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0 THE DIFFERENTIABLE SPACE STRUCTURES OF
MILNOR CLASSIFYING SPACES, SIMPLICIAL
£ COMPLEXES, AND GEOMETRIC REALIZATIONS

MARK A. MOSTOW

In this paper we develop a simple and very general concept, called a
) differentiable space, by means of which one can define smooth functions,
e differential forms, and de Rham cohomology on a wide variety of topological
spaces without making use of any concept of tangent vectors. Our notion of
= differentiable space is related to those of J. W. Smith [30] and K. T. Chen [8],
) [9] but differs in some important respects. We prove some theorems which
give sufficient conditions for the de Rham cohomology defined in this way to
. equal the real singular cohomology of a space. In particular, we show that
) simplicial complexes, Milnor classifying spaces BG of Lie groups G, and
L geometric realizations of semi-simplicial manifolds have natural differentiable
space structures which yield their correct real cohomology. Unlike J.
Dupont’s [14] and C. Watkiss’ [37] definitions of differential forms on
geometric -realizations based on their “piecewise smooth” structure, the dif-
ferentiable space approach permits one to define smooth morphisms from a
manifold M to a non-manifold like Milnor’s BG. For example, the classifying
map f: M — BG of a G-bundle on M with smooth transition functions is a
(smooth) morphism of differentiable spaces, provided that f is constructed
using a smooth partition of unity on M. Thus not only can one construct
explicit characteristic forms on BG (by using a universal connection form on
EG), but one can also pull them back at the form level to the de Rham
complex of M via f*: A*(BG)-> A*(M). In this way one pgets a somewhat
different perspective on the Chern-Weil homomorphism which combines
topology (classifying spaces) and geometry (connections and curvatures).
A differentiable space is defined to be simply a topological space X together
with a sheaf C*X of germs of continuous real-valued functions on X, called
smooth functions, satisfying the closure condition

If f;, - -, f, are smooth functions on X, and g is a smooth
function on R”, then g(f}, - + -, f,) is a smooth function on
iy X.

:!-_-.._,_____
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In other words, one simply takes some collection of functions on X and
decrees them to be smooth. For example, on a simplicial complex it is natural
to take the barycentric coordinate functions, as well as functions wh
locally are smooth functions of finitely many barycentric coordinates, to be
the smooth functions.

Differential forms on a differentiable space X are defined to be abstragi
symbols n = Zf df; N\ - - - Adf, (locally finite sum), where the f,} are smooth
functions on X, modulo the equivalence relation defined by calling two sugl
symbols 7, and 7, equivalent if each smooth map ¢: E — X (E open in
R¥) pulls back 7, and 7, to identical forms on E.

The contents of this paper are as follows. ]

§1 defines differentiable spaces and their morphisms and presents a num
ber of examples, including smooth manifolds, classifying spaces of L
groupoids, and simplicial complexes.

§2 defines the de Rham complex of a differentiable space and proves som
of its elementary properties, such as the Chain Rule. De Rham cohomols
defined, as usual, as the cohomology of the de Rham complex. i

83 defines smooth homotopies and shows that de Rham cohomology
invariant under smooth homotopies in the category of differentiable s

§4 compares our definition of differentiable space with those o
Smith and K. T. Chen, which are related to ours but not equivale
approach of Whitney, Sullivan, Thom, et al., who defined differential
on simplicial complexes to be compatible collections of forms on the
plices, is discussed, as is the similar approach used by C. Watkiss 2
Dupont to define differential forms on geometric realizations of semr
cial manifolds. We also discuss the de Rham double complex of a
plicial space, as defined by Bott, Shulman, and Stasheff, the Weil
and other related ideas.

In §5 we prove two theorems which give sufficient conditions for
cohomology to equal real singular cohomology. The first of these (.
5.2) says that if X is paracompact, admits smooth partitions of
ordinate to any open cover, and is locally smoothly contractib
H3(X) = H3%,(X; R). After discussing the Cech-singular and
Rham double complexes of a differentiable space we prove €01
that if a de Rham isomorphism holds on every finite intersection
open cover of X which admits a smooth partition of unity, then

H? (X).

sing’ »

§6 discusses the problem of when an open cover of a differen
admits a smooth partition of unity. This question is important if ¥

apply the de Rham theorems mentioned above. The results of thi8
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follow from a recent theorem of H. Toruniczyk, who in the course of studying
smooth partitions of unity on Banach spaces gave what amount to necessary
and sufficient conditions for a differentiable space whose underlying topo-
logical space is metrizable to admit smooth partitions of unity (subordinate to
any open cover). An easy consequence of his theorem is that any simplicial
complex in the metric topology admits smooth partitions of unity.

In §7 we prove that Hp.(X) = H}% (X) for any simplicial complex X in
either the weak or the metric (strong) topology. We show that our de Rham
complexes A*(X,) and A*(X,) (arising from the weak and strong topologies
on X) can be regarded as subcomplexes of the complex 4*(X) of compatible
forms on the simplices of X. (We shall call AX(X) “Whitney’s complex”
though it differs from Whitney’s construction [40] in using smooth forms’
instead of flat cochains.) When X is a finite or locally finite simplicial
complex, all three complexes coincide, but otherwise they differ. Thus one
can think of A*(X) as providing an alternate description of Whitney’s
complex when X is locally finite.

¥n §8 we discuss the differentiable space structures and de Rham cohomol-
og1e§ of classifying spaces, and more generally of geometric realizations of a
semi-simplicial manifold or differentiable space. This is most easily done if
we choose the Milnor-Buffet-Lor classifying space functor BG and the
unvlvound geometric realization u(X'), because on these spaces there are
defu}led global barycentric coordinates f,, ¢,, - - - and other functions g;:0rj
(defined on open subsets of BG or u(X)) which can be chosen to ‘t;Je ou;
:3?;11 f:mcnon& We show that if X is a semi-simplicial differentiable space

T HER(X,) = Hiaf(X,) for each n, then HE(w(X)) = Hi,l(u(X)).
0n§ gives a detaxlf:d comparison of six different de Rham compglexes defined

geometric realizations, including the double complex of Bott-Shulman-

_sunta:}:;f;; t:le Pupont-Watkiss complex A*(|{X||) of compatible forms, the

v o er;pns of t'hese two complexes, and our complexes A*( (X)) and

B . e; llhned' using the we_ak or the strong topology on the unwound

o .mmon w(X). I.t is shown that all six complexes are chain

P geP)' quxvalel'xt b}\t not isomorphic, The problem of pulling back forms
A ometric realgauons to manifolds is discussed.

B Presents applications of differentiable spaces. One application, men-

Bundla;:ela,:y;xlsﬁtgc pl"esentation of cl"laracteristic differential forms for
i smoo}zh ci u.nfvcrsa.l fo‘rmulas mvolving only the transition func-
e cohpa.mtxon of uqty. Another application is the extension of
B - Zl;ology theories for spaces with two topologies (studied
i [23] and [24]? ?o ntm-.manifolds like (BT, — BJ), the
Llying space for foliations in its sheaf and jet topologies [2]. The
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C* cohomology of (BT, —> BJ,) gives rise to characteristic classes of foli~
ations which vary in a C* manner when the foliation is varied smoothly. The
latter application was outlined in [24], modulo certain details about differen~
tiable spaces which appear in this paper.

The differentiable space approach is very general and can potentially be
applied to many spaces other than those discussed in this paper. In fut
papers the author plans to present some of these other applications.

Remarks on notation. Smooth always means C*. Manifolds are locally
C*-diffeomorphic to R" (n < o) but need not be Hausdorff or secc
countable. The symbol N denotes the set of nonnegative integers. If X is'a
semi-simplicial space, then its nth space is denoted either X, or X[n]. 4

1. Definition and examples of differentiable spaces

Definition. A differentiable space is a topological space X together vitl
for each open U in X, a collection C*(U) of continuous real-valued
tions on U, satisfying the closure conditions:

(i) The rule U — C*(U) defines a sheaf on X (denoted C*X).

(i) For any n, if fi,* -, f, € C*®(U) and g € CP(R") (with the usu;
meaning), then g(f;, * * -, f,) € CZ(V). ‘

The elements of C *(X) are called smooth functions on X

Remark. If one allows g € C®(V) (V open in R"), one gets an equi’
definition.

A basic way to define a differentiable space structure is the follow
X be a topological space, and let { f,: U, —> M,} bea collection of con
functions from open subsets U, covering X to manifolds M,. A fun
U — R (U open in X) is said to be locally a smooth function of finitely m
the f, if for each x € U there exist a neighborhood W of x in U, a finite
indices a;,: * * ,4a,, and a smooth map g: ¥V —R (where V is operl
M, X M, X" xMa”)suchthatforeachi = L s

(1) f,, is defined on all of W (i.e., U, D W),

@ fIW =g° g " s Ja)
Let C*(U) be the set of all such f. Then {X, {C*( U))}} defines a differer
ble space structure on X, which we say is generated by { f,}.

Examples. X

1. A smooth manifold M with its usual collection of (locally deti
smooth functions is a differentiable space.

2. A topological space X becomes a differentiable space in a trivi
we decree every continuous function on X to be smooth, i€
(def)C(U).
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3. Let T be a Lie groupoid = smooth category with inverses [1] (for
example, I' a Lie group G, T' = Haefliger’s T')). Then T is a differentiable
space, and so is its Milnor-Buffet-Lor geometric realization BT [5], as we now
show. Recall that a point of BT is specified by a collection {1, g} satisfying

(@ > 0,i €N, and ¢, = 0 for all but a finite number of i. i

® 2 =1

(c) g; €T, but is defined only on {4, # 0}(def.) = U; C BT. One endows
BT with either a weak or a strong topology (see §8 below). In either topology,
we can define a differentiable space structure on BT by defining, for each
open U in BT,

C>(U) = {f; U—>R|f is locally (in the chosen topology) a
smooth function of finitely many of the functions g;: U; — G
and 1: BT > R}.

4. The constructions of Example 3 work even for infinite-dimensional Lie
groupoids like J, = {oo-jets of local diffeomorphisms of R?, with the C*
topology}. We decree the functions x’ (coordinates of source), y’ (coordinates
of target), and y/(a = (a;, * * * , &), ¥} = a-th partial derivative of y) to be
smooth functions on J; also, any function which is locally a smooth function
of finitely many of these is called smooth. A function on an open set of BJ is
smooth if it is locally a smooth function of finitely many functions of ?;he
form ¢ or f © g;, where f is a smooth function on J,, and g;: U; — J, is as in
Example 3. : o Jor :

5. A simplicial complex X with either the weak or the strong topology (see

'§7 below) becomes a differentiable space if every function on X which is

locally a smooth function of finitely many barycentric coordinates is called
Smooth.
Definition. A morphism (also called a smooth map) of differentiable spaces

is - .
Thz continuous map which pulls back smooth functions to smooth functions.
t1s, h: X — Y is smooth if

L h is continuous,
iel::r allopen U C Y and f € C®(U),f* h € C2(h'V).
ark. Condition 1 is superfluous if ¥ happens to have the topology

gﬁnﬂamd by sets of the form f~'(¥) (V openin R, f € C2(Y)).

¢ category of differentiable spaces will be denoted .

_ Examp hisn;e oﬁ.d. If M. and N are smooth manifolds, then f: M >N is a
vy ifferentiable spaces if and only if it is a smooth map in the
) le 7. Let M be a smooth manifold, let T be a Lie groupoid, let
154 &€ N) be an open cover of M, and let {y;: U; N U, — T} be a cocycle
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on M with values in T having smooth transition functions y;. (This is the case,
for example, if I' = T, and {v;} 1s the Haefliger cocycle defined by a smooth
codimension ¢ foliation on M). Let {4} be a smooth partition of unity
subordinate to { U;}. The cocycle can be classified by the map

f: M — BT,
fx) = {w(x), v4()}
(see [5]). Since f pulls back ¢
differentiable spaces. !
Definition. Let X be a differentiable space, and Y a topological subspace
of X. One makes Y a differentiable subspace of X by defining

if ¥ is open in ¥ and f: V > R, then f € C (V) if and only
if for each y € V there exist a neighborhood U of y in X and

an element g € C*(U) such that gfUnV=fluUnV.

to u and g; to v it is a morphism of

We can give a global description of C*(Y) if certain smooth
unity exist.

Definition. Let X be a differentiable space, and {U,} an open cover 0!
Then a smooth partition of unity subordinate to {U,} is (as usual) a colle
{f, € C=(X)} satisfying

G)f, > 0and 3f, = 1,

(i) supp (f,) = (def)CL(S (0, ©0)) C Ua

(iii) the collection {supp f,} is locally finite.

Theorem 1.1. (i) Let X be a differentiable space, and let Y C X.
that every open neighborhood W of Y admits smooth partitions of un
subordinate to any open cover (of W). Then f € C*=(Y) if and only if f extend
to a smooth function on some open neighborhood U of Y.

(ii) If X admits smooth partitions of unity, and Y C X is closed,
admits smooth partitions of unity, and every f € C*(Y) extends (non-u
in general) to some f, € C*2(X).

Proof. (i) For each y € Y choose a neighborhood U, of y in X nd 2
f, € C=(U,)such that f|U, 0 Y = /iU, n Y. Let U= U, U,, and
be a smooth partition of unity on U subordinate to {U,}. Then 2,
smooth extension of f to U.

(ii) For the second assertion, proceed as in the proof of (i), but :
open set X — Y to the collection {U,} to get a cover of X. Cho
partition of unity, we extend f to Zu,f, as before. A similar consti
shows that ¥ admits smooth partitions of unity.

Example 8. If K C R", then f: K — R is smooth if and only if f €%
some neighborhood of K in R". It is easy to see that if K has an ail
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convex structure (e.g., K = A*, the Buclidean k-simplex), then C*(K) is
independent of n and of the affine embedding of K in R".

Example 9. If X is any differentiable space and U an open subspace, then
C*U = C*X|U.

2. The de Rham complex of a differentiable space

Rather than defining a notion of tangent vector for differentiable spaces
(see [25], [29]), we shall define differential forms as abstract symbols Zf, df,
A A, (f, € C2(U), U C X), and compare forms by pulling tlolen;
back to open subsets of Euclidean space.

Definition. Let X be a differentiable space. Then a plot of X is a smooth
morphism ¢: E — X, where E is an open subspace of R" for some (finite) n.
(The terminology is adapted from Chen’s [8]).

Note. For convenience, we will sometimes drop the requirement that E be

open, and allow plots of the form ¢: I — X, ¢: E X I - X, etc. This will not
change any results.

Definition. Let U be a differentiable space, and let f; € C*(U), i =

l,---,p;j=0,---,q. Let n denote the symbol =, fiodfy A - - * Adfip
and let ¢: E — U be a plot. Then ¢*n will denote the differential form

21 (foo ®)d(fiy e @) A - -+ NS, ° $) € A%E).

Let BY(U) be the real vector space of symbols of this form (p is arbitrary)
modulo the equivalence relation:
0, ~ 7, if and only if ¢* H, = ¢*n, for all plots ¢: E— U
If X is a differentiable space, then the rule U— B%U) (U open in X)

defines a presheaf of real vector spaces on X. Let A%X be the sheaf generated

b .
Y this presheaf, and let 4 9(U) = ['(A%X|U) = TA?U (T = sections).
Remark, B4(X) contains finite sums of symbols fodf; A - * - Adf,, but

49, ]
A%X) also contains locally finite sums of such symbols.

I};‘::’;ﬂ 21-'1t The canonical homomorphism s: BY(U) — A(U) is injective.
R .matce n he ker 5. F-y sheaf theory we can find an open cover {U,} of
b sufﬁoeac restriction 1, € BYU,) of n equals 0. Let¢: E—>Ubea
B s to show that ¢*n = 0. Let L, = ¢~'(U,). Then ¢|L, is a plot
: $*n|L, = ($|L)*n = (¢|L,)*n, = 0. It follows that ¢*n = 0.
22. If ¢: E— X is a plot and n € A%X), then there is a

; efined * J !
” ls; form ¢*n € AYE). Also, m, = n, if and only if ¢*n, = ¢*n, for
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3. Smooth homotopy invariance

Products. Let X and Y be differentiable spaces. Then X X Y is the
differentiable space defined by giving X X Y the usual Cartesian product
topology and defining

for U open in X X Y, C*(U) = {f: U—R|f is locally of
the form g o (f;,* - - , f,), where g € C*®(R") (n arbitrary)
and each f; belongs to C (V) (for some open ¥V C X) or to
CWYW C Y)).

Example. Let J be the unit interval, regarded as a differentiable subspace
of R with coordinate ¢. Then f € C*(X X I)if and only if fis locally of the
formg ° (¢, f, -+, f,), where g € C*®R" Y and f, € C*(U) (U C X).

Definition. A smooth homotopy is a morphism of differentiable spaces

F={f}:X X I- Y; onesays that f, and f; are smoothly homotopic.
- By mimicking the proof of smooth homotopy invariance of de Rham
~ cohomology on manifolds [38], we now prove that H}. is smooth homotopy
invariant on the larger category 6D of differentiable spaces. We start with two
technical lemmas which in the manifold case are proved by choosing coordi-
nates.

Lemma 3.1. Let n € AYX X I) (X a differentiable space). Then every
a:\ € X has a neighborhood U in X such that n|U X I can be written as a finite
#um of terms of the form a(x,t)dt Ndfy N\ - - Ndf,_, and b(x, {) df,
f\ “+ Adf, (a,b € C(U X 1), f, € C®(U)).

y -_Pmoﬂ By the definition of C*(X X I) and the Chain Rule, 7 is locally

on X X I) a finite sum of terms of the desired form. Cover {x} X I by a

izcl;:anumber of Product opens U, X J, C X X I on each of which 7 has

:éf unitﬂ:t:;no; T Itilet U= N U, and let {/,} be 5 sm.ooth partifion

k. N inate to the cover {J/,} of I. Then Z_j 7, is the desired
ationof non U X I.

%
32. Let f€ C®X X I) (X a differentiable space). Define F:
:' XIsR by

Lemma 23. (i) BYU) = A°(U) = C>(U).

(ii) BUU) and AU(U) are modules over C*(U) via

(i) f- (fodfl YN i /\dfq) = (.[fo)dfl NPy S /\dfq'

(iv) A%X is a module over the sheaf C*X.

(v) The exterior derivatives d: B¢ — B?*! and d: A% — A7 are well-de
fined by ]

d(fodfy A\ - - - Ndfp) = 1dfo A\ - - = Ny

and satisfy d* = 0. ;

(vi) The wedge products B’ /\ B?— B"*? and A" N\ A% — APT4N
well-defined by

(fdfi A\~ /\df;) A(gdgi N\ -+ /\dgp) = (fogddfi A" A -

and are graded-commutative.
Proof. To see that each operation is well-defined, pull back the f
question to 4*(E) via plots ¢: E — X and use Corollary 2.2.
Definition. The commutative differential graded R-algebra 4
@, AYX) is called the de Rham complex of the differentiable space X.
Rham cohomology of X is defined by

H3a(X) = HAY(X).

Example 10. If X is a smooth manifold, then 4*(X) and Hpz(X)
to have their usual meaning.

Morphisms. Let h: X — Y be a morphism of differentiable spaces.
rule

R fdfi A A = (foo Wa(fi e YA - -+ Ndlfy o h)
induces algebra homomorphisms
B*: A*(Y) — A*(X),
h*: B*(Y)— B*(X),
h*: H3a(Y) = Hpp(X).
Lemma 2.4 (The chain rule). Let X be a differentiable space, let fy, " *

€ C®(X), and let g € C=(V), V open in R", with V D image(fi,*
X -> R". Then

F(x, u) = j:f(x, 1) dt.

nF € C*(X X I), and hence [} f(x, f) dt € C=(X).

Y- Choose x € X. By an argument like that used to prove Lemma 3.1,
(:"a;i find a neighborhood U of x in X such that flU X ] =
i+ f), where g € C=(R"*") and f, € C(U). Define G: R™*' -

n

d0g s (V- D) = -21 [(Dig) e (fu+ - = » S)] - dfi € A1(X), (Df'-
Proof. Pull back both sides of the asserted identity via plots ¢: E
Since the Chain Rule is valid on manifolds, the pullbacks of both siC

equal. Corollary 2.2 now completes the proof. Gluy xpy -+ + 4 x,) = J; 8t Xy, = - -, x,) dt.
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Then G € C*R™*"), and F(x,u) = G(u, fi(x)," - + , f,(2)), so that F=
Go(u,fy," -, [)EC®X XI). qed
We can now construct a homotopy operator

L: AYX X I) > A7 (X)
between i and Itf: A*(X X I) - A*(X) (where i: X > X X {j} C X X|
J =0, 1) by the usual formula [38, p. 124] '

L(a(x, ) dt Ndf N - - - Ndf,_)) = (fo‘ a(x, 1) dt) N Ny

L(b(x, ) dfy \ - - - Ndfy) =0

(f; € C®(U)). To see that this definition of L is independent of choices,
suffices to pull back via plots of the form ¢ X id: E X I - X X I, an
observe that the operator L': A%E X I)— A?"YE) defized by the sami
formula as L is known to be well-defined [38]. The same argiment shows th
dL + Ld = i} — i§. Hence we have proved
Theorem 3.3. The functor Hp, (on differentiable spaces) is invariant ur de
smooth homotopies.

4. Comparison with other theories )

The idea of studying differential forms on non-manifolls by looking
their pullbacks to manifolds goes back to the calculus of variations.
number of authors have exploited this idea to define various notio
differentiable spaces and de Rham complexes, with the goal of computin
real cohomology of a space. In this section we will compare some of
theories briefly with emphasis on their utility as cochain thzories on va
spaces. We should mention that the term “differentiable spate” has also
used in a number of quite different senses (including as a synonym 10
smooth manifold), which we shall not discuss in this section. :
Closest to our theory are those of J. W. Smith [30] and K. T. Chen |
Smith defined a differentiable space to be a topological spac: X together W
a collection C*(X) of continuous R-valued functions on X satisfying &
closure condition:

If f: X - R is continuous and if f - ¢ € C*(U) for all plots
¢: U— X (U open in some R”, plot defined as in 32), then
FE G2XY

This closure condition is stronger than ours. For example, if we regard Q

rationals) as a differentiable subspace of R, then Smith’s C*(Q) cons
all continuous functions on Q, while our C*(Q) contains only those full

DIFFERENTIABLE SPACE STRUCTURES 265

tions which locally are the restrictions of smooth functions on R. Smith, like
us, defines differential forms as symbols which are locally of the form
Shdfy Ao /A\df,, but he interprets them as singular cochains by integrat-
ing them over cubical simplices. Our two approaches to forms are equivalent,
powever, since a differential form on R" is nonzero if and only if its integral
over some smooth simplex of R” is nonzero. Smith distinguishes two notions

~ of homotopy, roughly corresponding to using the two different closure

conditions in defining C®(X X I). His H}, is proved invariant only with
respect to what he calls proper homotopies, corresponding to the weaker
closer condition. It is partially for this reason that we prefer to use the weaker
closure condition in the definition of differentiable space.

K. T. Chen focuses his attention on the plots of X rather than on C*(X).
He defines [9] a differentiable space to be a topological space X (the topology
is not essential for the construction) together with a collection of (continuous)

‘maps ¢: U— X (U a convex region = (def.) closed convex set C R”, some n)
called plots, satisfying the closure conditions:

(@) If U" is a convex region, g: U’ — Uis C*®, and ¢: U — X is a plot, then
¢g is a plot.

(ii) Every constant map U — X is a plot.

(iii) Let { g;: U, — U} be a family of maps (U, and U being convex regions)
such that a function f: U —» R is C* if and only if fg, is C* for all i. If ¢:
U X is a continuous map and each ¢ © g, is a plot, then ¢ is a plot.

A g-form n on X is then defined to be a collection of forms {n, €
A%U)|¢: U— X a plot} which are compatible with respect to pulling back
Via smooth maps g: U’ — U. For example,

C=(Q) = A%Q) = {set maps f: Q - R}.

_ We have seen that C*(Q) is different in all three theories discussed so far.
In fa‘ft, one can show that HJ,(Q) = C>(Q) in all three theories, so that the
Fheones are inequivalent at the cohomology as well as the cochain level. Only
i.;CheI:'l'S theory does Hp.(Q) agree with H¢.(Q; R), essentially because his
SI€0ry ignores the topology of Q.
Inall three theories, a differential form is defined by its pullbacks to finite
-tensmn’a.l Euclidean spaces. Since such pullbacks are compatible, we see

at Chen’s de Rham complex contains Smith’s and ours provided that one
: Ses for the plots in Chen’s definition those continuous maps ¢: U — X
thf:o:wex region) which pull back each C* function on X (as chosen in
’ $ theory) to a C* function on U. In specific applications one often
™S 10 use a de Rham complex smaller than the full Chen complex so that
"~ ©An give explicit formulas for differential forms. Using Smith’s or our
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construction is one way to do this, or one can use special constructions fo;
particular spaces, such as Chen’s iterated integrals on path spaces [8], [9]. "

The choice of a differentiable space theory depends on the use to be ma
of it. Chen’s theory is well-suited to studying path spaces P(Y), since a plot
K — P(Y) is just a smooth map K X I— Y. Smith used his theory to
quotients of manifolds. On a space that comes equipped with a distin
set of functions, for example a simplicial complex with its baryce
coordinates, or BG with the functions ¢ and g; (see §1), it is natural to
Smith’s or our theory. In practice, Smith’s closure condition can be dif
to verify on an explicit collection of functions, and therefore we prefe
own definition for studying simplicial complexes, classifying spaces
geometric realizations.

The definition which we have given of differentiable space appeared in

work of R. Sikorski [29], but he did not define differential forms in th
we did. Rather, he defined tangent vector fields on X as derivations ?
ring C ®(X), and did not define a de Rham theory. (A de Rham theory
on the same definition of vector field was worked out by R. Palais [25].
the individual elements of our definition have appeared elsewhere. N
less, we believe that their combination is new, and that the idea of
simplicial complexes, Milnor’s BG, and geometric realizations of semi-S
cial spaces as differentiable spaces, using a category of differentiable |
so general that it includes morphisms like f: M — BG (M an
manifold, f the classifying map of a G-bundle on M), is new.

A different way of putting differential forms on simplicial comple
take compatible collections of forms on the simplices. This was
Whitney [40, p. 226] and Thom [34] (in the special case of a tri
manifold, the zero-forms obtained are the piecewise smooth (semi
functions [19, p. 5]), and the idea has been refined by Sullivan [33] 2
to compute not only the real cohomology but also the rational homo!
of a simplicial complex. In a similar vein, J. Dupont [14] and C. Wa
defined differential forms on classifying spaces BG and geometric
(X] of semi-simplical manifolds as collections of differential
G" X A" (resp. X, X A") compatible under the face maps. The &
ference between these theories and ours is that compatible collectio!
require working in simplicial or semi-simplicial categories whicl
include morphisms like f: M — BG, while our theory mixes SimPpHe
non-simplicial constructions easily. For example, in our theory the RO
phism f*: A*BG — A*M is defined at the cochain level of differe il
while in the compatible collection approach f* is defined on
cohomology level or as 2 map of Cech-de Rham double complexes.
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A more detailed comparison of our de i
Whitney, Dupont, and Watkiss will be given inRgzmu?{;plex ooy

So far we 1.1ave discussed only those de Rham theories based on obj
which look like differential forms on the acual spaces in questi - J;Cts
example, ?n Dupont’s, Watkiss’, and our theorics, a form on B((Sl invo(l)\rf: tt(l)r
barycentric coordinates f, as well as the G-coordinates g,.. If one’s pu : s
to compute the cohomology of a space, a smaler compylex may stfff;:; S; -
example, Bott, Shulman, and Stasheff [3] showed that the cohomolo <;f tlcl)r
double complex @, ,4(X,) equals HE, (1 X|; R) if a de Rham isomggrphisx::
holc?s on each X,. To cc?mpute H*(BG) in the case when G is compact it
suffices to study the Weil algebra [6] or the semi-simplicial Weil algebra of

. Kamber and Tondeur [17].

While these theories are probably easier to use than differentiable spaces to

‘compute the cohomology of specific spaces like BG, differentiable spaces are

usefuI for studying how this cohomology meps into the cohomology of
manifolds at the cochain level, especially when a G-bundle on M is spogﬁcd

by transition functions. Furthermore, i i
b . : , the differeatiable space appr. i
‘very general, is applicable to other spaces as well. ot

- There have been a number of other generalizations of differential forms to

;grnmam:;lc.is. For example, C. D. Marshall [2)] defined a de Rham theory

A sian spaces, which are Hausdorff s

» subca _ paces locally homeom i

(not ” :

n%crcni:wsznly open) subspaces of R” (n varying). In a different di:i}::forf
| a de Rham theory for infinite dimensional manifolds. These thcorics:

bt : vt
ot apply to Milnor classifying spaces BG or to non-locally finite simpli-

complexes, however, sin
; : , since these spaces are not locally h ~
Y set in R" or to any open set in R*. Y homeomorphic to

\

-

5. Conditions guaranteeing a de Rbam isomorphism

Because th i
€ concept of differentiable space is so general, it is clear that a

am isom: i
o nosrpol;ls;’naligkgi )= H;;n.gum(X' ; R) will hold only if we place
iy i X In this sectior we present two such sets of
Sl Titerion is a local property (smooth local contractibil-
e i c;ﬂzmm of par?.compactness and existence of smooth
iy prov;d . is ?rovcd usgng sheaf theory; a virtually identical
B i Rhy Srfuth for }_us theory [30]. The second criterion is
ety a;n {somorpmsm holclis o1 all finite intersections of an
broved by ady : mits a snll?ot'h partitior. of unity, then it holds on X,
ity pting A. Weil’s Cech-de Rham double complex [38]. In
we shall prove the existence of smooth partitions of unity on
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simplicial complexes. This will allow us to apply the second criterion to
simplicial complexes, classifying spaces, and geometric realizations in §§7
8.

To compare de Rham and singular cohomology, we map both of them |
the smooth singular cohomology H,,,, which is defined as follows.

Definition. A smooth singular q-simplex of a differentiable space X
morphism o: A? — X of differentiable spaces. The real-valued cochains
these simplices form a vector space denoted SZ,(X); we set HZ(X)=
HSH(X). f

Remark. The cochains of HZ, are not sheafified.

A map from 4*(X) to Sk(X) is defined, as usual, by integratio:
(pulled-back) forms over smooth simplices. This induces a map Hpg
H3(X).

Lemma 5.1. HY, is invariant under smooth homotopies of different
spaces.

Proof. The proof of homotopy invariance of ordinary singular co
ogy [14, p. 45] can be used without change once one observes that the pris
operator P: S, (X)— S 4 (X X I) maps each smooth simplex to a
smooth simplices.

Definition. A differentiable space X is locally smoothly contractib,
each open U C X and each point x € U there are a neighborhood V'
U and a smooth homotopy F = {f}: ¥ X I — U satisfying

fo=id:V CU,
fi: V— {»} c U (for some pointy € U).

Theorem 5.2. Let X be a differentiable space which is paracomp
locally smoothly contractible, and which admits smooth partitions
subordinate to any open cover. Then the natural homomorphisms

H3p(X) > H3(X) « Hing(Xi R)

are isomorphisms. '
Proof. Let S* (resp. S%,) be the sheaf on X generated by U— S
(resp. U — S%,(U)). Let A* denote the sheaf A*X of differential for
§2). Now since X is paracompact, the sheafified and unsheafified
cohomology theories HI'S* and HSH,, = H*(X) are isomorphic
similarly, HTS®, = H2(X). By definition, H(X) = HTA®.
Now since X admits smooth partitions of unity, the sheaf c%
Since A*, S%,, and S* are modules over CX, they, too, are fine [4
Now the constant sheaf R injects into A*, S%,, and S*. We claim

snt>

three complexes are resolutions of R. Indeed, since X is locally
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contractible and all three cohomology theories are smooth homotopy in-
variant, it follows that the stalk of the homology (derived) sheaf [4, p. 25] of
all three cochain complexes of sheaves reduces to H*(point) = R (in di-
mension 0) at any point x € X. But the cohomology of global sections of a
resolution of a sheaf F on a paracompact space X by fine sheaves equals the

sheaf cohomology H*(X; F) [4, pp. 34, 49-50]. It follows that all these
cobomologies agree, i.e.,

Hix(X) = H4(X) = HTS?, = H%, (X) = HTS* = H3(X; R). qed.

Our next criterion for a singular-de Rham isomorphism is based upon
computing the cohomology (de Rham, singular, or smooth singular) of a
space X from the cohomology of each finite intersection of some open cover
of X. In the de Rham case this entails looking at the Cech-de Rham double
ciomplex of A. Weil [38]. In the singular and smooth singular cases we use a
Cech-singular double complex and an extended Mayer-Vietoris theorem.

Definition. Let X be a topological space, and U = {U,},, an open
cover of X, indexed by a totally ordered set J. Then @, (» € N) will denote

the space I U,, where ¢ = (ag ay,* -+, a,) runs over all strictly ordered
(p + I)-tuples of J, and U, = e ), iy $E Uc’. Maps

a'-: QLP—)QLP_,,I'= 0,' P ,P,
are defined by

9,|U, = inclusion: U, C U,,,
Where 0,0 = (ag,* + -, @, s 0)-
If X is a differentiable space, and QU an open cover of X, then the Cech-de

Rham cong.plex of X, denoted 4*%,, is the double complex @, ,.047%,
together with the Cech coboundary map g -

p+1

= ’ .
8 Eo (-1)’49(3,): 47U, - A,

:ﬂi t]l:c.exterior differential d: 47U, — 49*'Q,. As usual, we make A*Q
R €hain complex by defining a total differential D = d + (~1)% and a tota'l

ng’f='P+q- .

s € Cech-singular complex S*9U, and C moot.

i Ay

.,_!.,GZL- are defined analogously. ! ! I el

- The relation of this definition of Cech-de Rham complex to
4 at a form n € A9, can be identified with the alternating Cech
e s fvlth values in A9, defined by e +9|U,,...o, Where the
€ signature of the permutation needed to put g, * « * , a:'into order.
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Theorem 5.3 (Extended Mayer-Vietoris Thegrem).

() For any topological space X and any open cover U, Hp(S*AU )=
H2,(X; R); the isomorphism is induced at the cochain level by the restriction
map from S*(X) to S*AUy C S*U,.

(ii) For any differentiable space X and any open cover U, Hp(S:,) =
H* (X) induced by S5, X — SEQR L. .

Proof. Part (i) is more or less well-known; see [3] or [23, p. 16] for a proof
Since the proof is combinatorial in nature, it goes through for the smooth case
as well; all we need to check is that the barycentric subdivision of a s:
singular simplex is a sum of smooth simplices, and this is obvious. q.e.d.

The analog of this theorem for the Cech-de Rham complex requires an
additional hypothesis.

Theorem 54. Let X be a differentiable space, and let QU be an open co
X admitting a subordinate smooth partition of unity. Then

HD(A *Q|, *) i HBR(X)s

induced by the restriction map r: A*X — A*%Uq C A*SU :
Proof. Let {u,} be a smooth partition of unity subordinate to 2. Onl
first shows, as Weil did [38] (in the case where X is a manifold), thai

complex
00> AKX D> AT 45U, > -
is exact, by using N. Hamilton’s homotopy operator
N: A9, —> AU, p==1,0,1,2 ",

(Nw)ao ca = 2 ua‘ waao...a':
aEJ

(here A_, = X) which makes sense in our context since A*(X) is a
over C*(X) and is closed under locally finite sums. The rest of the p

exactly the same as Weil’s.

Our second main theorem is now easy t0 prove.

Theorem 5.5. Let X be a differentiable space, and let 9. be an open ¢
X admitting a subordinate smoath partition of unity. Suppose that Jore
intersection U, of opens in U, the maps

Hl‘;R(Uu) ey H:M(Uﬂ) o= Hs'ing( Uo; R)

are isomorphisms. Then the maps
Hp(X) > Hp(X) < Hing(X: R)

are isomorphisms.
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Proof. Consider the maps of double complexes
A, - S AU, « S*U,.

Filtering by p we get spectral sequences which mé.p at the E, level by
H;(A*Q‘LP) i HER(G?’L}J) S Hs‘:n(cu’p) «— HJ (QLp)'

sing
By hypothesis these maps are isomorphisms, so

Hp(4*,)> Hy(S5,,) < Hy(S*,)

by the usual spectral sequence arguments. Theorems 5.3 and 5.4 now yield
the desired conclusion.

6. Smooth partitions of unity

In order to apply Theorems 5.2 and 5.5 we need to known when an open
cover of a differentiable space admits a subordinate smooth partition of
unity. In this section we find some convenient sufficient conditions for
smooth partitions of unity to exist.

The existence of partitions of unity on Banach spaces has been studied
extensively, and some of the results obtained for Banach spaces are general
gnough to apply to differentiable spaces. In a recent paper [36], H. Toruniczyk
gave what amount to necessary and sufficient conditions for a differentiable
space whose topology is metrizable to admit smooth partitions of unity, First

‘We need the following definitions.

Definition. Let X be a differentiable space. Then U, will denote the

collection of ¥
iy n of open subsets of X of the form f(a, b) where f € C®(X), a,

Definition. A family of subsets is o-locally finite if it is the union of a

- Countable number of locally finite subfamilies.

wige?nition. Given a set /.4, ¢co(A) is the linear space of all x = (x,) € R4
anac}‘: € A: |x,| > 1/n} finite for any integer n > 1; c(A4) is regarded as a
space under the norm [|(x,)]| = sup{|x,|: @ € 4}. We make cy(4) a

differeny; ini
i 1able space by defining f € C*(U) (U open in co(A)) if and only if f

5 loc :
i .3:113’ a smooth function of finitely many coordinate functions

9 e
Thﬁlﬂnnq. 3

adz:m-,-e,:.-lb; (H. Torurczyk [36]). The following conditions are equivalent
b i iable space X whose underlying topological space is metrizable.
b o s .s'moot.h partitions of unity (subordinate to any open cover).
mxe Contains a a-locally finite base of the topology of X.
: re are a set A and a homeomorphi ]

o rphic embedding u: X j

e s g = co(A) with

——
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3

Remarks. 1. Condition (b), together with the stipulation that C®(
separate the points of X (so that X is T5), implies that X is metrizable
194]. Condition (c) also implies that X is metrizable since co(4) is 2 @

- proof. By Theofcm 6.1, X admits a smooth embedding u: X — c,(4) f
some A. Thf"I.' u|Y is a.smooth embedding of Y into ¢4(4), so that Yo dmior
smooth partitions of unity, again by Theorem 6.1. ilian e
R . For Y closed this result is obvi
| emark ] io
. ke g us (see Theorem 1.1), but
~ Although we have already shown that impli
4 _ every simplicial complex (i
strong nTipplIogy) admlts- smooth partitions of unity, it is of intera:t t):)s:hit:i:
@c exp city in a special case. In particular, consider the infinite Euclid
ﬁmpzz A% in the strong topology with vertices 0, 1, 2, - + and bary ::in
il o , L2, centric
No:c{ﬁl. ;,i;pat;oint fi.ml'::;t (g];t' n{ :i l> :l} A o S O
) L e HF £ -

- itk ocally finite) partition of unity, with
Following [10], we can construc

bl 19 t a locally finite inuous
partition of unity {#} with {# > 0} C U, by setting R

U - max(O, A zj),

J<i

space.
2. The map u in part (¢) is a morphism of differentiable spaces.

An important special case of this theorem is the following.

Theorem 6.2. Let X bea differentiable space. Suppose that C®(X) or
a countable collection fo, f1» fo - -+ which separates the points of J
generates the topology of X (in the sense that the sets f'(a, b) are a sub-b
the topology of X). Then X admits smooth partitions of unity subordinai
open cover. '

Proof. The collection (fNa,b): i€N, a, b rational} is a count
sub-basis for X. The collection U, of opens is closed under finite in
tions [36], hence includes the countable subcollection consisting of all f
intersections of the f'(a, b). Thus Q) contains a countable (hence o-loe
finite) basis of X. Now apply Theorem 6.1 and Remark 1. |

Applications of Theorems 6.1 and 6.2 g

Theorem 63. Let X be a simplicial complex in the strong (metric)
regarded as a differentiable space (see §1, Example 5). Then X admi.

partitions of unity subordinate to any open cover.

Proof. Let A be the set of vertices of X, and let {£,}(a € A
barycentric coordinates. Define u: X —> c(A) by u(x) = (1(*)- One
easily (see Remark) that u is a homeomorphic embedding, and it is trivia
x,ou=1¢6 C*(X). Now apply Theorem 6.1.

Remark. The strong topology on 2 simplicial complex X with vertex:
is defined in any of the following three equivalent ways:

M {g' D} @E4,6dE R) is a sub-basis for the topology of X

(2) X is a metric space with metric p(x,y) = E(t,(x) = t,[y))z)i‘; '

(3) X is a metric space with metric p(x, ¥) = SuP,lL(¥) = O
The equivalence 12 is well-known and easily proved; the equiVi
2 < 3 can be proved easily using the identity St,(x) = 1.

Theorem 64. The infinite-dimensional Lie groupoid J, (see §1, Exam
admits smooth partitions of unity.

Proof. The coordinates x, yh i (a=(ap* * s %)) (ibid.)
able collection of smooth functions onJ, which separate the points
generate its topology. Now apply Theorem 6.2.

Theorem 6.5. Let X be a differentiable space admitting smooth
unity and having a metrizable topology. Then any topological subSpac®.

with its induced structure of differentiable subspace (see §1) ad il
partitions of unity.

o0
Wr="uf / jEO u/ (the sum is locally finite).
I we r
: po:ilziljzef ;ax(ﬂ, 5) by any smooth function g(s) which is zero for s < 0
e :] > ‘3., ﬂt;hen we get a smooth partition of unity {v,} instead of
y with {v; > 0} C U,. To construct a smooth partition of

Y {w,} subordinate to { U}, w
o i .}, we must have the stron iti
‘V}) C U,. To obtain this, let g be as before, and set o s o

W, = g(”i W (1/2)i+2), Wi W.’/ i Wi
Ahis is defined since if w’ hop
ined since if w/(x) = 0 for all i, then v,(x) < (1/2)'*2 so that
[+ ]
I=30(x)< X (1/2)i+2 =%’

. i=0
Hlradiction. We see that

supp(w;) = Cl{ov, > (1/2)'**}) c {5, > 0} c U,

{w} is subordi
15 1S 2 € il {supp(w; 1 y
Smooth partition of unity on A% subcl:-(dijz}xielioo{c?/n}y i
i' .

i
B De Rham cohomology of simplicial complexes
e we show t.h?.t the differentiable space de Rham complex of
mplex X, using either the weak or the strong topologyl', on ;
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computes the real cohomology of X. We compare these cochain complexes
with Whitney’s complex of compatible forms.
We start by recalling some topological facts about simplicial comp
Let X be a simplicial complex, and B its set of vertices. As we have rem:
there are two topologies on X, weak and strong; we shall designate the
X, and X, respectively. Recall that U C X,, is open if and only if U N .
(relatively) open in S for every (finite) simplex S of X. On the other hand,
strong topology on X 1s defined as the coarsest topology (fewest ope
making all the barycentric coordinate functions #, (b € B) continuous;
alently, it is defined by the metric p(x,y) = G, (1(0) — DL X is
compact in either topology- 1t is clear thatid: X, — X, is continuous. Do
[12] showed that X, and X, are homotopy equivalent. We recall the ’
homotopy inverse u: X; —> X, constructed by Milnor [22]. Let {u,}
(continuous) partition of unity subordinate to the star open cover (U}
X, (Uy = {1, > 0))-
Define u: X, - X,, by
u(x) = (4(x)sep:

Then u is continuous and maps sOme Open neighborhood of each x €
some finite subcomplex of X it also maps each simplex of X into itse
h={h}(O0<t<1)be the linear homotopy with 4y = idy and h; = 4.
h: X, X I—> X, and h: X, X I > X, are continuous [22], which shows
is indeed a homotopy inverse o id,

The preceding discussion can be adapted as follows to show that id
X, is a smooth homotopy equivalence of differentiable spaces. In
Theorem 6.3, we can choose {1,} tobea smooth partition of unity. De i
as before, we see that #, o u = #,, SO that u is a smooth morphism
differentiable spaces. Also, f, °h = (1= 0t + 1ty which is a
function on both X, X I and X, X I. Hence h is smooth with 1€
cither topology. Thus we have proved 1

Theorem 7.1. Let X be a simplicial complex. Then id: X, = X, is a smo
homotopy equivalence of differentiable spaces.

With the aid of the results of §5, we can now prove the de Rham theo
for simplicial complexes.

Theorem 7.2. Let X bea simplicial complex, in either the weak or
topology. Then the maps

HaR(X) — Ha(X) — Hing(X)

are isomorphisms. S
Proof. By Theorem 7.1 and the smooth homotopy invariance of at

,él'.‘( X
- (i)
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cohomology theories, it suffices to consider the case X = X, N

(5> 0) (7 star (b)) as before, and for each abst.rac:; s'oW iet $4E
(b "+ 0w Of,X denote Ny, U, by U,. Then U, = star(o) a.:;lpu:x b
linear deformation retraction A of U, onto the I;a-rycenter, . ere is a
geometric simplex corresponding to o) defined by x, of §, (the

h: U, X I—> U,
t,(h(x, 1)) = {(1 —O(x)+t/(n+1) ifbeo,
(I = t)tb(.x) ith &o.

Furthermore, the explicit formula i
smooth homotopy invariance that 13 ‘?lzlc:‘; ==t h;It'(;;t.lls =5 nl-;o;)c:xl"l Hh= o
and Hs.mg. If we now al?ply Theorem 5.5, using the open cover {H [5) Y H"W
subordinate smooth partition of unity {u,}, the theorem follows i b}' e
g.e.d. ws immediately.
Theorem 7.2 shows that A*(X)) and A*(X,) a i i
::wdcgeizr ct;c; ;ieralll coholmology of any sim;gli;i)a.l :;:;’;m;fa:;’: n?\zh:;z
complexes are related to ea i
xt;:lel AXNX _) of compatible forms on the simplcige: tj:: }?I;.iect::]lﬂ[l;wmt;zeﬁy
k- :;::2:13, :: Eh AXX) is de.fined to be a collection {w, € A‘(S,)’},p\;vhcrg
ke adstract smele:es of X, §, is the geometric simplex corre-
P l, an {‘*’o} satisfies th_e compatibility condition w,|S, = w_ if
ctually, Whitney worked with “flat cochains” rather tlzan7 smo;th

differential forms, but H.
, but HAX(X) = H*(X; R) i
b J(X) = H*(X; R) in both cases (see [40] and [7] for

There are canonical homomorphisms

: A(X) S A*(X,) D A2(x);
Te = i z
@ = id*, where id: X, —» X,, while S is defined by
B:w— {w, =w|S,}.
Although o and
tegrating g-

% nf induce i.somf)rphisms in cohomology (as can be seen by
¥ X)s fl:'cr q-mmph‘ces to map all three theories to the simplicial
» they are not in general isomorphisms at the cochain level

€ precise i i
foll relationship between the three cochain complexes is given by the

OWing theorem.

m 73. (i) For any simplici
; 1ty simplicial complex X, the -
1}?4 B: A*(X,) — AX(X) are injections. e S
i) UXU_ locally finite, then a and B are isomorphisms
proolfs n;?t lfncally finite, then a and 8 are both strict inclusions

of this theorem is divided into Lemmas 7.4 through 7 &
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Lemma 7.4. The map a: A*(X,)— A*(X,) is injective for any simplici
complex X. '

Proof. Observe first that the weak and strong topologies agree on fi
subcomplexes of X, and that every plot ¢: E — X,, factors locally through
finite subcomplex (since E is locally compact and every compact subset of }
is contained in a finite subcomplex [39]).

Let w € ker a, and suppose that w 7 0. Let ¢: E — X, be a plot such th
¢*w is nowhere zero. (We can find such a plot by starting with a plo
L — X, with ¢*w 7 0 and restricting suitably.) Let X ™ be the n-skeleton
(a closed subspace of X,) and let C, = ¢™'X“. Then {C,} is 2 co
closed cover of E, so by the Baire category theorem [13, p. 250] (usi
local compactness of E) some C, has a nonempty interior U. Then
U— X™ _ X is a plot of X,,, so that 0 = (¢|U)*w = ¢*w| U. This contrz
tion shows that ker a = 0.

Lemma 7.5. The map B: AX(X,)— AX(X) is injective for any si

complex X. ¢

Proof. Let » € ker 8, and suppose that w 7 0. Let ¢: E— X, be a pl
for which ¢*w is nowhere zero. By restricting E to some open subset w
assume that ¢ factors through a finite subcomplex ¥ C X. Assume that
been chosen to be minimal (for the fixed restricted E), and let §
top-dimensional simplex of Y. Then L = (def)o~'(int ) C E is open
nonempty. But ¢|L factors through S, which implies that 0 = (¢|L)*
¢*w| L. This contradiction shows that ker  =0. q.e.d.

It follows from Lemmas 7.4 and 7.5 that we can regard 4*(X,) and A°
as subcomplexes of 4* (X). T

Lemma 7.6. If X is a finite simplicial complex, then A*(X,) = A*
AX(X).

Proof. The first equality follows from the fact that the strong
topologies agree on finite complexes; we will denote A*(X,) and AX(X,
A*(X). For the second equality, it suffices (by Lemma 7.5) to show
A*(X) = A*(X) is onto. We use induction on the total number p of sim
of X. For p = 1 we have X = {0} and the result is obvious. Suppose the 1€
has been proven for p — 1, and that X has p simplices. Let S be a top
sional simplex of X, and assume that the vertices of § are lab
1,++-,n Now Y = (def)X — int S has p — 1 simplices, so that 4
AXY). Let U= ({Z0,4>0}CX; then U is a neighborhood of 5
smooth retraction »: U— S is defined by £(r(x)) = 4(x)/Zjag 4(*) L
1,---,n Observe that r maps U — S to the boundary of § since =
top-dimensional. !

Let @ € A*(X). Then w|Y € A*(X) = A*(Y). By Theorems 1.1 and
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every f € C7(Y) extends to some f' € C*(X). It follows easily (using a
smooth partition of unity and the compactness of Y) that 4*(X) — A*(Y) is
onto. In particular, w|Y extends to some w, € A*(X). Then &, = w — w; €
AX(X) satisfies w,|Y = 0, and to show that w € A*(X) it suffices to show
that @, € A*(X). But w,|U = r*(w|S) € A*U, while w,|int ¥ = 0, so that
w, € A*(X) as claimed.

Lemma 7.7. If X is a locally finite simplicial complex, then A*(X,) =
A*(X,) = AZ(X).

Proof. The question is a local one, so we can just apply Lemma 7.6 to the
closures of the star opens, which are finite complexes.

Lemma 7.8. If X is a simplicial complex which is not locally finite, then

A*(X,) G A*(X,) G 42(0).

Proof. Let O be a vertex contained in infinitely many l-simplices, includ-

ing, say, (01), (02), - - - . Define f: X - R by

o0

f(x) = Z nt(x).

n=]
Then f is well-defined and smooth on each simplex, so that f & A%(X). But f
1S not a smooth function of finitely many ¢ in any neighborhood of 0 in X,
so that f € C™(X,) = A%X,). Now pick g € C*(R) with g7(0) = .
Define #: X — R by ¥ ' St

h(x) = X g(t, — 1/n).
n=1
:;en: € C%(X,) = A%X,), since 4 is a locally finite sum on X,. On the
er hand, h & C®(X,) = A%(X,) since & is not a smooth function of finitely
many ¢ on any strong neighborhood of 0.

8. Classifying spaces and geometric realizations
Btopologxcal groupoid (= topological category with inverses), then
z;_fkl-.Lor classifying space [5] BC is defined to be the space whose
M (0 100 Iecu‘ons {4} (¢} (i, € N) satisfying
.7 \%J 15 2 point of the infinite Euclidean simplex A® (i
plex A® (i.e, ¢, > O,
lnlztely many ¢; are zero, and Z¢, = 1), ( S
(3; €4 € C is well-defined only when 4t # 0,
€ = ¢, when g4, # 0.
' k. This is not the sam i
¢ as Milnor’s and Buffet-Lor’s original
; of BC as EC/C, but is equivalent to it; see [32].
rong topology B,C on BC is defined to be the coarsest topology

E fCisa
s Milnor-
Points are

definitio
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making the functions #: BC —R and ¢ {1 #0} >C continuous.

weak topology B, C on BC is defined as follows. Let NC be the nerve [26]

C; this is a semi-simplicial space with v
NC[0] = {objects of C},

NC[n] = {composable n-tuples (¢, * * + » ¢,) of morphisms in C} ]

(i.escy0Cy0 * 2 26,18 defined),

and with face maps

0;: NC[n]—-»NC[n -1}, i=0,---,n,
defined by omitting or composing morphisms (see [26], [1]). Now if S(o)is th
geometric n-simplex of A% with vertices ip </, < - -+ <i, €0, then \
NC|[n] maps to BC by

(CAREIN N CRRRINA) EXCEA R TR Y

where

0 ifiz g "
i Ll ol ifi = i) =i, withk <m,
T LI e o L2 LB :
e A ifi =i,j=1i,withk >m,
77 ) left identity of ¢, if i = j = ip,

right identity of ¢, if i = j = i with k = 1,---,n.
These maps induce an isomorphism of sets
il S(0) X NC[n]/~— BC,

where ~ is identification via the face maps:
(1, ¢) € S(o) X NC[n] ~ (¢, 3,c) € 8(3;0) X NC[n — 1].

Here ¢ € S(3,0) C S(6) C A%, ¢ € NC[n}, and 30 means o with §

The weak topology B,C is defined by putting the quotient topology ©f

with respect to this map.
More generally, if X is any semi-simplicial space, its unwound gec
realization p(X) (called the Milnor geometric realization by tom Dieck

see also [23, Appendix A]), is defined by
Wx)= I S() % X[n]/~.

where
(2, x) ~ (£, 9;x), (1 € 8(3,0) C S(0), x € x[n]).
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The weak.topo{og)) 1, (X) on p(X) is defined to be the quotient topology
under the identification map, which we denote by . For example w(NC) =
B,C. Itis also possible to define a strong topology p(X) on y.(X’ ) in such a
way that lJ.S(]YC) = B,C. This works as follows. Observe first that the bary-
centric coordinates £ of A* pull back to global functions (also denoted #) on
W(X). Let U = %0, 1] c p(X); the collection {U;} is called the cano,nical
open cover of p(X). For each n and each abstract n-simplex o of A%, let
U,= Nico U, and let a map :
JpiU,»X [ n]
be defined by
JolS(1) X X[ p]: #(t, x) > £,.(x),

where p > 7, 7 is an abstract p-simplex of A® containing o, ¢ € 5(r), and £, :
{\'[ p]— X[n] is the map corresponding to the inclusion ¢ C 7 of ordered s;':;
in the semi-simplicial structure of X. We define the strong topology #(X) on
#(X) to be the coarsest topology making all the maps ¢, and j, continuous
Example. If X = NCando = (ig, - + + , i), then A . :

({1} {¢;}) = (Cgier Chip > ¢,_) € NC[n].

(ﬂ;ar.rly the topologies 1 (NC) and B,C are the same. |

¢ now discuss the de Rham cohomology of u(X i
included as a special case. W e
ﬁal;;rmnmn. ;,et X be a semi-simplicial object in the category of differen-
.sbm stpaces. heg K.(X) (resp. p(X)) is given the smallest differentiable
e structure which makes the maps #: X — R and Jot U, = X[n] smooth
L : that these 1.'naps are continuous on both u (X) and ©(X).) Explicitly‘
X[n])m:oah funcuon§ on pu(X) are f, g ° j, (where g € C*(U), U open ir;
i nd all functions which locally (on ©,(X), resp. (X)) ar th
tunctions of these. : e i
The d

. :ﬂl:‘.ham cohomglog 'of #(X) can now be studied by techniques
: ose used on simplicial complexes in the preceding section.

N T o P
81 Let X bea semi-simplicial object in the category of differen-

Mtiable spge e
Proof. f‘ef?e”} “;;: 1(X) = p(X) is @ smooth homotopy equivalence.
calo u, a smooth partition of unity subordinate t i
el Ok b6 o ¢ to the canoni

B u: p(X) - u(X),

P u(w(t, x)) = w((u(1)), x),

” 1 e k

3 .'oni -igs(n:) C A%, o is an n-simplex, (4(#)) € $(0), and x € X[n]. The
continuous as a map from p,(X) to p,(X), for if ¢ € in(S(s)),
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then in a neighborhood W of =(t, x) € p(X) we have y; = Oforal &g
(here we use the fact that {#} is actually subordinate to the canonical oper
cover) and ¢ > 0 for all i € o, 5O that u| W factors through S(o) X X[n] vi
the map [(%," " "> %), Job where (ig,* * * 5 i,) = O- Furthermore, # s
smooth, since £, © u = u,, while j, ° u = j,. The linear homotopy A: u(X) X |
—> p(X) from the identity to u defines smooth morphisms A: p(X) X I.
(X)) and Az p,(X) X I - p,(X) analogous to those of Theorem 7.1.

Lemma 8.2. The maps j,: U, = X[n] (U, C (X )) are smooth homotop
equivalences. -

Proof. The fact that j, is a continuous homotopy equivalence was prove
in [23, p. 125] (using the weak topology, but the maps there are continuo
the strong topology, too). The homotopy inverse is the inclusion

i,: X[n] = {b,} X X[n] C S(0) X X[n] 5 u(x),

where b, is the barycenter of S(o), and we use the linear homotopy H,
U, x I - U, from id to i,j, where the map Jui, is the identity, Now as in}
proof of Theorem 7.2 H, pulls back # to a smooth function, while fo
simplex p, the map j, ° H, equals j, wherever it is defined. It follows tha

is smooth. b
Theorem 83. For any semi-simplicial differentiable space X, the de . Rh
cohomology of |(X) (in either topology) can be computed by '

HDR( F‘(X)) i HD(A*Xs):
where A*X, is the double complex ©,, AX, with de Rham cobo
A9 —> A9+, semi-simplicial coboundary
8 = 3(-1)4%(3) = AX, > AX,,,,
and total coboundary D = d + (-1)%. This isomorphism is induced by coch
homomorphisms A

A (X)) > A*U, <A™ X,

where 9 is the canonical open cover of p(X). 4
Proof. Since % admits a subordinate smooth partition of unity pt

back from A®), Theorem 5.4 implies that
HDR(}"(X)) = HD(A'QLJ‘

Now the maps j,: U, > X, (0 = 0,,2 p-simplex) commute with the face T

9;: U, C Uy, and 3;: X, > X,_,, and therefore induce a homomorp

double complexes
JrA*X, > AU,

lo any open cove
Unity,

C°°p,(
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Filtering by p and computing spectral sequences, we get
= N
J* HpR(X,) > Hpe(Uy) = 11 Hpe(U) = 11 Hpe(x,)
o= 0, o= Op /A

at the E; level. But the last term is j i-simplici
Ey Just the semi-simplicial unwinding of th
i . . e
co-semi 51.mphcxal .mo.dule P — Hpp(X,) (see [23, Appendix A] and galso §9
beloy)'. _Smce unm@g does. not change §-homology [23, p. 118], it follows
tha; J’ 1;1duces an isomorphism of E, terms. Since j* was induced by a
cochain homomorphism, it follows that it i i ism i
- at it induces isomorphism in total (D-)
R;oru!lary 8: Let X be a semi-simplicial differentiable space. If the de
m isomorphism Hpp = H,,, = Hg, holds on each X,, then it holds o
#(X) and on p (X). i *
f ﬁ’mof. It is known [23], [?] that H, (u(X)) = H,(S*(X,)); in fact, this
: f)w: from Theorem 5.3 using an argument similar to that of Theorem 8.3
similar proof shows that H,, ( (X)) = H,(S*,(X,)). Inspection shows that

Hpg l( MX) - H, (X)) <« Hg (X))
A i ~ Jr =
Hy(4%(x,)) - Hp(S3(X,)) < Hp(5*(x,))

::;smu;es.hFiltl;;tion of the three double complexes leads to isomorphic E
, by othesis, h i i i l
E yp 15, hence the maps in the diagram are all isomorphisms.
w . .
" e1 obs:rve that in_proving Theorem 8.3 we used the Cech-de Rham
}:i:):l ofthc_canomcal open cover of u(X), which always admits a smooth
pamv'vill 1medomul’:n;:lt,y no 1xlnat.ter what X is. For some applications, however, we
. ow when the sheaf C*u(X) is fine. The f i ;
8lVes a convenient sufficient condition. RS, oS
Theorem o WAL, T
e m:‘..ls bII.et X be a semi-simplicial differentiable space such that each
izable topology and .admz'ts smooth partitions of unity (subordinate
“iha sar). I;hen 1(X) is metrizable and admits smooth partitions of
¥y i me. ?lds for any subspace of u(X). In particular, the sheaf
b ‘ne, as is its restriction to any subspace of p,(X)
"00f. By Theorem 6.1, for each n there exist a set A, and a smooth

beddino f -
X). Fol-geihx" > aol4,) C Rf" Let (U} be the canonical open cover of
"o i O P B-S:.lmplcx B (Io’ R iﬂ) letjo: Uo _”x,. be as kﬁfﬂt‘c, and
ioi, * * 4 : p(X) — R. For each £ € N define a smooth function g, :
A

S0, 1] with o
1th 270, 1] = (2***D, 2-*=1y For each &, n € N and a-simplex
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o, define
fkno: H‘s(X) =2 CO(An)’

[ 8L LGN, x €U,
fkno(x) = [0’ 1(x) < w

Each f,, is a smooth morphism, and for each x € p(X) only finitely man
fung(%) are nonzero. Now let 4 = N U U gno A, Define 2 map U
F:p(X)— R*
by taking the direct product of the maps (g, f;, * = = ):i(X) = A% C ¢(N) €
RN and the maps f,.,. One sees easily that F factors through ¢,(4) and that.
is smooth. Furthermore, F is an embedding; this follows from the fact th
locally we can always recover the map j, as F7  fino/ 8 ° 1,) DY choo
suitably. A second application of Theorem 6.1 (together with Remark 1
it) now shows that p(X) is metrizable and admits smooth partitions of
Theorem 6.5 shows that subspaces of u(X) have the same properties.

—(k+1)

Examples. B,G and B.J, admit smooth partitions of unity subordina
owever, Theorem 8.3 is valid for all thre

any open cover, but BT, does not. H
spaces.

9. Comparison of different de Rham theories on geometric realizations

Let X be a semi-simplicial manifold. There are four cochain comp

which we can use to compute Hpg(#(X)) (which equals Hg,( w(Xx)) if
X [n] satisfies a de Rham isomorphism):
1. The total complex of the double complex A*X, studied by

Shulman and Stasheff [3] (see above, §4).
2. The complex 4*(||X ||) of J. Dupont [14] and C. Watkiss [37], in which:

n-form ¢ is defined as a sequence of n-forms ¢@P € A™(A? X X) sat
the compatibility conditions
(8, x id)*¢® = (id X 3)*e¢ P

on 7' X X, for all i = O« <o, prandall p = 1,3,
A? and 8;: X, = X, are face maps.
3. The complex A*( p,(x)) defined in §8.

4. The complex 4*( (X)) of §8.
In this section we shall compare these four complexes, as well as two

complexes obtained by “unwinding” complexes 1 and 2. We will see W
six complexes are chain homotopy equivalent (c.h.e.), but are not isomoOrpP

We first recall the definition of semi-simplicial unwinding [23, Appen
Let Z, be the set of strictly increasing (n + 1)-tuples o = (ip,* * " »

-, where 9;: APl

m 4 che, by
.!nduces 0tk
1y)
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nonnegative integers. One defines face maps 9 Z — Z by
a(in,"',l'4,"',i)=(l. SR R ] A ; i
‘., - °f n 0 !lp ,l),_]=0,---, I i i
sum-)hc.nal r.nc')dule,_ then the unwinding M X ..Z of M is the fa:iai mA:d:ea 5;;“ :
5¢m1-51mphc{al module but with only face maps defined) n+> @ ; Ma
Ymh th? 01?v1ous face maps. Dually, if M is a co-semi-simplicial modslez"the;
its unwinding M X Z is the co-facial module n+>1],., M 6
eEd, it

Theorem 91 [23, p. 118]. Unwinding does not change the homology of a
m-;zmplzcral or co-semi-simplicial module under the boundary map & =
2(-1)'8,. More exar.‘fbr, if M is a semi-simplicial (resp. co-semi-simplicial)
module, then the surjection M X Z — M (resp. injection M — M 1
chain homotopy equivalence. W T
L O(g:;::rl; [ Watlfiss [37] proved this independently for co-semi-simplicial

- He uses “simplicial” to mean simplicial or i-simplicial i
. _ semi-simplicial
ter;nn;:logy,'whll.e he reserves “semi-simplicial” for what we ca]llz‘faciall’?) t
- i1£1 arly, if X 1.} a semi-simplicial space, then its unwinding X x Z i's the
space n> X X Z,. If || X|| is the i i

R | usual unnormalized geometric

IX]| = A" X X, /~, where (¢, 8, x) ~ (31, x), t EA" L, x € X,,
:2::; [!X x Z | = m(X). (This makes sense even though X X Z is not a
N-s1mpllcxa1 space, the degeneracy maps not being defined)
ow the Dupont-Watkiss construction makes sense on X X Z (see Watkiss

37
[37D), so we can speak of 4*() X X Z|), which we can think of as compatible

collections of forms on th
e S(o) X X, :
geometric p-simplex of A%, (0) X X,. where (o) is a (nondegenerate)

Finally, we let 4*X
5 > » X Z be the algebraic unwinding of th i-51
Phlcllla[llilgebra A*X, of Bott, Shulman, and Stasheff. i iy
E. o]t" Dfupunt showed.that integration of forms over A” (which lowers the
a form by p) defines a chain homotopy equivalence (c.h.e.)

. fr A1 X)) - 4*X,.

€ same procedure defines a map
- f A*(|X X Z|) > 4*X, X Z.

Pont’s proof for f, also i

shows that i
- R I;jecﬁon at f, is a c.h.e. (see also Watkiss [37]). On
Fot A% AT W

Theorem 9.1. It follows that the projection X X Z)| = |1 X]|

S A*(1X1) - 4*(1X x Z|)).
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ow that A*(u,(X)) and A*( (X)) ar
Thus we see that all six complexes

284

Now Theorem 8.3 and its proof sh

chain homotopy equivalent to A*X .
which we are discussing are chain homotopy equivalent.
We now focus our attention on the exact relationship between our

plexes A*(,(x)) and A4*( (X)) and the unwound version A*(J| X X Z{])

Dupont and Watkiss’ complex. The quotient map :
w: I"I MR E K X, = wAX),

pulls back a form on p (X

and hence defines a map |

N

regarded as a morphism of differentiable spaces,
tible collection of forms om {|X X Z\,

h: A*(,(x)) = A(1X X Z1)-

to a compa

The identity map
id: m,(X) = p,(X) induces a map g: A*( (X)) = A*(1,(X));

by the smooth map u: p(

whose chain homotopy inverse is induced
f Theorem 8.1 using a s

1, (X) which was defined in the proof o
partition of unity. The sequence

A (X)) 5 A7 (X)) > A*(IX % ZI)

is superficially analogous o the sequence

AYY) > A%(Y,) > A2Y
studied in §7, where Y is a simplicial complex in the strong or weak to
and A*(Y) is the (Whitney) complex of compatible collections of forms (
simplices. We shall imitate our comparison of the terms in the latter sequ
to study the former sequence. A major difference between the two

that while the strong and weak topologies on a simplicial complex agree

restricted to finite subcomplexes, this is in general not the case for geome

realizations p(X), where by a finite subcomplex of p(X) we mean that par
p(X) lying over a finite subcomplex of A”. Nonetheless, we have

Theorem 9.2. The maps A*( m(x))im(p,,(x))_".m(ux x Z||) are st
disagree even when 1€

inclusions. In general, the three cochain complexes
to a finite subcomplex of w(X). They are, however, chain homotopy equi
with chain homotopy inverses induced by the map u: p(X) = wAX) of
8.1.
The proof will be broken
Lemma 93. The map g: A*(p (X)) = A*(p (X)) is injective
semi-simplicial differentiable space X.
Proof. Let n € ker g and suppose n
we can construct a plot ¢: E — p,(X) such that ¢*n

up into a sequence of lemmas and discussions

or

=+ 0. As in the proof of Lem
is nowhere 0, ant

C™(SR),
3pecia] fo
Lr<hy
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a.p;.;lying the Baire category theorem we can restrict E so that ¢(E) lies over a
finite subcomplex o_f A%. This in itself does not guarantee that ¢ factors
through P‘T’(X ), but if we restrict E further so that ¢(E) lies over the interior
of fsome sxm;.)le.x of A*®, then ¢ does factor through g (X), so that ¢*n =0
This contradiction completes the proof. , : .

Lemma 94. The map h: A% .

s AN (X) > AN X X Z inject

semi-simplicial differentiable space X, H MA R £

Proof. Imitate the proofs of Lemma 9.3 and Lemma 7.5

Lemma 9.5. The inclusions A*( -

B(X)) C A*(p (X -

always strict inclusions. (X)) C A*(IX X Z]|) are
. Proof. .If we replace X by the trivial semi-simplicial space P with P, a
jl:gieﬂ pomt'foio each n, ;hen M(P) =A%, and our inclusions rcducc"to
: (A )w; A*(AY) C AX(A™), which are strict inclusions by Theorem 7.3
since A% is not.locally finite. The functions exhibited in the proof of Lemma
7.8 to prove this fact pull back to u(X) and provide examples to prove th
present lemma. g.e.d. ;

Actually, a str.or.lger statement is true. If we restrict the three cochain
complexes t? a finite subcomplex of p(X'), they are still not isomorphic, in
%tlmeral (unlike the{ case of simplicial complexes). This phenomenon can, be
i e:;tr'ated by considering the semi-simplicial space X = NR, where R is the
r : »
p'(x)h:e regax.'ded as al topological group under addition. The portion of

BR lying over A’ C A is then the suspension of R, namely

SR =1X R/[(0,r) ~(0,5); (1, ) ~(1,5),forall r, s € R],

where J = ; A

i ;10 T }[10, 1}, toplogized in either the weak topology SR, as a quotient of
e strong topology SR ich i : :

i gy SR,, which is the coarsest topology in which the

t:SR—- 1,
rrSR—0*-—1*>R

are contj :
e, s::z:}::ufs; ::':I;erc 0.' = 1mage of (0, r) (any r € R), 1* = image of (1, r).
e It;n AN ;R —R which is constant on {0} X R and on
Bk il :wp::etr atkiss-smooth function f, on SR. In order for f,
B ,{0} s ; in rzus{tlt},c : ;smoc;th) f;nction of t alone in some
sl EEE
1-{11 mutst be a function of ¢ alone on some suchh;l:iglt;;;%o;od cl:fe tI:.Ie1
e R{ is( eD ort>1- ¢}. For example, the function ¢ restricted to
upont-Watkiss smooth but not weak-smooth, while if

(R) has support = [0, o0) then the function f: SR — 1* — R defined
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X .on of smooth homotopies

E,: S(0) X X, X I - S(0) X X,,
5) = [((I - s)l,.o(t) - -‘“io(’), vea (1= s)t,.'(t) + su,_(t)), x],
S(o) € A%, 6 = (ig,* = * , i,)), Which are compatible under identi-
ﬁ; face maps. A chain homotopy from the identity map on
to k o hg is obtained by composing

E* 2
A*(p(X)) > A*(p(X) X I) > 4*7 (X)),
: the usual homotopy operator (see §3). Similarly, a chain homotopy
hg o k is given by L ° { E,}*. To summarize we have
.6. The inclusions
A*(1(X)) € A*(m(X)) C 4*(IX X Z|))

notopy equivalences. A chain homotopy inverse for any of the three
‘induced by the smooth map u: p(X) — w(X) defined in the proof of

'8

A g

is weak-smooth but not strong-smooth.

This example can also be used to illustrate the problem with
back Watkiss-Dupont forms on ||X|| or [|X X Z| to a manif
smooth map f: M — || X|| (using some reasonable definition of v
for f to be smooth) or f: M — || X X Z|| = p(X) (using our
tion that f be a smooth morphism). If such a map happens to
through II, A" X X, (resp. I, A" X X, X Z), then any Wa
form 7 € A*(]| X||) or A*(||X X Z||) can be pulled back lo
local pullbacks will agree because they are pulled back from
collection of forms. Therefore a global pull-back f*(%) on M is d
case. In the general case, however, one can have a smooth
M — p(X) which does not factor locally in this way, and then
be able to pull back Watkiss-Dupont forms. For example, cons

f: (=05, 0.5) — SR,

(54 g
Je T x=0,
{(x%3), <%

- Explanation. The example of the space SR discussed above
en restricted to finite subcomplexes of u(X), the three de Rham
_I!_l,(X)), A*( (X)), and A*(]|X X Z|)) differ in their behavior
ndary of each simplex. The first two theories are more controlled
'_{a_s, and therefore forms in those theories can always be pulled
oth morphisms f: M — p(X). The smooth map u: p(X)— X))
02 9.6 pushes a neighborhood of the boundary of each simplex

Now f is continuous, and it is also smooth because e
> and therefore “tames™ forms near the boundary when it

C>(-0.5, 0.5), while 7 o f is smooth on (-0.5, 0.5) — {0}. (Rex
defined on 0* € SR). The function tr is Watkiss-Dupont-st
1/2} C SR, but its pullback (tr) * f equals 4x> when x > 0
x < 0, and is therefore not smooth.

The same map u: u,(X)— ,(X) which is a smooth homote
id: p,(X) = u(X) (see Theorem 8.1) can be used to constru
chain homotopy inverse

k: A*(|1X % Z||) = A*( (X))

: 10. Applications

_ E;e shall di-scuss sc?me' applications of differentiable spaces.
H € potential applications are much more numerous than
': here, because the differentiable space construction is very
ed, 'the de Rham theorems of §5 can be thought of as giving
Selecting a distinguished class of functions on a space X which

: real ; :
hg: A*(p(X)) — A*(1X % Z|))- 2 _ tion. & cohomology of X when plugged into the differentiable

to the map

ﬁes‘*’g}c}; wzl have discovergd. so far are in the realm of
Ehand A un ho: and of fo.hanons. One such use involves
B fo:? ; f)logy_ Lh'corles on spaces with two topologies
E o_1anon§ m.lts germ (BT) and jet (BJ,) topolo-

1ls of this application have already appeared in [24], so

To do this, we observe, following the proof of Theorem 8.
locally through S(o) X X,, where S(o) is an n-simplex of A™
in A*(|X X Z|)) can be pulled back locally (and hence g
form in A*( p(X)). This defines the map k. The linear hom
I — p(X), called & in Theorem 8.1, from the identity to ¥ %
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In particular,
Tew (BT — BJ) = Hp(TSE,,(NT,[+] - NJ[+])).

Although this last isomorphism shows, @ pesteriori, that one could have
defined T3,,,(BT, — BJ,) without using differentiable spaces, the differentia-
ble space definition makes it easier to pull back classes to manifolds, For
example a codimension g foliation on a manifold M gives rise to a smooth
cocycle on M with values in I') which is classified by a smooth morphism f:
M= BI‘q (see §1, Example 7). A smooth one-parameter family of foliations
on M is classified by a commutative diagram

MXI, > MXI

& 4
BT, — BJ ,

q

we will only sketch the results and fill in the gaps in that account. The histo,
of this problem begins with Bott and Haefliger [2], who defined a si
cohomology theory HX(X'— X) on spaces X'’ which possess a coa
topology X, based on singular real-valued cochains on X'’ whose values
continuously when simplices (of X’) are moved continuously through X.
conjectured that H}(BT, — BJ,) equals H*(WO,); the latter was 2
known (by the work of Bott, Haefliger, Kamber, Tondeur, Godbillon,
al.) as the algebra of potential characteristic classes for foliations which
be constructed from curvatures and conmections by exploiting the
vanishing phenomenon. In [23] and [24] we studied the properties of H,
of other continuous, smooth, and C* cohomology theories on the catego
morphisms of manifolds, In particular, we defined the C* cohomology
TE (X' = X) = HISE, (X" > X ), where T' = global sections and S§
— X) is the sheaf on X generated by real-valued cochains on the C" sig
g-simplices of X’ which vary in a C* manner when simplices (of X) &
moved through X in a C” manner. In order to extend this theory |
(BT, — BJ)) we observed that its definition makes sense in any cate;
topological spaces on which some notion of C" functions exists for
n=1,2+-+,00. The category of differentiable spaces is ideally suited f
this purpose—one defines a function f: X >R to be C" if it is locally a €
function of finitely many smooth functions. 1
The theory T, When restricted to morphisms (X* — X ) of paracon
manifolds, is invariant under smooth homotopies and satisfies an exte
Mayer-Vietoris theorem (analogous to Theorems 5.3 and 5.4) relative to Of
covers of X. Does T, bave the same properties on the category of
phisms (X’ — X) of differentiable spaces? To answer this, we first ob
that the sheaf SZ,,,(X’ — X) is a module over C*X. If X is paracompac
admits smooth partitions of unity, then C*X is fine, implying that S§..(
X) is fine. The proof of smooth homotopy invariance goes through
S (X' X I— X x I)is fine and X X I paracompact. It follows that T
is smooth homotopy invariant on the category of morphisms (X' —
differentiable spaces such that X (and hence X X I) is paracompact
admits smooth partitions of unity. It satisfies the Extended Mayer-Viet
Theorem on the same category (imitate the proof of Theorem 54).
(X’ — X) is a semi-simplicial object in the category of differentiable s
and each X, is metrizable and admits smooth partitions of unity, then (X
all its subspaces, and all its subspaces crossed with I are metrizable and '
smooth partitions of unity (by Theorems 8.5 and 6.1) so that we can i
the proof of Theorem 8.3 to obtain the isomorphism

* (n(X) = (X)) = Hp(TSE(Xs— X.))-

where I is the unit interval, and Z, is J with the discrete topology. Such a
diagram induces a homomorphism

= Homg(H (M), CXI)).

In other words, the elements of Tn(BT, — BJ)) can be regarded as char-
acu.:ristic classes of foliations which vary in a C* manner as a foliation is
varied smoothly, but the author does not know if all C* characteristic classes
of foliations can be obtained in this way.

t.he:";rmther cohomology theory on morphisms of manifolds is the smooth
Ty

The(X' - X) = H*(image(4*X — 4*X")),

S":;i[ffBD. 'I_‘he exact same definition works on the category D, of morphisms
s Z:x:t:able 6;1_'n.aa.cets. The theory T, is smooth homotopy invariant on the
. tgory » this is proved exactly like Theorem 3.3, using the fact that
" :top)(rjoperamr L: AXX x 1) — A*7Y(X) is natural in X. T}, satis-
b Ofx ;n ;d MayeT-Vletorls theo.rc-em on “,, but only relative to open
" which admit smo?th p'f!rtltlons of unity. (The proof of Theorem

an be adapted to 9, since image (4*X — A*X") is a module over

C=(X).) Th i
: i e A
- m)at ese two properties are sufficient as in the proof of Theorem 8.3 to

T3a((X") - u(X)) = H,(image(4*X, - 4* X))

for .
“(X;Ily morphism (X’ — X) of semi-simplicial differentiable spaces; here
and p(X) may be given the weak or the strong topology. In case
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(X’ = X) = (NT, - NJ,), we get
Thx(BT,— B.Iq) B HD(image(A*NJq[*] — A*NI‘q[‘])),

which equals H*(WO0,) by an unpublished result of Bott and Haefliger. .

Another use of differentiable spaces is to yield universal formulas fe
differential forms representing characteristic classes of G-bundles, where G is
a Lie group. We remark that Dupont [15] and Watkiss [37] have made simila
constructions in their de Rham theories, and that Shulman [27] constru
characteristic forms in the double complex A*NG. Since Hp.(B
HY, (BG) (by Corollary 8.4; BG can have the weak or the strong topolo
here), every real characteristic class for G-bundles is represented by diff
tial forms in A*(BG). Furthermore, since 2 G-bundle with smooth trans
functions on a manifold M is classified by a smooth morphism f: M
(81, Ex. 7), these characteristic forms on BG can be pulled back to differe
forms (not just cohomology classes) on M. Since any form 1 on BG ca
expressed in terms of the functions # and g and their differentials, it fo
that f*n will be expressed in terms of the transition functions and a sm
partition of unity subordinate to a trivializing open cover of M.

To construct explicit characteristic forms on BG, we mimic the Chern:
approach using connections and curvatures (see [6]). Let EG be the totd
space of the universal G-bundle over Milnor’s BG; it is defined by |

EG = {collections <, ( g,)> such that
t = (1) € A® and g, € G is defined when ¢ # 0}

in the strong topology, the coarsest topology making all 7 and g, continuou
[21]. (EG = u(PG), where PG is the semi-simplicial manifold

GG XGr

defined by the homogeneous complex of G.) The bundle projection |
EG — BG is defined as usual by

p:{t,(g)) =<8 = gi&i-1>-

We make EG = u(PG) into a differentiable space in the usual way
amounts to saying that f: EG — R is smooth it is is locally a smooth

of finitely many of the ¢ and g;. Let 8 be the canonical g-valued 1-form
[18, p. 41]. Then g*6 = (def)w; is a g-valued 1-form on {f, # 0} C E!
@ = (def.)=,uw, (where {1} is a smooth partition of unity on EG (P
from A®) subordinate to the canonical open cover) belongs to A EG;
acts like a connection form for the bundle p: EG — BG, even though

Stug
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BG do not have tangent spaces. For example, any smooth g-bundle map

E —> EG
! {y
B — BG

pulls back « to an honest connection form. We can define the curvature
Q € AXEG:; g) of w by using the structure equation [18, p. 78]
Q= (def) do +3[ww] =2 dw'®e+3 3 Ci( Aw*)®e,
i iJj.k
where {¢]} is a basis of g, w = Zw’ ® ¢, and C; are the structure constants
of g. If ¢ is a g-invariant polynomial of degree k on g, then we define
Q) € A*(EG) as usual, following Chern-Weil [6].

Theorem 10.1 The form $(Q) is horzontal, i.e., there exists a form i €
A**(BG) with p*{ = ¢(S). The form v is unique and closed (dy = 0).

Proof. Since we do not have tangent vectors on BG and EG, we must
resort to an indirect proof. We construct a form 4 explicitly and then show
;hatp*\,b = ¢(2). On {1, = 0} C BG, define a local section s, of p: EG — BG

Y

Sat Kt (&;)) (8 = 8,))-
Define
¥ = 3,u,-576(2) € A%(BG),

zherc*{u,,} is again a smooth partition of unity pulled up from A®, We claim
131”, ¥ = ¢(Q). To show this it suffices to show that any plot #: K — EG
Pulls back p*y and ¢(2) to identical forms in 4*(K). But this follows fairly

casily from the fact that A*$(R) = ¢(h*R) and that ¢ of the curvature form of

any G-bundle over a manifold is a hori Th
orizontal form. i
Proved similarly. e other assertions are

Remarks. Theorem 10.1 exhibits a factorization of the usual Chern-Weil

'h"momorphism (at the differential form level) through A*(BG). The proof of

fo:i":riem 10.1 not only sh_()ws that ¢ exists but also gives an explicit formula
Then tcrms. of the functions u, g, and their differentials.
Ms 1911:‘::‘?1.1;3 applications should illustrate the usefulness of differentiable
by fut]-l:‘:ng real cohomology at the cf)chain level with differential
i pape?s we hf)pe ‘_co use the differentiable space concept to
T spaces which admit suitable classes of distinguished functions.
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