hence the core construction extends to a functor

Core : ωCategories(Sets)→ ωCategories(Sets) .

Definition 2.33 (core of ω-category in Spaces) For C ∈ ωCategories(Spaces) ' Sh(CartesianSpaces, ωCategories),
let Core(C) be plot-wise the core from proposition 2.32:

Core(C) : CartesianSpacesop C // ωCategories(Sets) Core // ωCategories(Sets) .

Definition 2.34 (ω-groupoids) A strict 2-groupoid is a strict 2-category such that the space of 2-morphisms
is a groupoid under both composition operations.

An ω-groupoid is an ω-category C such that for all k > l the 2-category Ck+1
//
// Cl+1

//
// Cl is a

strict 2-groupoid. A weak ω-groupoid is an ω-category C equal to its core, definition 2.33, C = Core(C).
An ω-group G is an ω-monoid, definition 2.21, such that BG is an ω-groupoid.
We write ωGroupoids(Spaces) ⊂ WeakωGroupoid(Spaces) ⊂ ωCategories(Spaces) for the full subcategoies

on (weak) ω-groupoids.

The core construction from above maps ω-categories to the maximal weak ω-groupoids inside them Core :
ωCategories→WeakωGroupoids.
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Crossed complexes. Crossed complexes are a condensed but equivalent way to encode the information
contained in ω-groupoids. They are a nonabelian generalization of complexes of abelian groups and hence
give rise to a nonabelian generalization of homological algebra. Therefore crossed complexes often lend
themselves to concrete computations more than the ω-groupoids to which they are equivalent. The theory
of crossed complexes was developed by Ronnie Brown and his school. A comprehensive monograph is [34].

Definition 2.35 (crossed complex of an ω-category) To every ω-category C ∈ ωCategories(K) we as-
sign its crossed complex

[C]• =


· · · δ // [C]3

δ //

��

[C]2
δ //

��

[C]1
δt //

δs

//

δs

��

[C]0

=

��
· · · =

// [C]0 =
// [C]0 =

// [C]0 =
// [C]0


given by the sequence of dashed horizontal morphisms in

· · ·
t //
s
// C5

t //
s

// C4

t //
s

// C3

t //
s

// C2

t //
s

// C1

t //
s
// C0

Id // C0

δ6 //___ C5 ×i(C4) C0

aaBBBBBBBB

!!BBBBBBBB
δ5 //___ C4 ×i(C3) C0

aaBBBBBBBB

!!BBBBBBBB
δ4 //___ C3 ×i(C2) C0

aaBBBBBBBB

!!BBBBBBBB
δ3 //___ C2 ×i(C1) C0

aaBBBBBBBB

!!BBBBBBBB
δ2 //___ C1

XX111111

��1
11111

δt //___

δs

//___ C0

XX111111

��1
11111

· · · // C0 =
//

i

OO

C0 =
//

i

OO

C0 =
//

i

OO

C0 =
//

i

OO

C0 =
//

i

OO

C0

Id

OO

=
// C0

Id

OO ,

where all objects in the center row are pullbacks using the source maps s and all dashed morphisms are
universal morphisms induced thereon from the target maps t. When C is an ω-groupoid [C] is called a
crossed complex of groupoids. In this case

• [C]1
δt //

δs

// [C]0 is a 1-groupoid and the [C]k // [C]0 , for all k ≥ 2, are skeletal 1-groupoids

(bundles of groups), abelian for k ≥ 2;

• the groupoid [C1] acts by conjugation on the [Ck], k ≥ 2,

[C]1 ×[C]0 [C]k

Ad

��

{{wwwwwwww

##GGGGGGGG

[C]1
δt

���������
δs

##GGGGGGGGG
[C]k

{{wwwwwwwww

[C]0 [C]0

[C]k

[[8888888

;

• the maps δk, k ≥ 2 are morphisms of groupoids over [C0] compatible with the action by [C1];

• im(δ2) ⊂ [C1] acts by conjugation on [C2] and trivially on [Ck], k ≥ 3;

• δk−1 ◦ δk = 0; k ≥ 3.
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A morphism of crossed complexes of groupoids is a collection of degreewise morphisms respecting all this
structure This yields a category CrossedComplexes(K) and the above construction extends to a functor

[−] : ωGroupoids(K)→ CrossedComplexes(K) .

Remark. For C ∈ ωGroupoids(Sets) its crossed complex [C] ∈ CrossedComplexes(Sets) is a crossed complex
of groupoids in the sense of [29], see p. 8 of [30]. An exhaustive treatment is in section 7 of [34]. The fact that
for [C] a crossed complex and k ≥ 3 the skeletal groupoid [C]k is necessarily a bundle of abelian groups can
be traced back to an Eckmann-Hilton argument, by which endomorphisms of a strict identity endomorphism
form a commutative monoid. It is the same kind of argument which shows that higher homotopy groups of
spaces are necessarily abelian.

Notice that the conjecture in [144], evidence for which is given in [90, 85, 121], says that a general ∞-
groupoid is an ω-groupoid in which identity k-morphisms satisfy their defining laws only up to ω-equivalence.
It is conceivable that these generalized ω-groupoids correspond to generalized crossed complexes which may
be non-abelian in all degrees.

Theorem 2.36 (Brown-Higgins [30, 32, 33]) The functor [−] : ωGroupoids(Sets)→ CrossedComplexes(Sets)
is an equivalence of categories.

Remark. A comprehensive discussion of this equivalence is in section 13 of [34].

Corollary 2.37 Also [−] : ωGroupoids(Spaces)→ CrossedComplexes(Spaces) is an equivalence of categories.

Proof. [** check **] �

Theorem 2.38 [** adjunction between crossed complexes and chain complexes **]

Remark. This is section 5 of [34]. Combined with corollary 2.37 proposition 2.17 this yields the inclusion

Sheaves(CartesianSpaces,ChainComplexes+(AbelianGroups(Sets))) ⊂ Sheaves(CartesianSpaces,CrossedComplexes(Sets))

· · · ' ωGroupoids(Spaces) .

Definition 2.39 (homotopy groups and homology groups of a crossed complex) For [C] a crossed
complex we say

• π0([C]) is the space of connected components, i.e. the pushout

C1
s //

t

��

C0

��
C0

// π0([C])

;

• π1([C]) := cokernel(δ2) = C1
Im(δ2) is the fundamental groupoid of [C];

• for k ≥ 2 and x ∈ [C0], πk([C], x) = kerδk(x)
imδk+1(x) is the kth homotopy group of [C].

Remark. This is the notation used for instance in [28] and it is well adapted for all cases where one wants
to think of C as modelling a space, in particular if C = Πω(X) for X a space and Πω(X) the fundamental
ω-groupoid of X from section 4.2.1. In cases where the alternative point of view of [C] as a nonabelian
generalization of a chain complex is preferable, it is more suggestive to write Hk([C], x) for πk([C], x) for
k ≥ 2, and speak of the kth homology group of [C]. This is the notation used in [34]. We shall use both
notations interchangeably, as convenient.
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Weak equivalences, fibrations and cofibrations. In sections 2.2.2, 2.2.3 and 2.2.4 we discuss weak
equivalences, fibrations and cofibrations in the general context of ωCategories(Spaces). Their restriction to
ωGroupoid, which is sufficient in many of our applications, yields the following notions from [28].

Definition 2.40 (weak equivalence) A morphism [f ] : [C]→ [D] of crossed modules is a weak equivalence
if it induces isomorohisms on the π0, π1, Hk.

Remark. See section 7.1.4 of [34] for details. Notice that from the point of view of crossed complexes
as nonabelian generalizations of chain complexes, this says that weak equivalences of crossed complexes
are indeed quasi-isomorphisms in the sense of homological algebra, namely morphisms which induce an
isomorphism on homology. This point of view is useful when comparing the relation between the homotopy
model structure on ωGroupoids(Spaces) with that on L∞Algebroids (section 2.4) under the∞-Lie integration
and differentiation maps, section 4.

2.2.2 Weak and surjective equivalences

Being “∞-structures”, ω-categories should live not just in the 1-category ωCategories from definition 2.11
but in some kind of ∞-category, for instance an (∞, 1)-category [21], giving rise to the homotopy theory
of ω-categories. A “presentation” for such (∞, 1)-categories is well known to be given by a Quillen model
structure [64, 72] on the 1-category ωCategories. A Quillen model structure can be regarded as a convenient
way to handle morphisms of arbitrary degree just in terms of 1-morphisms with extra properties, the possible
extra properties going by the name weak equivalences, fibrations and cofibrations.

A model category structure on ωGroupoids(Sets) is described in [28], a generalization to ωCategories(Sets)
in [94]. We want to generalize this, at least in parts, to

ωCategories(Spaces) = ωCategories(Sheaves(CartesianSpaces)) ' Sheaves(CartesianSpaces, ωCategories) .

The problem of lifting a model structure on a category of certain structures to the category of sheaves with
values in these structures is a familiar one for which various strategies and recipes exist. The main issue is
whether or not one takes the weak equivalences of sheaves to be globally or just locally (stalkwise) to be the
weak equivalences of the given structures.

Definition 2.41 (stalkwise property) Let P be a statement about diagrams in ωCategories. A diagram
D in Sheaves(CartesianSpaces, ωCategories) is said to satisfy P locally or stalkwise precisely if for all U ∈
CartesianSpaces its component diagram D(U) in ωCategories has the property that for every point x ∈ U there
is an open neighbourhood V ⊂ U of x such that the restriction D(V ) of D(U) to V satisfies P .

Much general theory has been developed for the case of global weak equivalences [46, 17, 18] but for the
purposes of cohomology theory the local choice is the natural one. This has been studied in detail for the
case of presheaves with values in simplicial sets [80] and for presheaves with values in spectra [26], where the
latter uses a slight variant of a Quillen model category structure: that of a category of fibrant objects.

We now exhibit on ωCategories(Spaces) the structure of a category of fibrant objects in this sense, for
which the weak equivalences are locally those of ωCategories(Sets) while the fibrations are globally the
fibrations of ωCategories(Sets). The local acyclic fibrations play an auxiliary role as the hypercovers which
crucially enter the discussion of ω-anafunctors in section 2.2.5, following [105], and then of cocycles in section
3, following [26] and [81].

The following definition is that of weak equivalences and of acyclic fibrations in ωCategories(Sets) from
[94], but formulated diagrammatically and hence internally in a way that is applicable to ωCategories(K) for
all contexts K.
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Definition 2.42 ((essential) k-surjectivity) An ω-functor F : C −→ D is 0-surjective if

F0 : C0 → D0

is an epimorphism. It is k-surjective for k ∈ N, k ≥ 1 if the universal morphism Ck //___ (Fk−1 × Fk−1)∗Dk =:
Pk in

Ck Fk

((

sk×tk

%%

%%LLLLLL

Pk //

��

Dk

sk×tk
��

Ck−1 × Ck−1
Fk−1×Fk−1 // Dk−1 ×Dk−1

is an epimorphism. The ω-functor is essentially k-surjective for k ∈ N if the composite

Ck //___ Pk // Pk/∼

is an epimorphism, for Pk/∼ the quotient space, definition 2.8, of ω-equivalence classes defined as follows:
Define Qk for k ∈ N by Q0 := Core(D)1, where Core(D) is the core of D as in definition 2.33, and for n ≥ 1
as the pullback Qk in

Qk //

��

Core(D)k+1

sk◦sk+1×tk◦tk+1

��
Ck−1 × Ck−1

Fk−1×Fk−1 // Dk−1 ×Dk−1

,

where the two morphisms Qk
σ //
τ
// Pk are for k = 0 given by σ = s and τ = t and are for k ≥ 1 by the two

universal morphisms in

Qk //

�������

���������

τ

yyr r r r r r
Core(D)k+1

t

vvnnnnnnnnnnnnn

s◦s×t◦t

~~|||||||||||||||||||

Pk

��

// Dk

s×t
��

Ck−1 × Ck−1
Fk−1×Fk−1

// Dk−1 ×Dk−1

Qk //

�������

���������

σ

yyr r r r r r
Dk+1

s

xxppppppppppp

s◦s×t◦t

�������������������

Pk

��

// Dk

s×t
��

Ck−1 × Ck−1
Fk−1×Fk−1

// Dk−1 ×Dk−1

.

The quotient space Pk/∼ in question is the coequalizer of these, i.e. the pushout

Qk
τ //

σ

��

Pk

��
Pk // Pk/∼

.

Remark. A detailed description of essential k-surjectivity and its meaning can be found in [12], around
definition 4, discussed there in the context K = Sets. Recall from lemma ?? that in the context K = Spaces
the epimorphisms are the local sections admitting maps, hence the local epimorphisms of Sets.

Definition 2.43 (weak equivalences in ωCategories(K)) An ω-functor f : C → D in ωCategories(K)
which is essentially k-surjective for all k ∈ N is a weak equivalence.

We write
f : C

' // D ⇐⇒ f is a weak equivalence .
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Remark. Weak equivalences of 1-categories are the familiar fully faithful and essentially surjective func-
tors; compare theorem 6.17. This follows from the elementary but remarkable fact, amplified in [12], that
faithfulness in the highest nontrivial degree is fullness in one degree higher.

Lemma 2.44 The weak equivalences in ωCategories(Spaces) ' Sheaves(CartesianSpaces, ωCategories(Sets))
are those morphism of sheaves which are locally weak equivalences of ωCategories(Sets) in the sense of [94].

Lemma 2.45 (weak equivalence of ω-groupoids and crossed complexes) A morphism f : C → D
of ω-groupoids is a (local) weak equivalence if and only if the induced morphism of crossed complexes is a
(local) weak equivalence of crossed complexes, definition 2.40.

Proof. The quotient kerδk/imδk+1 realizes precisely the space of ω-equivalence classes of k-automorphisms
of identity (k − 1)-morphisms. Hence surjectivity of Hk([f ]) : Hk([C])→ Hk([D]) is essential k-surjectivity.
The map is injective if and only we have essential (k+ 1)-surjectivity. [** polish and give more details **] �

Definition 2.46 (surjective equivalences) An morphism in ωCategories(K) which is k-surjective for all
k ∈ N is a surjective equivalence

Definition 2.47 (cofibrations and fibrations) Fix a faithful functor Sets→ K.

• The inclusions of globular sets I := {in : ∂Gn // Gn } from definition 2.47 become morphisms of
globular K-objects. These in are the generating cofibrations in ωCategories(K).

• The morphisms f : C → D with the right lifting property with respect to the generating cofibrations are
the I-fibrations.

∂Gn //

in

��

C

f

��
Gn //

<<z
z

z
z

D

• The morphisms with the left lifting property with respect to the I-fibrations are the cofibrations.

• The morphism with the right lifting property with respect to acyclic cofibrations (cofibrations which are
also weak equivalences) are the fibrations.

For K = Sheaves we speak of local I-fibrations, local cofibrations, local fibrations if the respective lifting
properties hold locally.

For K = Sheaves we take Sets→ Sheaves to be the functor which sends sets to the sheaves constant on them.

Lemma 2.48 (surjective equivalences and I-fibrations) We have

• surjective equivalences, definition 2.46, in
ωCategories(Sets) are precisely the I-fibrations for K = Sets.

• surjective equivalences in ωCategories(Spaces) are precisely local I-fibrations for K = Spaces.

Theorem 2.49 ([94]) There is a cofibrantly generated model structure on ωCategories(Sets) with the gen-
erating cofibrations and the weak equivalences as in definition 2.47 for K = Sets.
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Remark. Two types of model structure on categories and higher categories are known: a “topological”
type going back to Thomason [154] [67], later generalized to 2-categories [161] and cubical n-categories
[55], which relates under the nerve construction to the standard model structure on simplicial sets, and the
“categorical” or “folklore” one used here, generalized to 2-categories [91] (notice the erratum in [92]) and
ω-categories [94], in which the weak equivalences are the actual categorical equivalences.

Lemma 2.50 ([114]) With respect to the model structure on ωCategories(Sets) from theorem 2.49, surjective
equivalences are precisely the acyclic fibrations.

Proof. For S any set of morphisms, write rlp(S) for the set of morphisms having the right lifting property
with respect to S and llp(S) for the set of morphisms having the left lifting property with respect to S.
With I the set of generating cofibrations from definition 2.47 we have by definition SurjEqu = rlp(I) and
Cof = llp(SurjEqu) = llp(rlp(I)) and want to show that Fib ∩WEqu = SurjEqu = rlp(I). Notice that

rlp(I) = rlp(Cof)

since I ⊂ Cof which implies rlp(Cof) ⊂ rlp(I), and since generally S ⊂ rlp(llp(S)) for all S which implies
rlp(I) ⊂ rlp(Cof) for S = rlp(I).

Now the fact that we do have a model structure by theorem 2.49 says that Fib∩WEqu ⊂ rlp(Cof) which
with the previous statement says that Fib∩WEqu ⊂ SurjEqu. Since the converse Surj ⊂ Fib∩WEqu holds
trivially this yields the desired result. �

Reflecting this we introduce the notation

Definition 2.51 For f a morphism in ωCategories(K) we write

f : C
' // // D ⇐⇒ f is an I-fibration .

Remark. To emphasize: for K = Sets the notation C
' // D denotes precisely an acyclic fibration,

while for K = Spaces it denotes not necessarily an acyclic fibration but a local acyclic fibration (which may
be but need not be an acyclic fibration globally).

2.2.3 Cofibrations and pseudo-∞-functors

A detailed discussion of cofibrations in ωCategories(Sets) and cofibrant replacements (free resolutions) has
been given in [112], [93] and [113] following the concept of “polygraphs” in [39] (which is equivalent to the
much earlier introduced concept of computads by Ross Street).

[** free resolutions should be closely related to the left adjoint of the ω-nerve functor discussed at the
end of [149] and reviewed in section 3.1.1 – still needs to be discussed **]

Cofibrant ω-categories. An ω-category C is cofibrant if the unique morphism ∅ → C is a cofibrations,
i.e. if all ω-functors out of C into codomains of surjective equivalences can be lifted

A

'
����

C
F //

F̂

??�
�

�
�

B

.

We recall from [112, 113] how cofibrant ω-categories are precisely those that are degreewise freely generated.
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Recall n-graphs and n-categories from definition 2.16. Let nCategories+ be the pullback in

nCategories+ //

��

(n+ 1)Graphs

Vn

��
nCategories

Un // nGraphs

.

An object in nCategories+, which we denote ( Sn+1

s //
t
// C ), is an (n + 1)-graph S• equipped with the

structure of an n-category C on its truncation to an n-graph. There is an obvious forgetful functor Wn+1 :
(n+ 1)Categores→ nCategories+ arising as the universal morphism in

(n+ 1)Categories Un+1

((

''

Wn+1

QQQ

((QQQ

nCategories+ //

��

(n+ 1)Graphs

Vn

��
nCategories

Un // nGraphs

.

Lemma 2.52 This functor Wn+1 has a left adjoint Ln+1 : nCategories+ → (n+ 1)Categories.

Remark. Acting on ( Sn+1

s //
t
// C ) the functor Ln+1 is the identity on C and sends the space Sn+1 to

the space of all possible pasting diagrams of elements of Sn+1 (whiskered in all possibly ways by morphisms
in C).

Definition 2.53 (polygraph, [112]) Every 0-category is a 0-polygraph. For n ∈ N and n ≥ 1 an n-

category C(n) is an n-polygraph if it is of the form C(n) = Ln( Sn
s //
t
// Wn−1(C(n−1)) ) for C(n−1) an

(n− 1)-polygraph. An ω-polygraph is an ω-category C such that for all n ∈ N its truncation truncaten(C) to
an n-category is an n-polygraph.

Remark. An ω-polygraph is an ω-category obtained from “generators and relations”, where each relation
in degree n is itself a generator subject to relations in degree n+ 1.

Theorem 2.54 ([113]) Cofibrant objects in ωCategories(Sets) are precisely the ω-polygraphs.

Proof. Let C be a polygraph, A
' // // B a surjective equivalence and f : C → B any morphism. We need

to exhibit a lift f̂
A

'
����

C
f //

f̂
??~

~
~

~
B

.

Construct this recursively: choose any lift f̂0 of f0. This exist since A → B is surjective on objcts. Then,

assume a lift f̂k has been found. Use that Ck+1 = Lk+1( Sk+1

s //
t
// Ck ), choose a lift of maps of (n + 1)-

graphs from Sk+1, which exists because A → B is (k + 1)–surjective and then use the freeness property of
Lk+1 to extend this uniquely to a lfit f̂k+1. �
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Cofibrant replacements.

Definition 2.55 A good cofibrant replacement of an ω-category C is a surjective equivalence Ĉ
' // // C

with Ĉ a cofibrant ω-category.

Proposition 2.56 (functorial cofibrant replacement) There is a functor

(−)cof : ωCategories(Sets)→ ωCategories(Sets)

and a natural transformation

ωCategories(Sets)

(−)cof

''

Id

77
ωCategories(Sets)ρ

��

such that the components of ρ are good cofibrant replacements ∅ � � // Ccof
ρC // C .

Proof. We follow section 4.2 of [112]. Given C ∈ ωCategories(Sets) define ρ : Ccof → C with Ccof a
polygraph, definition 2.53, inductively as follows. First let C0

cof := C0 be the 0-category over the space of
objects of C and let ρ0

C : C0
cof

= // C0 be the identity. Then assume the k-category Ckcof and the k-functor

ρkC : Ckcof → truncatek(C) have been defined, as well as a section wk : Ck → (Ccof)k of the component (ρkC)k,
and set

Ck+1
cof := Lk+1( Dk+1

σ //
τ
// Ckcof ) ,

with Lk+1 the functor from lemma 2.52, and where Dk+1 is given by the pullback square

Dk+1
f //

��

Ck+1

s×t
��

(Ckcof)k × (Ckcof)k
(ρkC)k×(ρkC)k // Ck × Ck

.

Then let ρk+1
C : Ck+1

cof → truncatek+1(C) be the image of the canonical morphism (f, ρkC) in kCategories+

(with f from the above pullback diagram) under the isomorphism

Hom(( Dk+1

σ //
τ
// Ckcof ),Wk+1(truncatek(C))) ' Hom(Lk+1( Dk+1

σ //
τ
// Ckcof ), truncatek(C)) .

Finally take the directed limit over n: Ccof is the unique ω-category whose truncation at degree k is Ckcof

and ρ : Ccof → C the unique ω-functor whose restriction to degree k is ρkC , for all k ∈ N. We have by
construction, using theorem 2.54, that Ccof is cofibrant. It remains to be shown that ρC is a surjective
equivalence.

To check this, we need to check, by definition 2.42, whether the universal morphism in

(Ccof)k+1

((QQQQQQQ (ρC)k+1

((

s×t

''

Pk+1
f //

��

Ck+1

s×t
��

(Ckcof)k × (Ckcof)k
(ρkC)k×(ρkC)k // Ck × Ck
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admits local sections. But the pullback Pk+1 appearing here is precisely the Dk+1 in the above, while
(Ccof)k+1 is the underlying set of (k + 1)-morphisms of the free (k + 1)-category on Dk+1. So the section in
question is the unit of the adjunction

Dk+1
� � // W (L(Dk+1)) .

[** complete the end of the argument **]
�

Remark. This construction of Ccof has the advantage of being systematic, but in applications Ccof may
be an unconviently big realization of a cofibrant replacement of C. Notice, for instance, that (Ccof)cof is
also a cofibrant replacement of C which is even “bigger” than Ccof . To break down Ccof in special cases to
something more tractable, notice that the model category structure on ωCategories induces a model category
structure on nCategories by the inclusion nCategories ↪→ ωCategories. A cofibrant replacement Ĉ(n) of the
n-category C in nCategories is not the same as a cofibrant replacement Ĉ of C in ωCategories. But ω-functors
out of Ĉ(n) are special cases of ω-functors out of Ĉ.

We now describe the restriction of the above discussion to cofibrant replacements of 2-categories. This
reproduces the construction appearing in the proof of prop. 4.2 of [91].

Definition 2.57 For C a strict 2-category define a strict 2-category Ccof2 as follows:

• The objects of Ccof2 are those of C.

• The morphisms of Ccof2 are finite sequences of composable morphisms consisting of

– the morphisms of C;

– one new endomorphism ia for each object a of C.

• The 2-morphisms of Ccof are generated from finite sequences of horizontally composable 2-morphisms
of C together with new generators

b
g

��>>>>>>>>

a

f
??��������

g◦f
// c

cf,g' ��
a

��
ia

// a
ua' ��

for all composable 1-morphisms f, g and all objects a of C

subject to the relations [...] [tetrahedron, pillow and roll and compatibility identities as usual].

Lemma 2.58 In 2Categories the above 2-category Ccof2 is a cofibrant replacement of C.

Proof. To see that Ccof2 is weakly equivalent to C notice that the 2-functor on the right is 0-, 1- and 2-
surjective. Injectivity on 2-morphisms follows from the relations divided out in the construction of Ccof2 . To
see that Ccof2 is a cofibrant replacement in 2Categories of C consider

A

����
Ĉ

F //

F̂

??�
�

�
�

B

with A
' // // B a surjective equivalence and F any 2-functor, and find a lift F̂ as follows:
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1. choose lifts F̂ (a) ∈ Obj(A) of objects for all a ∈ Obj(Ĉ) = Obj(C);

2. choose lifts ( F̂ (a)
F̂ (f) // F̂ (b) ) ∈ 1Mor(A) of 1-morphisms, for all f ∈ 1Mor(C);

3. choose lifts of 2-cell generators

F̂ (a)

F̂ (f)

  

F̂ (g)

>>
F̂ (b)F̂ (ρ)

��

for all ρ ∈ 2Mor(C) and

F̂ (b)
F̂ (g)

""DDDDDDDD

F̂ (a)
F̂ (g◦f)

//

F̂ (f)
<<zzzzzzzz

F̂ (c)
F̂ (cf,g)��

for all additional 2-cell-generators in Ĉ.
All these lifts exists by the fact that A // // B is assumed to be a surjective equivalence. That F̂

defined this way is indeed 2-functorial follows from the fact that all images of identities between 2-cells in
Ĉ have to have lifts, by 3-surjectivity of A // // B to 3-morphisms of A. But since A is a 2-category this
makes them identities in A, too. (In other words: 3-surjectivity is 2-injectivity in 2Categories). For instance
the identity 3-morphism

F (a)

F (f1)

��

F (g1)

??

F (f2◦f1)

��

F (g2◦g1)

@@
F (b)

F (f2)

��

F (g2)

??
F (c)F (ρ1)

��

F (ρ2)

��

F (c−1
f1,f2

)

��

F (c−1
g1,g2

)
��

= // F (a)

F (f2◦f1)

��

F (g2◦g1)

AA
F (c)F (ρ1·ρ2)

��

in B is guaranteed to have a lift

F̂ (a)

F̂ (f1)

  

F̂ (g1)

>>

F̂ (f2◦f1)

��

F̂ (g2◦g1)

@@
F̂ (b)

F̂ (f2)

  

F̂ (g2)

>>
F̂ (c)F̂ (ρ1)

��

F̂ (ρ2)

��

F̂ (c−1
f1,f2

)

��

F̂ (c−1
g1,g2

)
��

F̂ (=) // F̂ (a)

F̂ (f2◦f1)

��

F̂ (g2◦g1)

AA
F̂ (c)F̂ (ρ1·ρ2)

��

,

which can only be an identity 3-morphism in A. �

ω-Functors out of cofibrant replacements allow to obtain weak morphisms between ω-categories, pseudo
ω-functors, those that respect all compositions and units only up to higher coherent equivalence:
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Definition 2.59 (pseudo ω-functor) For C, D ω-categories a pseudo ω-functor is a span of the form

Ccof

'

}}}}{{{{{{{{

!!CCCCCCCC

C D

with Ccof the cofibrant ω-category from definition 2.56.

To justify our use of the term “weak ω-functors” for ana-ω-functors out of cofibrant replacements, notice
that for n = 2, where a well-known version of weak n-functors between strict n-categories is available, this
concept is indeed reproduced:

Proposition 2.60 (pseudo 2-functors, [91]) For C and D strict 2-categories, pseudo 2-functors F : C →
D are in bijective correspondence with strict 2-functors

Ccof2

'

}}zzzzzzzz
F̂

""DDDDDDDD

C | // D

.

Proof. The components of the compositor and unitor of F are the images under F̂ of the new 2-cell gen-
erators cf,g and ia in Ĉ, respectively. The coherence condition for compositor and unitor are the relations
built into Ĉ. �

Remark. Pseudo 2-functors as strict 2-functors out of cofibrant replacements are treated in more detail
in section 4.1 of [91]. restricted to the case of one-object 2-groupoids is discussed in [120].

2.2.4 Fibrations and ∞-bundles

Fibrations in the category CrossedComplexes and hence, by the equivalence theorem 2.36, in the category
ωGroupoids, have been defined before the more general fibrations in ωCategories:

Definition 2.61 (fibration of crossed complexes of groupoids, [76]) A fibration of 1-groupoids is a
functor f : C → D which is 1-surjective on source fibers in that the dashed universal morphism in

D1 f1

$$

s

%%

%%J
J

J
J

J

C0 ×D0 D1

��

// D1

s

��
C0

f0 // D0

has local sections. A fibration of crossed complexes of groupoids is a morphism f : [C]→ [D] which restricts
to a fibration of 1-groupoids on all the groupoids

[C]k
s //
t
// [C]0

for k ∈ N.

See also [28].
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Conjecture. It should be true that the fibrations of crossed complexes in [76] are precisely those of [94]
restricted along the inclusion CrossedComplexes ' ωGroupoids ↪→ ωCategories. This still needs to be checked.
For the time being we will assume that it is true.

Corollary 2.62 All ω-groupoids are fibrant.

[** It ought to be true that even all ω-categories are fibrant. This is true for the restriction of the model
structure on ω-cat to 1Cat and 2Cat. **]

We now describe important examples of fibrations arising from pullbacks of path objects.

Definition 2.63 (interval object) Write I := { a // b } for the interval category consisting of two
objects and precisely one nontrivial 1-morphism between them.

Remark. Another common symbol for I is 2. I is also known as the second oriental I = O(∆1) (see
section 3.1.1) as well as the 1-globe I = O(G1), definition 2.18. In the context of ωGroupoids the interval

object is I' := { a ' // b }. We will be mainly interested in ω-categories hom(I, C) for C an ω-groupoid.
In this context one can equivalently take I to be I'.

Lemma 2.64 (path objects for ω-categories) For every C ∈ ωGroupoids the ω-category CI = hom(I, C)
is the path object of C in that we have that

C

C
� � ' // CI d0×d1 // //

d0

'

77 77nnnnnnnnnnnnnnn

d1

'

(( ((PPPPPPPPPPPPPPP C × C

pr1

OO

pr2

��
C

.

Proof. This is essentially lemma 2.5 in [28]. �
See also p. 421 of [26].

Definition 2.65 (tangent ω-category [126]) For C ∈ ωCategories(Spaces) and x : pt → C an object in
C we call the pullback TxC in

TxC

����

// CI

d0
����

pt x // C

the tangent ω-category of C at x. It comes equipped with the canonical map p : TxC // CI
d1 // C .

Lemma 2.66 For all ω-groupoids C, this morphism p : TxC // // C is a fibration.

Proof. This is a special case of one part of the proof of the “factorization lemma” in [26]: By corollary 2.62
all ω-groupoids are fibrant. Using that pullbacks of fibrations are again fibrations, we obtain for all fibrant
objects C and D that projections out of their product are fibrations

C ×D
pr2 // //

pr1
����

D

����
C // // pt
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and for all morphisms f : C → D that the top left vertical morphisms in the double pullback square

C ×D DI

id×d1
����

// DI

d0×d1
����

d0

����

C ×D
f×Id //

pr1
����

D ×D
pr1
����

C
f // D

.

is a fibration. Since composites of two fibrations are fibrations, it follows that p in

C ×D DI

id×d1
����

//

TTTTTTTT

p

** **TTTTTTTT

DI

d0×d1

����
C ×D

f×Id // D ×D pr2

// // D

is a fibration. Taking f to be pt x // C this yields the desired statement. �

Remark. As described in the following, tangent ω-categories play the role of universal ω-bundles [126, 71].
The term “tangent” alludes to their construction in terms of morphisms emanating at one object, which
corresponds to the fact, discussed in ??, that they arise from ∞-Lie integration of shifted tangent bundles.

There is a close relation between the notion of fiberd categories and the above fibrations:

Proposition 2.67 ((split op-)fiberd categories) For B a 1-category and Cat the 1-category of 1-categories
(split op-)fiberd categories p : E → B are precisely those functors arising from pullbacks of the universal category bundle
pCat : TptCat→ Cat.

E //

p

����

TptCat

pCar

����
B // Cat

.

Proof. After noticing [124] that TptCat ' Cat∗ is the “category of pointed categories” as defined in [71],
this is the corresponding theorem in [71]. �

Principal ω-bundles. For G an ω-monoid, definition 2.21, the global structures classified by H(−,BG)
are principal G ω-bundles. We observe the characterization of G-principal bundles for G a 1- or a 2-group
as pullbacks of the universal G-principal bundle [126] and take that as the definition of G-principal bundles
for general ω-groups G. We show that every pullback of the universal G-principal ω-bundle is a locally
trivializable G-torsor.

Definition 2.68 (universal G-principal bundle, [126]) For G an ω-monoid, we write EG := T•BG
for the tangent ω-category, definition 2.65, of the one-object ω-groupouid BG. We address the morphism
p : EG→ BG as the universal G-bundle.

Remark. In [126] EG was denoted INN(G) to indicate its relation to inner automorphisms of G.
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Proposition 2.69 (exact sequence of universal ω-bundle) For G an ω-monoid, the ω-category EG fits
into a short exact sequence of ω-monoids

G
i // EG

p // // BG

in that i is the kernel, definition 2.23, of p.

Proof. Consider the diagram

G //

��

T op
• BG //

��

pt

��
EG = T•BG //

��

BGI
d1 //

��

BG

pt // BG

.

The right and bottom square are pullback squares by definition. The top left square is a pullback by propo-
sition 2.29. Therefore the pasting composite of the two top squares is a pullback square. This says that i is
the kernel of p. �

Remark. For 2-groups this is in [126]. See there for some illustrative diagrams.

Definition 2.70 (G-action on EG) The inclusion G ↪→ EG naturally induces a G-action EG×G→ EG
[** write out details **].

Definition 2.71 (G-principal bundles) For G an ω-group and X ∈ Spaces, a G-principal bundle is a
morphism p : P → X of ω-categories together with an action r : P ×G→ P such that there is a G-cocycle

Y

'
����

// BG

X

and a G-equivariant weak equivalence g∗EG ' // // P , where p : g∗(EG) → X is the G-principal bundle
obtained as the pullback in

g∗EG //

��
p

��

EG

��
Y

'
����

// BG

X

.

Proposition 2.72 Let Y′ '
w // //

'

    BBBBBBBB Y

'~~~~}}}}}}}}

X

be a refinement of covers of X and let Y // BG be a cocy-

cle on Y. Then the G-principal bundles defined by g and by g◦w are weakly equivalent, w∗g∗EG ' // g∗EG .
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Proof. Consider the double pullback diagram

w∗g∗EG ' //

����

g∗EG //

����

EG

����
Y′

w

'
// Y

g // BG

.

The right vertical morphism is a fibration by lemma 2.66. Since fibrations are closed under pullback, so
are the other two vertical morphisms. This means that the top left horizontal morphism in question is the
pullback of a weak equivalence along a fibration. According to corollary 2.76 further below, this implies that
it is also a weak equivalence. �

Morphisms of G-principal bundles are concordances induced from morphisms of cocycles. Suppose that
two cocycles g and g′ are defined on the same cover and are homotopic in that there is a transformation

Y

g

��

g

AABGη

��

. This is equivalent to a left homotopy, namely a morphism [g, g′] : Y ⊗Gray I → BG

out of the cylinder object Y ⊗ I, where the Gray-tensor product is that which raises categorical dimension.
This gives rise to a concordance of the corresponding 2-bundles over the interval

[g, g′]∗(EG) //

��
π

  

EG

��
Y ⊗ I

[g,g′] //

����

BG

X ⊗ I
.

[** soG-principal ω-bundles withG-equivariant ω-anafunctors between them are classified byG-cohomology
etc. pp. **] We are grateful for discussion with Konrad Waldorf about this point.

[** close discussion, **]

Proposition 2.73 For G an n-group with n = 1 or n = 2, the above notion of G-principal bundles is
equivalent to that of ordinary G-principal bundles and G-principal 2-bundles [15, 14, 160], respectively.

Proof. This is discussed in section 5.4.2. �

Remark. G-principal bundles with connection are obtained in section 3.3.4 by refining the cocycles g :
Y → BG. The general picture is illustrated in figure 2 where the pulled back G-bundles just discussed appear
in the top part of the diagram, whereas the remainder of the diagram encodes the differential refinement of
the cocycle and its characteristic forms.

2.2.5 The homotopy category

Given a notion of weak equivalences in a category C, the homotopy category Ho is the universal category
containing C in which all weak equivalences in C becomes isomorphisms. Using theorems by K.-S. Brown and
Jardine, we can characterize the morphisms in the homotopy category of ωCategories(Spaces) conveniently as
colimits over homotopy classes of morphisms out of a cover of the domain ω-category. These hom-spaces of
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Ho are the home of the cohomology theory described in section 3. If we instead do not divide out homotopy of
morphisms this procedure generalizes the notion of anafunctors [105] to ω-anafunctors and yields a bicategory
Ho which we address as the weak homotopy category of ωCategories(Spaces). Composition operations in this
weak homotopy category allow useful operations on nonabelian cocycles, section 3.2.

Proposition 2.74 (homotopy structure on ωCategories(Spaces)) The category ωGroupoids(Spaces) [**
probably also ωCategories(Spaces), check**] becomes a category of fibrant objects in the sense of [26] by
setting

• weak equivalences are the local weak equivalences from definition 2.43 for K = Spaces;

• fibrations are the global fibrations, i.e. the morphisms with the right lifting property with respect to the
generating cofibrations of definition 2.47.

Proof.

• Weak equivalences satisfy 2-out-of-3 since they do so locally, using [28, 94].

• Fibrations are closed under composition because they are given by a right lifting property by definition.

• Fibrations and acyclic fibrations are closed under pullback because they are both (locally) given by a
right lifting property by lemma 2.50.

• The path object CI of C is hom(I, C) for I the interval category and hom the internal hom. By the
discussion in section 2.2.4. [** check details **]

• Objects are fibrant by corollary 2.62.

�

Definition 2.75 (right proper model structure) A category with weak equivalences and fibrations is
right proper if weak equivalences are closed under pullback along fibrations.

Corollary 2.76 The category ωGroupoids(Spaces) is right proper.

Proof. Follows by lemma 2 in [26] from proposition 2.74. �

For such model categories there is a relatively explicit description of their homotopy categories, due to
[26] and [81]. We discuss that in terms of the weak homotopy category enriched in ω-categories which yields
the ordinary strict homotopy category after passing to equivalence classes.

Definition 2.77 (ω-covers) Given C ∈ ωCategories(Spaces), write ωCovers(C) for the category of ω-covers

(hypercovers of ω-categories) of C whose objects are local acyclif fibrations π : Y
' // // C and whose

morphisms are commuting triangles
Y

π

'     @@@@@@@@
// Y′

π′

'~~~~}}}}}}}}

C

.

Let similarly Replacements(C) be the category whose objects are just required to be local weak equivalences.

π : Y
' // // C
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Definition 2.78 (ω-anafunctors) A span in ωCategories

D̂

'
����

f̂ // D

C

with left leg a local acyclic fibration is an ω-anafunctor f : C | // D .

We regard ordinary ω-functors as ω-anafunctors whose left leg is an identity.

Remark. The anafunctor terminology follows [105] where the the concept was introduced (without the
model-theoretic interpretation) in 1Categories(Sets) and 2Categories(Sets) and [15] which followed [105] and
considered internal anafunctors in 1Categories(ConcreteSpaces).

Definition 2.79 (composition of ω-anafunctors) Given two ω-anafunctors f : C | // D and g :
D | // E their composite

g ◦ f : C | // E

is given by the span

(f̂)∗D̂ //

'
����

D̂
ĝ //

'
����

E

Ĉ

'
����

f̂ // D

C

.

Proposition 2.80 This composition of ω-anafunctors is well defined.

Proof. We need to check that the composite morphism f∗D̂ // Ĉ
' // // C is again a local acyclic fi-

bration. This is since local acyclic fibrations are closed under pullback and under compoition (using locally
that this is true for acyclic fibrations). �

Remark. This composition is not strictly associative, as usual when composition involves pullbacks. There
is instead a bicategory (a weak 2-category) Ho of ω-anafunctors, a “weak homotopy category”. See below.

Theorem 2.81 (ana-invertibility of weak equivalences) Let C and D be weak ω-groupoids, definition

??. Then every local weak equivalence f : C
' // D has a weak ana-inverse f−1 : D | // C in that

C
f−1
// D |

f // C is right homotopic to the identity.

Proof. On the level ωCategories(Sets) this is a direct consequence of proposition 5 in [94] after observing
that for C any ω-category the ω-category Γ(C) from their theorem 2 is CI := hom(I, C).
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On pages 5 and 6 of [94] in total the following diagram is considered.

C
f

'
//

f̃'

���
�
�
�
�
�

Id

��

D� _

��

Id

��

C ×D DI
f ′ //

f̂−1'

����

p '

55 55DI

π1

'
����

π2
' // // D

C
f

' // D

.

The notation is adapted to our needs here.
Corollary 2 in [94] says that π1 and π2 are acyclic fibrations, remark 9 says that f̃ and f̂−1 are weak

equivalences and proposition 5 says that p is an acyclic fibration. Hence we can take the inverse ω-anafunctor
to be given by the span

C ×D DI
f̂−1
//

p'
����

C

D

.

Then the above diagram, using the interpretation of DI as the path object of D, says that f ′ exhibits a right
homotopy:

C ×D DI

f̂−1

zzvvvvvvvvv
p

$$ $$HHHHHHHHH

C
f

// D
t| qqqqqq

:⇔
C ×D DI

p×(f◦f̂−1) //

f ′

((RRRRRRRRRRRRRRR D ×D

DI

π1×π2

OO
.

[** discuss generalization to ωCategories(Spaces) **] �

Theorem 2.82 ([26], theorem 1) There is an isomorphism, natural in C,D ∈ ωCategories(Spaces), be-
tween the set of morphisms from C to D in the homotopy category Ho of ωCategories(Spaces) and the
equivalence classes of the Hom-ω-categories in the weak homotopy category

Ho(C,D) ' colimY∈Replacements(C) hom(Y, D)/∼ .

A similar characterization is available for right proper model categories from theorem 2 in [81].
[** discuss the following: for ωGroupoids equivalence classes in hom(C,D) are in bijection to homotopy

classes of morphisms C → D. Moreover, adapting [81] to ω-categories we expect that we can pass from
left legs being local weak equivalences to left legs being local acyclic fibrations. Then writing Ho for the
bicategory of ω-anafunctors the above should say that morphisms in the homotopy category are equivalence
classes of morphisms in the ω-anafunctor bicategory

Ho(C,D) ' Ho(C,D)/∼

**]
Following [26] and [81] we address the Hom in the weak homotopy category as cohomology.
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Definition 2.83 (cohomology on ωCategories with coefficients in ωCategories) For C,A ∈ ωCategories(Spaces)
we call

H(C,A) := Ho(ωCategories(Spaces))[C,A]

the cohomology ω-category of C with coefficients in A.
Alternatively, we call this the equivariant cohomology of the space C0 with respect to Mor(C).

Terminology.
• cocycles are the objects of H(C,A);
• coboundaries are the 1-morphisms of H(C,A);
• higher coboundaries are the higher morphisms of H(C,A);
• cohomology classes are the ω-equivalence classes in H(C,A).

Remark. In section 3.1.2 we give a definition of cohomology on spaces with coefficients in ω-category
valued presheaves in terms of descent. The relation of that notion to the definition above is provided by the
notion of codescent in section 3.1.3.

2.3 Quantities

Following [95] we address co-presheaves on our site CartesianSpaces, definition 2.1, as the quantities cor-
responding to the smooth spaces given by sheaves, definition 2.2. These quantities include and generalize
algebras of C∞-functions and modules over these of C∞-sections of vector bundles on smooth spaces. In anal-
ogy to how Spaces are refined to higher structures by passing to their graded refinement ωCategories(Spaces),
quantities are refined to higher structures by considering differential graded commutative algebras over C∞-
functions. These are naturally identified with (the duals of) ∞-Lie algebroids and provide the linearized
version of smooth ω-categories.

Definition 2.84 (Quantities [95]) Write Quantities := SetsCartesianSpaces for the co-presheaf category of
quantities with values in CartesianSpaces.

As a co-presheaf category there is a canonical monoidal structure on Quantities, where for A,B ∈ Quantities
we have A×B : Rk 7→ A(Rk)×B(Rk) .

Definition 2.85 (C∞-monoids) A monoid internal to the monoidal category Quantities is a C∞-monoid,
equivalently a copresheaf on CartesianSpaces with values in Monoids. The chain of canonical inclusions of
categories Algebras ↪→ Modules ↪→ VectorSpaces induces a chain of types of smooth quantities

C∞VectorSpaces oo ? _

:=

C∞Modules oo ? _

:=

C∞Algebras � � //

:=

C∞Monoids
� � //

=

Quantities

:=

VectorSpacesCartesianSpaces oo ? _ModulesCartesianSpaces oo ? _AlgebrasCartesianSpaces � � // MonoidsCartesianSpaces � � // SetsCartesianSpaces

.

Notice that for A ∈ C∞Monoids the monoid structure pA : A × A → A comes with associative and unital
component maps pA(Rk) : A(Rk) × A(Rk) → A(Rk) for all k ∈ N which equips each set A(Rk) with the
structure of a monoid.

Remark. The notion of C∞-monoids is essentially the same concept as that considered in [116], from
where we borrow the terminology. [** give more details on precise relation**]

Important examples of C∞-algebras and C∞-modules over them comes from function algebras and sec-
tions of vector bundles over smooth spaces.
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Definition 2.86 (C∞ function algebras) For X ∈ Spaces the functor

C∞(X) := Hom(X,−) : CartesianSpaces→ Sets

naturally inherits the structure of an object in Algebras. This is the algebra of smooth functions on the space
X.

The component morphism of the product is induced from the entry-wise multiplication ·k : Rk × Rk → Rk:

pC∞(X)(Rk) : Hom(X,Rk)×Hom(X,Rk) ' // Hom(X,Rk × Rk)
Hom(−,·k) // Hom(X,Rk) .

Definition 2.87 (C∞ sections) For p : E → X a vector bundle in Spaces the set of sections ΓSets(E) ∈
Sets of E is the pullback in

ΓSets(E)

��

// pt

const(Id)

��
Hom(X,E)

p∗ // Hom(X,X)

.

This set becomes a C∞-vector space and in fact a C∞(X)-module Γ(E), the C∞-module of sections by setting

Γ(E) : Rk 7→ ΓSets(E ⊗ Rk) .

2.4 ∞-Lie algebroids

Definition 2.88 (C∞-qDGCAs) For X ∈ Spaces, a quasi-free differental graded-commutative algebra over
A := C∞(X), or qDGCA for short, is a non-positively graded cochain complex g of A-modules together with
a degree +1 derivation d : ∧•Ag∗ → ∧•Ag∗ (linear over the ground field) squaring to 0, d2 = 0. Write qDGCAs
for the category of such algebras with morphisms the morphisms of C∞Algebras which respect the differential.

Here g∗ := HomAModules(g, A) is the dual over A and ∧•Ag∗ := SymA(g∗[1]) is the graded Grassmann algebra
of g∗ over A.

Remark. More explicitly, the graded C∞-vector space underlying CE(g) is ∧•Ag∗ = SymA(g∗[1]) =
A︸︷︷︸
0

⊕ g∗0︸︷︷︸
1

⊕ g∗0 ∧ g∗0 ⊕ g∗1︸ ︷︷ ︸
2

⊕ · · · . This differs from the DGCAs familiar from rational homtopy theory [70]

(only) in that tensor products are not over the ground field but over the commutative C∞-algebra A.

Definition 2.89 (differential forms on Spaces) Write Ω• ∈ Spaces for the deRham sheaf Ω• : U 7→
(Ω•(U), ddR) which assigns to each U ∈ CartesianSpaces the differential graded commutative algebra of dif-
ferential forms on U .

Remark. In rational homotopy theory this corresponds to the map given for instance in definition 1.20 of
[70].

Proposition 2.90 For X ∈ Spaces the space Ω•(X) := hom(X,Ω•) naturally carries the structure of a
qDGCA over Ω0(X) = C∞(X). This is the qDGCA of differential forms on X. The construction extends
to a contravariant functor Ω• : Spaces→ qDGCAs.

Definition 2.91 (∞-Lie algebroid) Given X ∈ Spaces and g a non-positively graded cochain complex of
(A := C∞(X))-modules a qDGCA-structure (∧•Ag∗, d) equips g with a family of n-ary brackets. Equipped
with these brackets we call (g, A) a ∞-Lie algebroid or L∞-algebroid over X and

CEA(g) := (∧•Ag∗, d)

the Chevalley-Eilenberg algebra of the (g, A).
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By definition L∞Algebroids are equivalent to C∞qDGCAs with the equivalence being induced by forming
the Chevalley-Eilenberg algebra

C∞qDGCAs L∞Algebroids
CE(−)

'
oo .

Types of L∞-algebroids. The following special cases are distinguished:

• A Lie n-algebroid is an L∞-algebroid with g concentrated in the first n degrees.

• An L∞-algebra is an L∞-algebroid with X = pt.

• A Lie n-algebra is a Lie n-algebroid with X = pt.

• A strict L∞-algebroid is an L∞-algebroid with d : g∗ → g∗ ⊕ g∗ ∧A g∗.

• A dg-Lie algebra is a strict L∞-algebra.

Definition 2.92 (Weil qDGCA) For CEA(g) = (∧•Ag∗, dg) the Chevalley-Eilenberg qDGCA of an L∞-
algebroid (A = C∞(X), g) over the space X, the Weil algebra is the C∞qDGCA

WA(g) :=
(
∧•A(Γ(TX)∗ ⊕ g∗ ⊕ g∗[1]), dW(g) :=

(
dg 0
σ −σ ◦ dg ◦ σ−1

))
,

where the matrix on the right is the schematic action of the differential dW(g) on generators defined as
follows: define σ : WC∞(X)(g) → WC∞(X)(g) by letting σ|g∗ : g∗

'→ g∗[1] be the canonical isomorphism
and letting σ|∧•

C∞(X)Γ(TX)∗ = ddR be the deRham differential on X and extending σ uniquely as a graded
degree +1 derivation. Then dW(g) is defined by dW(g)|∧•C∞(X)∧•g∗ := dg + σ and dW(g)(σa) := −σ(dga) for
all a ∈ C∞(X)⊕ g∗[1].

Since WA(g) is itself a qDGCA it is itself the Chevalley-Eilenberg algebra of some L∞-algebroid. Following
[132], we call this the L∞-algebroid inn(g) of inner derivations of g and write

WA(g) = CEA(inn(g)) .

Remark. In parts of the literature L∞-algebroids are conceived in the context of supermanifolds whose
Z2-grading is refined to an N-grading and which are equipped with a homological vector field (an odd and
nilpotent vector field): the GCA underlying CEA(g) is interpreted as the algebra of smooth functions on
the supermanifold and the differential dg is identified with the homological vector field. In this context
the Weil algebra WA(g) is the algebra of functions on the shifted tangent bundle of this supermanifold. A
comprehensive discussion of this point of view is in [109].

Definition 2.93 (algebra of invariant polynomials) For g an L∞-algebroid, the DGCA inv(g) of invariant polynomials
or basic forms on g is as a GCA (∧•g∗[1])/d−1

W(g)(g
∗ ∧W(g)) equipped with the differential obtained by re-

stricting dW(g) to this quotient.

Proposition 2.94
CE(g) W(g)oo inv(g)oo

0

dd
.

[** state the universal property of this sequence, relate to obstruction problem from cocycles to flat differential
cocycles **]

[** review of the necessary concepts from [132] **]
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g∗EG //
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Y

π
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'
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g //
I i

vvmmmmmmmmmmmmm
BGM m

{{wwwwwwwww

��

Codesc(Y,Πω)
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Πω(X) P // B[BG]

Figure 2: Nonabelian differential cocycles for principal ω-bundles with connection. The cocycle g
mapping the codescent ω-groupoid Codesc(Y,P0) (the Čech groupoid) of a cover π : Y → X of base space
X to the one-object ω-groupoid BG defines a G-principal ω-bundle g∗EG, the pullback of the universal
G-principal ω-bundle EG → BG (section 2.2.4). A flat connection on this is an extension ḡflat of g to
the differential codescent ω-groupoid Codesc(Y,Πω) which is surjectively equivalent to the fundamental ω-
groupoid Πω(X) of X. In general such a flat connection does not exist, but a non-flat connection given by
a morphism ḡ to the ω-groupoid BEG does. Its non-vanishing curvature is measured by the characteristic
classes P , closed differential forms represented by an ω-functor from the fundamental ω-groupoid to B[BG],
where [BG] is an ω-groupoid providing a rational approximation to BG. The ω-groupoids BEG and B[BG]
are obtained from ∞-Lie integration of L∞-algebras (section 3.3.4).

3 Homotopy and Cohomology

As recalled by Ross Street in [152], it is originally an insight due to John Roberts [125] (arrived at, remarkably,
through a study of algebraic quantum field theory) that cohomology is about coloring simplices by ∞-
categories.

Notice that categories generalize groups,∞-categories generalize complexes of abelian groups and sheaves
of ∞-categories generalize sheaves of complexes of abelian groups. Nonabelian Čech cohomology (of spaces)
generalizes (abelian) Čech cohomology by allowing sheaves of complexes of abelian groups to be replaced by
sheaves (rectified stacks) of ∞-categories.1

We define

• cohomology with coefficients in ω-category valued presheaves A : Spacesop → ωCategories in terms of
descent: H(X,A) is the ω-category of objects of A on a hypercover of X which glue;

• homotopy with coefficients in ω-category valued co-presheaves A : Spaces → ωCategories in terms of
codescent: π(X,A) is the ω-category of objects of A on a hypercover of X which co-glue.

The definition of cohomology follows that introduced by Ross Street in [149] and further discussed in [151].
We define ω-stacks to be presheaves A which are equivalent to cohomology with coefficients in them. We

define ω-costacks to be co-presheaves A which is equivalent to homotopy with coefficients in them.
1It has been argued elsewhere (e.g. [100]) that more appropriate coefficients of the cohomology are (stacks of) homotopy types

(e.g. cohomology does not detect the automorphisms of the coefficient group); and other model categories for homotopy theory
may be substituted. The approach in [100] gives a satisfactory approach for obtaining cohomology sets with such coefficients,
but it does not supply more structure than a pointed set on the cohomology, while our examples tell us that the nonabelian
cocycles make a higher category themselves.
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3.1 ∞-Stacks and ∞-costacks

3.1.1 ω-Categories and simplicial objects

Cohomology and homotopy arise from gluing values of ω-category valued presheaves and co-presheaves,
respectively. The glue is provided by ω-categories modelling the n-simplex, for all n ∈ N, and arranging
themselves into cosimplicial ω-categories, definition 3.3. Depending on how much invertibility one demands,
there are the following three choices:

symbol name description

O(∆n) the nth oriental
the free ω-category
on the n-simplex

U(∆n) the nth unoriental
the free weak ω-groupoid
on the n-simplex

Πω(∆n)
the fundamental ω-groupoid
on the filtered n-simplex

the free ω-groupoid
on the n-simplex

All three constructions are natural in n and give rise to cosimplicial ω-categoriesO,U,Πω : ∆→ ωCategories(Sets).

The orientals were introduced by Ross Street [149]. They provide the fundamental relation between the
simplicial and globular structures and give rise to an adjunction.

Proposition 3.1 ([149]) There is an adjunction

ωCategories(Sets)
N //

oo
F

SimplicialSets

with F left adjoint to N , where the ω-nerve N(C) of an ω-category C is obtained by mapping orientals into
C

N(C) : ∆(−) O // ωCategories
Hom(−,C) // Sets

and where the free ω-category F (S) on the simplicial set S is given by the coend F (S) =
∫ [n]∈∆

O(∆n) · Sn.

The explicit description of higher orientals quickly becomes unwieldy as n-grows. Compare table 5. If C
is a weak ω-groupoid or even an ω-groupoid, definition 2.34, then one can map equivalently the free weak
or, respectively, the free ω-groupoids over the orientals into C. The free weak ω-groupoids over orientals we
call unorientals and describe below. The free ω-groupoid on the n-oriental is the fundamental ω-groupoid
on the filtered n-simplex which is described in section 9.9 of [34].

Fundamental ω-groupoid of filtered n-simplex.

Remark. The fundamental ω-groupoid Πω(∆n) of the standard n-simplex regarded as a filtered space has
as objects the vertices of ∆n, as invertible 1-morphisms the edges, as invertible 2-morphisms the triangular
faces and, generally, as invertible k-morphisms the k-face of ∆n.

Recall from section 2.2.1 the notation [Πω(∆n)] of the crossed complex underlying Πω(∆n). Notice that
in in [34] what we write Πω(∆n) is denoted ρ(∆n) and what we write [Πω(∆n)] is Π∆n there.

Proposition 3.2 (homotopy addition lemma, [34]) The crossed complex [Πω(∆n)] underlying the fun-
damental ω–groupoid of the standard filtered n-simplex is

· · · δ4 // F (∆n
3 )

δ3 // F (∆n
2 )

δ2 // F (∆n
1 )

δs //

δt

// F (∆n
0 )
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where F (∆n
0 ) = [n] = {0, 1, · · · , n} is the free 0-groupoid over the set of vertices of ∆n, i.e. just that set of

vertices, F (∆n
1 ) is the free 1-groupoid over the graph of edges of ∆n, and F (∆n

k ) for k ≥ 2 is the bundle of
groups over [n] which over each point is the free group on the set of k-faces of ∆n. [** is that said well and
right? improve **] The maps δk, k ≥ 2 are give as follows:

δ2 : σ2 7→ 2
(∂1σ

2)−1

// 0
∂2σ

2
// 1

∂0σ
2
// 2

∂3σ
3 = Adu3(∂3σ

3)− ∂0σ
3 − ∂2σ

3 + ∂1σ
3

δkσ
k = Adun(∂nσn) +

n−1∑
i=0

(−1)n−i∂iσn for k ≥ 3 .

Here σk is the unique k-cell of the standard k-simplex and ∂i are the ordinary face maps. un is the edge ...

Proof. This is section 9.9 of [34]. �

Remark. Once recognizes the familiar formulas for boundaries of abelian chains, but there is a nonabelian
twist given by the adjoint action of the 1-morphisms on one of the elements.
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g

}}

f

!!

η +3 ωCategories

Figure 3: Higher morphisms between cosimplicial ω-categories. The diagram illustrates the enrich-
ment in ωCategories of cosimplicial ω-categories from lemma 3.4. Here S, T : ∆ → ωCategories are two
cosimplicial ω-categories internal to Spaces, f, g : S → T are two 1-morphisms between them and η : f ⇒ G
a 2-morphism betwen these. The upper diagram shows the component ω-functors and their naturality
condition. All parallel diagrams on the right strictly commute.

Cosimplicial ω-categories.

Definition 3.3 (cosimplicial ω-categories) A cosimplicial ω-category is a functor ∆→ ωCategories.
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Lemma 3.4 (enrichment of ωCategories∆ over ωCategories) Using the closed monoidal structure on ωCategories,
the category ωCategories∆ of cosimplicial ω-categories is naturally enriched over ωCategories by taking the
internal hom to be the end (see section 6.2)

Hom(S([−]), T ([−])) :=
∫

[n]∈∆

Hom(S([n]), T ([n]) .

Proof. This follows from general facts in enriched category theory [89] (section 2.2) since both ∆ and
ωCategories can be regarded as enriched over ωCategories. �
We are grateful to Dominic Verity for discussion of this point. The component-wise enrichment mechanism
is illustrated in figure 3.

Unorientals.

Definition 3.5 (codiscrete groupoid) The codiscrete groupoid Codisc(S) over a set S is the 1-groupoid
with S as its set of objects and S × S as its set of morphisms, with composition being (b, c) ◦ (a, b) = (a, c)
for all a, b, c ∈ S.

The codiscrete groupoid over a set can be thought of as a model for a discrete contractible space, since

obviously there is a weak equivalence Codisc(S)
'w // pt . We need “bigger” resolutions of the point, built

using the cofibrant replacements constructed in definition 2.56.

Definition 3.6 (fundamental ω-category of a discrete contractible space) For S a set and n ∈ N,
we write

Pn(S) := (Codisc(S))cofn

for the cofibrant replacement, definition 2.56, in nCategories of the codiscrete groupoid over S and write

Pω(S) := (Codisc(S))cof

for the cofibrant replacement in ωCategories of the codiscrete groupoid over S.

Remark. The notation here is alluding to the concept of fundamental ω-groupoids of smooth spaces in
section 4.2.1. This will make manifest the phenomenon which enters crucially in section 4.4, that nonabelian
cocycles are akin to ω-functors out of fundamental ω-groupoids of (fiberwise) contractible spaces.

Notice the following way to look at the simplicial category ∆, which is particularly suggestive in the
present context:

Definition 3.7 (simplicial category) The category ∆ is the full subcategory of Categories on categories
[n] freely generated from linear graphs of length n.

[0] = {0}

[1] = { 0 // 1 }

[2] = { 0 88// 1 // 2 }

...

Let P≥ω ([n]) be the full sub-ω-category of Pω([n]) on those 1-morphisms along which the sequences of objects
are non-decreasing.
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Frobenius property

Figure 4: Unorientals. The nth unoriental is the universal cofibrant resolution of the codiscrete 1-groupoid
on n + 1 objects. ω-Functors out of unorientals map paths of paths in Pω([n]) to Frobenius algebroids
(monoidoids, in general) with invertible product and with coproduct the inverse of the product. Compare
with proposition 3.10.
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Lemma 3.8 For all n ∈ N there is an ω-anafunctor [n] | // Pω([n]) given by

P≥ω ([n])
'

{{vvvvvvvvv
� s

%%KKKKKKKKKK

[n] | // Pω([n])

.

Lemma 3.9 (unorientals) This ana-embedding of [n] into Pω([n]) uniquely induces the structure of a
cosimplicial ω-category Pω, called here the unorientals:

Pω : ∆→ ωCategories .

Remark. As we discuss now, unorientals are like Street’s orientals but such that every morphisms has an
inverse.

Orientals. The bridge between simplicial methods and globular ω-categories is usually established by
Ross Street’s orientals [150]. The n-th oriental O(∆n) ∈ ωCategories(FinSet) is to be thought of as the free
n-category on a single n-simplex.
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.

Figure 5: Orientals. The n-th oriental O(∆n) ∈ nCategories ⊂ ωCategories is the free n-category on a single
n-simplex. The first five orientals are shown explicitly. Here O(∆3) is to be thought of as a tetrahedron,
filled by the 3-morphism 3→, which we have depicted after slicing it open. Similarly for O(∆4). Diagrams
for the orientals O(∆5) and O(∆6) can be found in [149].
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The precise definition for all n needs a bit of combinatorics [149, 150], but the basic idea is clear from
looking at the first few orientals for low n, shown in figure 5. By design, orientals arrange themselves into a
cosimplicial ω-category

O(∆(−)) : ∆ → ωCategories(FinSet) ⊂ ωCategories(Spaces)
[n] 7→ O(∆n) .

Remark. Notice that for n ≥ 1 the nth oriental O(∆n) is not weakly equivalent to the point. As a
consequence, the codescent objects in section 3.1.3 obtained from descent defined in terms of orientals are
not weakly equivalent to the object on which they define descent. This is in contrast to the codescent
obtained using Pω([n]). However, the difference should be negligible as long as the coefficient objects are
ω-groupoids. For instance the Frobenius law in Πω([3]) displayed in figure 4 follows automatically for images
of O(∆[3]) in a 2-groupoid:

Lemma 3.10 The image of the third oriental in a 2-groupoid automatically satisfies the Frobenius property.

Proof. Write the image in string diagram notation (see glossary) as

i

j

k

l

++++++++

��������

99999999

							 =

i

j

k

l

++++++++

��������

������

FFFFFFFFFF .

Since we assume this to live in a 2-groupoid, the vertices denote invertible 2-morphisms:

i k

j

j

///////

�������

�������

///////
= i kj , i j k�������

///////

�������

/////// = i k .

Using this the Frobenius law follows:

i

j

k

j′

99999999

							

�������

8888888

=

i

j′

j

k

j′

++++++++

��������

99999999

							

�����
?????

�������

8888888

=

i

j′

j

k

j′

++++++++

��������

������

FFFFFFFFFF

�����
?????

�������

8888888

=

i

j

j′

k

++++++++

�������������
?????

�
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3.1.2 Descent

Descent is descent of structures from “local resolutions” down to the resolved space. The archetypical
example are resolutions of just points, i.e. ω-categories weakly equivalent to the point, the terminal ω-
category. We discussed such resolutions of points in section 3.1.1 and relate them to free ω-groupoids over
Street’s orientals, which in turn are free ω-categories on single n-simplices. Both orientals and “unorientals”
form cosimplicial ω-categories, in terms of which one can give a comparatively concrete description of cocycles
and coboundaries in nonabelian cohomology following Street’s definition of ω-categories of descent data. This
is in section 3.1.2. The relation to the conception of cohomology in terms of ω-anafunctors as in section 2.2.5
is obtained via the notion of codescent in section 3.1.3.

The notions of descent and codescent can be formulated relative to any choice of cosimplicial ω-category
G(∆(−)) : ∆ → ωCategories which functions as glue and provides a globular version of simplices. We have
use of the choices

G =

 O
U
Πω

,

where the unorientals U(∆n) and in particular the free ω-groupoids Πω(∆n) on the standard filtered n-
simplex are relevant for descent and codescent themselves, while the orientals O(∆n) are relevant for the
general relation between ω-categories and simplicial sets. So let from now on G be one of these choices, with
G = Πω.

Recall the enrichment of cosimplicial ω-categories by ω-categories from lemma 3.4.

Definition 3.11 (ω-category of descent data) Given an ω-category valued presheaf A : Spacesop →
ωCategories and a hypercover π : Y • // X the ω-category of descent data on Y with coefficients in
A is the end

Desc(Y •, C) :=
∫

[n]∈∆

hom(G(∆n),A(Y [n+1]))) .

Remark. For G = O the orientals, this formula is equivalent to the formula given by Street on p. 339 of
[150] and on p. 32 of [151]. We are indebted to Dominic Verity for discussion of this reformulation of Street’s
descent in terms of ends.

Lemma 3.12 There is a canonical morphism into the ω-category of descent data on Y • → X from the
ω-category on X:

ī : A(X)→ Desc(Y,A) .

Proof. The canonical morphisms

A(X) ' // hom(G(∆0),A(X))
hom(i∗,π

∗) // hom(G(∆n),A(Y [n+1]))

for all n ∈ N form an exceptional natural family. By the universal property of the end this yields the unique
morphism ī such that all diagrams

A(X)

**

$$

ī

((RRRRRRR

Desc(Y,A) //

��

hom(G(∆n),A(Y [n+1]))

��
hom(G(∆m),A(Y [m+1])) // hom(G(∆m),A(Y [n+1]))
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commute. �

Definition 3.13 (ω-stack) An ω-category valued presheaf A : Spacesop → ωCategories is an ω-stack if for
all hypercovers π : Y • → X we have that the canonical morphism from ī : A(X) → Desc(Y •,A) from
definition 3.12 is a weak equivalence:

A is ω-stack ⇔ for all hypercovers π : Y • → X : A(X) '
i
// Desc(Y •,A) .

Definition 3.14 (cohomology with coeffients in ω-category valued presheaves) The cohomology with
coefficients in A : Spacesop → ωCategories(Spaces) is

H(−,A) := colimY Desc(Y,A) .

Remark (ω-stackification). Cohomology itself is an ω-category valued presheaf

H(−,A) : Spacesop → ωCategories(Spaces) .

Applying H(−,−) makes an ω-category valued presheaf get closer and closer to being an ω-stack. This is
ω-stackification.

[** it should be true that H(−,A) is an ω-stack. but good proof is missing currently **]

3.1.3 Codescent

Where descent for presheaves with values in ω-categories gives rise to cohomology, dually there is a notion of
codescent for copresheaves. Codescent for co-presheaves with values in ωCategories gives rise to a generalized
notion of homotopy.

Recall from section 3.1.2 that we denote by G a fixed cosimplicial ω-category.

Definition 3.15 (ω-category of codescent data) Given an ω-category valued co-presheaf A : Spaces→
ωCategories and a hypercover π : Y • // X the ω-category of codescent data on Y with coefficients in A
is the coend

Codesc(Y •, C) :=
∫ [n]∈∆

G(∆n)⊗A(Y [n+1])) .

Remark. Notice that for G = O the orientals, codescent for P0, with P0(X) the discrete ω-category on
the space X, the codescent object on a simplicial set Y • is the free ω-category S(Y •) on that set, from
proposition 3.1.

We introduce codescent as the translation from the notion of cohomology from section 3.1.2 to that in
section 2.2.5.

Lemma 3.16 There is a canonical morphism from the codescent object to the base ω-category

π̄ : Codesc(Y,A)→ A(X) .

Proof. The canonical projection

A(Y n+1)⊗G(∆n) ' // // A(Y n+1)
π∗ // A(X)

50



for all n ∈ N is clearly an extraordinary conatural family. By the universal property of the codescent object
from proposition 3.21 this yields the unique morphism π̄ such that all diagrams

A(X) oo
UU

Codesc(Y,A)

π̄

hhP P P P P P P

A(Y [n+1])⊗G(∆n)oo

A(Y [m+1])⊗G(∆m)

OO

A(Y [m+1])⊗G(∆n)

OO

oo

commute. �

Definition 3.17 (ω-costacks) A copresheaf A : Spaces → ωCategories(Spaces) is an ω-costack if for all
hypercovers Y • → X the canonical morphism from lemma 3.16 is a weak equivalence

Codesc(Y,A) ' // A(X) .

Theorem 3.18 (Πω is an ω-costack) The fundamental path copresheaf Πω : Spaces→ ωCategories(Spaces)
from section 4.2 is an ω-costack.

Proof. For n = 1 this is a theorem in [136] and for n = 2 in [138]. [** for higher n this is conjectural for the
time being **] �

Remark. One can understand this as a version of the van Kampen theorem, whose interpretation in terms
of groupoids and 2-groupoids is due to Ronnie Brown [34]. See also section 7 of [108].

This provides the connection between the notion of cohomology of ω-category valued presheaves on
spaces, definition 3.14 and the notion of cohomology as hom-objects in the weak homnotopy category of
ω-categories, definition 2.83.

Corollary 3.19 For Π : Spaces → ωCategories(Spaces) an ω-costack and for C ∈ ωCategories(Spaces) any
ω-category and X ∈ Spaces any space, there is a canonical faithful functor

H(X,hom(Π(−), C)) ↪→ Ho(Π(X), C) .

Proof. By proposition 3.21 we have H(X,hom(Π(−), C)) ' colimY hom(Codesc(Y,Π), C). By the ω-
costack property of Π we have that hom(Codesc(Y,Π), C) is an ω-category of ω-anafunctors of the form

Codesc(Y,Π)

'
��

// C

Π(X)

. �

Remark. In section 3.3.4 we discuss coefficient presheaves of the form hom(Π(−), C) with Π an ω-costack
as differential nonabelian cohomology. For these coefficients the above corollary relates cohomology in terms
of descent to cohomology in terms of ω-anafunctors, definition 2.83.

Definition 3.20 (homotopy) Homotopy with coefficients in A : Spaces→ ωCategories(Spaces) is

π(−,A) := limY Codesc(Y,A) .
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Remark. For A = Πω this yields a refinement of the ordinary notion of homotopy groups πn(X), in that
these are the homology groups, definition 2.39, of the crossed complex [π(X,Πω)].

Proposition 3.21 For A : Spaces→ ωCategories(Spaces) we have

Desc(Y,hom(A(−), C)) ' hom(Codesc(Y,A), C)

naturally in C ∈ ωGroupoids(Spaces).

Proof. Using that the contravariant internal hom takes colimits to limits, lemma 6.12, and hence coends to
ends: the right hand is

· · · ' hom(
∫ [n]∈∆

O(∆n)⊗A(Y [n+1]) , C) '
∫

[n]∈∆

hom(O(∆n)⊗A(Y [n+1]) , C)

and the hom-adjunction inside the internal hom (e.g. [89] (1.27)) yields

· · · '
∫

[n]∈∆

hom(O(∆n),hom(A(Y [n+1]), C)) =: Desc(Y,hom(A(−), C)) .

Each step in this derivation is natural in C. �

We now evaluate the general statements about codescent in low dimensional examples.

Proposition 3.22 (Čech groupoid is codescent for n = 1) In 1Categories the codescent object Ππ(X)
for Π = P0 is the familiar Čech groupoid C(Y ) of π : Y → X.

Ππ(X) = ( Y × Y
π1 //
π2

// Y ) .

Proof. The coend then restricts to a joint colimit over a handful of diagrams which can all be analysed
separately. The diagrams

C(Y ) P0(Y )⊗O(∆0)oo

P0(Y [2])⊗O(∆1)

OO

P0(Y [2])⊗O(∆0)

π1⊗Id

OO

Id⊗({•}7→{a})
oo

C(Y ) P0(Y )⊗O(∆0)oo

P0(Y [2])⊗O(∆1)

OO

P0(Y [2])⊗O(∆0)

π2⊗Id

OO

Id⊗({•}7→{b})
oo

have as top horizontal morphism the inclusion of the the objects of the Čech groupoid and as left vertical
morphism the inclusion of the morphisms. Their commutativity is the source-target matching condition in
the Čech groupoid.

Notice that the 2-morphisms of O(∆2) ⊗ P0(Y [3]) are triangles labeled in points in Y [3]. Hence the
diagrams

C(Y ) P0(Y [2])⊗O(∆1)oo

P0(Y [2])⊗O(∆2)

OO

P0(Y [2])⊗O(∆1)

π12⊗Id

OO

Id⊗(d∗0)
oo
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etc. encode the composition law in the Čech groupoid. �

It is helpful to draw a couple of pictures for morphisms in O(∆(n)) ⊗ P2(Y [n+1]) to recognize all the
generators discussed in [138]. For instance the 2-morphisms in O(∆(1)) ⊗ P2(Y [2]) = {a → b} ⊗ P2(Y (2))
coming from tensoring the interval with 1-paths γ : x→ y in Y [2] are those square degree 2-generators

(a, x)

��

(γ,a) // (a, y)

��
(b, x)

(γ,b)
// (b, y)

}� ���������������

���������������

Proposition 3.23 (codescent for n = 2 [138]) Assuming for convenience that Y = tiUi is a good cover
by open subsets, the codescent 2-groupoid Pπ0 (X) is generated from 2-morphisms

(x, j)

##GGGGGGGG

(x, i) //

;;xxxxxxxx
(x, k)

��

∣∣∣∣∣∣∣∣∣∣
(x, i, j, k) ∈ Uijk


subject to the associativity relation

∀(x, i, j, k, l) :

(x, j) // (x, k)

��
(x, i)

OO <<yyyyyyyyyyyyy
// (x, l)

��
6666

6666

�� �
��

���
=

(x, j) //

""EEEEEEEEEEEEE
(x, k)

��
(x, i)

OO

// (x, l)

�� ����
����

��
%%%

%%%
.

Proof. It follows that the inverse 2-morphisms

(x, j)

##GGGGGGGG

(x, i) //

;;xxxxxxxx
(x, k)

KS

satisfy a similar co-associativity relation. It also follows that the original triangles together with their inverses
satisfy a mixed Frobenius relation. Using this one shows [138] that the canonical projection Pπ0 (X)→ P0(X)
is indeed a weak equivalence. �

3.2 Operations on cocycles

Natural operations on cocycles include the construction of their lifts, twisted lifts and obstructions to lifts
through extensions of their coefficient object, as well transgression of cocycles to mapping spaces.

3.2.1 Lifts, twisted lifts and obstructions to lifts

A morphism f : BĜ→ BG of ω-groups naturally induces a morphism of cohomologies

f∗ : H(−,BĜ)→ H(−,BG) .
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The question to which degree this morphism has a right inverse is the obstruction problem for lifts through
f .

BBn−1U(1)

��
BĜ

��

� v

ker(p)

((RRRRRRRRRRRRRRR

X |
g //

twLift(g)
11

|
obstr(g)

55

|
ĝ

::

BG |' // B(Bn−1U(1)→ Ĝ)
p // BBnU(1)

19
qy llllllllll]e

�%
CCCC

Figure 6: Obstruction theory for lifts of nonabelian cocycles through shifted central extensions
Bn−1U(1) → Ĝ → G. The lift ĝ of the G-cocycle g is obstructed by the BnU(1)-cocycle p ◦ twLift(g),
where twLift(g) is a twisted Ĝ-cocycle, namely a (U(1) → Ĝ)-cocycle, a lift to which always exists for a
sufficiently fine cover Y. Crossed arrows denote ω-anafunctors, i.e. ω-functors out of surjective equivalences
(hypercovers), see section 2.2.5. The fact that the nontriviality of the horizontal composite precisely ob-
structs the lift of the G-cocycle g to the Ĝ-cocycle ĝ is the statement that the canonical inclusion of Ĝ
into the weak quotient Ĝ//Bn−1U(1) := (Bn−1U(1) ↪→ Ĝ) is the homotopy kernel of the projection p. See
section 3.2.1.

Recall definition 2.23 of kernels and cokernels of morphisms of ω-monoids.

Definition 3.24 (well-defined obstruction problem) We say a morphism f : BĜ → BG induces a

well-defined obstruction problem if f has a factorization BĜ
� � i // BG̃

' // BG such that the cokernel p
of i exists,

BĜ

f

��

� p

i

!!CCCCCCCC

BG BG̃
'oo p // coker(i)

,

and such that i is weakly equivalent to the homotopy kernel of p:

holim


BĜ

f

��
pt // coker(i)

 '−→ BĜ .

In this situation the following fact about homotopy limits applies. See [142] for the general issue of
homotopy coherent category theory.

Lemma 3.25 In some model category, let

A×C B //

��

A

��
B // C
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be an ordinary pullback which happens to be weakly equivalent to the homotopy limit

holim


A

��
B // C

 '−→ A×C B .

Assume that A, B and C are fibrant and consider a cofibrant object V and a diagram

V //

��

A

��
B // C

>F

~� ������

������

which commutes up to homotopy, as indicated by the double arrow. Then threre is a universal morphism
V //___ A×C B such that the following diagram commutes up to homotopy as indicated

V

##H
H

H
H

H

!!

%%

A×C B //

��

A

��
B // C

7?

w� wwwwwwwww

wwwwwwwww

.6nv ffffff
JR


� �
���

We are grateful to Michael Batanin for discussion of this point.

Proposition 3.26 (obstruction theorem) A cocycle g : X | // BG has a lift through f : BĜ → BG
to a BĜ-cocycle ĝ

BĜ

f

��
X |

g //

ĝ
==|

|
|

|
BG

if and only if the composite

X |
g // BG |' // BG̃ // coker(p)

is homotopic to the trivial cocycle (factoring through pt), where BG '→ BG̃ is the weak inverse of BG̃ '→ BG
guaranteed to exist by theory 2.81.

Proof. Consider the diagram of ω-anafunctors

BĜ

!!CCCCCCCC

X |
g //

|}
}

ĝ
>>}

}

BG |' // BG̃ // coker(p)

.

In terms of spans of ω-functors representing this we get a diagram

BĜ

!!CCCCCCCC

X̂

>>}
}

}
}

//

//

BG̃
p // coker(p)

pt

OO4<

t| pppppppp

pppppppp

KS

��
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for X̂
' // // X the acyclic fibration giving the ω-anafunctor. We can assume without restriction of generality

that X̂ is cofibrant, for if it is not we can simply pass to a cofibrant replacement. Being ω-groups, all other
objects involved are fibrant, by proposition 2.62.

Therefore, given a homotopy between the horizontal map and the map through the point, as indicated by
the lower double arrow, the assumptions appearing in lemma 3.25 are met and hence the dashed morphism
and the upper double arrow exist.

[** ... **] �
See also figure 6.

A special interesting case of obstruction problems comes from shifted central extensions of ω-groups.

Definition 3.27 (shifted central extension) A shifted central extension of ω-groups is an n-group Ĝ and
an abelian 1-group A yielding an extension of the form

Bn−1A // Ĝ // G

such that the crossed module corresponding to (Bn−1A ↪→ Ĝ) is

A
� � // Ĝn

// Ĝn−1
// · · · // Ĝ1

with A central in Ĝn.

Lemma 3.28 This yields indeed a well-defined obstruction problem in the sense of definition 3.24 in that
the canonical inclusion

BĜ→ B(BU(1) ↪→ Ĝ)

is weakly equivalent to the homotopy kernel of the canonical projection p : B(Bn−1A ↪→ Ĝ)→ BnA.

Proof. Expressing p in terms of crossed modules of groupoids it is immediate from definition 2.61 that p is
a fibration. Since all ω-groupoids are fibrant according to proposition 2.62 the conditons in example 4.2 in
[41] are met which imply that the homotopy kernel in question, which is the homotopy limit of the diagram

pt // B(BA ↪→ Ĝ) BĜ
poo

is weakly equivalent to its ordinary limit. This ordinary limit is nothing but BĜ. �

This situation is summarized in section 3.34 in terms of twisted nonabelian cohomology. We formulate
the consequences of this in section 3.34 in terms of twisted cohomology.

3.2.2 Transgression of cocycles

Definition 3.29 (transgression) Transgression of cocycles is the covariant inner hom in the weak homo-
topy bicategory Ho: for g : C | // D a cocycle regarded as an ω-anafunctor and for B another ω-category,
the transgression of g to hom(B,C) is

τ(g) := hom(B,−) : hom(B,C) | // hom(B,D) .

[** discuss inner hom of ω-anafunctors **]

Remark. Transgression of differential 2-cocycles to loop spaces by inner hom is discussed in [137, 138].

Proposition 3.30 (trangression of differential forms) On differential cocycles representing ordinary
differential forms, this notion of transgression coincides with the classical one.

Proof. For n = 2 in [137]. �
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3.2.3 Construction of cocycles by killing of homotopy groups

[** the following discussion eventually should be given more generally **]
In the constructions in section 4.4.1, it may happen that a construction of a cocycle g : Π(X) | // BG

proceeds via the construction of morphism f : Π(Y ) // BH where neither Π(Y ) is weakly equivalent to
Π(X), nor BH to BG, but both become so after killing of homotopy groups. Suppose for simplicity that Y
is connected and that [Π(Y )] has all homotopy groups, definition 2.39, equal to [Π(X)] except for the kth,
k ≥ 3, which vanishes for [Π(X)].

Then there is an injection
[BBk−1Hk([Π(Y )])] // [Π(Y )]

and we kill πk([Π(Y )]) by forming the pushout crossed complex

[Y ×BBk−1Hk([Π(Y )])] //

��

[Π(Y )]

��
[Y ×BEBk−1Hk([Π(Y )])] // [Π(Y )] ∪ [BEBk−1Hk([Π(Y )])]

,

where

[Y ×Bbk−1Hk([Π(Y )])] = (
⊔
y∈Y

Hk([Π(Y )], y) δk+1 // 0 // · · · // 0
//
// Y )

and where

[Y×BEBk−1Hk([Π(Y )])] = (
⊔
y∈Y

Hk([Π(Y )], y) δk+2=Id//
⊔
y∈Y

Hk([Π(Y )], y) δk+1// 0 // · · · // 0
//
// Y ) .

This follows section 7.4.3 of [34].
By slight abuse of notation we write Π(Y ) ∪ BEBk−1Hk([Π(Y )]) for the ω-groupoid corresponding to

the pushout crossed complex according to theorem 2.36.

If we similarly kill this group in BH and if ĝ in the diagram

Π(Y )
f //

� _

��

Π(X)� _

��
Π(Y ) ∪ Y ×BEBk−1Hk([Π(Y )])

ĝ //

'
��

BH ∪BEBk−1Hk([Π(Y )])

'

��
Π(X) BH

exists, then we say that f satisfied the right integrality condition to yield a cocycle.
[** ... **]

3.3 Types of cohomologies

Cohomology with coefficients in ωCategories(Spaces) ' Sheaves(CartesianSpaces, ωCategories(sete)) general-
izes the classical notions of

• sheaf cohomology / Čech cohomology with coefficients in complexes of sheaves of abelian groups;

• equivariant versions of cohomology with respect to a group action;
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– group cohomology (equivariant cohomology of the point) with coefficients in abelian groups;

• differential cohomologies

to more general coefficients and more general equivariance conditions on the domains. Generalizations of
sheaf cohomology have been considered mostly in the context of (pre)sheaves of simplicial sets [82], which is
different from but closely related to sheaves of ω-categories. In parts of the literature the term “nonabelian
cohomology” is used for group cohomology with nonabelian coefficients [12], which is really just a special
case of equivariant nonabelian cohomology of the point.

On the other hand, one should beware of the old terminology clash that many of these classical examples,
as well as their generalizations, are not examples of what are called “generalized cohomology theories” in
algebraic topology: functors from topological spaces to abelian groups satisfying the generalized Eilenberg-
Steenrod axioms. For one, a “generalized cohomology theory” in the Eilenberg-Steenrod sense is always
homotopy invariant. This axiom fails for instance manifestly for all differential cohomology theories (even
those geared towards “generalized cohomology theories” [74]).

It seems that little is known about the general relation between the Eilenberg-Steenrod generalization
of cohomology theories and the generalization to nonabelian cohomology theory considered here or in [82],
little beyond the observation of the fact that most of the familiar “generalized cohomology theories” have
cocycle representatives which do happen to be also cocycles in nonabelian cohomology: ordinary integral
cohomology is represented by the “nonabelian cohomology”H(X,BnZ) classifying higher line bundles/higher
abelian gerbes, K-theory in degree 0 by H(X,BU × Z) classifying complex vector bundles, and elliptic
cohomology/TMF is expected to be geometrically represented by some kind of 2-vector bundles.

The following section 3.3.1 describes sheaf cohomology / Čech cohomology as a special case of nonabelian
cohomology, and section 3.3.2 similarly considers equivariant and group cohomology. Section 3.2.1 discusses
the lifting problem in nonabelian cohomology and introduces the notion of twisted nonabelian cohomology.
Finally section 3.3.4 defines differential nonabelian cohomology and discusses non-flat differential cohomology
in terms of the extension problem in nonabelian cohomology.

3.3.1 Sheaf cohomology / Čech cohomology

Theorem 3.31 (Čech cohomology with coefficients in complexes of sheaves of abelian groups)
For X ∈ Manifolds and A : Spacesop → ωGroupoids such that the presheaf of crossed complexes [A] :
Spacesop → CrossedComplexes is a presheaf of complexes of abelian groups, the (ordinary) Čech cohomology
of X with values in [C] coincides with the cohomology obtained from definition 3.11.

H(X, [A]) ' H(X,A)∼ .

Proof. Since [A] is an ω-groupoid-valued presheaf we can use G(∆n) = Πω(∆n) in the definition of descent.
Translating the inner hom of ω-groupoids in the integrand of Desc(Y,A) :=

∫
n∈∆

hom(Πω(∆n),A(Y [n+1]))
to an inner hom of crossed complexes Desc(Y,A) :=

∫
n∈∆

hom([Πω(∆n)], [A(Y [n+1])]) and then using the
explicit description of [Πω(∆n)] from the homotopy addition lemma, lemma 3.2, shows that the end mani-
festly computes the Čech double complex A(Y [•+1])•. �

3.3.2 Equivariant cohomology / group cohomology

From the perspective of cohomology on ω-categories, equivariant cohomology is the generic case: for C an
ω-groupoid, the cohomology of C, H(C,D), can be regarded as C-equivariant cohomology on the discrete ω-
category C0 over the space of objects of C. In applications equivariant cohomology is more often understood
as the special case of this situation where C is an action groupoid of a group acting on a space.
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Definition 3.32 (equivariant cohomology with respect to group action) For G a group and ρ : X×

G→ X a G-action on X ∈ Spaces, write X//G := ( X ×G
ρ //

pr1

// X ) for the corresponding action groupoid.

For D ∈ ωCategrories any coefficient object, we say that equivariant cohomology HG(X,D) of X with coeffi-
cients in D is the cohomology of X//G with coefficients in D:

HG(X,D) := H(X//G,D) .

Group cohomology is the special case of equivariant cohomology for X = pt. Notice that the action
groupoid of a group acting on a point is nothing but the one-object groupoid BG determined by G, pt//G =
BG.

Proposition 3.33 (group cohomology, [34]) The nth group cohomoloy of a group G with coefficients in
an abelian group K is

Hn(G,K) := H(pt//G,BnK) = H(BG,BnK) .

Proof. By inspection of the boundary maps of the crossed module corresponding to the universal resolution
of BG. Details are in section 12 of [34]. �

3.3.3 Twisted cohomology

Recall the discussion of lifts, twisted lifts and obstructions of lifts from section 3.2.1.

Definition 3.34 (twisted cohomology) We say that H(−,B(Bn−1U(1)→ Ĝ)) is the twisted Ĝ coho-
mology. The canonical morphism

twLift : H(−,BG)→ H(−,B(Bn−1U(1)→ Ĝ)

is the twisted lift, the canonical morphism

tw : H(−,B(Bn−1U(1)→ Ĝ)) // H(−,BBnU(1))

is the projection onto the twist and their composite

obstr : H(−,BG) twLift // H(−,B(Bn−1U(1)→ Ĝ)
tw // H(−,BBnU(1))

is the obstruction to the lift.

The result of section 3.2.1 then says:

Corollary 3.35 (obstruction theorem for shifted central extensions) Let Bn−1U(1) → Ĝ → G a
shifted central extension. Then a G-cocycle g ∈ H(X,BG) has a lift to a Ĝ-cocycle ĝ ∈ H(X,BĜ) if and
only if the cocycle obstr(g) ∈ H(X,BBnU(1)) is equivalent to the trivial cocycle.

Special cases.

Lemma 3.36 For every n ∈ Z we have the shifted central extension

BnZ // BnR modZ// BnU(1) .

Corollary 3.37 We have an equivalence

H(−,BnU(1)) ' // H(−,Bn+1Z) .

Proof. Use that BnR ' // pt [** spell out details: need to refine above argument from classes to cocycles
**] �

We are grateful to Thomas Nikolaus for discussion of this point.
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3.3.4 Differential cohomology

Flat differential cohomology is equivariant cohomology with respect to the the smooth fundamental path
ω-groupoid, described in section 4.2.1, hence cohomology with coefficients in hom(Πω(−),BG). Fake-flat
differential cohomology is cohomology with coefficients in hom(Pn(−),BG). Non-flat differential cohomology
is about the obstruction to lifting nonabelian cohomology to flat differential cohomology.

Definition 3.38 (trivial ω-bundles with connection) For Π : Spaces → ωCategories(Spaces) and C ∈
Categories(Spaces) we say

CTrivBundΠ := hom(Π(−), C)

is the presheaf of trivial C-principal ω-bundles with Π-connection. In particular

• CTrivBund := CTrivBundP0 (definition 2.20) is the presheaf of trivial C-principal ω-bundles;

• CTrivBundΠω (definition 4.13) is the presheaf of flat C-principal ω-bundles with connection;

• CTrivBundPn (definition 4.13) is the presheaf of fake-flat C-principal ω-bundles with connection with
curvature in degree (n+ 1).

Definition 3.39 (nonabelian differential cohomology) For Π : Spaces→ ωCategories(Spaces) and C ∈
Categories(Spaces) nonabelian differential cohomology HΠ(−, C) relative to Π with coefficients in A is

HΠ(−, C) := H(−, CTrivBundΠ(−)) .

Remark. For low n the discussion of nonabelian differential cohomology classifying fake-flat smooth prin-
cipal G-n-bundles ((n− 1)-gerbes) with connection is in [11, 136, 137, 138, 107].

Proposition 3.40 (Deligne cohomology) nth Deligne cohomology of X is HPn(X,BnU(1)) .

Proof. One first shows that the crossed complex [hom(Pn(−),BnU(1))] is the sheaf of chain complexes of
abelian groups

C∞(−,R/Z) d // Ω1(−) d // · · · d // Ωn(−)

with C∞(−,R/Z) in degree n and Ωn(−) in degree 0 (the sheaf of objects). The claim then follows with
theorem 3.31. �
For n ≤ 2, this is proven in [138].

Remark. This says that in the abelian case, G = Bn−1U(1), fake-flatness is automatic and no extra
condition.

Definition 3.41 (ω-category of C-torsors) Restricting the cohomology presheaf H(−, CTrivBundΠ(−))
from Spaces to CartesianSpaces yields, via the equivalence proposition 2.17, an ω-category internal to Spaces
which, due to the discussion in section 2.2.4, we call CTorΠ, the ω-category of C-torsors relative to Π. For
Π = P0 we write just CTor := CTorΠ.

According to section 3.1.2, CTor can be regarded as the ω-stackification of CTrivBund.

Lemma 3.42 The canonical inclusion C ↪→ CTor is a local weak equivalence.

Remark. Notice the following tautological but useful situation. Nonabelian C-cocycles X | // BG
were introduced as maps out of resolutions of X into BG. With the above definition and since by Yoneda
hom(X,CTor) ' H(X,C) we can regard them alternatively as maps into the coresolution CTor of BG

X

""EEEEEEEE BGmM

'
{{wwwwwwwww

GTor

.
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Remark. It is familiar from differential versions of “generalized cohomology theories” [74] such as Deligne
cohomology refining integral cohomology and differential K-theory refining K-theory that cocycles for dif-
ferential cohomology can be realized as bundles with connection. Compare the remark at the beginning of
section 3.3.

Non-flat differential cohomology and curvature. The definition of non-flat differential cohomology,
its curvature and characteristic forms, proceeds via∞-Lie integration of diagrams in L∞Algebroids, discussed
in section 4.

Definition 3.43 (universal ω-groupoids) We say a smooth ω-groupoid C ∈ ωGroupoids(Spaces) is universal
if there is a L∞-algebroid g, definition 2.91, such that C is equals the un-truncated ∞-Lie integration, defi-
nition 4.20, of g:

C is universal ⇔ C = Πω(S(CE)(g)) .
Accordingly a smooth ω-group G is universal if BG is a universal smooth ω-groupoid.

Remark. The idea is that every ω-groupoid internal to ConcreteSpaces should be the quotient of a universal
smooth ω-groupoid by a discrete ω-group, in some sense.

Definition 3.44 For G a universal smooth ω-group with g ∈ L∞Algebroids such that

BG = Πω(S(CE(g)))

define ω-groups
BEG := Πω(S(W(g)))

and
BBG := Πω(S(W(g)basic)) ,

where CE(g) is the Chevalley-Eilenberg algebra of g from definition 2.91, W(g) is the Weil algebra of g from
definition 2.92 and where W(g)basic = inv(g) is the algebra of invariant polynomials from definition 2.93.

The ∞-Lie integration of the sequence CE(g) W(g)oo W(g)basic
oo from proposition 2.94 yields

the sequence
BG // BEG // BBG .

Definition 3.45 Regarding the two sequences iX : P0(X)→ Πω(X)→ Πω(X) and BG // BEG // BBG
as (images of) functors i, f : I → ωCategories(Spaces) on the double interval category I ∪ I := {a→ b→ c}
we set

hom(iX , f) := hom


P0(X)

i��
Πω(X)

Id��
Πω(X)

,

BG
��

BEG
��

BBG

 :=
∫

a∈I∪I

hom(iX(a), f(a)) .

Lemma 3.46 This construction hom(iX , f) is contravariantly functorial in X and hence extends to a
presheaf hom(i−, f) : Spacesop → ωCategories(Spaces).

Definition 3.47 (non-flat differential cohomology and curvature) For G a universal smooth ω-group,
we say that differential cohomology with curvature of G is

H̄(−,BG) := H(−,hom(i−, f))

with hom(i−, f) from defintion 3.45.

Proposition 3.48 Descent with respect to the diagram morphisms hom(i−, f) is the same as diagram mor-
phisms with respect to descent of the component presheaves.

Proof. Use the Fubini theorem for ends. �
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Remark. An object of H̄(X,BG) is represented by a diagram of ω-anafunctors

X

��

|
g // BG

��

cocycle

Πω(X) |
(g,∇) //

��

BEG

��

connection and curvature

Πω(X) P // BBG characteristic forms

.

See also figure 9.

3.4 Characteristic classes

While nonabelian cohomology is powerful in its generality, abelian cohomology is of course more tractable.
To each nonabelian cohomology class there is canonically associated a family of abelian cohomology classes
characterizing it (entirely or partly): its characteristic classes.

Definition 3.49 (universal characteristic classes) For BG ∈ ωGroupoids(Spaces) we say that the coho-
mology classes c ∈ Ho(BG,BnU(1)), definition 2.83, of BG with coefficients in BnU(1) are the degree n
universal characteristic classes of G.

Remark. In view of section 3.3.2 this means that the universal characteristic classes of G are precisely the
ω-group cohomology classes of G with coefficients in BnU(1).

Definition 3.50 (characteristic classes of nonabelian cocycle) For g ∈ H(X,BG) a G-cocycle and
for c ∈ Ho(BG,BnU(1)) a universal characteristic class as in definition 3.49, we say that the corresponding
characteristic class of g is the cohomology class of c(g) := c∗(f) ∈ H(X,BnU(1)), i.e the image [c(g)] ∈
H(X,BnU(1))/∼ ' Hn+1(X,Z).

Remark. In the existing literature (universal) characteristic classes are usually defined in terms of geo-
metric realizations of n-groupoids as topological spaces; for n ≤ 2 in [62, 61]: for G an n-group and |G| the
realization of its nerve, which is a topological group with topological classifying space B|G|, the universal
characteristic classes (with values in Z) of G would be taken to be the ordinary singular cohomology classes
H•(B|G|,Z). Notice that, also for n ≤ 2, it is shown in [13] that B|G| is the classifying space for second
nonabelian cohomology H(−,BG) (for G a topological group satisfying mild conditions). The above ap-
proach aims at staying within the homotopy theory of smooth ω-categories without the need of passing to
geometric realizations in Top. Of course for explicit computations it may be convenient to do so, but the
formalism itself should not depend on this.

3.4.1 Characteristic forms

A characteristic form is a differential refinement of a characteristic class. Given that we regard characteristic
classes in section 3.4 as BnU(1)-cocycles and hence, by theorem 3.31 as U(1)-Čech n-cocycles, it is natural
to identify characteristic forms as the curvature forms of the corresponding differential U(1)-cohomology in
the sense of section 3.3.4, which, by theorem 3.40, is Deligne cohomology. As we show below, this naturally
harmonizes with the notion in definition 3.47 of curvature in differential nonabelian cohomology.
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Pseudoconnections. In the abelian case non–flat differential cocycles in the sense of definition 3.47 are
related to what in parts of the literature is addressed as pseudoconnections [16]. This is also related to the
gerbe bimodules of [157]. In all these cases the naive conditions on a connection are relaxed. We now show
that this relaxation is due to the passage from differential cocycles of the form Pn(X) | // BG to those
of the form

P0(X) | //

��

BG

��
Πω(X) | // BEG

as in section 3.3.4.
Here, as before, P0,Πω : Spaces → ωCategories(Spaces) are the co-presheaves which send each space to

the discrete ω-category and to the fundamental ω-groupoid over it, respectively. Notice that we have the
canonical inclusion i : P0 → Πω. Let now f : BG→ BH be any morphism.

We have a hom-ω-category of diagram morphisms from i to f :

Definition 3.51 Regarding the two morphisms iX : P0(X) → Πω(X) and f : BG → BH as (images of)
functors i, f : I → ωCategories(Spaces) on the interval category I := {a→ b} we set

hom(iX , f) := hom

 P0(X)
i��

Πω(X)
,

BG
f��

BH

 :=
∫
a∈I

hom(iX(a), f(a)) .

Remark. An object in hom(iX , f) is a commuting diagram

P0(X) //

iX

��

BG

f

��
Πω(X) // BH

,

a morphism is a transformation of the two vertical morphisms still fitting in such a diagram, etc.

Lemma 3.52 This construction hom(iX , f) is contravariantly functorial in X and hence extends to a
presheaf hom(i−, f) : Spacesop → ωCategories(Spaces).

We can therefore consider descent for this presheaf of diagram morphisms.

Proposition 3.53 Descent with respect to the diagram morphisms hom(i−, f) is the same as diagram mor-
phisms with respect to descent of the component presheaves:

Desc(Y •,hom

 P0(X)
i��

Πω(X)
,

BG
f��

BH

) '
∫
a∈I

Desc(Y •,hom(i−(a), f(a))) .

Proof. Recall that the descent ω-category itself is defined by an end

Desc(Y •,hom

 P0(−)
i��

Πω(−)
,

BG
f��

BH

) '
∫

[n]∈∆

hom(Πω(∆n), hom

 P0(Y [n+1])
i��

Πω(Y [n+1])

,
BG

f��
BH

) .

63



Inserting definition 3.51 and using that the covariant hom (being a right adjoint) preserves limits we obtain
the double end

· · · '
∫

[n]∈∆

hom(Πω(∆n),
∫
a∈I

hom(iY [n+1](a), f(a))) '
∫

[n]∈∆

∫
a∈I

hom(Πω(∆n), hom(iY [n+1](a), f(a)))

Both ends on the total integrand exist separately, so that by the Fubini theorem for ends [Kelly] they may
be interchanged:

· · · '
∫
a∈I

∫
[n]∈∆

hom(Πω(∆n), hom(iY [n+1](a), f(a))) '
∫
a∈I

Desc(Y •,hom(i−(a), f(a))) .

�

Remark. This means that Desc(Y •,hom(i−, f)) is the pullback of

Desc(Y •,hom(Πω(−),BH))

i∗

��
Desc(Y •,hom(P0(−),BG))

f∗ // Desc(Y •,hom(P0(−),BH))

Abelian pseudoconnections. We write (Bn−1R→ Bn−1U(1)) for the (n+1)-group whose corresponding
crossed complex is

|B(Bn−1R→ Bn−1U(1))| =

 R︸︷︷︸
n+1

modZ // U(1)︸︷︷︸
n

0 // 0 // · · · //
// pt︸︷︷︸

0

 .

Notice that this is a cover of BEBn−1U(1) which is

|BEBn−1U(1)| =

 U(1)︸︷︷︸
n+1

Id // U(1)︸︷︷︸
n

0 // 0 // · · · //
// pt︸︷︷︸

0

 .

and let f now be the canonical inclusion

f : BBn−1U(1)→ B(Bn−1R→ Bn−1U(1)) .

Definition 3.54 (abelian differential cohomology with pseudoconnections) Abelian differential co-
homology with pseudoconnections is cohomology with respect to hom(i−, f) with f as above:

H̄pseudo(X,BnU(1)) := H(X,hom

 P0(−)
i��

Πω(−)
,

BBn−1U(1)
f��

B(Bn−1R→ Bn−1U(1))

)

Proposition 3.55 Descent over a surjective submersion Y → X of abelian pseudoconnections is an abelian
ω-groupoid whose underlying crossed complex is canonically isomorphic to the kernel of δ|Ω0 of the complex
of differential U(1)-valued forms on Y :

|Desc(Y •,hom

 P0(−)
i��

Πω(−)
,

BBn−1U(1)
f��

B(Bn−1R→ Bn−1U(1))

)| = ker(δ|Ω0 : (Ω•(Y [•], U(1)), d±δ)n+1 → Ω0(Y •, U(1)))
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Proof. For n ≤ 2 this follows from [S-WaldorfII], as described below. The theorem has an obvious general-
ization to arbitrary n, but a detailed proof still needs to be written down.

Using definition 2.11 of [S-Waldorf-II] with the main theorem there, specialized to the case of the 2-group
B(R→ U(1)) we get the following characterization of hom(Πω(Y ),B(R→ U(1))) (here and in the following
we write d : Ω0(Y,U(1)) := C∞(Y,U(1))→ Ω1(Y ) for d = ddR ◦ log):

• objects are given by differential forms λ := ( λ1︸︷︷︸
∈Ω1(Y )

, dλ1︸︷︷︸
∈Ω2(Y )

);

• 1-morphisms ρ : λ→ λ′ are forms ( λ0︸︷︷︸
∈Ω0(Y,U(1))

, λ1︸︷︷︸
∈Ω1(Y )

) such that

( λ′1︸︷︷︸
∈Ω1(Y )

, dλ′1︸︷︷︸
∈Ω2(Y )

) = (λ1 + dρ0 + ρ1︸ ︷︷ ︸
∈Ω1(Y )

, dλ1 + dρ1︸ ︷︷ ︸
∈Ω2(Y )

) ;

• 2-morphisms λ

ρ

��

ρ′

?? λ
′κ

��
are given by ( κ0︸︷︷︸

∈Ω0(Y,U(1))

) such that

( λ′0︸︷︷︸
∈Ω0(Y,U(1))

, λ′1︸︷︷︸
∈Ω1(Y )

) = ( κ0 · λ0︸ ︷︷ ︸
∈Ω0(Y,U(1))

, λ1 + dκ0︸ ︷︷ ︸
∈Ω1(Y )

) .

�

Remark. This means that the objects in the descent ω-category are sequences

( ω̃0︸︷︷︸
∈C∞(Y [n+1],U(1))

, ω̃1︸︷︷︸
∈Ω1(Y [n])

, · · · , ω̃n︸︷︷︸
∈Ωn(Y )

) ∈ Ω•(Y [•], U(1))

satisfying δω̃0 = 0. Morphisms are coboundaries between the elements ( ω̃0︸︷︷︸
∈Ω0(Y [n+1])

, dω0 ± δω1︸ ︷︷ ︸
∈Ω1(Y [n+1])

, · · · , dωn︸︷︷︸
∈Ωn+1(Y )

)

, etc.

Definition 3.56 We have canonical morphisms

H̄pseudo(X,BnU(1)) c //

λ

��

H̄flat(X,Bn+1R)

Hn+1(X,Z)

,

the curvature c and the class λ of a pseudoconnection:

• the class c(ω) is the class of ω0 in Čech cohomology under the equivalence with Hn+1(X,Z);

• the curvature is the push-forward under the canonical projection

hom

 P0(−)
i��

Πω(−)

BBn−1U(1)
f��

B(Bn−1R→ Bn−1U(1))

→ hom(Πω(−),B(Bn−1R→ Bn−1U(1)))→ hom(Πω(−),Bn+1R) .
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Remark. The curvature map takes the (d± δ)-closure of ω̃:

c : ( ω̃0︸︷︷︸
∈C∞(Y [n+1],U(1))

, ω̃1︸︷︷︸
∈Ω1(Y [n])

, · · · , ω̃n︸︷︷︸
∈Ωn(Y )

) 7→ (dω̃0 + δω̃1︸ ︷︷ ︸
∈Ω1(Y [n+1])

, · · · , dω̃n−1 ± δω̃n︸ ︷︷ ︸
∈Ωn(Y [2])

, dω̃n︸︷︷︸
∈Ωn(Y )

) .

Using that R is contractible we can further map the curvature cocycle to an honest curvature form along

H̄flat(X,Bn+1R) ' // Ωn+1
flat (X) .

More concretely, we have

Lemma 3.57 For ω̃ ∈ Desc(Y,hom

 P0(−)
i��

Πω(−)
,

BBn−1U(1)
f��

B(Bn−1R→ Bn−1U(1))

) as above, the curvature c(ω̃) ∈

Desc(Y,hom(Πω(−),Bn+1R)) is cohomologous to a closed (n+ 1)-form on X under the canonical inclusion
Ωn+1

flat (X) ↪→ Desc(Y,hom(Πω(−),Bn+1R)).

Proof. For every Čech cocycle ω0 := ω̃0 we can find a Deligne cocycle lifting it, i.e. ω = ( ω0︸︷︷︸
∈Ω0(Y [n+1],U(1))

, · · · , ωn︸︷︷︸
∈Ωn(Y )

)

with curvature (d± δ)ω = (0, · · · , 0, dωn︸︷︷︸
∈Ωn+1(Y )

) = (0, · · · , 0, δ Fn+1︸ ︷︷ ︸
∈Ωn+1(X)

). Using this one rewrites

c(ω̃) = (dω̃0 + δω̃1︸ ︷︷ ︸
∈Ω1(Y [n+1])

, · · · , dω̃n−1 ± δω̃n︸ ︷︷ ︸
∈Ωn(Y [2])

, dω̃n︸︷︷︸
∈Ωn(Y )

)

as
· · · = (0, · · · , 0, dωn︸︷︷︸

∈Ωn+1(Y )

) + (d± δ)( ω̃1 − ω1︸ ︷︷ ︸
∈Ω1(Y [n])

, · · · , ω̃n − ωn︸ ︷︷ ︸
∈Ωn(Y )

) ,

where in the first component one uses δω1 = −dω0 = −dω̃0, the first equality sign being the cocycle condition
on ω, the second being the fact that ω0 = ω̃0. Beware that the differential on 0-forms is ddR ◦ log. �

Remark. Notice that in particular the case where ω̃0 = ω0 is possibly nontrivial but all higher degree
forms vanish, ω̃k = 0 for k ≥ 1, corresponding to a Čech cocycle with “vanishing pseudoconnection”. Then
the above statement reduces to the observation that in Desc(Y,hom(Πω(−),Bn+1R)) the “canonical 1-form
on the fibers” of a Čech cocycle, i.e. ( dω0︸︷︷︸

∈Ω1(Y [n+1])

, 0, · · · , 0) is cohomologous to the curvature of any proper

connection carried by the cocycle, i.e. to (0, · · · , 0, dωn︸︷︷︸
∈Ωn+1(Y )

):

( dω0︸︷︷︸
∈Ω1(Y [n+1])

, 0, · · · , 0) = (0, · · · , 0, dωn︸︷︷︸
∈Ωn+1(Y )

) + (d± δ)( −ω1︸︷︷︸
∈Ω1(Y [n])

, · · · , −ωn︸︷︷︸
∈Ωn(Y )

) .

At the “rationalized” level of L∞-algebra connections the analogous statement is discussed in section 7.1.1
of [SatiSchreiberStasheff-I].

We can rephrase this in the following useful ways.

Corollary 3.58
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• The diagram
H̄pseudo(X,BnU(1))/∼

c //

λ

��

Ωn+1
closed(X)

��
Hn+1(X,Z) // Hn+1(X,R)

is a pullback square (in the category of abelian groups).

• Every cocycle ω̃ ∈ Desc(Y •,hom

 P0(−)
i��

Πω(−)
,

BBn−1U(1)
f��

B(Bn−1R→ Bn−1U(1))

) which, by proposition ??

and proposition 3.53, we can represent as a a diagram

Codesc(Y,P0) //

��

BnU(1)

��
Codesc(Y,Πω) // B(Bn−1R→ Bn−1U(1))

is cohomologous to one which can be extended to a diagram

Codesc(Y,P0) //

��

BnU(1)

��

cocycle

Codesc(Y,Πω) //

��

B(Bn−1R→ Bn−1U(1))

��

connection and curvature

Πω(X) // Bn+1R characteristic form (curvature)

.

3.4.2 The generalized Chern-Weil homomorphism

[** the following text is a placeholder **]
At the linearized level we know from [132] that the differential refinement of the cocycle is an extension

to a diagram

Ω•vert(Y ) CE(g)
Avertoo

Ω•(Y )

OO

W(g)
(A,FA)oo

OO

which corresponds to choosing a connection A. We want to see that the invariant forms obtained from
the curvature FA of this connection reproduce in deRham cohomology the integral characteristic class just
discussed. At the linearized level this comes from observing that we can extend to the larger diagram

Ω•vert(Y ) CE(g)
Avertoo CE(bn−1u(1))

µoo

Ω•(Y )

OO

W(g)
(A,FA)oo

OO

W(bn−1u(1))
(cs,P )oo

OO
,

where P is the invariant polynomial corresponding to µ and where cs is the correspponding transgression
element (“Chern-Simons element”). So P (A,FA) here is a closed (n + 1)-form on Y which is supposed to
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descend down to X where it represents the deRham image of our characteristic class. We expect (details to
be described below) that we can ∞-Lie integrate this to a differential refinement in nonabelian cohomology.

X

��

|
g // BG

��

| // BnU(1)

��
Πω(X) | // BEG |// B(Bn−1R→ Bn−1U(1)

.

Here the outermost square represents, and this is one of the main aspects below, a cocycle in (n + 1)st
Deligne cohomology where the shifted part sitting in Bn+1R picks up the curvature (n + 1)-form. By the
general fact about Deligne cohomology this form represents our cocycle in deRham cohomology and is hence
the corresponding characteristic form of our original cocycle g.

[** – **]

4 ∞-Lie theory

Ordinary Lie theory with its relation between Lie groups and Lie algebras by Sophus Lie should generalize
to a relation between smooth ∞-groups and L∞-algebras. Several aspects of this have appeared in the
literature [140, 60, 68, 141].

We interpret this as saying that smooth ω-groupoids and L∞-algebroids are naturally connected by
a sequence of two adjunctions, as shown in figure 7. The first of these adjunctions, relating Spaces to
L∞Algebroids is essentially that known from rational homtopy theory (e.g. page 9 of [70]), mediated by the
object Ω• of (dual) “infinitesimal paths”. The second adjunction, relating Spaces to ωCategories(Spaces) is
mediated instead by the object Πω of finite paths. Therefore both adjunctions are induced by ambimorphic
objects and hence constitute examples of the general notion of Stone duality [156].

ωGroupoids oo
Πω(−)=Hom(C∞(−),Πω)

K(−)=Hom(Πω(−),−)//

∞-Lie differentiation

''
Spaces

Ω•(−)=Hom(−,Ω•) //
oo
S(−)=Hom(−,Ω•(−))

C∞qDGCAs L∞Algebroids

∞-Lie integration

gg
CE(−)

'
oo

��

Figure 7: ∞-Lie theory – the relation between ∞-groupoids (ω-groupoids in our case) and L∞-algebroids
– arises from the relation between finite and infinitesimal k-paths in Spaces. For every space X there is its
fundamental ω-groupoid Πω(X) whose k-morphisms are classes of certain images of the standard k-disk in X.
Linear approximation to such k-paths are, dually, degree k differential forms in the deRham complex Ω•(X),
which is the Chevalley-Eilenberg qDGCA of the tangent Lie algebroid TX. Conversely, every ω-groupoid C
gives rise to its classifying space |C| and every qDGCA A to the classifying space S(A) of A-valued differential
forms. Moreover, C∞qDGCAs are precisely the Chevalley-Eilenberg algebras of L∞-algebroids. Thus passing
from right to left through the above diagram is ∞-Lie integration of L∞-algebroids to ω-groupoids. Passing
from left to right is ∞-Lie differentiation.
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4.1 Infinitesimal paths

In the context of the “differential homotopy relation”, spaces are related to L∞-algebroids of infinitesimal
paths in these spaces.

4.1.1 Fundamental L∞-algebroid

Definition 4.1 (fundamental/tangent L∞-algebroid) For X ∈ Spaces the fundamental Lie algebroid
or tangent Lie algebroid TX of X is that whose Chevalley-Eilenberg-algebra is the qDGCA of differential
forms on X, from definition 2.89:

CE(TX) := Ω•(X) .

Definition 4.2 (classifying space of flat g-valued forms) Given any DGCA A we obtain a sheaf S(A) ∈
Spaces given by the assignment

S(A) : U 7→ Hom(A,Ω•(U))

for all U ∈ Euclid. This extends to a contravariant functor S : DGCAs→ Spaces.

Remark. In rational homotopy theory this corresponds to the map in definition 1.22 of [70].

Definition 4.3 (flat L∞-valued forms) When A is the Chevalley-Eilenberg algebra of an L∞-algebroid g,
A = CE(g), and for Y a space we call

Ω•flat(Y, g) := Hom(CE(g),Ω•(Y ))

the set of flat g-valued forms.

For more details see [132].

4.1.2 The adjunction between Spaces and L∞Algebroids

Definition 4.4 (infinitesimal path object) We call the sheaf Ω• given by Ω• : U 7→ Ω•(U) the
infinitesimal path object.

Remark. Ω• is an ambimorphic object [156] in that it is both a sheaf as well as a qDGCA in a compatible
way. In this sense the “differential homotopy relation” is a special case of general Stone duality [83] induced
by ambimorphic objects.

Theorem 4.5 (“differential homotopy relation”) The contravariant functors

Spaces
Ω•(·) //

oo
S(·)

DGCAs

form a contravariant adjunction whose unit IdDGCAs → Ω•(S(·)) has, as component map, the canonical
inclusion A ↪→ Ω•(S(A)) for all DGCAs A given by (a ∈ A) 7→ (∀U ∈ Euclid : f ∈ S(A)(U) 7→ f(a)) .

We are indebted to Todd Trimble for discussion of this statement.

Classifying space of flat g-valued forms. Using this adjunction together with definition 4.3 we find
that, for g an L∞-algebroid, S(CE(g)) is the classifying space of flat g-valued forms in the sense that maps
from any space Y into it are in bijection with flat g-valued forms:

Hom(Y, S(CE(g))) ' Hom(CE(g),Ω•(Y )) =: Ω•flat(Y, g) .
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4.2 Finite paths

In the context of the “smooth homotopy relation” spaces are related to ω-groupoids of paths in these spaces.

4.2.1 Fundamental ω-groupoid

To every space X ∈ Spaces we assign its smooth fundamental ω-groupoid Πω(X) whose k-morphisms are
(classes of) k-dimensional “paths” in X, namely (classes of)images of the standard k-disk in X. The
equivalence relation divided out in each degree is not homotopy as in [27], but thin homotopy as in [11, 136,
137, 138, 106], the relation under which parallel transport on smooth spaces is invariant. The corresponding
crossed complex [Πω(X)] has in degree 0 and 1 the 1-groupoid of thin homtopy classes of paths in a smooth
space from [137] and in degree k ≥ 2 a bundle of groups, over X, of classes of based (k − 1)-dimensional
spheres filled by based by based k-dimensional balls with group composition being gluing at the base point.

Definition 4.6 (path space) Fix once and for all ε ∈ (0, 1
4 ) ⊂ R. For each t ∈ R, t ≥ 0 denote by

It := (−ε, 1 + ε) ⊂ R the ε-extended interval of length t and C := (−ε, ε) ⊂ R be the standard collar,

equipped, for each t, with two injections C
� � int //� �

outt
// It given by int : s 7→ s and outt : s 7→ t + s. For

X ∈ Spaces and all t, we have the parameterized path space P (t)X := hom(It, X) .

To concatenate such paths a bit of overlap has to be enforced. Since in the end the parameterization of
the paths will be divided out, the usual choice is to force all paths to be constant on their collars.

Definition 4.7 (paths with sitting instant/constant collars) For X ∈ Spaces let Psit(t)X, the space
of paths with sitting instants at their boundary or paths with constant collars, be the pullback

hom(pt, X)

��

Psit(t)X
soo t //

��

hom(pt, X)

��
hom(C,X) P (t)X

in∗too out∗t // hom(C,X)

.

Definition 4.8 (composition of paths) For all pairs t1, t2 let It1
� � l // It1+t2 It2

? _roo be given by l :
s 7→ s and r : s 7→ s+ t1. Then the diagrams

C

in ((QQQQQQQQQQQQQQQ
in // It1

l

""EEEEEEEE C
outoo in // It2

r

||yyyyyyyy
C

outoo

out
vvmmmmmmmmmmmmmmm

It1+t2

commute. In particular {l, r} is a cover of It1+t2 so that the pullback

P (t1, t2)X l∗ //

r∗

��

P (t1)X

out∗

��
P (t2)X

in∗
// hom(C,X)

is a subspace P (t1, t2)X ↪→ P (t1 + t2)X. The universal property of this pullback yields the dotted morphism
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in
Psit(t1)Xt ×s Psit(t2)X

uullllllllllllll

))RRRRRRRRRRRRRR

��

hom(pt, X)

��

Psit(t1)Xsoo t //

��

hom(pt, X)

��

Psit(t2)Xsoo t //

��

hom(pt, X)

��
hom(C,X) P (t1)Xin∗oo out∗ // hom(C,X) P (t2)Xin∗oo out∗ // hom(C,X)

P (t1, t2)X

l∗RRRRRR

iiRRRRRR
r∗llllll

55llllll
in∗

kkXXXXXXXXXXXXXXXXXXXXXXXXXX out∗

33ffffffffffffffffffffffffff
� _

��
P (t1 + t2)X

which in turn yields, by the pullback property of Psit(t)X in definition 4.7, a universal morphism

conc : Psit(t1)Xt × sPsit(t2)X → Psit(t1 + t2)X .

This is the composition of paths with sitting instants.

Proposition 4.9 This composition is associative and unital. The units are the constant paths (those that
arise as pullback along maps to the point).

Definition 4.10 Denote by P1(X) ∈ ωCategories(Spaces) the corresponding parameterized path 1-category.

To obtain a groupoid of paths and higher groupoids of paths, we concretize and divide out by equivalence
relations.

Definition 4.11 (thin homotopy) For X ∈ ConcreteSpaces define recursively the space of n-paths in X
with sitting instant to be

P 0X = X ,

P 1X := P 1
sitX

and
PnX :=

⋃
s,t∈Pn−2X

Psit(Pn−1
s→tX) .

Notice that these are natually subspaces of spaces of maps from In to X, PnsitX ↪→ hom(In, X), and in fact
naturally subspaces of spaces of maps from the n-disk Dn PnsitX ↪→ hom(Dn, X). On PnX consider the
equivalence relation ∼thin which considers two n-paths γ1, γ2 : In → X as equivalent precisely if there is a
concrete (n+1)-path Σ : I(n+1) → X starting at γ1 and ending at γ2 such that all (n+1)-forms on X vanish
when pulled back along Σ:

(γ1 ∼thin γ2) ⇐⇒


∃ γ1

Σ // γ2 :

Ωn+1(X) Σ∗ //

##HHHHHHHHH
Ωn+1(Dn+1)

pt
0

99ssssssssss


.

Write PnthtpyX := (PnX)/∼thin for the concrete space of thin-homotopy classes of n-paths.

Here (·)/ ∼thin is the quotient operation on spaces from definition 2.8.
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Remark. The definition of thin homotopy classes of paths in concrete spaces in terms of vanishing condi-
tions on pulled back forms is due to [137].

Proposition 4.12 Under the composition operations inherited from the degree-wise composition of paths,
the globular space

· · · P 2
thtpyX

s //
t

// P 1
thtpyX

s //
t

// X

becomes an ω-groupoid Πω(X).

Proof. All compositions are associative and unital by construction. The nontrivial part is to check that all
the exchange laws holds. By theorem 2.36 it is sufficient to check that the complex [Πω(X)] from definition
2.35 satisfies the axioms of a crossed complex. It is immediate that in degree 0 and 1 we have a 1-groupoid
and that [Πω(X)]k for k ≥ 2 are bundles of groups over X and bundles of abelian groups for k ≥ 3. It is
also straightforward to to check that the action on [Πω(X)]k≥3 by [Πω(X)]1 is compatible with the δ-maps.
The only nontrivial point is the compatibility of the action of [Πω(X)]1 on [Πω(X)]2. This follows using thin
homotopy invariance as in [137]. �

Definition 4.13 (smooth fundamental ω-groupoid) The ω-groupoid Πω(X) obtained this way for each
X ∈ Spaces is the smooth fundamental ω-groupoid of X. Its truncation at degree n is the nth smooth path ω-groupoid
Pn(X). The quotient by n-equivalences is the smooth fundamental n-groupoid Πn(X).

For f : X → Y a morphisms of spaces we obtain an obvious ω-functor f∗ : Πω(X) → Πω(Y ).
This yields an ω-groupoid valued co-presheaf Πω : Spaces → ωGroupoids(Spaces) which we address as the
object of finite paths.

In particular

• Π1(X) for X a manifold is the ordinary fundamental groupoid of a manifold;

• P0(X) is the discrete ω-category over (the concretization of) X;

• Π0(X) is the discrete ω-category over the space of connected components of (the concretization of) X;

• P1(X) is the path 1-groupoid appearing in [136, 137];

• P2(X) for X a manifold is the path 2-groupoid appearing in [11, 137, 138].

Remark. A closely related but different notion of a fundamental ω-groupoid of homotopy classes of paths
in a filtered topological space is given in [31, 27], see the monograph [34]: there homotopy (relative vertices)
is divided out, whereas here only thin homotopy is divided out.

Proposition 4.14 The smooth fundamental ω-groupoid is the coend

Πω(X) = hom(C∞(X),Πω) :=

U∈CartesianSpaces∫
hom(C∞(X), C∞(U)) ·Πω(U) =

U∈CartesianSpaces∫
X(U) ·Πω(U) ,

where the extraordinarily conatural family of morphisms

iU : X(U) ·Πω(U) // Πω(X)

is given by the co-presheaf propery of Πω.

Proof. [** still needs details – we may want to turn this around and take the coend formula as the definition
and then prove that it coincides with the above direct construction **] �
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Realization of ωGroupoids as Spaces. The fundamental ω-groupoid of a space is obtained by mapping
into the ambimorphic object Πω. The dual operation obtained by mapping out of Πω yields a notion of
spatial realization of ω-groupoids.

Definition 4.15 (spatial realization of ω-categories) For C ∈ ωCategories(Spaces), the space K(C) is
the sheaf given by K(C) : U 7→ hom(Πω(U), C). This construction is clearly functorial

K(−) : ωCategories(Spaces)→ Spaces .

Remark. The operation K(−) is similar to but different from the familiar geometric realization | − | :
ωCategories(Sets)→ TopologicalSpaces. For G a topological 1- or 2-group it is known [13] that

|BG| ' B|G| ,

where on the right we have the ordinary topological classifying space of the topological group |G|. On the
other hand, for G a smooth 1- or 2-group we show in section 5.3 that K(G) is a smooth model for a K(G, 1)
and K(G, 1, 2), where K(G, 1) is such that Π1(K(G, 1)) = BG.

[** But this “K(G, 1)” in general does have higher homotopy groups, so the notation is still not really
good. What would be the best suited and most suggestive notation for the above operation ωGroupoids(Spaces)→
Spaces **]

4.2.2 The adjunction between ωGroupoids and Spaces

Proposition 4.16 (adjunction between spaces and ω-categories) The functors

ωCategories(Spaces)
K(−)=hom(Πω(−),−)//

oo
Πω=hom(C∞(−),Πω)

Spaces

form an adjunction with Πω(−) left adjoint to K(−), for X ∈ Spaces and C ∈ ωCategories(Spaces) we
naturally have

Hom(X,K(C)) ' Hom(Πω(X), C) .

Proof. Using the coend characterization of Πω(X) from proposition 4.14 this amounts to a standard com-
putation for classifying spaces, compare for instance proposition 10.4.9 in [34]: by the end-expression for
natural transformations (proposition 6.22) we have

Hom(X,K(X)) '
∫

U∈CartesianSpaces

Hom(X(U),K(X)(U)) .

Plugging in the definition of K(X) and then using the Hom-adjunction this is

· · · '
∫

U∈CartesianSpaces

Hom(X(U),Hom(Πω(U), C)) '
∫

U∈CartesianSpaces

Hom(X(U) ·Πω(U), C) .

The contravariant Hom takes colimits to limits (lemma 6.12)

· · · ' Hom(

 U∈CartesianSpaces∫
X(U) ·Πω(U)

 , C)

and using proposition 4.14 this is the desired result

· · · ' Hom(Πω(X), C) .

�
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Lemma 4.17 The unit of this adjunction on X ∈ Spaces is a canonical inclusion X ↪→ K(Πω(X)) given
by sending for each U ∈ CartesianSpaces elements f ∈ X(U) ' Hom(U,X) to f∗ ∈ K(Πω(X))(U) =
Hom(Πω(U),Πω(X)).

Lemma 4.18 For all X,Y ∈ ConcreteSpces, the map Hom(Πω(X),Πω(Y )) → Hom(X,Y ), obtained by
restricting ω-functors to their degree 0 component, is an isomorphism. Hence Πω : CartesianSpaces →
ωCategories(Spaces) is faithful.

Proof. [** roughly **] Consider an ω-functor F : Πω(X) → Πω(Y ) with degree 0-component F0 : X → Y .
Let Σ : Dk → X represent a k-morphism in Πω(X). The claim is that for all σ ∈ Dk this already fixes
F (Σ)(σ) ∈ Y . To see this consider any decomposition of Σ into a pasting diagram of k-morphisms such that
σ sits on a vertex of this pasting diagram. Then the image of σ is bound to be F0(σ). �

[** can this be generalized to general Spaces by using that every sheaf is a colimit of representables? **]

Corollary 4.19 Every concrete space X ∈ ConcreteSpaces is isomorphic to the spatial realization of its
fundamental ω-groupoid: X ' K(Πω(X)) .

Proof. By the definition 4.15 of the spatial realization, for U ∈ CartesianSpaces

K(Πω(X)) : U 7→ Hom(Πω(U),Πω(X)) .

By lemma 4.18 the right side is · · · ' Hom(U,X) and by Yoneda, theorem 6.26, this is · · · ' X(U). �

4.3 ∞-Lie integration and ∞-Lie differentiation

We combine the “smooth homotopy relation” with the “differential homotopy relation” to relate L∞Algebroids
with ωGroupoids(Spaces). See figure 7.

Definition 4.20 (∞-Lie integration and differentiation)

• ∞-Lie integration is the functor concretize ◦Πω ◦ S ◦ CE : L∞ → ωGroupoids(ConcreteSpaces) .

• ∞-Lie differentiation is the functor Ω• ◦ | · | : ωGroupoids(ConcreteSpaces)→ DGCAs .

Remark. The general idea of this perspective on Lie integration is sketched at the beginning of [140]. On
the other hand, it is essentially nothing but the principle of the Sullivan construction in rational homotopy
theory [153]. This was made explicit in [60]. In [60] and [68] this integration procedure is considered for
the case of L∞-algebras using not strict but weak ∞-categories and concentrating on the task of factoring
the construction through Manifolds or BanachSpaces, respectively. A prescription for ∞-Lie differentiation
in this context is given in [141]. It seems that it amounts essentially to the above prescription.

Definition 4.21 (weak simplicial ∞-Lie integration) An alternative model to the fundamental ω-groupoid
of a space is the singular simplicial complex Π∞ : Spaces→ KanComplexes(Spaces) whose space of k-simplices
is the collection of singular k-simplices in the space (Π∞(X))k = hom(∆k, X), where ∆k ⊂ Rk denotes the
standard k-simplex. Using this instead of Πω in definition 4.20 yields the weak simplicial Lie integration

Π∞ ◦ S ◦ CE : Spaces→ KanComplexes(Spaces) .

Using the Yoneda lemma, theorem 6.26, once we find that for g some L∞-algebra, the space of k-simplices
of its weak simplicial integration is

(Π∞(S(CE(g))))k = hom(∆k, S(CE(g))) = hom(CE(g),Ω•(∆k)) = Ω•flat(∆
k, g) ,

the space of flat g-valued forms on the standard k-simplex. This is indeed the algorithmic prescription used
in [60, 68]. The bulk of [60] is concerned with factoring this general procedure through Manifolds. The bulk
of [68] is concerned with factoring this general procedure through BanachSpaces.

74



Some examples.

Proposition 4.22 (∞-Lie integration of the tangent Lie algebroid) For X a manifold, the ∞-Lie
integration of its fundamental (tangent) Lie algebroid is its fundamental ω-groupoid

Πω(S(CE(TX))) = Πω(S(Ω•(X))) = Πω(X) .

Proof. This follows directly from the fact (for instance [116]) that the contravariant functor

Ω•(−) : Manifolds→ DGCAs

is full and faithful. �

The following statement generalizes the main theorem of [137] from n = 2 to n =∞:

Proposition 4.23 Let G be an ω-group obtained from ∞-Lie integrating the L∞-algebra g, BG = Πω ◦ S ◦
CE(g). Then smooth ω-functors Πω(Y )→ BG are in bijection with flat g-valued differential forms on X

Hom(Πω(Y ),BG) ' Ω•flat(Y, g) .

Proof. By assumption Hom(Πω(Y ),BG) = Hom(Πω(Y ),Πω ◦ S ◦ CE(g)) . Then by lemma 4.18 · · · '
Hom(Y, S ◦ CE(g)). And finally by definition · · · = Ω•flat(Y, g) . �

Relation of model structure under integration differentiaton. [** discussion goes here on how
integration/differentiation acts on the fibrations/cofibrations/weak equivalences on both sides **]

4.4 L∞-algebraic cocycles

The ∞-Lie integration procuedure of section 4.3 is functorial and can hence also be applied to integrate
morphisms of DGCAs to ω-functors of ω-groupoids. Cohomology cocycles in the sense of section 3 are ω-
functors out of the codescent object from section 3.1.3 into the structure ω-group. We can therefore look for
examples of cocycles that arise from L∞-integration of morphisms from L∞-algebroids to some L∞-algebra.
Such L∞-algebraic (rational) approximations to full cocycles were considered in [132] (there also generalized
to differential cocycles, see section 3.3.4).

Definition 4.24 (vertical forms) For π : Y → X a smooth map, the DGCA Ω•vert(Y ) of vertical forms
on Y with respect to π is the quotient of the full deRham DGCA Ω•(Y ) by those forms that vanish when
restricted in all arguments to the kernel of π∗.

We call Ω•vert(Y ) the Chevalley-Eilenberg algebra of the vertical tangent Lie algebroid of Y relative to π:

Ω•vert(Y ) =: CE(T vertY ) .

Definition 4.25 (L∞-algebraic cocycles) For Y → X a surjective submersion of manifolds and g an
L∞-algebra, a g-cocycle on X is an L∞-morphism T vertY → g i.e. a DGCA morphism

Ω•vert(Y ) oo
Avert CE(g) .

Definition 4.26 (vertical paths) For π : Y → X a map of spaces the fundamental vertical path n-groupoid
Πvert
n (Y ) of Y relative to π is the pullback

Πvert
n (Y ) //

��

Πn(Y )

π∗
����

P0(X) � � // Πn(X)

.
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Πvert
n (Y ) is the sub-n-groupoid of Πn(Y ) all whose n-morphisms map to constant n-paths in X under Y :

the vertical n-paths run only within a given fiber of π : Y → X.

Lemma 4.27 Let Y → X be a fiber bundle with typical fiber F such that all homotopy groups of F up to
and including the nth one vanish

∀k, 1 ≤ k ≤ n : πn(F ) = 1 .

Then there is a weak equivalence Πvert
n (Y ) ' // P0(X) .

Proof. k-surjectivity for 1 ≤ k ≤ n requires that for any two parallel (k − 1)-morphisms in a fiber, there
is a k-morphism connecting them. This is precisely the statement that πk(F ) vanishes. k-surjectivity at
k = (n + 1), i.e. injectivity at k = n is given since in Πn all homotopic n-morphisms are identified by
definition. �

[** warning: the following proposition is true as stated only over the test domains U = R0 **]

Proposition 4.28 (∞-Lie integrating vertical forms to vertical paths) For π : Y → X a smooth
map of manifolds, the ∞-Lie integration of the vertical tangent Lie algebroid of Y relative to π is the
fundamental vertical ω-groupoid of Y : Πω(S(Ω•vert(Y ))) = Πvert

ω (Y ) .

Proof. A morphism Ω•(In) Ω•vert(Y )
foo is a morphism f̂ out of all of Ω•(Y ) which vanishes on forms

that are zero when restricted in all arguments to the kernel of π∗

Ω•(Y )

����

f̂

yyssssssssss

Ω•(In) Ω•vert(Y )
foo

.

As in the proof of proposition 4.22, the morphism f̂ comes from pullback f = φ∗ along a smooth map
φ : In → Y . For that pullback to annihilate all forms which vanish when all its arguments are in the kernel
of π∗, the push-forward of vectors along φ has to be in the kernel of π∗

∀σ ∈ In :
Tφ(σ)Y

π∗

��
TσI

n 0 //

φ∗
99tttttttttt

Tπ(φ(σ))X

.

This says precisely that φ is a vertical n-path. �

Definition 4.29 (L∞-algebraic cocycle) For X a space and g an L∞-algebra, an L∞-algebraic cocycle

on X with coefficients in g is a surjection π : Y → X and a morphism Ω•vert(Y ) CE(g)
Avertoo .

4.4.1 Integrating L∞-algebraic cocycles to nonabelian cocycles

Given a surjection Y → X and an L∞-morphism Ω•vert(Y ) CE(g)
Avertoo for g some L∞-algebra, the

∞-Lie integration of this morphism

Πn ◦ S(Avert) : Πvert
n (Y ) //

����

BG

P0(X)

(4.1)
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Ω•vert(Y ) oo
Avert

OOOO
CE(g)
OOOO

CE(bn−1u(1) ↪→ gµ)oo
OOOO

CE(bnu(1))
OOOO

oo

Ω•(Y ) oo
(A,FA)

OO

� ?

W(g)
OO

� ?

W(bn−1u(1) ↪→ gµ)
OO

� ?

f−1
oo CE(bnu(1))

OO

� ?

oo Cartan-Ehresmann
L∞-connection

Ω•(X) oo
{Pi}

inv(g) inv(bn−1u(1) ↪→ gµ)oo inv(bnu(1))oo

Figure 8: Obstructing bnu(1) (n + 1)-connections and “twisted” gµ n-connections are two aspects
of the same mechanism: the (n+ 1)-connection is the obstruction to “untwisting” the n-connection. The n-
connection is “twisted by” the (n+1)-connection. There may be many non-equivalent twisted n-connections
corresponding to the same twisting (n+ 1)-connections.

is akin to a G-cocycle on X, but fails to be such in as much as the projection Πvert
n (Y ) // // P0(X) fails to

be a weak equivalence. By lemma 4.27 this failure is measured by the homotopy groups of the fibers of Y .
If the fibers of Y happen to be n-connected we do have surjective equivalence Πvert

n (Y ) // // P0(X) . In
this case there are choices of embeddings PY0 (X) ↪→ Πvert

n (Y ) of the codescent n-groupoid of Y , as in section
3.1.3, so that the span

PY0 (X) � � //

'

$$ $$IIIIIIIII
Πvert
n

Πn◦S(Avert) //

'
����

BG

P0(Y )

|oooooo
g

77ooooooo

defines aG-cocycle PY0 (X) |
g // BG onX. We call this theG-cocycle integrating the original L∞-algebraic

cocycle Avert.
In general the fibers of Y are not n-connected. Then Avert may still be integrated to a cocycle in

nonabelian cohomology if it satisfies an integrability condition which makes (4.1) cover a G∼-cocycle where
the projection G→ G∼ is such that it sends the nontrivial periods of Avert over the cycles of the fibers of Y
to the identity. This is formalized in the following definition.

77



Definition 4.30 (∞-Lie integration of L∞-algebraic cocycles to nonabelian cocycles) For Avert a
g-cocycle on X as in def. 4.25 with g a Lie n-algebra and BG := Πn ◦ S ◦ CE(g) the n-group integrating it,
we say that a Lie integration of Avert is a commuting diagram

Πvert
n (Y )

��

Πn◦S(Avert) // BG

��
PY0 (X) � � //

'w %% %%KKKKKKKKKK Y

'
����

g // BG∼

P0(X)

|mmmmmm
g

66mmmmmmm

yielding a nonabelian G∼-cocycle P0(X) |
g // BG∼ on X. The existence of such a diagram is an integra-

bility condition on Avert.

Here Y
' // P0(X) is a surjective equivalence in which a codescent ω-groupoid PY0 (X) as in section 3.1.3

may be injected. An important special case is that where the fibers of Y are (n− 1)-connected. In this case
we obtain Y by “patching in” the missing n-cells. [** merge/harmonize notation with section 3.2.3 **]

Codesc(Y,P0)� _

i

��

// BG

��

G-cocycle Ω•vert(Y ) CE(g)
Avertoo

first Cartan-Ehresmann condition

Codesc(Y,Πω) //

π

����

BEG� _

��

connection and curvature Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

second Cartan-Ehresmann condition

Πω(X) // B[BG] characteristic forms Ω•(X)
?�

OO

inv(g)
{Pi(FA)}oo

?�

OO

nonabelian differential G-cocycle g-connection descent datum(

∞-Lie integration

kk

Figure 9: ∞-Lie integration of L∞-connections to nonabelian (differential) cocycles. For g any
L∞-algebra and Y → X a smooth surjection, the diagram on the right encodes a generalization of a Cartan-
Ehresmann connnection as described in [132]. Applying the ∞-Lie integration functor Πn ◦ S to the entire
diagram yields, when certain integrability conditions are met, nonabelian cocycles and differential refinements
of these, representing higher principal bundles with connection. Here we consider only the topmost horizontal
morphisms which encode the bare cocycles. An outlook on the remaining parts of these diagrams is given
in section 3.3.4.
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Definition 4.31 (patching-in homotopy groups) For n ∈ N, n > 1, G an (n − 1)-connected group in
Spaces, i.e one whose first n homotopy groups are trivial, ∀ 0 ≤ k < n : πk(G) = 1, and for π : P → X

a principal G-bundle, let P ×Bn+1πn(G) � � // Πvert
n (P ) be the canonical inclusion of the nth homotopy

groups of the fibers into the fundamental vertical n-groupoid Πvert
n (P ) from definition 4.26, sending a pair

consisting of p ∈ P and an element in πn(G) to the vertical n-path based at p representing that element.
Write

Πvert
n (P )◦ := Πvert

n (P )//(P ×Bnπn(G)) := (P ×Bn+1πn(G) ↪→ Πvert
n (P ))

for the weak quotient (the mapping cone over the inclusion) corresponding to the mapping cone n-groupoid
for this inclusion.

Using this, we obtain the following special case of the integration procedure, definition 4.30.

Definition 4.32 (integration of L∞-algebraic cocycles with integral n-periods) Let g be a Lie n-
algebra such that the simply-connected n-group G integrating it, given by BG := Πn ◦ S ◦ CE(g) has BnZ
as a sub n-group BnZ ↪→ G. Let Y → X have (n − 1)-connected fibers. Then we say that an L∞-algebraic

cocycle Ω•vert(Y ) CE(g)
Avertoo has integral n-periods if the local horizontal morphism in

Πvert
n

Πn◦S(Avert) //

��

BG

��
Πvert
n (Y )◦ // B(Bn−1 ↪→ G)

exists. In this case P0(X) |
g // B(G/Bn−1Z) in

Πvert
n

Πn◦S(Avert) //

��

BG

��
PY0 (X) � � //

'

%% %%LLLLLLLLLL
Πvert
n (Y )◦

'
����

// B(Bn−1 ↪→ G) ' // // B(G/Bn−1Z)

P0(X)

|eeeeeeeeeeeeeeeeee g

22eeeeeeeeeeeeee

is the nonabelian cocycle integrating Avert.

4.4.2 Lifts, obstructions and twists of L∞-algebraic cocycles

For bn−1u(1) // gµ // g a shifted central extension of L∞-algebras as in [132], the L∞-algebraic
analog of the situation in section 3.2.1 is depicted in figure 8.

4.5 [variation]

[** the following needs to be merged with the above **]
So far we had taken the space (sheaf) associated with an L∞-algebroid g to be the classifying space:

S(CE(g)) : U 7→ HomL∞Algebroids(TU, g) = HomC∞qDGCAs(CE(g),Ω•(U))

of flat g-valued forms. (U ∈ CartesianSpaces.) Then we took the ω-groupoid integrating g to be the funda-
mental ω-groupoid Πω(S(CE(g))) of this space. Notice that the space of k-morphisms of this ω-groupoid is
(a quotient by thin-homotopy) of the sheaf given by

U 7→ HomL∞Algebroids(T (Dk × U), g) . (4.2)
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(With Dk denoting the standard k-disk.) This means that not only are all k-morphisms supposed to be maps
from the standard k-disk Dk “parallel” in g, but also all U -parameterized families of these have to remain
“parallel” in g. For L∞-algebras this is fine, but for L∞-algebroids one should be aware of the following
subtlety:

while this produces the right set of k-morphisms, the smooth structure on the space of k-morphisms is
restricted to “gauge orbits”. Take for instance Y → X to be a surjective submersion and let TvertY be the
vertical tangent Lie algebroid of Y . Then the integrating ω-groupoid

Πω(S(CE(TvertY ))) =
⊔
x∈X

Πω(Yx)

is the disjoint union of the fundamental ω-groupoids of the fibers: the disjoint union itself comes with the
discrete structure, i.e. every smooth family of k-morphisms has to stay within one and the same fiber.

Dmitry Roytenberg had considered the following slight modification: instead of (4.2) he declares that the
space of k-cells is

U 7→ HomL∞Algebroids((TDk)× U, g) , (4.3)

(he uses the standard simplex ∆k instead of the standard disk Dk, but that is not important for the present
discussion) where now tangents are taken only on Dk, not on U . This makes the U -parameterized families
more flexible. With this prescription for instance the integration of TvertY yields the same ω-groupoid in
Sets as before, but now with the smooth structure on the k-morphisms such that a smooth U -parameterized
family of k-morphisms must be such that still for each point of U it is a vertical k-path in some fiber, but
the fiber may change smoothly with U now.

Clearly this is preferable at least in some cases. So I was starting to think about how to realize this
conceptually, i.e. without just changing formula (4.2) “by hand”, given that the interpretation of L∞-
integration as that double adjunction

ωGroupoids(Spaces) Spaces
Πωoo L∞Algebroids

S◦CEoo

which proceeds via classifying spaces is elegant and useful.
Now, I noticed that the more flexible version of (4.2) has a similar formulation, which in fact nicely fits

into the context of differential cohomology: namely, I will claim now that (4.3) is obtained by taking Πω not
of the classifying space of flat g-valued forms – but on the classifying space of g-connections in the sense of
[SatiSchreiberStasheff].

Recall that while a flat g-valued form on Y → X is just a morphism

TY // g ⇔ Ω•(Y ) CE(g)oo

while a g-connection (or “g-connection descent object”, the L∞-algebraic approximation to a differential
nonabelian cocycle) is such morphism which is required to be only fiberwise flat (“first Cartan-Ehresmann
condition on connections”), namely a commuting square

TvertY //

��

g

��
TY // inn(g)

⇔

Ω•vert(Y ) CE(g)oo

Ω•(Y )

OO

W(g)oo

OO
.

(In [SatiSchreiberStasheff] we also imposed a second condition coming from a second square. I could
impose that in the following, too, but for the moment I’ll save myself some typing by doing it just this way.
This already captures the main idea).

From this one can already see how it may relate to the assignment (4.3). I’ll now formulate that in detail.
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∞-Lie integration using g-connections. I now describe an∞-Lie theory pretty much as the one before,
but with the category of generalized Spaces enlarged to a category of generalized Covers. The goal is to
describe the diagram

ωGroupoids oo
Πvert
ω (−)

K(−)=Hom(Πvert
ω (−),−)//

∞-Lie differentiation

''
Covers

Ω•(−)=Hom(−,Ω•) //
oo
S(−)=Hom(−,Ω•(−))

C∞qDGCAs L∞Algebroids

∞-Lie integration

gg
CE(−)

'
oo

where the right and the left pair are adjunctions. This is, notice, the same diagram as before, but with
Spaces replaced by Covers (and with the morphisms suitably re-interpreted, of course).

Here Covers will be defined to be the category of sheaves on the category of CartesianCovers of the form
Rk×Rl → Rk. Notice that this also makes closer contact to [Ševera: L∞-algebras a 1-jets] which first found
the need in ∞-Lie theory to consider sheaves on the category of test covers, instead of just sheaves on the
category of test spaces.

Covers

Definition 4.33 (cartesian covers) Let ManifoldCovers be the category whose object ares surjective sub-
mersions Y → X of manifolds and whose morphisms are commuting diagrams of these. The category

CartesianCovers of cartesian covers is the full subcategory of ManifoldCovers on objects of the form Rk × Rl
p1 // Rk .

Definition 4.34 (covers) Let Covers := Sheaves(CartesianCovers) .

We consider Covers to be tensored over Spaces by using the first embedding: for Y ∈ Covers and X ∈
Spaces let Y ×X ∈ Covers be given by

Y ×X : (U × F ) 7→ Y (U × F )×X(U) .

It is enriched over Spaces by setting

hom(Y, Y ′) : U 7→ HomCovers(Y × U, Y ′) .

Let I = {a→ b} be the interval object in ωCategories.

Infinitesimal paths.

Definition 4.35 (vertical forms) For π : Y → X in CartesianCovers, let Ω•vert(Y
π→ X), the C∞qDGCA

of
vertical differential forms on Y , be the pushout

Ω•vert(Y → X) Ω•(Y ):=i∗oo

C∞(X)

OO

Ω•(X)oooo
?�
π∗

OO
.
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Definition 4.36 (infinitesimal path object) Let the infinitesimal path object, for covers, be the functor
Ω•− : Iop → Covers given by

Ω•−(−) :


a1

��
a2

, U × F → U

 7→
Ω•vert(U × F → U)

Ω•(U × F )

i∗

OO

Definition 4.37 (universal fibration of L∞-algebroids) For g an L∞-algebroid, CE(g) its Chevalley-
Eilenberg-C∞qDGCA and W(g) its Weil C∞qDGCA, let

CE−(g) : Iop → C∞qDGCAs

be the functor given by

CE− :


a1

��
a2

 7→
CE(g)

W(g)

i∗

OO
.

Definition 4.38 For U × F → U a cartesian cover and for g an L∞-algebroid, define the hom-set from
infinitesimal paths on U × F to g by

hom(CE−(g),Ω•−(U × F → U)) :=
∫
a∈I

Hom(CEa(g),Ω•a(U × F → U)) .

Remark. This Hom-set is the set of horizontal morphisms in this commuting square

Ω•vert(U × F → U) CE(g)oo

Ω•(U × F )

i∗
OOOO

W(g)oo

i∗
OOOO

in C∞qDGCAs.

This now allows us to define an adjunction Covers
Ω• //

oo
S

C∞qDGCAs by homming into the ambimorphic

(“schizophrenic” in [Johnstone: Stone duality]) object Ω•, which can be regarded both as a C∞qDGCA
internal to Covers as well as a cover internal to C∞qDGCAs.

Definition 4.39 (qDGCA of differential forms on covers) For Y ∈ Covers let

Ω•(Y ) := homCovers(Y (−),Ω•a2
(−)) ,

which naturally comes equipped with the structure of a C∞qDGCA be the C∞qDGCA of differential forms on the cover
Y .

Definition 4.40 (classifying cover of L∞-algebroids) The functor S : L∞Algebroids → Covers , sends
g ∈ L∞Algebroids to

S(g) := S(CE(g)) : (U × F → U) 7→ hom(CE−,Ω•−(U × F → U)) ,

the classifying cover of g-connections.
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Finite paths

Definition 4.41 Define Πω : Covers→ ωCategories(Spaces) “as before”, with space of k-morphisms being a
quotient (thin-homotopy) of a subset (sitting instants) of

homCovers(Dk,−) : Covers→ Spaces .

Here we use the embedding of Spaces into Covers which sends Dk to Dk → pt and use the enrichment over
Spaces of Covers. This means that for Y ∈ Covers the above hom-space is the sheaf

hom(Dk, Y ) : U 7→ HomCovers(U ×Dk → U, Y ) ' Y (U ×Dk → U) .

For instance for Y = S(CE(g)) this is, by the above

· · · '
∫
a∈I

Hom(CEa(g),Ω•a(U ×Dk → U))

which is the set of horizontal morphisms in the commuting diagram

Ω•vert(U ×Dk → U) CE(g)oo

Ω•(U ×Dk)

i∗

OO

W(g)oo

i∗

OO
.

(Here the tensor product is that of C∞-algebras, hence the completed ordinary tensor product of algebras.)
But this is indeed isomorphic to the set

· · · ' Hom(CE(g),Ω•(Dk)⊗ C∞(U)) ' HomL∞Algebroids((TDk)× U, g)

as in (4.3).

5 Examples and Applications

This section lists various applications and concrete examples in the context of lifts of ω-bundles through
shifted central extensions of their structure ω-groups.

5.1 ω-Groups

5.1.1 1-Groups

If G is an ordinary group, then BG = { •
g // • |g ∈ G} is the 1-groupoid with the single object denoted •

and one morphism per element of the group, with composition of morphisms being the product in the group.

5.1.2 2-Groups

For (H t→ G) a crossed module of groups with action α : G → Aut(H), the corresponding 2-group is given
by the one-object 2-groupoid

B(H → G) =


•

g1

��

g2

@@ •h

��

∣∣∣∣∣∣∣∣∣∣
g1, g2 ∈ G, h ∈ H, t(h)g1 = g2

 .
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As described at the beginning of [126] there are four different (but isomorphic) identifications of crossed
modules of groups with 2-groups, which differ in the order in which composition of morphisms relates to
the product in the groups G and H. Up to this choice, horizontal composition is the product operation
in the semidirect product group H oα G, while vertical composition is given by the product in H. For an
introduction to strict 2-groups see [7]. The standard examples of 2-groups include

Definition 5.1 (automorphism 2-group) Let H be a group. The automorphism 2-group AUT(H) of H
is the 2-group

AUT(H) := (H → Aut(H)) .

corresponding to the crossed module ( H
Ad // Aut(H) ) where α = IdAut(H).

Definition 5.2 (2-groups from central extensions) Let H ⊂ G be a normal subgroup and Ĥ → H a
central extension of groups such that the conjugation action of G on H lifts to an automorphism action
α : G→ Aut(Ĥ) on the central extension. Then (Ĥ → G) with this α is a crossed module.

Examples of smooth 2-groups coming from central extensions are often obtained from cocycles on Lie
groups as follows, generalizing considerations in [119]:

Proposition 5.3 (smooth 2-groups from central extensions) Let G ⊂ Γ be a simply connected nor-
mal Lie subgroup of a Lie group Γ. Write PG for the based path group of G whose elements are smooth
maps [0, 1] → G starting at the neutral element and whose product is given by the pointwise product in G.
Consider the complex with differential d± δ of simplicial forms on BG from definition 6.33. Let (F, a, β) be
a triple where
i. a ∈ Ω1(G×G) such that δa = 0;
ii. F is a closed integral 2-form on G such that δF = da;
iii. β : Γ→ Ω1(G) such that, for all γ, γ1, γ2 ∈ Γ,

• γ∗F = F + dβγ ;

• (γ1)∗βγ2 − βγ1γ2 + βγ1 = 0;

• a = γ∗a+ δ(βγ);

• for all based paths f : [0, 1]→ G, f∗βγ = (f, γ−1)∗a+ (γ, fγ−1)∗a.

1. Then the map c : PG×PG→ U(1) given by c : (f, g) 7→ cf,g := exp

(
2πi

∫
0,1

(f, g)∗a

)
is a group 2-cocycle

leading to a central extension P̂G = PGn U(1) with product (γ1, x1) · (γ2, x2) = (γ1 · γ2, x1x2cγ1,γ2).
2. Since G is simply connected every loop in G bounds a disk D. There is a normal subgroup N ⊂ P̂G
consisting of pairs (γ, x) with γ(1) = e and x = exp(2πi

∫
D
F ) for any disk D in G such that ∂D = γ.

3. Finally, G̃ := P̂G/N is a central extension of G by U(1) and the conjugation action of Γ on G lifts to
G̃ by setting α(γ)(f, x) := (α(γ)(f), x exp(∈f βγ)) such that Cent(G,Γ, F, a, β) := (G̃→ Γ) is a Lie crossed
module and hence a strict Lie 2-group of the type in definition 5.2.

Proof. All statements about the central extension Ĝ can be found in [119]. It remains to check that the
action α : Γ → Aut(G̃) satisfies the required axioms, definition ??, of a crossed module, in particular the
condition α(t(h))(h′) = hh′h−1. Then we have to show that

α(h(1))([f, z]) = [h, 1][f, z]

[
h−1, exp(−

∫
(h,h−1)

a)

]
,
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where h denotes a based path in PG, so that [h, 1] represents an element of G̃. By definition of the product
in G̃, the right hand side is equal to[

hfh−1, z exp

(∫
(h,f)

a+
∫

(hf,h−1)

a−
∫

(h,h−1)

a

)]
.

This is not exactly in the form we want, since the left hand side is equal to
[
h(1)fh(1)−1, z exp(

∫
f
βh)
]
.

Therefore, we want to replace hfh−1 with the homotopic path h(1)fh(1)−1. An explicit homotopy between
these two paths is given by H(s, t) = h((1− s)t+ s)f(t)h((1− s)t+ s)−1. Therefore, we have the equality[

hfh−1, z exp

(∫
(h,f)

a+
∫

(hf,h−1)

a−
∫

(h,h−1)

a

)]

=

[
h(1)fh(1)−1, z exp

(∫
(h,f)

a+
∫

(hf,h−1)

a−
∫

(h,h−1)

a+
∫
H∗F

)]
.

Using the relation (.F ) = da and the fact that the pullback of F along the maps [0, 1]× [0, 1]→ G, (s, t) 7→
h((1− s)t+ s) vanish, we see that∫

H∗F =
∫

(f,h(1)−1)

a−
∫

(f,h−1)

a+
∫

(h,h−1)

a+
∫

(h(1),fh(1)−1)

a−
∫

(h,fh−1)

a .

Therefore the sum of integrals ∫
(h,f)

a+
∫

(hf,h−1)

a−
∫

(h,h−1)

a+
∫
H∗F

can be written as∫
(h,f)

a+
∫

(hf,h−1)

a−
∫

(h,h−1)

a+
∫

(f,h(1)−1)

a−
∫

(f,h−1)

a+
∫

(h,h−1)

a+
∫

(h(1),fh(1)−1)

a−
∫

(h,fh−1)

a .

Using the condition δ(a) = 0, we see that this simplifies down to
∫

(f,h(1)−1)
a+

∫
(h(1),fh(1)−1)

a. Therefore, a
sufficient condition to have a crossed module is the equation f∗βh = (f, h(1))∗a+ (h(1), fh(1)−1)∗a . �

Proposition 5.4 Given triples (F, a, β) and (F ′, a′, β′) as above and given b ∈ Ω1(G) such that

F ′ = F + db , (5.1)

a′ = a+ δ(b) (5.2)

and for all γ ∈ Γ
βγ + γ∗b = b+ β′γ , (5.3)

then there is an isomorphism Cent(G,Γ, F, a, β) ' Cent(G,Γ, F ′, a′, β′) .

Examples. In [9] the following special case of the above general construction was considered.

Definition 5.5 (StringBCSS(G) [9]) Let G be a compact, simple and simply-connected Lie group with Lie
algebra g. Let 〈·, ·〉 : g ⊗ g → R be the bilinear invariant form on g normalized such that the Lie algebra
3-cocycle µ := 〈·, [·, ·]〉 extends left invariantly to a 3-form on G which is the image in deRham cohomology
of one of the two generators of H3(G,Z) = Z. Let ΩG be the based loop group of G whose elements are
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smooth maps γ : [0, 1] → G with γ(0) = γ(1) = e and whose product is by pointwise multiplication of such
maps. Define F ∈ Ω2(ΩG), a ∈ Ω1(ΩG× ΩG) and β : Γ→ Ω1(ΩG)

F (γ,X, Y ) :=
∫ 2π

0

〈X,Y ′〉dt

a(γ1, γ2, X1, X2) :=
∫ 2π

0

〈X1, γ̇2γ
−1
2 〉dt

β(p)(γ,X) :=
∫ 2π

0

〈p−1ṗ, X〉dt

This satisfies the axioms of proposition 5.3 and we write StringBCSS(G) := Cent(ΩG,PG,F, α, β) for the
corresponding 2-group.

Remark. This 2-group is the termwise integration of the strict String Lie 2-algebra from theorem 5.20 as
described in [9]. Here Ω̂G is the Kac-Moody central extension of ΩG at level 1.

The following related construction is based on the cocycle on loop groups considered by Mickelsson [115].

Definition 5.6 (StringMick(G)) With all assumptions as in definition 5.5 define now

F (γ,X, Y ) :=
1
2

∫ 2π

0

〈γ−1γ̇, [X,Y ]〉dt

a(γ1, γ2, X1, X2) :=
1
2

∫ 2π

0

(
〈X1, γ̇2γ

−1
2 〉 − 〈γ

−1
1 γ̇1, γ2X2γ

−1
2 〉
)
dt

β(p)(γ,X) :=
1
2

∫ 2π

0

〈γ−1p−1ṗγ + p−1ṗ, X〉dt

This satisfies the axioms of proposition 5.3 and we write StringMick(G) := Cent(ΩG,PG,F, α, β) for the
corresponding 2-group.

Proposition 5.7 There is an isomorphism of 2-groups StringBCSS(G) ' // StringMick(G) .

Proof. We show that b ∈ Ω1(ΩG) defined by b(γ,X) := 1
4π

∫ 2π

0
〈γ−1γ̇, X〉dt satisfies the conditions of

proposition 5.4 and hence defines the desired isomorphism.

• Proof of equation 5.1: We calculate the exterior derivative db. To do this we first calculate the deriva-
tive Xb(y): if γt = γetX then to first order in t, γ−1

t γ̇t is equal to γ−1γ̇ + t[γ−1γ̇, X] + tX ′. Therefore

Xb(Y ) =
1
2

∫ 2π

0

(
〈γ−1γ̇, [X,Y ]〉+ 〈X ′, Y 〉

)
dt .

Hence db is equal to

1
2

∫ 2π

0

(
〈γ−1γ̇, [X,Y ]〉+ 〈X ′, Y 〉+ 〈γ−1ċ, [X,Y ]〉 − 〈Y ′, X〉 − 〈γ−1γ̇, [X,Y ]〉

)
,

which is easily seen to simplify down to

−
∫ 2π

0

〈X,Y 〉dt+
1
2

∫ 2π

0

〈γ−1γ̇, [X,Y ]〉dt .
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• Proof of equation 5.2: We get

1
2

∫ 2π

0

{
〈γ2γ̇

−1
2 , X2〉 − 〈γ−1

2 γ−1
1 γ̇1γ2, γ

−1
2 X1γ2〉 − 〈γ−1

2 γ−1
1 γ̇1γ2, X2〉

−〈γ−1
2 γ̇2, γ

−1
2 X1γ2〉 − 〈γ−1

2 γ̇2, X2〉+ 〈γ−1
1 γ̇1, X1〉

}
dt ,

which is equal to
1
2

∫ 2π

0

{
−〈γ−1

1 γ̇1, γ2X2γ
−1
2 〉 − 〈γ̇2γ

−1
2 , X1〉

}
dt ,

which in turn equals

1
2

∫ 2π

0

{
〈X1, γ̇2γ

−1
2 〉 − 〈γ

−1
1 γ̇1, γ2X2γ

−1
2 〉
}
dt− 1

2π

∫ 2π

0

〈X1, γ̇2γ
−1
2 〉dt .

• Proof of equation 5.3: we get

p∗b(γ; γX) = b(pγp−1; pγp−1(pXp−1))

=
1
2

∫ 2π

0

〈pγp−1(ṗγp−1 + pγ̇p−1 − pγp−1ṗp−1, pXp−1〉dt

=
1
2

∫ 2π

0

〈pγ−1p−1ṗγp−1 + pγ−1γ̇p−1 − ṗp−1, pXp−1〉dt

=
1
2

∫ 2π

0

〈γ−1p−1ṗγ + γ−1γ̇ − p−1ṗ, X〉dt

= b(γ, γX) +
1
2

∫ 2π

0

〈γ−1p−1ṗγ − p−1ṗ, X〉dt

= b(γ, γX) +
1
2

∫ 2π

0

〈γ−1p−1ṗγ + p−1ṗ, X〉dt− 1
2π

∫ 2π

0

〈p−1ṗ, X〉dt

The three conditions in proposition 5.4 are satisfied and, therefore, the desired isomorphism is established. �

Corollary 5.8 ([9]) Let String(G) be either of StringBCSS(G) or StringMick(G). This exhibits a shifted
central extension in the sense of definition 3.27: U(1) // String(G) // G .

5.1.3 3-Groups

Lemma 5.9 Given a 2-group (Ĥ → G) coming from a central extension as in definition 5.2, there is a

3-group (U(1)→ Ĥ → G) and a weak equivalence B(U(1)→ Ĥ → G)
' // B(H → G) .

5.2 ∞-Lie integration

We apply the general mechanism for ∞-Lie integrating L∞-algebras to ω-groups described in section 4.3
to various examples of interest. In section 5.2.1 the relation to ordinary Lie theory of Lie 1-algebras and
1-groups is established.
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5.2.1 Integration of Lie 1-algebras

Lie’s third theorem, that every Lie algebra comes from a Lie group, is usually proven by relating everything
to matrix Lie algebras using Ado’s theorem2. That there is a more elegant and more conceptual method
which identitfies the simply connected Lie group integrating a given Lie algebra with a certain quotient of
based paths in the Lie algebra and identifies the product in the Lie group with composition of paths, has
apparently been well known to a chosen few for a long time3 but was certainly not widely appreciated.
It received wider attention only when researchers started thinking about the more general problem of the
integration of Lie algebroids to Lie groupoids. In that latter case, the more conceptual path method is the
only sensible one. An exhaustive review of this theory of integration of Lie 1-algebroids can be found in [44].
In section 3.2 the reader can find a discussion of the path-method for integrating Lie algebras, which then in
section 3.3 is generalized to the integration of Lie algebroids. The discussion in [44] is not formulated exactly
in the language used here, but is easily translated into it as the proof of the following theorem shows.

Theorem 5.10 (integration of ordinary Lie 1-algebras and Lie 1-algebroids) For a Lie 1-algebra g
Π1(S(CE(g))) := BG , where G is the simply connected Lie group integrating g. The same result holds if g
is a Lie 1-algebroid.

Proof. This is essentially the main theorem reviewed in [44]: First of all, it is well known, or otherwise
easily checked (and indeed the rationale for definition 2.91), that given a manifold U then DGCA morphisms
Ω•(U) CEA(g)oo are in a bijection with the Lie algebroid morphisms T // (g, A) . By the Yoneda

lemma, theorem 6.26, the space of morphisms of Π1(S(CE(g, A))) is hence precisely that of Lie algebroid mor-
phisms TI → (g, A). The latter are the “A-paths” of [44] (see definition 2.13 and exercise 27 there) – modulo
Lie algebra homotopies T (I×I)→ (g, A) – these are the “A-homotopies” of [44] (see definition 3.18 there). �

Remark (nonabelian Stokes theorem). The integration procedure of theorem 5.10 can be interpreted
as follows: an element of the simply connected Lie group G is represented by a g-valued 1-form on the
interval A ∈ Ω1([0, 1], g). Such 1-forms are usually turned into group elements by means of their parallel
transport (see for instance [136]):

A 7→ P exp

(∫
[0,1]

A

)
∈ G ,

the “path ordered integral” of A over the interval. Remarkably, when forming BG as Π1(S(CE(g))) no such
integral is computed explicitly. Instead, equivalence classes of 1-forms A on the interval are formed, where
two 1-forms are identified if they can be interpolated by a flat 1-form on the disk. On the other hand, the
nonabelian Stokes theorem (for instance [136]) implies that any two 1-forms connected by a flat 1-form over
the disk have the same parallel transport. Conversely, given two 1-forms on intervals with the same parallel
transport, we can use lemma 5.11 below, together with the fact that G is simply connected, to deduce that
they can be interpolated over the disk by a flat 1-form. This shows that while the path ordered exponential
is not computed explicitly when forming Π1(S(CE(g))), the equivalence relation identifies precisely those 1-
forms which would yield the same group element if integrated. One can regard this as a nonabelian instance
of the principle of integration without integration as mentioned in a related remark after proposition 5.17
below.

Flat g-valued 1-forms on the n-disk. The following aspect of the path-integration method of Lie
algebras, a standard fact, is crucial for the integration of shifted central extensions of ordinary Lie algebras
in sections 5.2.3, 5.2.4 and 5.2.5.

2which states that every finite-dimensional Lie algebra over a field of characteristic zero can be viewed as a Lie algebra of
square matrices under the commutator bracket.

3Apparently Bott taught it his students this way.
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Lemma 5.11 For g a Lie algebra, G the simply conneced Lie group integrating it and h : Dn → PDn any
map that sends each point x ∈ Dn to a path connecting it to the origin, parallel transport

P exp

(∫
h(−)

(−)

)
: Ω1

flat(D
n, g) ' // C∞∗ (Dn, G)

of flat g-valued forms along these paths establishes a bijection between these forms and based G-valued func-
tions f ∈ C∞∗ (Dn, G) on Dn (sending the origin to the neutral element). The inverse map is pullback of the
canonical g-valued 1-form θ ∈ Ω1(G, g): (f ∈ C∞(Dn, G)) 7→ f∗θ .

Higher fundamental groupoids for Lie 1-algebras According to theorem 5.10, the simply connected
Lie group G integrating the Lie algebra g is the first fundamental group of the classifying space of flat g-
valued forms, BG = Π1(S(CE(g))). Recalling from section 4.2.1 that Π1 is obtained from Πω by dividing out
equivalences, we can also consider Πn(S(CE(g))) for higher n. When integrating shifted central extensions
of Lie algebras in sections 5.2.3 and 5.2.4 these higher fundamental groupoids of S(CE(g)) are part of the
structure one finds.

Definition 5.12 (path group and group of paths) For G a Lie group, there are two different natural
group structures on the space of based paths (starting at the identity). Write PG for the space of parameterized
paths γ : [0, 1]→ G with γ(0) = e and P ′G for the space of thin-homotopy classes of such paths with sitting
instant at the boundary. The group structure on PG is that obtained by pointwise multiplication in G. The
group structure ◦ on P ′G is given on representatives by translation and concatenation:

γ1 ◦ γ2 : (σ ∈ [0, 1]) 7→
{

γ1(2σ) for σ ≤ 1/2
γ1(1)γ2(2σ − 1) for σ ≥ 1/2 .

Write ΩG and Ω′G, respectively, for the subgroups for which γ(1) = e.

Lemma 5.13 For g a Lie algebra, the second fundamental groupoid of its classifying space is

Π2(S(CE(g))) = (Ω′G→ P ′G) ,

where on the right we have the crossed module obtained by the inclusion of loops in paths, with the action of
paths on loops by conjugation.

Proof. Follows directly from lemma 5.11 and the fact that π2 of every Lie group is trivial. �

Proposition 5.14 For g any Lie algebra and G its simply connected Lie group, there are weak equivalences
B(ΩG→ PG) ' // BG and B(Ω′G→ P ′G) ' // BG .

Proof. Essentially by construction. Notice that the second statement is, by lemma 5.13, a special case of
proposition 4.27. �

5.2.2 Integration of bn−1u(1)

Recall from [132]:

Definition 5.15 (shifted u(1)) For all postive n ∈ N the L∞-algebra bn−1u(1) is defined to be the L∞-
algebra whose Chevalley-Eilenberg algebra is the free GCA on a single degree n-generator equipped with the
trivial differential:

CE(bn−1u(1)) :=

∧• 〈b〉︸︷︷︸
deg=n

, d = 0

 .
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For n = 1 this is the ordinary Lie algebra of u(1). The classifying space S(CE(bn−1u(1))) of flat bn−1u(1)-
valued forms is just the classifying space of closed n-forms

S(CE(bn−1u(1))) = Ωn−1
closed .

Therefore the∞-Lie integration of these L∞-algebras is governed by the following lemma [** which must be
a classical fact, I suppose, but I give a proof nevertheless **]

Lemma 5.16 For all positive n ∈ N every smooth n-form Bn ∈ Ωn(Sn) on the n-sphere whose integral over
the n-sphere vanishes,

∫
Sn
Bn = 0, extends to a smooth closed n-form B̂ ∈ Ωnclosed(Dn+1) on the (n+ 1)-disk

with boundary the n-sphere.

Proof. If the statement is true for some (n− 1) ∈ N then it is implied for n as follows: given Bn ∈ Ωn(Sn)
choose any smooth surjective map h : Dn // // Sn injective away from ∂Dn and consider the pullback
form h∗Bn ∈ Ωn(Dn). By the Poincaré lemma there is An−1 ∈ Ωn−1(Dn) such that h∗Bn = dAn−1. We
can find another choice A′n−1 from this with the additional property that it vanishes on the boundary of the
n-disk, A′n−1|∂Dn = 0: using that the integral of An−1 over the boundary vanishes∫

∂Dn
An−1 =

∫
Dn

h∗Bn =
∫
Sn
Bn = 0 .

Then applying the induction hypothesis, we find that An−1 can be extended to a closed (n − 1)-form
Ân−1 ∈ Ωn−1

closed(Dn) on the n-disk. Then A′n−1 := An−1 − Ân−1 satisfies

h∗Bn = dA′n−1 ; A′|∂Dn = 0 .

But since A′n−1 vanishes on the boundary of Dn, it comes from pullback along h of an (n− 1)-form

A′n−1 = h∗an−1 ; an−1 ∈ Ωn−1(Sn)

on the n-sphere, which satisfies dan−1 = Bn .
To extend Bn to the n−1-disk it is now sufficient to extend an−1. To explicitly do this let f : [0, 1]→ [0, 1]

be a smoothing function, i.e a smooth orientation preserving diffeomorphism of the interval onto itself which
is constant in a neighborhood of the boundary of the interval. For r the standard radial coordinate of Dn+1

for unit radius set ân−1 := f ∧ an−1 ∈ Ωn−1(Dn+1) . Then

B̂n := dân−1 ∈ Ωnclosed(Dn+1)

is an extension of the original Bn to a closed n-form on the (n+ 1)-ball.
It remains to show that the induction hypothesis is true for n = 1. In that case let (0 < r ≤ 1, 0 ≤ s < 2π)

be the standard polar coordinates on D2 away from the origin, notice that g(s) :=
∫ s

0
B1 is a well-defined

function on the circle, because
∫
S1 B1 = 0, and set B̂1 := f ∧B1 + f ′g ∧ dr . �

Using this lemma the ∞-Lie integration of bn−1u(1) is now immediate:

Proposition 5.17 For all positive n ∈ N, the fundamental n-groupoid of the classifying space S(CE(bn−1u(1)))
of flat n-forms is the (n− 1)-fold shifted copy of the group R: Πn(S(CE(bn−1u(1)))) ' BnR .

Proof. First it is clear that all spaces of (k < n)-disks consist of a single point P ksitS(CE(bn−1u(1))) = {0},
namely the unique n-form on the (k < n)-disk: the 0-form. On the other hand, the space of n-disks with
sitting instant in S(CE(bn−1u(1))) is the space

PnsitS(CE(bn−1u(1))) = Ωn(Dn)
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of smooth n-forms on the n-disk vanishing in a neighborhood of the boundary. The homotopies between two
such n-disks

Pn+1
sit S(CE(bn−1u(1))) = Ωnclosed(Dn+1)

are closed n-forms on the (n+1)-ball interpolating between the n-forms on the two bounding hemi-n-spheres.
Lemma 5.16 implies that the map which sends an n-form on Dn to its integral

∫
Dn

: Ωn(Dn) → R
becomes a bijection on the quotient of homotopy classes:∫

Dn
: PnhtpyS(CE(bn−1u(1))) ' // R .

(Because by Stokes’ theorem every two homotopic n-disks are given by n-forms with the same integral
and by lemma 5.16 every two n-disks coming from n-forms with the same integral are homotopic in
S(CE(bn−1u(1)))).

It remains to check that the n different compositions of n-paths all correspond to the addition operation
in R. This follows simply from the additivity of integration. �

Remark. Notice how this process of forming homotopy classes of n-paths in the classifying space of n-
forms amounts to doing integration without integration [88]: instead of actually integrating an n-form one
sends it to the equivalence class of n-forms that would yield the same integral, if integrated.

For the integration of shifted central extensions in section 5.2.3, 5.2.4 and 5.2.5 it is crucial to notice that

Proposition 5.18 For n ≥ 2 all homotopies of n-paths in S(CE(bn−1u(1))) are thin.

Proof. For n ≥ 2, all differential forms on S(CE(bn−1u(1))) are linear combinations of wedge powers of the
canonical n-form ωn

S(CE(bn−1u(1)))
ωn //

'
''OOOOOOOOOOO Ω•

Ωnclosed

- 

<<yyyyyyyyy

.

So all forms of degree d ≥ n+ 1 actually have degree d > n+ 1 and hence vanish on the (n+ 1)-disk. �

5.2.3 Integration of string(n)

Recall the definition of the String Lie 2-algebra, the archetypical special case of definition ??. This appeared
originally in [8] and was then used in [9, 68]. See [132] for the context and notation used here.

Definition 5.19 (String Lie 2-algebra) For g an ordinary semisimple Lie algebra with invariant bilinear
form 〈·, ·〉 : g∗ ⊗ g∗ → R, let µ3 be the canonical Lie algebra 3-cocycle µ3 := 〈·, [·, ·]〉 normalized such that
its left-invariant extension to a 3-form µ̂3 ∈ Ω3

closed(G) on the simply connected Lie group G integrating g
is the image in deRham cohomology of the generator of H3(G,Z) ' Z. Then the skeletal version of the
String Lie 2-algebra of g is the Lie 2-algebra denoted gµ3 defined by its CE-algebra as

CE(gµ3) :=

∧•( g∗︸︷︷︸
deg=1

⊕ 〈b〉︸︷︷︸
deg=2

), d


with d|g∗ = dg and d : b 7→ µ3 ∈ g∗ ∧ g∗ ∧ g∗ .
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Remark. For every λ ∈ R the rescaled cocycle λµ3 is still a cocycle and still defines a Lie 2-algebra gλµ3 .
The condition that µ3 be normalized such that it generates H3(G,Z) is an integrability condition in the
sense of definition 4.30, as will become clear in the following.

Theorem 5.20 ([9]) The skeletal Lie 2-algebra gµ is equivalent, gµ3 ' string(g), to the strict Lie 2-algebra
string(g) := (Ω̂g→ Pg), where Ω̂g is the Kac-Moody central extension of the loop Lie algebra of g at level 1.

This result was obtained in [9] by guessing the form of string(g) and then constructing an explicit
equivalence. Strict Lie n-algebras, being crossed complexes of Lie algebras, can be integrated simply by
integrating them termwise to crossed complexes of Lie groups. The result of this termwise integration from
[9] is the 2-group String(G)BCSS from definition 5.5.

We now integrate gµ3 in the more systematic way by forming the second fundamental 2-groupoid of the
classifying space of flat gµ3-valued forms.

Lemma 5.21 For n ∈ N maps from the n-ball into the classifying space S(CE(gµ3)) are in bijection with
pairs (f,B) consisting of smooth maps f : Dn → G and 2-forms B ∈ Ω2(Dn) trivializing the pullback of µ3

along f , dB = f∗µ3.

Proof. By lemma 5.11. �

Definition 5.22 (String′(G)) We write String′(G) for the strict 2-group defined by

BString′(G) := Π2(S(CE(gµ3))) .

This is essentially the procedure described in [68], only that we form the strict fundamental 2-groupoid
instead of a weak fundamental ∞-groupoid of definition 4.21.

To see what String(G) is like, first consider this for g instead of gµ3 :

Lemma 5.23 For g a Lie 1-algebra and G the simply connected Lie group integrating it, the second funda-
mental 2-goupoid Π2(S(CE(g))) of the classifying space of flat g-valued forms is

Π2(S(CE(g))) = (Ω′G→ P ′G) .

Proof. This is a direct consequence of lemma 5.11. �

Proposition 5.24 The strict 2-group from definition 5.22 comes from the crossed module Ω̂′G
h′ // P ′G ,

where

• P ′G is the group whose elements are thin-homotopy classes of based smooth paths in G and whose
composition is obtained by translating one path so that its basepoint matches the other path’s endpoint
and then concatenating;

• Ω′G is the group whose elements are equivalence classes of pairs (d, x) consisting of thin homotopy
classes of disks d : D2 → G in G with sitting instant at a chosen point on the boundary which is sent
to the neutral element. Also x ∈ R/Z. Composition is by gluing of disks at the baseboint. Two disks
are taken to be equivalent if their boundary has the same thin homotopy classes and if the labels x and
x′ differ, in R/Z by the integral

∫
D3 f

∗µ3 over any 3-ball f : D3 → G cobounding the two disks.

Proof. The 1-morphisms are thin-homotopy classes of 1-paths in S(CE(gµ3)), which are g-valued 1-forms
on the inerval modulo thin homotopy. By lemma 5.11 this are based thin-homotopy classes of paths in the
simply connection Lie group G integrating g

PthtpyS(CE(gµ3)) = PthtpyS(CE(g)) = (Pthtpy)∗G .

92



Composition of paths corresponds to gluing intervals with their 1-forms, which corresponds to the composi-
tion of paths in G as stated. The 2-morphisms are homotopy classes of 2-paths in S(CE(gµ3)). First consider
thin-homotopy classes of such 2-paths: Representatives of these are pairs consisting of a flat g-valued 1-form
and a 2-form B ∈ Ω2(D2) on the disk, the latter being the image of b ∈ CE(gµ3). A thin homotopy between
two such pairs is an extension of these tuples to 3-disks interpolating between two such 2-disks. Thinness
requires all 3-forms to vanish on this 3-ball and hence the extension of B to the 3-ball to be flat. By lemma
5.16 and proposition 5.17 this means that of the 2-form B precisely its integral

∫
D2 B survives in thin homo-

topy equivalence classes. So again with lemma 5.11 we find that thin-homotopy classes of 2-paths are given
by pairs (Σ, r) consisting of thin-homotopy classes Σ of disks in G together with a real number r.

Still using lemma 5.11, a homotopy between pairs (Σi, ri) is a 3-disk g : D3 → G in G with Σ1,2 the
two hemispheres of its boundary, such that the 2-form representatives B1,2 are interpolated by B̂ ∈ Ω2(D3)
satisfying the equation

dB̂ = g∗µ(θ) = g∗〈θ ∧ [θ ∧ θ]〉 ,

which is the image of the equation defining the differential in CE(gµ3) in definition 5.19. This means that
r2 and r1 are in the same equivalence class if

r2 − r1 =
∫
D2

in

g∗B1 −
∫
D2

out

g∗B2 =
∫
D3
g∗µ

for all g∗. We need to show that, conversely, for all pairs B1, B2 satisfying this condition there is a B̂ ∈ Ω2(D3)
interpolating between them representing a 3-morphism in Π3(S(CE(gµ3))): the 3-ball g : D3 → G is to be
thought of as a map g : [0, 1]3 → G with sitting instants on ([0, ε) ∪ (1− ε, 1))× [0, 1]2

(0, 1, 0) (ε, 1, 0)

o o o o
(1− ε, 1, 0)

k k k k
(1, 1, 0)

mmmmmmmm

(0, 0, 0) s1 //

s3

��

s2 ooooooo
(ε, 0, 0)

�
�
�
�

(1− ε, 0, 0)

�
�
�
�

(1, 0, 0)

(1, 1, 1)

mmmmmmmm

(0, 0, 1) (ε, 0, 1) (1− ε, 0, 1) (1, 0, 1)

.

This requires that on ([0, ε)∪ (1− ε, 1))× [0, 1]2 B̂ vanishes . Since g is constant on ([0, ε)∪ (1− ε, 1))× [0, 1]2

this is achieved by setting

B̂(s1, s2, s3)(~v1, ~v2) :=
∫ s3

0

g∗µ(s1, s2, σ)(~v1, ~v2,
∂

∂s3
) +B1(s1, s2)(p∗~v1, p∗~v2) ,

where p : [0, 1]3 → [0, 1]2 is the projection (s1, s2, s3) 7→ (s1, s2).

By the integrality of µ, for fixed Σi this difference is unique modulo Z. And all values in Z appear for
some choice of g because there is always the horizonatal composite of the 3-morphism g by a 3-morphism
with source and target the constant 2-path representing an element in π3(G) = Z. This means that ri
represent elements of U(1). In terms of such, our equivalence relation which equates disks in G labeled by
elements in U(1) coincides precisely with that defining the Kac-Moody central extension Ω̂G of loops in G. �

We show below that these two strict models of the String 2-group, Π2 ◦ S ◦ CE(gµ3) and StringBCSS(G)
are ana-equivalent. In the process of this proof we naturally encounter the third strict model of the String
2-group, StringMick(G) from definition 5.6.

The relation between the various ways to integrate gµ3 is depicted in figure 10.
Recall the definition 2.78 of ana-ω-functors.
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5.24

OO

+

integration
in [9]

kkkkkkkkkkkk

55kkkkkkkkk

string(g) � //
_
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�
�
�
�
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(Ω̂g→ Pg)
_

OO

Figure 10: Integration of the String Lie 2-algebra. Strict Lie n-algebras are equivalent to crossed
complexes of ordinary Lie algebras. Applying ordinary 1-Lie integration these integrate termwise to crossed
complexes of Lie groups. These, in turn, are equivalent to strict Lie n-groups. Using this method, a weak Lie
n-algebra can be integrated if one has an equivalence of L∞-algebras with a strict Lie n-algebra. This way the
String Lie 2-algebra gµ3 was integrated in [9]. In contrast to that, [68] integrated gµ3 by computing the weak
fundamental∞-groupoid Π∞(S(CE(gµ3))) of the classifying space of flat gµ3-valued forms. Here we consider
something in between by computing the strict fundamental 2-groupouid Π2(S(CE(gµ3))). This in fact the
strict 2-group which is implicit in [35], as discussed in section 5.8.2. We construct a weak ana-equivalence
to the strict 2-group StringBCSS(G) from [9]. In doing so we find yet another different but weakly equivalent
strict model of the String 2-group, denoted StringMick(G), which is built not using the Kac-Moody cocycle
but Mickelsson’s cocycle.

Proposition 5.25 The strict 2-group StringMick(G) from definition 5.6 is ana-equivalent to the model
String′(G) from definition 5.22:

StringMick(G) | ' // Π2 ◦ S ◦ CE(gµ3)

Proof. We define a weak 2-functor F : StringMick(G) → Π2 ◦ S ◦ CE(gµ3), which by proposition 2.60
corresponds to a strict ana-2-functor. Its action on 1- and 2-morphisms is obvious: it sends parameterized
paths γ : [0, 1]→ G to their thin-homotopy equivalence class

F : γ 7→ [γ]

and similarly for parameterized disks. On the R/Z-labels of these disks it acts as the identity.
The subtle part is the compositor measuring the coherent failure of this assignment to respect composition:

Define the components of this compositor for any two parameterized based paths γ1, γ2 : [0, 1] → G with
pointwise product (γ1 ·γ2) : [0, 1]→ G and images [γ1], [γ2], [γ1 ·γ2] in thin homotopy classes to be represented
by a parameterized disk in G

γ2

��???????
γ1

??�������
γ1·γ2

//
dγ1,γ2��

equipped with a label xγ1,γ2 ∈ R/Z to be determined. Notice that this triangle is a diagram in Π2◦S◦CE(gµ3)
so that composition of 1-morphisms is concatenation γ1 ◦ γ2 of paths as in definition 5.12. A suitable disk
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in G is obtained via the map

D2 a // [0, 1]2
(s1,s2)7→γ1(s1)·γ2(s2) // G ,

where a is a smooth surjection onto the triangle {(s1, s2)|s2 ≤ s1} ⊂ [0, 1]2 such that the lower semi-circle
of ∂D2 = S1 maps to the hypotenuse of this triangle. The coherence law for this compositor for all triples
of parameterized paths γ1, γ2, γ3 : [0, 1]→ G amounts to the following: consider the map

D3 a // [0, 1]3
(s1,s2,s3) 7→γ1(s1)·γ2(s2)·γ3(s3) // G ,

where the map a is a smooth surjection onto the tetrahedron {(s3 ≤ s2 ≤ s1)} ⊂ [0, 1]3 . Then the coherence
condition

• γ2 // •

γ3

��
•

γ1

OO

γ1·γ2���������

??���������

γ1·γ2·γ3
// •

{
s3=0
s2≤s1

};;;;

�!
;;;;

{
s1=s2
s3≤s1

}����

	�

=

• γ2 //

γ2·γ3

?????????

��?????????

•

γ3

��
•

γ1

OO

γ1·γ2·γ3
// •

{
s1=1
s3≤s2

}����

}� ����

{
s2=s3
s2≤s1

}$$$$

�

requires that the integral of the canonical 3-form on G pulled back to the 3-ball along these maps accounts
for the difference in the chosen labels of the disks involved:∫

D3
(b ◦ a)∗µ =

∫
s3≤s2≤s1

(γ1 · γ2 · γ3)∗µ = xγ1,γ2 + xγ1·γ2,γ3 − xγ1,γ2·γ3 − xγ2,γ3 ∈ R/Z .

(Notice that there is no further twist on the right hand side because whiskering in Π2 ◦S ◦CE(gµ3) does not
affect the labels of the disks.) To solve this condition, we need a 2-form to integrate over the triangles. This
is provided by the degree 2 component of the simplicial realization (µ, ν) ∈ Ω3(G)× Ω2(G×G) of the first
Pontryagin form on BG as described in proposition 6.35. So, define the label assigned by our compositor to
the disks considered above by

xγ1,γ2 :=
∫
s2≤s1

(γ1, γ2)∗ν .

To show that this assignment satisfies the above condition, use the closedness of (µ, ν) in the complex of
simplicial forms on BG, recalled in definition 6.33: δµ = dν and δν = 0. From this one obtains

(γ1 · γ2 · γ3)∗µ = −d(γ1 · γ2, γ3)∗ν = −d(γ1, γ2 · γ3)∗ν

and
(γ1, γ2 · γ3)∗ν = (γ1 · γ2, γ3)∗ν + (γ1, γ2)∗ν − (γ2, γ3)∗ν .

Now we compute as follows: Stokes’ theorem gives

∫
s3≤s2≤s1

(γ1 · γ2 · γ3)∗µ =

 ∫
s3=0,s2≤s1

+
∫

s1=s2,s3≤s1

−
∫

s1=1,s3≤s2

−
∫

s2=s3,s2≤s1

 (γ1, γ2 · γ3)∗ν .

The first integral is manifestly equal to xγ1,γ2 . The last integral is manifestly equal to −xγ1,γ2·γ3 . For the
remaining two integrals we rewrite

· · · = xγ1,γ2 − xγ1,γ2·γ3 +

 ∫
s1=s2,s3≤s1

−
∫

s1=1,s3≤s2

 ((γ1 · γ2, γ3)∗ν + (γ1, γ2)∗ν − (γ2, γ3)∗ν) .
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The first term in the integrand now manifestly yields xγ1·γ2,γ3 − xγ2,γ3 . The second integrand vanishes on
the integration domain. The third integrand, finally, gives the same contribution under both integrals and
thus drops out due to the relative sign. So in total what remains is indeed

· · · = xγ1,γ2 − xγ1,γ2·γ3 + xγ1·γ2,γ3 − xγ2,γ3 .

This establishes the coherence condition for the compositor.

Finally we need to show that the compositor is compatible with the horizontal composition of 2-
morphisms. We consider this in two steps, first for the horizontal composition of two 2-morphisms both
starting at the identity 1-morphism in BStringMick(G) – this is the product in the loop group Ω̂G centrally
extended using Mickelsson’s cocycle – then for the horizontal composition of an identity 2-morphism in
BStringMick(G) with a 2-morphism starting at the identity 1-morphisms – this is the action of PG on Ω̂G.
These two cases then imply the general case.

• Let (d1, x1) and (d2, x2) represent two 2-morphisms in BStringMick(G) starting at the identity 1-
morphisms. So

di : [0, 1]→ ΩG

is a based path in loops in G and xi ∈ U(1). We need to show that

•

Id

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•(d1,x1)

��
(d2,x2)

��

(dγ1,γ2 ,xγ1,γ2 )
��

= •

Id

%%

γ1·γ2

CC•

Id

%% •

(d1·d2,x1+x2+ρ(d1,d2))

��

as a pasting diagram equation in Π2 ◦S ◦CE(gµ3). Here on the left we have gluing of disks in G along
their boundaries and addition of their labels, while on the right we have the pointwise product from
definition 5.6 of labeled disks as representing the product of elements Ω̂G.

There is an obvious 3-ball interpolating between the disk on the left and on the right of the above
equation:

({s2 ≤ s1} ⊂ [0, 1]3)→ G

(s1, s2, t) 7→ (d1(t, s1) · d2(t, s2))

•

Id

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•{s2=0}
��

{s1=0}
��

{t=1}
��

, •

Id

%%

γ1·γ2

CC•

Id

%% •

{s1=s2}

��

.

The compositor property demands that the integral of the canonical 3-form over this ball accounts for
the difference between xγ1,γ2 and ρ(γ1, γ2)

ρ(d1, d2) =
∫

s2≤s1
0≤t≤1

(d1 · d2)∗µ+
∫

s2≤s1

(γ1, γ2)∗ν .

Now use again the relation between µ and dν to rewrite this as

· · · =
∫

s2≤s1
0≤t≤1

((d1)∗µ+ (d2)∗µ− d(d1, d2)∗ν) +
∫

s2≤s1

(γ1, γ2)∗ν .
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The first two integrands vanish. The third one leads to boundary integrals

· · · = −

 ∫
s2=0

+
∫

s1=0

 (d1, d2)∗ν −
∫
t=1
s2≤s1

(d1, d2)∗ν +
∫

s2≤s1

(γ1, γ2)∗ν +
∫

0≤t≤1
s1=s2

(d1, d2)∗ν .

The first two integrands vanish on their integration domain. The third integral cancels with the fourth
one. The remaining fifth one is indeed the 2-cocycle on PΩG which from definition 5.22.

• The second case is entirely analogous: for γ1 a path and (d2, x2) a centrally extended loop we need to
show that

•

γ1

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•Id

��
(d2,x2)

��

(dγ1,γ2 ,xγ1,γ2 )
��

= •

γ1

%%

γ1·γ2

CC•

Id

%% •

(γ1·d2,x1+x2+λ(γ1,d2))

��

as a pasting diagram equation in BString′(G).

There is an obvious 3-ball interpolating between the disk on the left and on the right of the above
equation:

({s2 ≤ s1} ⊂ [0, 1]3)→ G

(s1, s2, t) 7→ (γ1(s1) · d2(t, s2))

•

γ1

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•{s2=0}
��

{s1=0}
��

{t=1}
��

, •

γ1

%%

γ1·γ2

CC•

Id

%% •

{s1=s2}

��

.

The compositor property demands that the integral of the canonical 3-form over this ball accounts for
the difference between xγ1,γ2 and λ(γ1, γ2)

λ(γ1, d2) =
∫

s2≤s1
0≤t≤1

(d1 · d2)∗µ+
∫

s2≤s1

(γ1, γ2)∗ν .

This is essentially the same computation as before, so that the result is

· · · =
∫

0≤t≤1
s1=s2

(γ1, d2)∗ν .

This is indeed the quantity from definition 5.22.

�
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Remark (strict models of the String 2-group as multiplicative bundle gerbes). As plain
groupoids, forgetting their monoidal structure, the three 2-groups Π2 ◦ S ◦ CE(gµ3), StringBCSS(G) and
StringMick(G) are the tautological bundle gerbe on G as defined in [117], the only difference being that for
StringMick(G) and StringMick(G) the bundle gerbe is defined with respect to the surjective submersion given
by the space of parameterized paths, whereas for Π2◦S ◦CE(gµ3) the surjective submersion is the quotient of
this by thin homotopy of paths. There are obvious (“stable”) isomorphism between these 2-groups as bundle
gerbes. By [** ... a list of known results to be named it should apparently be true that... **] for G compact
simple and simply connected, multiplicative bundle gerbes on G are equivalent as multiplicative bundle
gerbes already if they are equivalent as plain bundle gerbes. This yields an alternative way to understand
the above situation.

String 1-group. With the 1-groupoid String(G) defined by BString(G) := Π2 ◦ S ◦ CE(gµ), the spatial
realization |String(G)|, according to definition 4.15 should be a 1-group internal to Spaces.

[** the following 1-group should be related to |String(G)| **]

Definition 5.26 (String 1-group) For G, g and µ3 as in definition 5.19, define a group Gµ3 internal
to Spaces as follows. Consider the simplicial forms (µ3, ν2) ∈ Ω3(G) × Ω2(G × G) representing the first
Pontryagin 4-form on BG, as in proposition 6.35. Then the set of plots of Gµ3 over any test domain U is
defined to be

Gµ3 : U 7→ {(f,B)|f ∈ C∞(U,G), B ∈ Ω2(U), f∗µ3 = dB} ,
with the pullback operation being the obvious one. The product morphism Gµ ×Gµ → Gµ is given over test
domain U by ((f1, B1), (f2, B2)) 7→ (f1 · f2, B1 +B2 − (f1, f2)∗ν). The identity element pt→ Gµ is given by
the plot (e, 0). The inverse map Gµ → Gµ is given over U by (f,B) 7→ (f−1,−B).

Lemma 5.27 The object Gµ defined this way is indeed a group internal to Spaces.

Proof. The product is well defined by δµ3 = dν, which implies that d(B1 + dB2 + (f1, f2)∗ν2) = f∗1µ3 +
f∗2µ3 − (f1, f2)∗dν2 can be rewritten as · · · = (f1 · f2)∗µ3. Associativity of this product requires that for all
f1, f2, f3 ∈ C∞(U,G) we have (f1, f2)∗ν2 + (f1 · f2, f3)∗ν2 = (f2, f3)∗ν2 + (f1, f2 · f3)∗ν2 . This follows from
δν2 = 0. �

Proposition 5.28 Gµ fits into a short exact sequence of groups internal to Spaces:

1→ S(CE(bu(1)))→ Gµ → G→ 1

Lemma 5.29 Let [µ3] denote the generator in H3(G,Z) that µ3 is the deRham image of. Think of this as
a homotopy class of maps G → K(Z, 3) being an element in [G,K(Z, 3)]. By postcomposition this yields a
map

[µ3] : [S3, G]→ [S3,K(Z, 3)] ' H3(S3,Z) .

This is an isomorphism.

Proof. [...] �

Proposition 5.30 The fundamental groups π0(Gµ) and π1(Gµ) are trivial. For 2 ≤ k ≤ 3, maps from
k-spheres to G which factor through Gµ homotopically trivial.

Proof. Follows from lemma 5.29. �

Corollary 5.31 The 3-group Π3(S(CE(gµ3))) is surjectively equivalent to BSting′(G):

Π3(S(CE(gµ3))) ' // // BString′(G) .

98



Proof. The 1-morphisms of Π3(S(CE(gµ3))) are the same as those of BString′(G), namely thin-homotopy
classes of paths inG starting at the identity, 2-morphisms are thin-homotopy classes of disks cobounding these
paths and labeled with an element r ∈ R, and 3-morphisms are homotopy classes [V ] of 3-balls V : D3 → G
such that V ∗µ3 is exact and cobounding disks the difference of whose lables r1, r2 is r2 − r1 =

∫
D3 V

∗µ3.

The functor Π3(S(CE(gµ3))) ' // // BString′(G) just divides out 3-morphisms. This ω-functor is mani-
festly k-surjective for 0 ≤ k ≤ 3. As a direct consequence of lemma 5.29 every 3-morphism is parallel only
to itself and hence the ω-functor is injective in degree 3 and hence also 4-surjective. �

5.2.4 Integration of fivebrane(n)

Definition 5.32 For g = so(n) and G = Spin(n) we abbreviate string(n) := string(so(n)) and String(n) :=
String(Spin(n)) .

Definition 5.33 (The fivebrane(n) Lie 6-algebra) We define fivebrane(n) := (so(n)µ3)µ7 .

Theorem 5.34 (Integration of fivebrane(n) to the Fivebrane(n)-6-group) The 6-group

BFivebrane(n) := Π6 ◦ S ◦ CE(fivebrane(n))

is as follows: ...

5.2.5 Integration of sugra(11)

In [132] the super Lie 3-algebra sugra(11) was described, whose Chevalley-Eilenberg algebra is used in [] for
the description of eleven-dimensional supergravity. Integrating that yields...

5.3 ∞-Lie differentiation

According to section 4.3 ∞-Lie differentiation sends ω-groupoids to the DGCA of differential forms on their
classifying spaces. See figure 7.

5.3.1 L∞-Differentiation of Lie 1-groups

Recall the operation of spatial realization | · | : ωCategories(Spaces)→ Spaces from 4.2.1.

Theorem 5.35 ([136]) For g an ordinary Lie algebra and G a Lie group integrating it we have

|BG| ' S(CE(g)) .

In particular this means that |BG| always produces the realization corresponding to the simply connected
cover of G.

5.3.2 L∞-Differentiation of Lie 2-groups

In [137] it was proven that

Theorem 5.36 ([137]) For g2 = (h → g) a strict finite-dimensional Lie 2-algebra and G2 = (H → G) a
strict Lie 2-group integrating it, we have |BG2| ' S(CE(g2)) .

This can now be seen as a consequence of the combination of 5.10 and corollary 4.19. Using the results
of section 5.2.3 we obtain generalizations of this statement involving weak Lie 2-algebras:

Corollary 5.37 Let gµ3 ' string(g) be as in definition 5.19 and theorem 5.20, respectively and let Π2 ◦ S ◦
CE(gµ3) ' StringMick(G) be as in definition 5.22 and definition 5.6. Then

|BStringMick(G)| = S(CE(gµ3)) .
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5.4 Principal ω-bundles

5.4.1 Principal 1-bundles

The following example spells out the familiar description of ordinary principal G-bundles for G an ordinary
group in the language of nonabelian cohomology with coefficients in ω-category valued presheaves. If G
is an ordinary (1-)group then the 1-groupoid valued constant presheaf (definition ??) TrivBundG(X) =
BC∞(X,G) has as morphisms the continuous maps from X to G, with composition of morphisms the
pointwise product of such maps. Given a principal G-bundle P → X we can locally trivialize it on a good
cover Y :=

⊔
i Ui of X by open subsets {Ui ⊂ X}, i.e. by identifying the pullback π∗P along the obvious

projection map π : Y → X (the restriction of P to the subsets in the cover) with the unique trivial G-bundle
triv := Y ×G on Y , which we identify with the unique object of TrivBundG(Y )

triv ∈ Obj(TrivBundG(Y )) .

The particular choice of identification leads to a gauge transformation between the two copies of this trivial
bundle over double overlaps, coming from a continuous function g : (Y ×X Y =

⊔
i,j Ui ∩ Uj) → G, whose

restriction to each double overlap is written gij := g|Ui∩Uj . By the above we can identify this with a
morphism

( π∗1triv
g // π∗2triv ) ∈ Mor(TrivBundG(Y ×X Y )) ,

where Y ×X Y
π1 //
π2
// Y are the two projections from double intersections to elements of the cover. If we

write (x, i) ∈ Ui for a point x ∈ X regarded as an element of Ui ⊂ X and (x, i, j) ∈ Ui ∩ Uj for the same
point regarded as an element of the double intersection Ui ∩ Uj then these projections are simply given by
π1 : (x, i, j) 7→ (x, i) and π2 : (x, i, j) 7→ (x, j). Finally, the function g : Y ×X Y → G will satisfy the cocycle
condition π∗12g · π∗23g = π∗13g, where now the πnm are the three possible projections

Y ×X Y ×X Y

π1 //
π2 //
π3
// Y ×X Y

π1 //
π2
// Y

from triple overlaps to double overlaps. In terms of morphisms in TrivBundG(·) the cocycle condition says
that the triangle

π∗2triv
π∗23g

$$IIIIIIIII

π∗1triv

π∗12g
::uuuuuuuuu

π∗13g
// π∗3triv

commutes in TrivBundG(Y ×X Y ×X Y ), i.e. that it is filled by a (necessarily identity) 2-morphism. In
terms of the component maps of the transformations π∗nmg this says that all the triangles

∀(x, i, j, k) ∈
⊔
i,j,k

Ui ∩ Uj ∩ Uk :

•
gjk(x)

��@@@@@@@

•

gij(x)
??�������

gik(x)
// •
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commute in BG. We summarize all this by saying that the tuple

triv ∈ 0Mor(TrivBundG(Y )) ,

( π∗1triv
g // π∗2triv ) ∈ 1Mor(TrivBundG(Y ×X Y )) ,

π∗2triv
π∗23g

$$IIIIIIIII

π∗1triv

π∗12g
::uuuuuuuuu

π∗13g
// π∗3triv

 ∈ 2Mor(TrivBundG(Y ×X Y ×X Y )) ,


∈ Obj(Desc(Y •,TrivBundG(·)))

is an object in the descent category Desc(Y •,TrivBundG(·)) of G-bundles relative to Y . The terminology
indicates that this data ensures that a trivial G-bundle on Y “descends” down from Y to a G-bundle P on
X

Y

π

��
X

.

The morphisms in the descent category are gauge transformations of such cocycle data given by functions
h : Y → G. Such a gauge transformation relates the transition function g = {gij} with another transition
function g = {g′ij} if gij · hj = hi · g′ij . Diagrammatically, this means that the tuple

( triv
h // triv′ ) ∈ 1Mor(TrivBundG(Y )) ,

π∗1triv
g //

π∗1h

��

π∗2triv

π∗2h

��
π∗1triv′

g′
// π∗2triv′

nnnnnnnnnn

nnnnnnnnnn

 ∈ 2Mor(TrivBundG(Y ×X Y ))


∈ 1Mor(Desc(Y •,TrivBundG(·)))

is a morphism in the descent category relative to Y from the cocycle g to the cocycle g′.

The descent category Desc(Y •,TrivBundG(·)) thus defined knows everything about principal G-bundles
on X which can be locally trivialized with respect to the chosen cover Y . To get rid of the dependence on
the irrelevant choice of cover, one can form the directed limit (the colimit over all possible covers Y ) to get
the category

H(X,BG) := colimY Desc(Y •,TrivBundG(·)) .

The category H(X,BG) thus obtained is the categorified version of the nonabelian G-cohomology of X:
its objects are the G-cocycles on X and its morphisms the G-coboundaries. Cohomology classes are the
isomorphism classes of objects in H(X,BG). Hence the standard fact about principal bundles now reads

Theorem 5.38 The category of principal G-bundles on X is equivalent to the nonabelian cohomology of X
with values in G: BundG(X) ' H(X,BG) .

Generalization to higher n. From just looking at the above example it is essentially clear what the right
definition of descent of trivial n-bundles with structure n-group G is: a descent datum relative to a cover
Y → X should be a tuple of:

• an object in TrivBundG(Y );

• a morphism in TrivBundG(Y ×X Y ) between the two pullbacks of this object;

• a triangle in TrivBundG(Y ×X Y ×X Y ) between the three pullbacks of this morphism;
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• a tetrahedron in TrivBundG(Y ×X Y ×X Y ×X Y ) between the four pullbacks of this triangle;

• and so on: an n-simplex in TrivBundG(Y ×Xn+1) between the n+ 1 pullbacks of the previous (n− 1)-
simplex.

A morphism of descent data is a “prism homotopy” between the corresponding simplices, and so on.

5.4.2 Principal 2-bundles

Definition 5.39 (principal 2-bundles) For G a strict 2-group, a principal G-2-bundle over X is a groupoid
P equipped with a functor p : P → P0(X) and equipped with a strict right G-action ρ : P ×G→ P such that
there exists a cover π : Y → X and a (possibly weak) equivalence

t : π∗P
' // Π0(Y )×G

of groupoids with right G-action (meaning that t is an equivalence of categories which is strictly G-equivariant).
Principal G-2-bundles over X form a 2-category 2BundG(X) whose morphisms are strictly G-equivariant
functors P → P ′ leaving X invariant and whose 2-morphisms are transformation between these.

Principal G-2-bundles were introduced as such in [15] and [14]. See also [160]. Then we have

Theorem 5.40 Principal G-2-bundles are classified by nonabelian G-cohomology: 2BundG(X) ' H(X,BG)) .

Proof. Given a principal G-2-bundle P → X and picking a local trivialization t : π∗P → Y ×G over a good
cover π : (Y := tiUi)→ X yields the G cocycle {gij , hijk} defined by

P |Uij
tj

$$IIIIIIIII

Uij ×G

t̄i
::uuuuuuuuu

gij
// Uij ×G

and
Uijk ×G

hijk

��

gjk

��555555555555555555555

Uijk ×G

gij

DD																					

gik
// Uijk ×G

:=

Uijk ×G

t̄j

����
gjk

��3
3333333333333333333333

P |Uijk

tk
LLLL

&&LLLLL

tj

FF

Uijk × G

gij

EE�����������������������
t̄irrrrr

99rrrr

gik
// Uijk ×G

.

One checks that this respects equivalences on both sides. Conversely, given a G-cocycle regarded as a
2-functor g : PY0 (X)→ BG out of the codescent 2-groupoid of Y , one gets the pullback

g∗EG //

��

EG

��
PY0 (X)

g // BG

as described in section 7 of [126] and in our definition ??. Quotienting out 2-isomorphisms yields the smooth
principal G-2-bundle g∗EG/∼. One checks that picking a local trivialization of this reproduces the cocycle
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g up to equivalence. �

In particular, for G = BU(1) = (U(1) → 1) principal G-2-bundles are equivalent to U(1)-bundle gerbes
on X

H(X,BBU(1))∼ = H3(X,Z) .

5.4.3 Principal 3-bundles

5.5 Characteristic classes

We apply the general theory of characteristic classes of ω-bundles, described in section 3.4, to special exam-
ples.

5.5.1 Characteristic classes of principal 1-bundles

Let G be a compact, simple and simply connected Lie group with Lie algebra g. It is well known that its
third integral cohomology is H3(G,Z) = Z, as is the fourth integral cohomology of the classifying space
H4(BG,Z) = Z. In terms of characteristic classes in the sense of cohomology of ω-groupoids, as described
in section 3.4, this has the following geometric interpretation, in view of the constructions in section 5.2.1:

according to proposition 5.13 there is a weak equivalence Π2(S(CE(g)))' // // BG , due to the fact that
Π1(S(CE(g))) = BG and π2(G) = 0. Accordingly Π3(S(CE(g))) fails to be weakly equivalent due to the
existence of nontrivial endomorphism 3-cells, i.e due to the nontriviality of π3(G). Following section 3.2.3
this can be remedied again by throwing in suitable 4-cells that kill these nontrivial 3-endomorphisms by
connecting them to the identity endomorphism:

Lemma 5.41 The ω-groupoid Π3(S(CE(g)))◦ corresponding to the pushout crossed complex

[B3π3(G)] //

��

[Π3(S(CE(g)))]

��
[BEB2π3(G)] // [Π3(S(CE(g)))] ∪ [BEB2π3(G)]

is surjectively equivalent to BG, Π3(S(CE(g)))◦ ' // // BG .

Proof. The 1-morphisms of Π3(S(CE(g)))◦ are thin-homotopy classes of paths in G, starting at the identity,
the 2-morphisms are thin-homotopy classes of disks cobounding such paths and the 3-morphisms are homo-
topy classes of 3-balls cobounding such surfaces. From each identity 3-morphism on an identity 2-morphisms
on the identity 1-morphisms originates one 4-morphism per element k ∈ π3(G), connecting that identity
3-morphisms to the 3-morphism being the homotopy class of 3-spheres in G representing that element.

The functor Π3(S(CE(g)))◦ ' // // BG is given by endpoint evaluation on paths. This is clearly k-
sujective for 0 ≤ k ≤ 4. 5-surjectivity is due to the fact that there is, by the killing construction, a unique
4-morphism connecting any two parallel 3-morphisms. �

By definition 2.83 a cocycle on BG, hence a cocycle on Π3(S(CE(g)))◦, is an ω-anafunctor out of a a
replacement. The universal choice is the universal free resolution

̂Π3(S(CE(g)))◦ := Codesc(N•(B(ΩG→ PG),P0) =

[n]∈∆∫
Πω(∆n)⊗ P0(Nn(Π3(S(CE(g)))◦))

from definition 3.1 and definition 3.15.
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While this may look complicated, it has a simple geometric interpretation: the 3-simplices in B ̂Π3(S(CE(g)))◦
are (thin-homotopy classes of) oriented tetrahedra in G and the 4-simplices are in bijection with their bound-
aries consisting of five such tetrahedra, as in figures 5 and 11. Its 3-morphisms are generated from tetrahedra
in G.

Using this surjectively equivalent model for BG there is a direct geometric way to see that every normal-
ized Lie algebra 3-cocycle on g yields a universal characteristic class on BG:

Lemma 5.42 Let µ3 ∈ CE(g) be a Lie algebra 3-cocycle, i.e. dCE(g)µ3 = 0, which is normalized, in that
its left-invariant continuation to a closed left-invariant 3-form µ3 ∈ Ω3(G) is integral. Then there is an
ω-functor ∫

µ3/Z : ̂Π3(S(CE(g)))◦ → B3U(1)

which sends a 3-cell, given by a thin-homotopy class [V ] of a tetrahadron V : ∆3 → G in G to the integral

[V ] 7→
∫

∆n

V ∗µ3 mod Z .

Proof. This kind of construction is precisely the one appearing in the integration of the String Lie 2-algebra
in section 5.2.3, which in turn is the kind of construction appearing in [35]: the integrality of µ3 implies
that its integral over five tetrahedra which form the boundary of a 4-simplex vanishes in R/Z, which in turn
ensures that

∫
µ3/Z is indeed an ω-functor sending the 4-cells of Π3(S(CE(g)))◦ to the identity 4-morphisms

in B3U(1). �

5.5.2 Characteristic classes of String(n)-principal bundles

The cohomology of the 2-group String(G) from section 5.2.3 has been analyzed in [68] and [9], and the
cohomology of String(n)-principal bundles in [13]. Using the description of the third universal character-
istic classes on BG in Ho(BG,B3U(1)) from section 5.5.1, we can now describe these universal characteristic
classes on BString(G) conveniently using the surjectively equivalent model Π3(S(CE(gµ3))) // BString′(G)

from corollary 5.31. In terms of these surjectively equivalent resolutions, the canonical ω-functor BString(G) // // BG

is realized as an ω-functor Π3(S(CE(gµ3))) // // Π3(S(CE(g)))◦ which simply sends labeled k-disks in G

to unlabeled k-disks.

Proposition 5.43 The pullback of the universal characteristic class [
∫
µ3/Z] ∈ Ho(BG,B3U(1)) from

lemma 5.42 along p : BString(G) // // BG is trivial:

[p∗
∫
µ3/Z] = 0 ∈ Ho(BString(G),B3U(1)) .

Proof. The pulled back cocycle p∗
∫
µ3/Z is an ω-anafunctor

̂Π3(S(CE(gµ3))) p̂ //

0

''

'
����

̂Π3(S(CE(gµ3)))
◦ ∫

µ3/Z //

'
����

B3U(1)

BString′(G)
p // BG

'λ
��
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which sends a 3-morphism in ̂Π3(S(CE(gµ3))), given by a tetrahedron in G whose faces carry labels in R, to
the 3-morphism in B3U(1), given by the element in U(1) obtained as the integral of µ3 over the tetrahedron,
modulo Z. By corollary 5.31 this element equals the oriented sum of the labels of the faces of the tetrahedron,
modulo Z. Therefore these faces tautologically provide a coboundary λ, given by the transformation which
sends each labeled triangle in G to its label modulo Z. �

Corollary 5.44 (Pontryagin class of String(G)-bundles is trivial) Let ĝ ∈ H(X,BString(G)) be the
cocycle representing a String(G)-principal bundle, then the characteristic class [ĝ∗c] of this cocycle corre-
sponding to the characteristic class c =

∫
µ3/Z from above vanishes, [ĝ∗c] = 0.

5.6 Chern-Simons ω-bundles

Definition 5.45 (Chern-Simons cocycles) For Bn−1U(1) → Ĝ → G a shifted central extension of ω-
groups, definition 3.27, we say a differential Chern-Simons cocycle with respect to Ĝ is a BBnU(1)-cocycle
in the image of the obstruction map, definition 3.34, for differential cohomology, definition 3.47:

ĜChernSimons(−) = im( H̄(−,BG) twLift // H̄(−,B(Bn−1U(1)→ Ĝ))
twist // H̄(−,B(BnU(1)) ) .

5.6.1 Chern-Simons 3-bundles

We describe abelian 3-bundles arising as obstructions to lifts through the shifted abelian String-extension
from corollary 5.8 and identify them with Chern-Simons 3-bundles classified by the first Pontryagin class of
the underlying ordinary principal bundle.

Lemma 5.46 Let G = Spin(n), which is compact, simple and simply connected with Lie algebra so(n) such
that p : Spin(n) → SO(n) is a double cover. Let µ3 be the 3-form on Spin(n) as in definition 5.5. Let
µ′3 ∈ Ω3(SO(n)) be the 3-cocycle corresponding to the first Pontryagin form. Then we have

µ3 =
1
2
p∗µ′3 .

Definition 5.47 (Chern-Simons 3-bundles) For P → X a principal Spin(n) bundle with first Pontrya-
gin class 1

2p1 ∈ H4(X,Z), we say that a cocycle in H(X,B3U(1)) represents the Chern-Simons 3-bundle or
Chern-Simons 2-gerbe [40, 158] of P if its image under the isomorphism H(X,B3U(1))/ ∼ '−→ H4(X,Z)
is 1

2p1.

An explicit way to construct Chern-Simons cocycles from principal bundles was given in [35]. We review this
construction with slight technical modifications adapted to our context (for instance we restrict attention to
the simply connected case, replace formal addition of chains with gluing of chains along common boundaries
and work in H(X,B3U(1)) instead of the isomorphic H(X,B4Z)).

Definition 5.48 (Brylinski-McLaughlin’s geometric construction of p1) Given a principal Spin(n)-
bundle P , construct an object in H(X,B3U(1)) as follows:

1. choose a cocycle in H(X,BG) representing P , given by a good cover Y = tiUi of X and a transition
function g : Y [2] → G;

2. choose a smooth lift ĝ of g to the based group of paths P ′G from definition 5.12 – recall that elements
are thin-homotopy classes of paths with sitting instants at their boundaries and that composition is by
concatenation, not by pointwise multiplication;

3. choose a map σ : Y [3] → Maps(D2, G) cobounding the triangles formed by the pullback of ĝ;

4. choose a map T : Y [4] → Maps(D3, G) cobounding the tetrahedra formed by the pullback of h;

5. form the map κ : Y [4] → R/Z given by κ(y) :=
∫
D3

T (y)∗µ3 .
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Remark. Notice that all these choices of lifts are guaranteed to exist because the first non-vanishing
homotopy group of G is π3(G) = Z. It then follows from the integrality of µ3 that the κ defined this way
indeed satisfies the cocycle condition: for (δκ) : Y [5] → R/Z is given by the integral of µ3 over 3-sphere in
G:

βijklm(x) := (δκ)ijklm(x)

=
∫
S3
f∗ijklm µ3

=
∫
D3
Tijkl(x)∗µ3 −

∫
D3
Tijkm(x)∗µ3 +

∫
D3
Tijlm(x)∗µ3 −

−
∫
D3
Tiklm(x)∗µ3 +

∫
D3

(gij(x) · Tiklm(x))∗µ3

= 0 ∈ R/Z ,

where fijklm : Y [5] → Maps(S3, G) is the 3-sphere obtained by gluing the solid tetrahedra T (y) at their
common boundaries. This is an integer and hence vanishes in R/Z.
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ĝim

//
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ĝlm
��������

•
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ĝlm
��������

•
ĝij

XX222222
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∈ H(X,Π3 ◦ S ◦ CE(bu(1) ↪→ gµ3))


Figure 11: Lifting a G-cocycle to a twisted String(G)-cocycle. The diagram illustrates the construction
of an abelian cocycle κ representing the first Pontryagin class of a principal G-bundle due to [35], reviewed
in definition 5.48. As noticed in section 5.7.2, also the lower-dimensional data {ĝ, σ, T} appearing here has a
cocyclic interpretation, but in nonabelian cohomology: the diagram really illustrates the lift of a G-cocycle
to a twisted String(G)-2-cocycle, namely to a (BU(1) ↪→ String(G))-cocycle in the sense of section ??. The
abelian component κ in top degree is only the twist itself.
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Theorem 5.49 ([35, 36]) The κ constructed above is a cocycle in H(X,B3U(1)) and under the isomor-
phism

H(X,B3U(1))/ ∼ '−→ H4(X,Z)

it maps to the first Pontryagin class of P : g 7→ 1
2p1.

Remark. The proof proceeds by noticing that κ is indeed the top degree component of a cocycle in
differential cohomology with curvature the Ponryagin 4-form. We find this in our context from a discussion
of lifts in nonabelian differential cohomology as indicated in section 3.3.4 which should be given elsewhere.

Using the notion of lifts in nonabelian cohomology from section ??, and using the nature of the String
2-group String(G) := Π2 ◦ S ◦CE(gµ3) from proposition 5.24 we can interpret the construction in definition
5.48 as computing the obstruction to lifting a principal G-bundle to a String(G)-2-bundle by lifting the
G-cocycle g : PY0 (X)→ BG to a twisted String(G)-cocycle gtw

PY0 (X)
g //

gtw

55BG B(BU(1)→ String(G))'oooo .

The above algorithm then reads as follows, (see figure 11):

1. start with a G-cocycle g : PY0 (X)→ BG representing P ;

2. define gtw on 1-morphisms by lifting the 1-morphisms in the image of g from 1Mor(BG) to 1Mor(BString(G)):
the latter are paths in G with endpoint the original point in G;

3. on triple intersections define gtw by choosing suitable 2-morphisms in BString(G): these are represented
by triangles in G labeled by an element x ∈ R/Z. Choose x = 0;

4. on quadruple intersections this fails to be a String(G)-cocycle by the integral of µ3 over any 3-ball
filling the corresponding tetrahedra f : D3 → G. So

∫
D3 f

∗µ3 ∈ R/Z gives the unique 3-morphism
in the weak quotient 3-group (BU(1) → String(G)) measuring the failure of the lift to be a lift to
String(G).

This way we reinterpret the construction in [35] as

Theorem 5.50 (first Pontryagin class obstructs the lift through String(G)→ G) Write String(G) for
any of the three ana-equivalent strict 2-groups StringBCSS(G) (definition 5.5), StringMick(G) (definition 5.6)
or Π2(SCE(gµ3)) (section 5.2.3) and recall from proposition 5.8 that we have a shifted central extension
BU(1)→ String(G)→ G . Then the obstruction

obstr(String(G)→ G) : H(−,BG)→ H(−,B3U(1))

from corollary ?? to lifting a G-1-bundle to a String(G)-2-bundle is a B3U(1)-3-bundles whose class is the
first Pontryagin class of the original G-bundle:

[obstr(String(G)→ G)]/ ∼= p1 : H(−,BG)/ ∼ −→ H4(−,Z) .

The theorem implies that the obstruction to lifting a Spin(n)-1-bundle coming to a String(n)-2-bundle
is a circle 3-bundle with class 1

2p1(P ).

H(−,BSpin(n))
obstr(String(n)→Spin(n)) //

=

H(−,B3U(1))

��
H(−,BSO(n))

p1
// H4(−,Z) H4(−,Z)·2oo

Historically this fact was first understood in terms of topological string groups:
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Definition 5.51 (String structure) A principal G-bundle P → X is said to have String structure if, as
a topological bundle, its structure group lifts to the 3-connected cover Ĝ → G, π3(Ĝ) = 1, given by the
K(Z, 2)-bundle over G whose class is a generator of H3(G,Z) = Z.

The existence of such a String structure is also obstructed by half of p1(P ). From the above point of
view this can be understood from the main result in [13]

Theorem 5.52 ([13]) Nonabelian cohomology with values in the String 2-group is isomorphic to the non-
abelian cohomology of Ĝ

H(X,String(G))/ ∼ ' H(X,BĜ) .

Geometric interpretation of String-lifts. Using the above considerations, we obtain the following
geometric interpretation of lifts of structure groups through the String-extension, which is the crucial starting
point for the discussion of further lifts through the Fivebrane-extension in section 5.6.2: Suppose that a lift
T : Y [4] → Maps(D3, G) of the original Spin(n)-cocycle to solid tetrahedra in Spin(n) existed such that the
3-spheres formed by these solid tetrahedra as above all represented the trivial element in π3(G). Then the
corresponding cocycle κ is trivial (in fact vanishes identically, κ = 0). The following asserts that also the
converse is true:

Proposition 5.53 If κ as above is a coboundary, κ = δρ, then there exists a choice T ′ of lifts such that the
image of f : Y [5] → Maps(S3, G) always represents the trivial element in π3(G).

Proof. Under the isomorphism H(X,B3U(1)) ' H(X,B4Z) the U(1)-3-cocycle κ corresponds equivalently
to a Z-4-cocycle β as in [35]. This being a coboundary implies that there is a Z-valued cochain ρ satisfying
δρ = β, i.e.

βijklm(x) = ρijkl(x)− ρijkm(x) + ρijlm(x)− ρiklm(x) + ρjklm(x) .

Being integer-valued, ρijkl is necessarily independent of x. Picking x ∈ Uijkl we can find a 3-morphisms in
Π3(CE(g)) starting and ending at the identity 2-morphism on the 0-cell source of the 3-morphisms Tijkl(x)
and given by a smooth 3-sphere sijkl(x) : S3 → G whose image in π3(G) is −ρijkl(x) ∈ Z. By left-translating
this with the group elements that measure the difference between the 0-cell sources of Tijkl as x varies, we
obtain a smooth family sijkl of 3-morphisms represented by 3-spheres. Define the new family T ′ijkl to be the
horizontal composite of 3-morphisms

T ′ijkl(x) := sijkl · Tijkl(x) .

By construction, the β′ corresponding to these T ′, being the integral of µ3 over the 3-spheres given by gluing
the T ′ vanishes identically:

β′ijkl(x) :=
∫
S3
f ′ijkl(x)∗µ3 = 0 .

By lemma 5.16 this implies that f ′ijkl(x)∗µ3 is exact. By lemma 5.29 this implies that the 3-sphere f ′ijkl(x)
in G is homotopic to the constant map for all x. �

Remark. In words this says that the existence of a String-structure on a principal G-bundle implies that
the structure-functions of the G-bundle can be lifted to topologically trivial 3-cells in the fibers. Such a lift
can then serve as a starting point for lifts to even higher cells, such as Fivebrane lifts, section 5.6.2.
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5.6.2 Chern-Simons 7-bundles

We obtain circle 7-bundles given by cocycles in H(X,B7U(1)) which obstruct lifts through the shifted central
extension

B6U(1) // Fivebrane(n) // String(n)

as the image of

obstr(Fivebrane(n)→ String(n)) : H(−,BFivebrane(n))→ H(−,B7U(1))

and show that under

H(−,B7U(1))→ H(−,B7U(1))/ ∼' H7(−, U(1)) ' H8(−,Z)

these correspond to half the second Pontryagin class of the Spin(n)-cocycle underlying the original String(G)-
cocycle. Eventually we conclude that

Theorem 5.54 The obstruction to lifting a String(n)-2-bundle coming from a principal Spin(n)-1-bundle P
to a Fivebrane(n)-6-bundle is a circle 7-bundle with class 1

6p2(P ).

H(−,BString(n))
obstr(Fivebrane(n)→String(n)) //

��

H(−,B7U(1))

��
H(−,BSO(n))

p2
// H8(−,Z) H8(−,Z)·6oo

5.6.3 Chern-Simons 11-bundles

We obtain circle 11-bundles given by cocycles in H(X,B11U(1)) which obstruct lifts through the shifted
central extension

B10U(1) // Ninebrane(G) // Fivebrane(G)

for G a compact, simple and simply connected Lie group, as the image of

obstr(Ninebrane(n)→ Fivebrane(n)) : H(−,BFivebrane(n))→ H(−,B11U(1))

and show that under

H(−,B11U(1))→ H(−,B11U(1))/ ∼ ' H11(−, U(1)) ' H12(−,Z)

these correspond to the fractional third Pontryagin class of the Spin(n)-cocycle underlying the original
Fivebrane(n)-cocycle. Eventually we conclude that

Theorem 5.55 The obstruction to lifting a Fivebrane(n)-6-bundle coming from a principal Spin(n)-1-bundle
P to a Ninebrane(n)-10-bundle is a circle 11-bundle with class 1

240p3(P ).

H(−,BFivebrane(n))
obstr(Ninebrane(n)→Fivebrane(n)) //

��

H(−,B11U(1))

��
H(−,BSO(n))

p3
// H12(−,Z) H12(−,Z)·koo
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5.7 Twisted ω-bundles

5.7.1 Twisted 1-bundles

To set the scene for the discussion of twisted bundles, let 1 → U(1) → Ĝ → G → 1 be an ordinary central
extension of groups. We could use other abelian groups instead of U(1), but in all our concrete examples the
extension will be by U(1) – often twisted bundles are discussed exclusively in the context of the extension
U(1)→ U(H)→ PU(H), for H a separable Hilbert space – and consider a G-cocycle on a smooth space X
relative to surjective submersion Y → X given by a functor

ΠY
0 (X)

g // BG g :
(x, j)

��:::::::

(x, i) //

BB�������
(x, k)

7→
•

gjk(x)

��@@@@@@@

•
gik(x)

//

gij(x)
??�������

•

from the codescent groupoid ΠY
0 (X) corresponding to a surjective submersion Y → X of manifolds. This is

the same as a function g : Y ×X Y → G satisfying the cocycle condition π∗12g · π∗23g = π∗13g. It represents
(the descent data of) a principal G-bundle on X. As indicated, the reader can think of Y as being the
disjoint union of open subsets Ui of a good cover of X: Y =

⊔
i Ui. Then the function g decomposes into a

collection of functions {gij : Ui ∩ Uj → G} and the cocycle condition takes the possibly more familiar form
gij · gjk = gik for all i, j, k.

We ask if we can lift this to a Ĝ-cocycle ĝ through the extension of groups

BU(1)

��
BĜ

��
ΠY

0 (X)
g //

ĝ
::

BG

.

In general this is not possible. But we can form the crossed module of groups (U(1) → Ĝ), regarded as
a strict 2-group, and consider the corresponding 1-object 2-groupoid B(U(1) → Ĝ). This has a canonical
projection

BU(1)

��
BĜ

��
ΠY

0 (X)
g // BG B(U(1)→ Ĝ)

'oo

down to BG, which is a weak equivalence. We can invert this locally and by refining our cover Y sufficiently
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we can always extend the original cocycle to a (U(1)→ Ĝ)-cocycle gtw

BU(1)

��
BĜ

��
ΠY

0 (X)
g //

gtw

22
BG B(U(1)→ Ĝ)

'oo

gtw :
(x, j)

��:::::::

(x, i) //

BB�������
(x, k)

7→
•

ĝjk(x)

��@@@@@@@

•
ĝik(x)

//

ĝij(x)
??�������

•
cijk(x)
��

by locally choosing lifts gij 7→ ĝij . If the choice of lifts is bad (either because it was badly chosen or
because there is in principle no good choice), then the lifted functions ĝij will satisfy the cocycle equation
only up to a correction term cijk. But more systematically, we realize that the ĝij and the cijk together
form a (U(1) → Ĝ)-cocycle which we call a cocycle of a twisted Ĝ-bundle. It is the same as a function
ĝ : Y ×X Y → Ĝ which lifts the original cocycle function g and a function c : Y ×X Y ×X Y → U(1)
satisfying π∗12ĝ · π∗23ĝ = c−1 · π∗13ĝ. If Y is a good cover this reads ĝij(x)ĝjk(x) = c−1

ijk(x) · ĝik(x). We would
have a proper Ĝ-cocycle if the c could be gauged away.

This is formalized by noticing that there is a canonical projection p : (U(1)→ Ĝ)→ (U(1)→ 1) = BU(1),
composing with which

BU(1)

��
BĜ

��
ΠY

0 (X)
g //

gtw

22
BG B(U(1)→ Ĝ)

'oo p // BBU(1)

p ◦gtw :
(x, j)

��:::::::

(x, i) //

BB�������
(x, k)

7→
•

Id

��@@@@@@@

•
Id

//

Id

??�������
•

cijk(x)
��

yields a BU(1)-cocycle p ◦ gtw given by the function c from above. This represents a line 2-bundle or
equivalently an abelian gerbe, known as the “lifting gerbe” of the original G-bundle. If this has a trivial
class there is a gauge in which the c cocycle trivializes and the lift to a Ĝ cocycle ĝ does exist. Formally
this follows from the fact that the canonical inclusion Ĝ ↪→ (U(1) → Ĝ) is the kernel of the projection
(U(1) → Ĝ) → BU(1). By the universal property of the kernel this implies that if the morphism p ◦ gtw in
the diagram

BU(1)

��
BĜ

��

� t

&&NNNNNNNNNNN

ΠY
0 (X)

g //

gtw

22

ĝ
::

BG B(U(1)→ Ĝ)
'oo p // BBU(1)

is trivial, then it factors through BĜ, via our lift ĝ.

There are alternative perspectives on the same phenomenon which are useful for illustrating the general
situation with which we are dealing. One of them is further described in section 5.7.1. Another one, closely
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related but not needing the notion of 2-vector spaces, is this one: From the central extension of groups that
we started with we can also form the strict 2-group (Ĝ→ G). There are canonical injections of both BU(1)
as well as G into (Ĝ → G). One finds that as (Ĝ → G)-2-bundles a G bundle is equivalent to the lifting
BU(1)-2-bundle that obstructs its lift to a Ĝ-bundle. The equivalence itself

g
gtw

'
// c

in this sense “is” again the twisted bundle, in that in components it is again given by the twisted cocycle
relation, which in B(Ĝ→ G) looks like a prism one of whose triangular sides is degenerate.

B(1→ G)� t

'OOOOOOOOOOO

ΠY
0 (X)

g
88qqqqqqqqqqq

c
&&MMMMMMMMMMM B(Ĝ→ G)

B(U(1)→ 1)
* 


7ooooooooooo

gtw

��

⇔ ∀y ∈ Y×XY×XY :

•

Id
@@@

��@@@

•

Id

��

Id //

Id���

??���

•

Id

��
• π∗13g

// •

c(y)
��

π13gtw(y)

y� {{{{{{{{{{{{{{

{{{{{{{{{{{{{{

=

•

Id
@@@

��@@@

Id

��

•
Id���

??���

Id

��

•

Id

��

•
π∗23g(y)

@@@

��@@@

• π∗13g(y) //

π∗12g(y)
���

??���

•

π∗23g(y)tw
}}}}

z� }}}}π∗12g(y)tw
������

������

� �
�����

������ .

This aspect of the twisting bundle as a morphism between 2-bundles becomes more amplified still when we
pass from principal 2-bundles to 2-vector bundles.

2-vector bundles. We now explain the following: there is a way to understand the BU(1)-cocycles c from
above, which represented bundle gerbes and measured the obstruction to lifting G-bundles to Ĝ-bundles,
as inducing (cocycles for) associated rank 1 2-vector bundles (“line 2-bundles”). If we denote this 2-vector
bundle still by c, then we have the following

Fact. The vector bundles gtw twisted by a line 2-bundle c are precisely the morphisms 1
gtw // c of 2-vector

bundles from the trivial line 2-bundle into the twisting one. More generally, for c and c′ two line 2-bundles

the morphisms c
gtw // c′ are the vector bundles twisted by the class [c′]− [c].

The reader will notice at this point the relation to the general situation discussed in the introduction. In
order to describe this in more detail, we now develop the necessary concepts of 2-vector spaces and associated
2-bundles.

2-Vector spaces. Depending on the precise application there is some flexibility in what one may want
to understand as a 2-vector space. But usually one will want to take 2-vector spaces to be abelian module
categories over a given monoidal category. Two important classes of examples are these:

1. For k the ground field and Disc(k) the discrete monoidal category over it, the 2-category of Disc(k)-
module categories

2VectDisc(k) := Disk(k)−Mod ' Categories(Vectk)

is the 2-category of categories internal to k-vector spaces. These “Baez-Crans 2-vector spaces” [8] are
the right flavor of 2-vector spaces for 2-Lie theory. In general ∞-vector spaces of this kind are strict
∞-categories internal to vector spaces, which by the Dold-Kan theorem are equivalent to non-positively
graded cochain complexes of vector spaces. These are the kinds of ∞-vector spaces which we consider
in section ??.
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2. The other main example is module categories over the monoidal category Vect

2VectVectk := Vect−Mod .

In its totality this is rather unwieldy, but it contains the sub-2-categories Bimod of algebras and
bimodules [143] and KV2Vect of Kapranov-Voevodsky 2-vector spaces [86]:

KV2Vect
� � //

'
��

2VectVect,bas
//

:=

��

2VectVect

:=

��
k⊕•Bimod

� � // Bimod
ibimod // Vect−Mod

.

Any ordinary algebra A canonically specifies a Vect-module category, namely the ordinary category
ModA of modules over the algebra: each right A-module can be tensored from the left by a vector
space to produce another A-module. The 2-functor from the category Bimod of algebras, bimodules
and bimodule homomorphisms to 2-vector spaces is

ibimod : A

N

��

N ′

BBBφ

��

7→ ModA

(·)⊗AN

  

(·)⊗AN ′

>>ModB(·)⊗Aφ

��

.

Under this inclusion Bimod behaves like the sub-2-category of 2Vect consisting of those 2-vector spaces
with a basis: regarding an algebra A as a one-object Vect-enriched category BA, we find the category
of A-modules as the category of Vect-functors from BA to Vect:

ModA ' Hom(BA,Vect) .

(More generally, we could replace BA by any Vect-enriched category here, i.e. by an algebroid.) This
is analogous to how a set S is a basis for a k-vector space V if V ' Hom(S, k) . Inside all of Bimod
we have the full sub-2-category on those algebras that are direct sums, A = k⊕n, of the ground field
algebra, for all n ∈ N. Under the above maps these algebras map to 2-vector spaces of the form
Vectn. 2-vector spaces of this form have originally been considered by Kapranov and Voevodsky [86].
k⊕n − k⊕m-bimodules are n×m matrices whose entries are k-vector spaces.

The canonical 2-representation Every automorphism 2-group G = AUT(H) has a canonical represen-
tation on 2-vector spaces obtained from the canonical composite

BAUT(H) = // BAutGroups(BH) � � // Groups
k[−] // Algebras // Bimod

ibimod // 2Vect .

Here Groups and Algebras denote the 2-categories obtained by regarding groups as one-object groupoids and
algebras as one-object Vect-enriched categories. The 2-functor k[−] is that obtained by forming for each
group the algebra which is the group algebra for finite groups and the group’s convolution algebra for Lie
groups. For (H → G) any other crossed module we can pull back this representation along the canonical
2-functor

B(H → G)→ BAUT (H)

to get the induced 2-representation for any strict 2-group (H → G). More generally, for every ordinary linear
representation ρ0 of the group H such that the representing endomorphisms are linearly independent over
the ground field, we get a 2-functor

B(H → G)→ Algebras

114



based on the algebra A = 〈ρ0(H)|h ∈ H〉, generated by the representation endomorphisms ρ0. The 2-
representation

ρ : B(H → G)→ Bimod→ 2Vect

is given by

•

g

��

g′

CC•h

��

7→ 〈ρ(H)〉

α(g)〈ρ(H)〉

!!

α(g′)〈ρ(H)〉

==
〈ρ(H)〉(·)·h

��

7→ Mod〈ρ(H)〉

(·)⊗〈ρ(H)〉α(g)〈ρ(H)〉

##

(·)⊗〈ρ(H)〉α(g′)〈ρ(H)〉

;;
Mod〈ρ(H)〉(·)·h

��

for all g ∈ G, h ∈ H.

Important examples are the 2-representation of BU(1) = (U(1) → 1) induced from the standard rep of
U(1) on C as well as the 2-representation of String(G) = (Ω̂G → PG) [9] induced from a positive energy
representation of the centrally extended loop group Ω̂G of some simple, simply connected compact Lie group
G.

The standard 2-representation of BU(1). A very simple but useful example is the standard 2-representation
of BU(1) induced from the defining representation of U(1) on C

ρ0 : BU(1)→ VectC .

In this case the 2-representation 2-functor acts simply as

•

Id

��

Id

CC•c

��

7→ C

C

��

C

BBC(·)·c

��

7→ VectC

(·)⊗C

  

(·)⊗C

>>VectC(·)·c

��

for all c ∈ U(1). Notice that VectC is the canonical 1-dimensional 2-vector space in the same sense in that C is
the canonical 1-dimensional complex 1-vector space. Therefore, 2-vector bundles with local BU(1)-structure
under the above 2-representation deserve to be called line 2-bundles: their typical fiber is the “complex 2-
line” in the above sense. Given that 2-functors with local BU(1)-structure correspond to line bundle gerbes
according to [138], this gives a genuine 2-vector bundle interpretation of line bundle gerbes.

The standard 2-representation of String(G). The infinite-dimensional loop group Ω̂G does not have
sensible representations on finite dimensional vector spaces. Instead the right substitute for the 2-category
of finite dimensional algebras and bimodules is the 2-category BimodvN of vonNeumann algebras and Hilbert
bimodules between these, whose composition as 1-morphisms is not the algebraic tensor product but the
Connes fusion tensor product [148].

Despite the difference in the technical details, the above construction of the 2-representation of the crossed
module String(G) = (Ω̂G→ PG) from a representation of Ω̂G should go through as in the finite dimensional
case, since the Connes fusion product still respects the composition of twisting algebra homomorphisms: for
A a von Neumann algebra and gA the bimodule structure on it induced from twisting the left action by an
algebra automorphism g, we have

gH ⊗ g′H ' g′◦gH

under the Connes fusion tensor product. Therefore, by the above general principle, a positive energy repre-
sentation of Ω̂G induces a 2-representation ρ of the String 2-group on the von Neumann algebra generated
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by that representation. A ρ-associated String(G) 2-vector transport functor hence assigns a von Neumann
algebra to each point and a vonNeumann bimodule to each path. In conjunction with the result [13, 4] that
String(G)-2-bundles have the same classification as topological 1-bundles with structure group the topologi-
cal String-group |String(G)|, this says that ρ-associated String(G)-2-vector transport reproduces essentially
the notion of 2-connections on String-bundles already appearing in [148].

Twisted vector bundles. Now with this understanding of 2-vector spaces and 2-representations, we
can come back to twisted 2-vector bundles. This situation of twisted bundles becomes more manifestly
an example of an n-functorial twist in the above sense by passing to associated 2-vector bundles. Use the
canonical 2-representation of BU(1) on Bimod to pass from the BU(1)-cocycle c to the associated Bimod-
valued cocycle

ρ∗c : ΠY
0 (X) // BU(1)

ρ // Bimod .

Then transformations into this 2-functor from the tensor unit

ΠY
0 (X) c //

1

$$
BU(1)

ρ // Bimod

E��

correspond precisely to twisted vector bundles, i.e. to twisted bundles for the central extension U(n) →
PU(n). Again this is manifest from the naturality prism diagram

1

gtw

��
c

⇔ ∀y ∈ Y ×X Y ×X Y :

C

C
???

��???

C

(π∗1E)y

��

C //

C���

??���

C

π∗3Ey

��
C C // C

Id
��

π∗13gtw(y)

x� zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz
=

C

C
???

��???

(π∗2E)y

��

C

C���

??���

C

��

C

(π∗1Ey)

��

C

C
???

��???

C C //

C���

??���

C
ρ∗c(y)��

π∗23gtw(y)
{{{{

y� {{{{π∗12gtw(y)
�������

�������

� �
�����

������ .

Here the fibers of E are C–C bimodules, hence simply vector spaces.

Proposition 5.56 i. For ρ∗c : Π0(X) → BBU(1) → Bimod the transport 2-functor of a ρ-associated line
2-bundle, the transformations from the tensor unit into which are the vector bundles twisted by c:

TwVectBundc(X) ' HomTrans(1, ρ∗c) .

ii. For ρ∗c : P2(X) → BBU(1) → Bimod the transport 2-functor of a ρ-associated line 2-bundle with
connection, the transformations from the tensor unit into which are the vector bundles twisted by c equipped
with projectively flat connection:

TwVectBundproj.flat
c (X) ' HomTrans(1, ρ∗c) .

5.7.2 Twisted 2-bundles

An entirely analogous discussion applies to twisted String bundles. The strict String 2-group is (Ω̂G→ PG)
[9]. It was shown in [11] that String 2-bundles are equivalent to the String 1-bundles from [148]. The
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situation above now is

BBU(1)

��
B(Ω̂G→ PG)

��

� v

))SSSSSSSSSSSSSS

ΠY
0 (X)

g //

gtw

11

88

B(1→ G) B(U(1)→ Ω̂G→ PG)
'oo // BBBU(1)

with gtw the cocycle for a twisted String bundle, which is twisted by the element 1
2p1(X) ∈ H4(X,Z) given

by the B3U(1)-Chern-Simons cocycle.

∞-Lie integration of cocycles for twisted String 2-bundles Recall from [132] the details of the
L∞-algebra morphism which we need to integrate according to section 4.4.2 in order to lift (cocycles for)
principal G-1-bundles to (cocycles for) (twisted) String 2-bundles: For g a semisimple Lie algebra and gµ3

its Lie 2-algebra from definition 5.19 the morphism

CE(g) CE(bu(1)→ gµ3)oo : q

from section 4.4.2 is the following: we have

CE(bu(1)→ gµ3) =

∧•( g∗︸︷︷︸
1

⊕ 〈b〉︸︷︷︸
2

⊕ 〈c〉︸︷︷︸
3

), d|g∗ = dg ; db = µ3 + c ; dc = 0


and the morphism acts as

q|g∗ = Idg∗

q : b 7→ 0
q : c 7→ −µ3 ∈ ∧3g∗ .

Now for G the simply connected Lie group integrating g and π : P → X the principal G-bundle with canonical

vertical 1-form Ω•vert(P ) CE(g)
Avertoo as in definition 5.58 which we want to lift to a String 2-bundle, the

composite DGCA morphism

Ω•vert(P ) CE(g)
Avertoo CE(bu(1) ↪→ gµ3)

qoo

acts as

Avert(q)|g∗ = Avert

Avert(q) : b 7→ 0
Avert(q) : c 7→ µ3(Avert) = 〈Avert[Avert ∧Avert]〉 .

Proposition 5.57 The integrated twisted String′(G) cocycle

Πvert
3 (P )

Π2◦S(Avert(q)) //

����

B(BR→ String′(G))

����
PY0 (X) � � //

'
''PPPPPPPPPPPP

(B3Z→ Πvert
3 (P ))

'
��

g // B(BU(1)→ String′(G))

P0(X)
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is given by... [** lift of G-cocycle to (Ω′G → PG)-cocycle together with the Brylinski-MacLaughlin data in
degree 3 **])

Untwisting twisted String 2-cocycles. [** if the twist is trivializable, we gauge it away to turn the
(BU(1)→ String′(G))-bundle into a proper String′(G)-2-bundle **]

5.7.3 Twisted 6-bundles

[** twisted Fivebrane lifts go here **]
[...]

5.8 L∞-integration of L∞-cocycles to nonabelian cocycles

5.8.1 Principal 1-bundles

Here we exhibit the method of∞-Lie integration of L∞-algebraic n-cocycles to nonabelian n-cocycles classi-
fying principal n-bundles from section 4.4.1 for the simple special case n = 1. This is to illustrate the method
in a familiar context but also serves to establish a repository of some facts and notation that reappear in
the more interesting examples.

The canonical vertical 1-form on a principal bundle. Recall the DGCA description of the canonical
vertical 1-form on a principal bundle from [132].

Definition 5.58 Let g be a Lie algebra, G some Lie group integrating it and π : P → X a principal G-bundle
over a manifold X. We write Avert ∈ Ω1

vert(P, gg) for the canonical flat g-valued vertical 1-form which can
be expressed in terms of a DGCA morphisms as

Ω•vert(P ) CE(g)
Avertoo .

The classical way to think of Avert is to choose any Cartan-Ehresmann connection 1-form A ∈ Ω1(P, g) on
the total space P . Its image under the quotient map Ω•(P ) // // Ω•vert(P ) is Avert. (See definition 4.24
for Ω•vert(P ).)

Notice that every principal G-bundle canonically trivializes over itself, which in our context reads as
follows:

Definition 5.59 For G a Lie group and π : P → X a principal G-bundle on X, let g : P0(X)→ BG be the
canonical 2-functor from the codescent groupoid PP0 (X) of P with the property that

∀y, y′ ∈ P ×X P : y′ = yg(y → y′) .

Simply connected structure groups. Before considering the general case of a principal 1-bundles we
take G to be the simply connected Lie group integrating the Lie algebra g.

Proposition 5.60 Let π : P → X be a principal G bundle on a manifold X for G the simply connected
Lie group with Lie algebra g. Let Avert ∈ Ω1

vert(P, g) be the canonical vertical 1-form from definition 5.58.
Acting with the contravariant integration functor from definition 4.20

Π1 ◦ S : DGCAs→ 1Groupoids(Spaces)

from DGCAs to categories internal to Spaces on the morphism Ω•vert(P ) CE(g)
Avertoo yields the canonical

cocycle of P from definition 5.59:

Π1 ◦ S
(

Ω•vert(P ) CE(g)
Avertoo

)
= PP0 (X)

g // BG .
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Proof. First consider the integration of the objects: First of all Π1(S(CE(g))) = BG is just proposition
5.10. By proposition 4.28 we have Π1(S(Ω•vert(P ))) = Πvert

1 (P ). Then observe that by the assumption that
G, and hence the fibers of P , are simply connected, the vertical fundamental path groupoid happens to be
canonically isomorphic Πvert

1 (Y ) ' PY0 (X) to the codescent groupoid

PY0 (X) := ( Y ×X Y
π1 //
π2
// Y )

(section 3.1.3) of the surjective submersion π : P → X: there is a unique homotopy class of paths between
any two points in the same fiber of P .

Finally, to see that Π1(S(Avert)) = g notice that on each fiber ' G Avert restricts to the canonical g-
valued 1-form on G. This has the property that its parallel transport over any path in G is the group element
relating the starting point to the endpoint of that path. Again by lemma 5.10 (see the remark below) this
is precisely the definition of the canonical cocycle g. �

Remark. Due to its relevance for the following constructions, the main mechanism at work in this proof
deserves further amplification: The crucial aspect to notice here is that it is the flatness of Avert which
allows the interpretation of its parallel transport as a cocycle. Namely the integration process indicated is
effectively regarding the ordinary cocycle condition for a principal G-bundle Y := P → X

g : PY0 (X) → BG

π2(y)

##GGGGGGGG

π1(y)

;;wwwwwwww
// π3(y)

7→ •
π∗23g(y)

��@@@@@@@

•

π∗12g(y)
??�������

π∗13g(y)
// •

as the flat parallel transport around a closed loop:

π2(y)
γ2

##GGGGGGGG

π1(y)

γ1

;;wwwwwwww

γ3
// π3(y)

7→ •
P exp(

∫
γ2
Avert)

��@@@@@@@

•

P exp(
∫
γ1
Avert)

??�������

P exp(
∫
γ3
Avert)

// •

.

flatness of Avert ←→ cocycle condition for g := Π1 ◦ S(Avert)
•

P exp(
∫
γ2
Avert)

��@@@@@@@

•

P exp(
∫
γ1
Avert)

??�������

P exp(
∫
γ3
Avert)

// •

•
π∗23g(y)

��@@@@@@@

•

π∗12g(y)
??�������

π∗13g(y)
// •

Table 3: For a g-connection descent datum with respect to a surjection Y → X with sufficiently high
connected fibers, the integration (the parallel n-transport) of the vertical part Ω•(Y ) Avert←− CE(g) over
singular simplices in the fibers produces a G-cocycle, for G a quotient of the ω-group integrating g. The
quotient is by the vertical holonomy ω-group of Avert.

General structure groups. If the structure group G, and hence the fibers of a principal G-bundle P → X,
are not simply connected, the above procedure requires an additional step in which the cells are added into
the fundamental vertical groupoid that “patch” the nontrivial homotopies using definition 4.31.
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Proposition 5.61 For G a Lie group as above and π : P → X a principal G-bundle, there is a weak
equivalence from the patched fundamental vertical n-groupoid of definition 4.31 to the discrete ω-groupoid
over the base X: Πvert

n (P ) ' // P0(X) .

Proposition 5.62 For g a Lie algebra, G its simply connected Lie group, A a discrete abelian normal
subgroup of G, G/A the corresponding quotient Lie group, let π : P → X be a principal G/A-bundle with
canonical vertical 1-from Avert, then

Πvert
1 (P )

Π1◦S(Avert) //

��

BG

��
PP0 (X) � � //

'
%%LLLLLLLLLL

Πvert
1 (P )◦

'
��

g // B(G/A)

P0(X)

is a G/A-cocycle representing P .

Here Πvert
1 (P )◦ is the patched fundamental vertical 1-groupoid from definition 4.31.

5.8.2 Chern-Simons n-bundles

Proposition 5.63 For G an n-connected Lie group with Lie algebra g and Hn+1(G,Z) = Z, for µn+1 a Lie
algebra (n + 1)-cocycle on G such that its left-invariant extension to Hn+1

dR (G) is the image of a generator
of Hn+1(G,Z), for π : (Y = P )→ X a principal G bundle and for µ(Avert) the corresponding vertical form
from figure 12, we have that

Πvert
n

Πn◦S(µ(Avert)) //

��

BnR

��
PP0 (X) � � //

'
%%LLLLLLLLLL

Πvert
n (P )◦

g //

'
��

BnU(1)

P0(X)

is the Čech cocycle representing the corresponding characteristic class in Hn+1(X,Z) as constructed in [35,
36]

[...]
Let g be a finite-dimensional semisimple Lie algebra with bilinear invariant form P = 〈·, ·〉, normalized

such that the canonical 3-cocycle µ = 〈·, [·, ·]〉 ∈ ∧3g∗ extends left-invariantly to the image in deRham
cohomology of the generator – either one of the two – of H3(G,Z), where G is the simply connected compact
semisimple Lie group integrating g.

Let π : P → X be a principal G-bundle with Cartan-Ehresmann connection A ∈ Ω1(P, g), which we read
as a g-connection descent datum. By the discussion in [132], there is a b2u(1)-connection descent datum
obstructing the lift of the g-connection through the String-extension 0→ bu(1)→ gµ → g→ 0,
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Ω•vert(Y ) CE(g)
Avertoo CE(bu(1)→ gµ)oo CE(b2u(1))oo

µ(Avert)

jj

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

W(bu(1)→ g)oo

OOOO

W(b2u(1))oo

OOOO

(cs(A,FA),P (FA))

ii

Ω•(X)
?�

OO

inv(g)
?�

OO

{Pi(FA)}oo inv(bu(1)→ g)
?�

OO

oo inv(b2u(1))
?�

OO

oo

P (FA)

ii

Figure 12: Obstructions and twisted lifts for lifts through String-like extensions at the level of L∞-
algebraic cocycles.

• whose diagram is the canonically constructed b2u(1)-connection

Ω•vert(Y ) CE(g)
Avertoo CE(bu(1)→ gµ)oo CE(b2u(1))oo

µ(Avert)

jj

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

W(bu(1)→ g)oo

OOOO

W(b2u(1))oo

OOOO

(cs(A,FA),P (FA))

ii

Ω•(X)
?�

OO

inv(g)
?�

OO

{Pi(FA)}oo inv(bu(1)→ g)
?�

OO

oo inv(b2u(1))
?�

OO

oo

P (FA)

ii

• whose connection 3-form on Y := P is the Chern-Simons 3-forms with respect to P of the original
connection 1-form A,

• and whose vertical connection 3-form is, therefore Ω•vert(Y ) CE(bu(1))
µ(Avert)oo .

We will now apply Π3 ◦ S : DGCAs → S3Categories to the vertical part µ(Avert) of the Chern-Simons
3-connection obtained above, making use of lemma 5.11. Let ΠY

0 (X) denote the strict Čech 3-groupoid of
Y → X:

• objects are points in Y ,

• morphisms are sequences of jumps between points in the same fiber,

• 2-morphisms are free pasting diagrams of 2-simplices with boundary such jumps,

• 3-morphimss are pasting diagrams of 3-simplices with boundary such 2-simplices, freely generated
modulo the relation that all boundaries of 4-simplices they form 3-commute.

Similar to the situation for U(1)-bundles above, but now in higher categorical dimension, we see that this
Čech 3-groupoid is covered by the vertical fundamental 3-groupoid Πvert

3 (Y ) of Y . More precisely, The Čech
3-groupoid is covered by its Kan-complex simplicial version, where (k ≤ 2)-simplices are thin homotopy
classes of maps from the standard k-simplex (as opposed to the standrad k-disk as for the globular version)
into a fiber of Y , and where 3-simplices are full homotopy classes of maps from the standard 3-simplex:

Πvert
3 (Y )

ĝ:=Π3◦S(µ(Avert)) //

����

B3R

����
PY0 (X)

g // B3U(1) .
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By applying our integration procedure, Π3◦S : DGCAs→ S3Categories, to Ω•vert(Y ) CE(b2u(1))
µ(Avert)oo

we thereby find a cocycle g : ΠY
0 (X)→ B3U(1), which

• colors jumps between two point in the fiber by chosen (thin homotopy classes of) paths equipped with
a map to G (coming from the flat 1-form on that path and choosing the starting point of the path as
the basepoint) – these paths always exist since G is connected;

• colors triangles of jumps in the fiber with surfaces bounded by the corresponding paths and again
equipped with a map to G – these surfaces always exists sice G is simply connected;

• colors tetrahedra of jumps in the fiber with volumes fillings these and equipped with a map f : F → G
– this exists because G is necessarily also 2-connected;

• finally assigns to each such tetrahedron T the real number obtained by integrating µ(Avert) over
the tetrahedron, which is the same as the integral

∫
T
f∗µ, but taking this number only modulo the

holonomy of µ(Avert) over closed 3-dimensional volumes, hence, by assumption of the integrality of µ,
modulo Z.

It is again the flatness of the vertical connection 3-form which ensures that the construction indeed yields a
3-cocycle for a line 3-bundle: the Chern-Simons 3-bundle whose existence obstructs the lift of the original
G-bundle to a String(G)-2-bundle.

One can see that the construction just sketched – the systematic procedure of integrating L∞-connection
descent data to nonabelian cocycles by hitting the Cartan-Ehresmann diagram with Πn ◦ S – reproduces in
the case we have described precisely the prscription which Brylinski and McLaughlin have described in [36].
They have a general such prescription for all higher Pontrjagin and Euler classes [35]. This involves passing
from the principal G-bundle P → X first to an associated bundle (with fiber certain Stiefel manifolds) and
then proceeding essentially as above. This step can be understood, from our point of view, as an integrability
condition on the regular epimorphism Y → X appearing in the L∞-connection descent datum: that needs
to have sufficiently highly connected fibers, or else needs to have torsion cohomology groups, such that the
higher holonomies of the vertical connection form have a chance of covering all required higher morphisms
in the Čech groupoid.

5.9 Transgression to mapping spaces: σ-models

5.9.1 Chern-Simons and Dijkgraaf-Witten σ-model

For both Dijkgraaf-Witten and Chern-Simons theory the background field is a B3U(1)-cocyle.

In Dijkgraaf-Witten target space is BG for G a finite group and the background field

∇ : BG | // B3U(1)

is any such ω-anafunctor, hence, by proposition 3.33, any U(1)-valued group-cocycle on G.

For Chern-Simons theory target space is P3(X) and ∇ : P3(X) | // B3U(1) is a Chern-Simons 3-
bundle with connection, i.e. in the image of

obstr : HP3(X,BG) twLift // HP3(X,B(BU(1)→ String(G))) twist // HP3(X,B(B3U(1))) .

5.9.2 BF - and Yetter-Martins-Porter σ-model

Now the target is BG for G a strict 2-group.
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6 Glossary

Higher algebraic structures appear in quantum field theory, notably in String theory. Put the other way
round: quantum field theory and String theory is a source of examples of higher algebraic structures. At the
time of this writing a language barrier inhibits interaction among practicioners on both sides. The following
glossary is meant to provide a minimum of joint background equipped with further pointers to the literature.

6.1 Category theory

[** concerning size issues, recall lore about accessible categories, as recalled in section 5.4 in [100] **]

Definition 6.1 (category) A category C is a set of objects Obj(C) and for every pair a, b ∈ Obj(C) a
set C(a, b) of morphisms from a to b and for every triple a, b, c ∈ Obj(C) a composition map ◦ = ◦a,b,c :
C(a, b)× C(b, c)→ C(a, c) which is associative in the obvious sense. In addition, for every object a there is
a special element ia ∈ C(a, a), the identity morphism on a such that ib ◦ f = f ◦ ia for any f ∈ C(a, b).

Elements f ∈ C(a, b) are denoted by arrows f : a → b or a
f // b and composition is denoted by

juxtaposition a
g◦f // c = a

f // b
g // c .

Definition 6.2 (functor) A functor F : C → D from a category C to a category D is a map F0 : Obj(C)→
Obj(D) and for all a, b ∈ Obj(C) a map Fa,b : C(a, b)→ D(f(a), f(b)) which respects composition on C and
D.

Definition 6.3 (natural transformation) A natural transformation from a functor F : C → D to a

functor G : C → D, denoted C

F

&&

G

88 Dη�� , is for each a ∈ Obj(C) an element η(a) ∈ D(F (a), G(a))

such that for all ( a
f // b ) ∈ C(a, b) we have

F (a)
η(a) //

F (f)

��

G(a)

G(f)

��
F (b)

η(b)
// G(b)

�������

�������
.

Natural transformations can be composed by composing their components. Thus functors C → D and natural
transformations between them form the functor category denoted Functors(C,D) or DC .

Definition 6.4 (initial and terminal object) An object in a category C is terminal if there is a unique
morphism from every other object to it. It is initial if there is a unique morphism from it to every other
object.

Lemma 6.5 (uniqueness of initial and terminal objects) If it exists in a category C, the initial object
is unique up to isomorphism: any two initial objects are isomorphic. Similarly for terminal objects.

Definition 6.6 (limit and colimit) For F : C → D a functor the category Cones(F ) has as objects natural
transformations of the form

pt
T

  @@@@@@@

C
F

//

??~~~~~~~
D

c
	� �

���
����
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and as morphisms f : (c, T )→ (c′, T ′) natural transformations

pt
T

  @@@@@@@

C

??~~~~~~~

  @@@@@@@ D

pt
T ′

>>~~~~~~~

f

��

such that c = c′ ◦ f . The limit of F over C, denoted limCF , is, if it exists, the initial object of Cones(F ).
The category CoCones(F ) is defined as that of cones, but with the direction of the natural transformations

reversed. The colimit of F over C, denoted colimCF , is, if it exists, the terminal object of CoCones(F ).

Definition 6.7 (pullback and pushout) A pullback is a limit over the category { a // c boo }. A
pushout is a colimit over the category { a oo c b// }.

Definition 6.8 (category internal to K) For K any category with pullback, a category C internal to K
is

• two objects C1, C0 ∈ Obj(K) and three morphisms C1C1C1

s //

t
//oo i C0 in K as well as a morphism

◦ : C1t ×s C1 → C1, where
C1t ×s C1

//

��

C1

s

��
C1

s // C0

is a pullback diagram;

• such that

– (associativity)

C1t ×s C1t ×s C1
Id×◦ //

◦×Id

��

C1t ×s C1

◦
��

C1t ×s C1
◦ // C1

– (unity) s ◦ i = Id, t ◦ i = Id;

C0 ×s C1

pr2
&&NNNNNNNNNNNN

i×Id // C1t ×s C1

◦
��
C1

C1t × C0

pr1
&&NNNNNNNNNNNN

Id×i // C1t ×s C1

◦
��
C1

Remark. So a category as in definition 6.1 is a category internal to Sets.

Definition 6.9 (cartesian product of categories) Given categories C and D, their cartesian product
C × D is the category with Obj(C × D) := Obj(C) × Obj(D) and for all (a, a′), (b, b′) ∈ Obj(C × D)
(C ×D)((a, a′), (b, b′)) := C(a, b)×D(a′, b′) with the obvious composition and units.
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Definition 6.10 (monoidal category) A monoidal category is a triple (C,⊗, I) consisting of a category
C, a functor ⊗ : C×C → C called the tensor product functor and an object I ∈ C such that ⊗ is associative
up to coherent isomorphism [...] and such that I is the unit under this product up to coherent isomorphism
[...].

Definition 6.11 (closed category) A monoidal category is left closed if the functor A ⊗ − : C → C has
a right adjoint naturally in A, the left internal hom, homl(A,−) : C → C and right closed if −⊗A : C → C
has a right adjoint, the right internal hom homr(A,−) : C → C. It is biclosed if it is both left and right
closed.

Lemma 6.12 For C a monoidal biclosed category, the contravariant left and right internal homs homl,r(−, A)
send colimits to limits

Proof. For A,B,C ∈ C the equivalence C(A,homl(B,C)) ' C(B, homr(A,C)), can be rewritten as

Cop(homl(B,C), A) ' C(B, homr(A,C)) ,

which shows that homl(−, C) : C → Cop is a left adjoint and hence sends colimits in C to colimits in Cop,
hence to limits in C. Analogously for homr. �
We are grateful to Robin Houston for discussion of this point.

Definition 6.13 (simplicial objects) [...]

Definition 6.14 (2-category) A (“strict”) 2-category C internal to K is a diagram

C2

s1 //oo i1
t1
// C1

s0 //oo i0
t0
// C0

and morphisms
◦0 : C2 ×t0,s0 C2 → C2

◦1 : C2 ×t1,s1 C2 → C2

in K such that

( C2

s0◦s1 //oo i1◦i0
t0◦t1

// C0 , ◦0)

and

( C2

s1 //oo i1
t1
// C1 , ◦1)

are categories in K and such that the exchange law

(◦1) ◦ (◦0 × ◦0) = (◦0) ◦ (◦1 × ◦1)

holds.

Definition 6.15 (string diagrams) [...]

Definition 6.16 (essentially surjective, full, faithful functors) A functor F : C → D is

• essentially surjective if it is surjective on equivalence classes of objects of D;

• full if for all c1, c2 ∈ Obj(C) the map Fc1,c2 : HomC(c1, c2)→ HomD(F (c1), F (c2)) is surjective;

• faithful if for all c1, c2 ∈ Obj(C) the map Fc1,c2 : HomC(c1, c2)→ HomD(F (c1), F (c2)) is injective.

Theorem 6.17 A functor F : C → D is an equivalence of categories if and only if it is essentially surjective,
full and faithful.
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Remark. The relevance of this theorem is that it characterizes equivalences of categories, which in general
involve the existence of higher morphisms, namely natural transformations between functors, just in terms
of properties of 1-morphisms.

6.2 Enriched category theory

Definition 6.18 (enriched category) An enriched category C, enriched over a monoidal category (V,⊗, I)
a monoidal category C is a set of objects Obj(C) and for every pair a, b ∈ Obj(C) an object C(a, b) ∈ Obj(V)
of morphisms from a to b and for every triple a, b, c ∈ Obj(C) a composition morphism ◦a,b,c : C(a, b) ⊗
C(b, c) → C(a, c) in V which is associative in the obvious sense. In addition, for every object a there is a
morphisms ia : I → C(a, a) in V, which acts as an identity under composition in the obvious sense.

Extraordinary naturality. Recall from enriched category theory [89] the notion of extraordinary natural
families and ends: For V a closed monoidal category with a faithful functor Sets ↪→ V (for us: V =
ωCategories), for C an ordinary (hence Sets-eriched and therefore, by the above assumption, V-enriched)
category and for F : Cop×C → V a V-functor, an extraordinary natural family for F is a familiy of morphisms

{ K
λc // F (c, c) | c ∈ Obj(C)} from some object K in V, such that for all morphisms f : a // b in C

the diagram

K
λa //

λb

��

F (a, a)

f∗

��
F (b, b)

f∗ // F (a, b)

commutes.

End. By definition, the end of F , denoted
∫
c∈C F (c, c) ∈ V is the domain of the universal extraordinary

family, in that there is a universal family {
∫
c∈C F (c, c) // F (c, c) | c ∈ Obj(C)} for F and every other

extraordinary family for F uniquely factors through this one.

K λa

%%

λb

$$

$$J
J

J
J

J

∫
c∈C F (c, c) //

��

F (a, a)

f∗

��
F (b, b)

f∗ // F (a, b)

In other words: there is a bijection between extraordinary universal families { K
λc // F (c, c) | c ∈ Obj(C)}

for F and morphisms K →
∫
c∈C F (c, c) ∈ V.

Coend. The coend
∫ c
F (c, c) is defined entirely analogously, with all morphisms reversed.

Proposition 6.19 (coend form of the Yoneda lemma) For any F : Cop → V we have

F (−) '
∫ c

F (c)⊗ hom(−, c) .
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Definition 6.20 (Day convolution) When C is monoidal, the preshaf category VCop
naturally inherits a

biclosed monoidal structure with tensor product being the Day convolution product defined by

(F ? G)(−) :
∫ c,d∈C

F (c)⊗G(d)⊗ homC(−, c⊗ d) .

The tensor unit it I = homC(−, I)

Remark. The Day convolution product generalizes the ordinary convolution product of functions on
groups: let C be the discrete category over a monoidal set, a group for instance, and with V = Sets re-
gard presheaves F,G : Cop → Sets as categorified N-valued functions on C. Then the Day convolution
product reduces to (F ? G)(c) =

⊕
d·e=c

F (d)×G(e).

Definition 6.21 (enriched functor category) For C and D V-enriched categories, the V-enriched functor category
[C,D] has as objects the morphisms F : C → D of V-enriched categories and the V-object of morphisms
between F,G : C → D is the end

[C,D](F,G) :=
∫
c∈C

D(F (c), G(c)) .

Proposition 6.22 In the case V = Sets the V-enriched functor category coincides with the category of
functors and natural transformations from definition ??: [C,D] = Functors(C,D).

See section 2.2 of [89].

6.3 Sheaf theory

Definition 6.23 (presheaf) A presheaf on a category C as such is nothing but a contravariant functor
from C with values in Sets

F : Cop → Sets .

Being functors, presheaves naturally form a category SetsC
op

= Functors(Cop,Sets). Replacing Sets by other
Objects such as for instance AbelianGroups, one obtains the corresponding presheaves of Objects forming the
category ObjectsC

op
.

Remark. By itself the concept of presheaf adds nothing but jargon to the concept of functor. One speaks
of presheaves instead of functors when i) one is using the Yoneda embedding, definition 6.25 below, and ii)
when a sheaf condition is to be imposed, definition 6.30 below.

Definition 6.24 (representable presheaves) If the category C is enriched over Objects every object c ∈
C yields a presheaf Y (c) := C(−, c) . These are the representable presheaves or representables, represented by
the object c. One often directly writes c instead of Y (c) for representable presheaves, if the context is clear.

Definition 6.25 (Yoneda embedding) Sending objects of C to representable presheaves yields a functor

Y := Hom(−2,−1) : C → SetsC
op

called the Yoneda embedding.

A central statement in category theory is the Yoneda lemma.

Theorem 6.26 (Yoneda lemma) For c ∈ C and F ∈ SetsC
op

morphisms of presheaves from the repre-
sentable Y (c) into F are in bijection with the value of F on c:

HomSetsC
op (Y (c), F ) ' F (c) .

In particular, setting F = Y (d) for d any object in C, we obtain HomSetsC
op (Y (c), Y (d)) ' Y (d)(c) =

HomC(c, d) . that is, the Yoneda embedding Y (from 6.25)is full and faithful functor.
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Proposition 6.27 Every presheaf is the colimit of representables.

Proof. This is just proposition 6.19:

F (−) =
∫ c

F (x)× hom(−, c) .

�

Definition 6.28 (closed monoidal structure on presheaves) The cartesian tensor product on presheaves
is given objectwise by

F1 × F2 : c 7→ F1(c)× F2(c) ,

where on the right we have the cartesian product of sets. The internal hom is given by

hom(F1, F2) : c 7→ HomSetsC
op (F1 × c, F2) .

As the name suggests, sheaves are the presheaves with an extra property; to make sense of the property
the domain category has to have an additional structure.

Definition 6.29 (site) A Grothendieck (pre)topology τ on a category C with pullbacks is a choice for every
object c in C of a collection of distinguished families of morphisms, called covers (of c), with target c, so that

(i) c id−→ c is a cover;
(ii) (stability) If {fα : cα → c}α∈A is a cover of c, then for any morphism g : d → c, the family of

pullbacks {cα ×c d→ d}α∈A is a cover of d;
(iii) (transitivity) If {fα : cα → c}α∈A is a cover of c, and for every α family {gαβ : bαβ → bα}α∈A,β∈Bα

is a cover of cα, then the family of compositions {gαβ ◦ fα : bαβ → c}α∈A,β∈Bα is a cover of c.
A site (C, τ) is a category equipped with a Grothendieck topology.

Definition 6.30 (sheaf) A sheaf is a presheaf such that[...]

6.4 Homotopy theory

Definition 6.31 (model category) A (closed) model category is a category A equipped with 3 classes of
distinguished morphisms called fibrations, cofibrations and weak equivalences satisfying some axioms: [...]

Definition 6.32 (homotopy category) [...]

6.5 Differential geometry

Definition 6.33 (simplicial differential forms on BG) For G a Lie group, the complex Ω•simp(BG) of
simplicial differential forms on BG is the total complex of the double complex

⊕
k,l

= Ωk(G×l) with differentials

d : Ωk(Gl)→ Ωk+1(Gl) the de Rham differential and δ : Ωk(Gl)→ Ωk(Gl+1)

Ω•(G) δ // Ω•(G×G) δ // Ω•(G×G×G) // · · ·

be given by alternating sumps of pullback along face maps, δ = d∗0 − d∗1 + d∗2 + · · · .

Theorem 6.34 (Chern-Weil map) There is an injection of DGCAs

w : inv(g)→ Ω•simp(BG) .

Proof. The concrete realization given by [53] is as follows [...]. �
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Proposition 6.35 (simplicial version of first Pontryagin 4-form) For g a semisimple Lie algebra, the
image of the normalized invariant bilinear polynomial 〈·, ·〉 under the Chern-Weil map from definition 6.34
is (µ3, ν2) ∈ Ω3(G)× Ω2(G×G) with

µ3 := 〈θ ∧ [θ ∧ θ]〉

and
ν2 := 〈θ1 ∧ θ̄2〉 ,

where θ is the left-invariant canonical g-valued 1-form on G and θ̄ the right-invariant one.

6.6 Cohomology theory

Cocycles for Hopf algebras The classification of extensions of Hopf algebras is well understood only
when the Hopf algebras are either commutative or cocommutative. Similarly, S. Majid [104] has written
down formulas for nonabelian cochain spaces and coboundary operators for bialgebras which generalize
various abelian cases like group cocycles, Lie algebra cocycles, and also important low-dimensional nonabelian
cocycles like Drinfeld twists and the Drinfeld associator. Thus, this looks like a right cohomology theory for
bialgebras. However, the cohomology classes are not defined for n > 2 for general bialgebras, and we do not
know what should replace them. [To refine this...]

6.7 Higher bundles in string theory

We briefly indicate how examples of higher bundles with connection arise in string theory.

Fundamental (n− 1)-brane. Given a model nCob of the n-category of n-dimensional cobordisms and a
version nVect of topological vector spaces, suitably well-behaved functors

nCob→ nVect

are called backgrounds for the fundamental (n− 1)-brane. Their value on objects is the space of states of
the (n − 1)-brane and their value on n-morphisms is the correlator. Such functors have recently found a
refined formulation in [73] extending ideas presented in [6].

In many concrete cases such functors are constructed by an intermediate step involving functors on cobor-
disms with extra structure, notably Lorentzian, Riemannian or conformal structure. A good understanding
of the conformal 2-dimensional case is by now available.

Σ-models. Large classes of examples of such functors are thought to arise from path integral functionals
on spaces of maps from n-dimensional cobordisms to specified spaces, called target spaces, equipped with
various extra structures, see [159] for a review. These are called Σ-models or geometric backgrounds. In
some special cases this has been made precise – see for instance [99] for a review of examples – but in most
cases physicists rely on a body of well-tested but heuristic methods.

Perturbative String theory. Perturbative String theory is the study of the stringy perturbation series,
which is the formal series in the surface genus of the correlators of a given functor on 2-dimensional conformal
cobordisms over the Hom-spaces of 2Cobconf . A precise formulation is available at the moment only after
passing to rational approximations of these Hom-spaces, see [43], which follows ideas by Kontsevich.

String backgrounds with higher connections. It turns out that target spaces for conformal 2-dimensional
Σ-models generically are spaces equipped with the structure of various higher bundles with connection. A
precise identification and formulation of these structures is achieved in [56] in the language of (abelian)
differential cohomology as developed in [74]. Further discussion [51] is in preparation at time of this writing.
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The following lists the main higher bundles with connection appearing on target spaces for the fundamen-
tal 1-brane. We list the corresponding physics terminology together with the interpretation in differential co-
homology following [56], refined here in terms of nonabelian differential cohomology following [132, 133, 134].
Compare the notation on lifts, twisted lifts and obstructions to lifts from section ??.

• The Neveu-Schwarz B-field on 10-dimensional spacetime X is an object B2 ∈ Ĥ(X,B2U(1)). Re-
stricted to submanifolds W ↪→ X called D-branes this field is required [57] to be, in our notation, in
the image of

obstr(U(H)→ PU(H)) : H(W,BPU(H))→ H(W,B2U(1)) .

The corresponding objects in the image of

twLift(U(H)→ PU(H)) : H(W,BPU(H))→ H(W,B(U(1)→ U(H)))

are the Chan-Paton bundles on the D-brane.

• The supergravity C-field on 11-dimensional spacetime Y is an object C3 ∈ Ĥ(Y,B3U(1)). Restricted
to submanifolds called end-of-the-world M9-branes M this field is required [75] to be in the image of

obstr(String(G)→ G) : H(M,BG)→ H(M,B3U(1)) .

This condition is a manifestation of the Green-Schwarz mechanism [66].

• The dual supergravity C-field on Y is an object C7 ∈ Ĥ(Y,B7U(1)). In the duality-symmetric situation
described in [133, 134] this field, when restricted to M , is in the image of

obstr(Fivebrane(G)→ String(G)) : H(−,BString(G))→ H(−,B7U(1)) .

This condition is a manifestation dual Green-Schwarz mechanism [131, 59].

• The RR-fields on X are objects in Ĥ(X,BU × Z), [56].
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prepared for the XVI Encuentro Rioplatense de Álgebra y Geometra Algebraica, in Buenos Aires, 12-15
December 2006, [http://golem.ph.utexas.edu/category/2008/03/crossed menagerie.html].

[123] D. Quillen, Homotopical algebra, Lecture notes in Math., no. 34, Springer (1967)

[124] D. Roberts, weblog comment
[http://golem.ph.utexas.edu/category/2008/01/101_things_to_do_with_a_2class.html#c014559]

[125] J. E. Roberts Mathematical aspects of local cohomology, Algébres d’opérateurs et leurs applications
en physique mathématique (Proc. Colloq., Marseille, 1977), pp. 321–332, Colloq. Internat. CNRS 274,
CNRS, Paris, 1979.

[126] D. Roberts and U. Schreiber, The inner automorphism 3-group of a strict 2-group, J. Homotopy Relat.
Struct. 3 (2008) no. 1, 193-244, [arXiv:0708.1741] [math.CT].

[127] A. L. Rosenberg, Homological algebra of noncommutative spaces I, preprint MPIM2008-91, at
[http://www.mpim-bonn.mpg.de].

[128] A. L. Rosenberg, Noncommutative schemes, Compositio Math. 112 (1998), pp. 93–125.

[129] A. L. Rosenberg, Topics in noncommutative algebraic geometry, homological algebra and K-theory,
preprint MPIM2008-57, at [http://www.mpim-bonn.mpg.de].

[130] D. Spivak, Derived manifolds, PhD thesis, University of California, Berkeley, 2008.

[131] A. Salam and E. Sezgin, Anomaly freedom in chiral supergravities, Phys. Scripta 32 (1985) 283.

[132] H. Sati, U. Schreiber and J. Stasheff, L∞-connections and applications to String- and Chern-
Simons n-transport, in Recent Developments in QFT, eds. B. Fauser et al., Birkhäuser, Basel (2008),
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