
Abstract

We would like to achieve a good explicit understanding of higher mor-
phisms of Lie n-algebras. We notice that various formerly puzzling aspects
of this seem to become clearer as one passes from Lie n-algebras g(n) to
their Lie (n + 1)-algebras of inner derivations inn(g(n)) in a certain way.
Using this, we define higher morphisms of Lie n-algebras explicitly and in
general. These should constitute an (∞, 1)-category. While we fall short
of verifying this in full generality, we do obtain the Baez-Crans 2-category
of Lie 2-algebras in the special case where we restrict everything to Lie
2-algebras.
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1 Introduction

The crucial point of the discussion is possibly best exhibited by the following
simple example:

Let G be any abelian group. Write ΣG for the corresponding one-object
groupoid, and Σ2G for the corresponding one-object one-morhisms 2-groupoid.
Write INN(G) for the codiscrete groupoid over G.

We have canonically a short exact sequence of groupoids

G
� � // INN(G) // // ΣG

of groupoids.
Using this, we may consider what happens when instead of looking at trans-
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formations of ΣG-valued functors
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directly, we first “open up” the corresponding bigon
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,

thus allowing more general transformations, but then in turn imposing the re-
striction that everything must collaps as we push forward to Σ2G:

ΣG � r

$$JJJJJJJJJ
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F2 ++

ΣINN(G) // // Σ2G

ΣG
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= C // {pt} // Σ2G .

For this simple example, it is easy to see that the transformations obtained
by first “opening up” and then restricting as above are in bijection with the
ordinary transformations of the original functors.

As we pass to higher n-groups, though, the situation becomes more flexible.
We find that at the level of Lie n-algebras, it is only the “opened up” trans-

formations which have a good direct description in the first place. We here
define ordinary higher morphisms of Lie n-algebras by the analogue of “opened
up” and then restricted transformations.

2 Arrow-theoretic differential theory

In the world of Lie, one commonly finds the following dichotomy

• In the integral picture of Lie n-groupoids and their morphisms, the con-
cepts tend to be rather clear, but all operations tend to be rather technical
and unwieldy.
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• In the differential picture of Lie n-algebroids and their morphisms, the
concepts tend to become a little more mysterious, but the computations
tend to be comparatively easy.

We shall want the best of both worlds. Our discussion here is focused on
constructions and considerations concerning the world of Lie n-algebroids, but
we deem it important to keep the corresponding integral picture in mind. It shall
be our GPS system whith which we navigate the world of differential graded
algebra and coalgebra.

And abstract as it may seem, the following discussion of (n+1)-curvatures of
n-functors proves to be exactly the right picture to keep in mind for interpreting
the constructions in section 3.

2.1 Tangent n-categories

For the present discussion, we set n = 2 once and for all and place ourselves in
the Gray category of strict 2-groupoids, strict 2-functors between them, pseudo-
natural transformations between these and modifications between those. Ev-
erything we say ought to have a straightforward generalization to higher n and
weaker notions of n-categories, once specified.

Definition 1 (the fat point) Write

pt := {•}

for the terminal n-category, called here the “point”, and write

pt := { • ∼ // ◦ }

for the slightly puffed-up version of the point, called the “fat point”.

Fix once and for all one of the two inclusive equivalences

i : pt � � ∼ // pt .

Definition 2 (tangent n-category) For C any n-category, let

TC ⊂ HomnCat(pt, C)

be that maximal sub-n-category of all morphisms of the fat point into C, which
has the property that it collapses to a 0-category when pulled back along i.

Proposition 1 (properties of the tangent n-category) The tangent n-category
has the following characteristic properties

• It is a fibered category over the space of objects of C

p : TC → Obj(C)

which is a “deformation retract” in that

TC ' Obj(C) .
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• It sits inside the short exact sequence

Mor(C) // TC // C

of n-groupoids.

All these properties carry over to the world of Lie n-groupoids.

There are a priori two different, equivalent, choices for the projection p. We
choose the one which is compatible with our choice of i : pt ↪→ pt.

For the present purpose, we mostly need the dual description of the fibered
category:

Definition 3 We may regard TC as an n-functor

TC : Cop → nCat

which sends
x 7→ TxC

for each object x of C.

2.2 Differentials of n-functors

Definition 4 (differential of an n-functor) For

F : C → D

any n-functor, we write
δF : Cop → nCat

for the n-functor obtained by postcomposition with TD

Cop

F ""FFFFFFFF
δF // nCat

Dop

TD

;;wwwwwwwww

.

Proposition 2 The differential δF extends essentially uniquely to the (n+ 1)-
category Codisc(Cop).

Definition 5 (curvature) The (n+ 1)-functor

δF : Codisc(Cop) → nCat

provided by proposition 2 we call the curvature (n+ 1)-functor of F .
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Remark. Due to the property from proposition 1, this curvature (n + 1)-
functor is, in the category of (n+1)-functors, equivalent to the terminal (n+1)-
functor from Codisc(Cop) to nCat. What makes δF nontrivial is that we may
regard it as sitting in the category of (n+1)-functors with values in n-groupoids
over C.

Definition 6 Let
nCat ↓ C

be the (n + 1)-category of n-groupoids strictly over C. Objects in here are n-
categories A equipped with a morphism

A

��
C

,

morphisms are n-functors strictly respecting this anchor

A

��@
@@

@@
@@

f // B

��~~
~~

~~
~

C

and higher morphisms are those strictly vanishing when pushed forward along
the anchor

A

f1

��

f2

77 B

��~~
~~

~~
~

C

��
=

A

��@
@@

@@
@@

C

Proposition 3 The differential δF : Cop → nCat factors through nCat ↓ C,
i.e.

δF : Cop → nCat ↓ C → nCat ,

where the last morphism is the obvious forgetful n-functor.

2.3 Differentials of n-group valued n-functors

The special case of the above considerations of interest here is that where the
codomain n-category D is a one-object n-groupoid

D = ΣG(n)

obtained from suspending an n-group G(n).
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Proposition 4 (Schreiber-D.M. Roberts) The tangent n-category TΣG(n)

has the following properties.

• There is a canonical inclusion

TΣG(n) ↪→ INN(G(n)) ,

where INN(G(n)) is the inner automorphism (n+ 1)-group of G(n), char-
acterized by the fact that it sits in the exact sequence

1 → Z(G(n)) → INN(G(n)) → AUT(G(n)) → OUT(G(n)) → 1 ,

where Z(G(n)) is the suspension of the categorical center, which induces
the structure of an (n+ 1)-group on TΣG(n), called

INN0(G(n)) .

• The short exact sequence form proposition 1 now reads

G(n) → INN0(G(n)) → ΣG(n)

and plays the role of the fibration corresponding to the universal G(n)-
bundle.

• When expressed in terms of complexes of ordinary groups, INN0(G(n)) is
the mapping cone of the identity on G(n).

Remark. These three properties are the integral version of the following three
aspects in the world of Lie n-algebras which are described in section 3.

• If g(n) := Lie(G(n)) denotes the Lie n-algebra of the Lie n-group G(n), then
the Lie (n + 1)-algebra of INN0(G(n)) is that which is denoted inn(g(n))
in 3.3.

• The differential Lie version of the above short exact sequence of Lie n-
groupoids is the structure appearing in proposition 11. Notice that the
fact that there only the left arrow is actually a morphism of Lie (n + 1)-
algebras, while the right arrow is just a morphisms of the underlying free
graded-commutative algebras, corresponds to the fact that both G(n) and
INN0(G(n)) are Lie (n + 1)-groups, while ΣG(n) is in general not (unless
it is “sufficiently abelian”.)

• The last property provides the easy construction of inner derivation Lie
(n + 1)-algebras: as stated in definition 14, these are just the mapping
cones of the identity in the world of differential graded algebra.
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Remark. It follows that for F : C → ΣG(n) an n-group valued n-functor, its
differential, regarded as an n-functor with values in n-groupoids over ΣG(2) as
in proposition 3, looks like

δF : ( x y
γoo ) 7→ INN0(G(n))

F (γ)∗ //

&& &&LLLLLLLLLL
INN0(G(n))

yyyyrrrrrrrrrr

ΣG(n)

.

We are therefore interested in the n-category of functors which send each
object to INN0(G) and which do respect the canonical projection down to ΣG(n).

Definition 7 Write

ΣEnd(INN0(G(n))) ↓ ΣG(n) ⊂ nCat ↓ ΣG(n)

for the full one-object sub (n+1)-category of nCat ↓ ΣG(n) sitting on the single
object INN0(G(n)) .

Definition 8 Write

Funct(Cop,ΣINN(G(n)))| ⊂ Funct(Cop,ΣINN(G(n)))

for that sub n-category of all n-functors with the property that the component
maps of all transformation – these take values in cylinders in ΣINN(G(n))),
hence in INN(G(n))) itself – , send everything to the identity on the identity
when pushed forward along the projection

INN0(G(n)) // // ΣG(n) .

Remark. This is precisely the integral analogue of the restriction on higher
morphisms of Lie n-algebras given in definition 16.

Proposition 5 There is a canonical equivalence of n-functor n-categories

Funct(Cop,ΣEnd(INN0(G(n))) ↓ ΣG(n)) ' Funct(Cop,ΣINN(G(n)))| .

Proof. If you think about it, this is a corollary of the discussion in Schreiber-
D.M.Roberts. Though not an entirly easy one. I need to describe the proof here
in more detail. �

Remark. This means that we may replace the unwieldy n-category of n-
functors respecting the projection down to ΣG(n) with the more direct n-
category of n-functors with values in ΣINN0(G(n)), subject to that straight-
forward restriction on the value of the component maps of their transforma-
tions. As remarked above, the latter is what we will be concerned with in the
differential description in terms of morphisms of Lie n-algebras.
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Example: the case n = 1. The above statement may look intricate, but
that’s mainly a matter of getting used to the notation. It all becomes quite
obvious in the special case where we set n = 1.

The n-group G = G(1) now is an ordinary group, and INN0(G) = INN(G) =
G//G = Codisc(G) is nothing but the codiscrete groupoid over G.

The projection
INN(G) → ΣG

works simply as

( g h // h · g ) 7→ ( • h // • ) .

A transformation of two functors F1 and F2 with values in ΣINN(G) is, in

components, a functor which sends each morphism ( x
γ // y ) of the domain

to a filled naturality square in ΣINN(G)

•
F1(γ) //

η(x)

��

•

η(y)

��
•

F2(γ)
// •

h

{� ��
��

��
��

��
��

��

��
��

��
��

��
��

��
.

Requiring the corresponding morphism

η(y)F1(γ)
h // F2(γ)η(x)

to vanish under the projection INN(G) → ΣG means precisely that h = Id.
This, in turn, says nothing but that η behaves like an ordinary natural trans-
formation of 1-functors with values in ΣG.

Similarly, it is easy to see that the same statement holds for functors with
values in End(INN(G)) that respect the projection down to ΣG.

As a corollary, we find that for n = 1 the functor categories of restricted
functors with values in INN(G) is actually isomorphic to just plain old functors
with codomain ΣG.

For higher n the INN(·) construction turns out to make room precisely for
the tower of (n − 1) components of an n-curvature, while the constraint for
respect of the projection INN(G(n)) → ΣG(n) constrains the morphims of the
curvature (n+ 1)-functors to look essentially like morphisms of the underlying
n-functors.

The diagrams to keep in mind when following the construction of higher
morphisms of Lie n-algebras in 3 are the following.

Any two functors with values in ΣG we may think of as functors with values
in ΣINN(G) by using the inclusion G ↪→ INN(G).
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As such, morphism between them

ΣG � r

$$JJJJJJJJJ

C

F1
33

F2 ++

ΣINN(G)

ΣG
, �

::ttttttttt
x� yy

yy
yy

yy
yy

y

yy
yy

yy
yy

yy
y

are apriori more flexible than mere morphisms

C

F1

��

F2

AAΣG
��

.

But as we restrict the components of these transformations to vanish under
INN(G) → ΣG, this flexibility is again reduced and the two kinds of transfor-
mations actually coincide.

Unfortunately, for nonabelian G this cannot be expressed nicely in one single
diagram. But suppose G is abelian, such that Σ2G exists. Then this constraint
reads

ΣG � r

$$JJJJJJJJJ

C

F1
33

F2 ++

ΣINN(G) // // Σ2G

ΣG
, �

::ttttttttt
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= C // {pt} // Σ2G .

3 Towards an (∞, 1)-category of Lie n-algebras

While Lie n-algebras are conveniently conceived in terms of n-term L∞-algebras
or, dually, in terms of qDGCAs generated in the first n degrees, this reformu-
lation does not immediately make the right notion of higher morphisms of Lie
n-algebras manifest.

Even though from abstract nonsense – and from the work of Boardman
and Vogt – these concepts are in principle available, apparently no explicit
description has appeared in the literature, nor does it seem to be known to the
experts.

Here we do propose a general explicit definition of higher morphisms of
L∞-algebras, of qDGCAs and of Lie n-algebras by making use of the following
observations.
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• Higher morphisms of free qDGCAs are easy to describe.

• The inner derivation Lie (n + 1)-algebra of any Lie n-algebra provides a
bridge from general into free qDGCAs.

• By passing over that bridge, while remaining connected with the point
one started from in a suitable way, the notion of higher morphisms of free
qDGCAs may be ”pulled back” to that of general qDGCAs.

This procedure is modelled after, and probably considerably illuminated by,
a very general construction in what we call “arrow-theoretic differential theory”,
a survey of which is given in section 2.

While we do describe higher morphisms of Lie n-algebras as well as their
composition laws, we examine the coherences of these higher compositions only
rather partially. On general grounds one would expect there to be a weak (∞, 1)-
category of Lie n-algebras. To the extent that we do look into this issue our
findings do seem to confirm this expectation. But a full discussion of such an
(∞, 1)-category structure in not attempted here.

On the other hand, we do look into the special case where everything is
restricted to just Lie 2-algebras. For that case, we demonstrate that the 2-
category of Lie 2-algebras which follows from our general prescription coincides
exactly with that proposed by Baez and Crans.

The strategy. In more detail, this are the steps which we follow in order to
define higher morphisms of Lie n-algebras.

• Ordinary (1-)morphisms of Lie n-algebras are maps of the corresponding
qDGCAs which are at the same time chain maps and algebra homomor-
phisms. Respect for the free algebra structure implies that morphisms are
fixed already by their restriction to generators. The problem is to retain
this property for higher morphisms.

• As long as the source qDGCA is free as a differential algebra, there is an
obvious notion of higher morphisms that are fixed by their restriction to
generators. We give the explicit formula.

• For translating the notion of higher morphisms of free qDGCAs to that of
higher morphisms for arbitray qDGCAs we make use of the Lie (n + 1)-
algebra inn(g(n)) of inner derivations associated with any Lie n-algebra
g(n).
This makes use of the following properties of inn(g(n)).

– There is a canonical inclusion
g(n)

� � // inn(g(n))

of Lie (n+1)-algebras. On the underlying graded-commutative alge-
bras (the dual of) this inclusion is part of the short exact sequence∧•(g∗(n))

∧•(inn(g(n))∗)oooo ∧•(sg(n))∗)? _oo
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– There is a canonical nontrivial (1-)isomorphism

inn(g(n))
∼ // innsh(g(n)) ,

where innsh(g(n)) is the Lie (n + 1)–algebra coming from the free
qDGCA on the vector space underlying g(n).

• This yields first a notion of higher morphisms on 1-morphisms with target
inn(g(n)) using the existing notion of higher morphisms on 1-morphisms
with target innsh(g(n)).

h(n)

!!

==
inn(g(n))

��

:= h(n)

""

<<
innsh(g(n))

∼ // inn(g(n))

��

.

• Finally, higher morphisms on arbitrary 1-morphisms

h(n)

f1

��

f2

@@
g(n)

��

are taken to be those higher morphisms of the respective pushforwards to
inn(g(n))

g(n) � r

$$IIIIIIIII

h(n)

f1
22

f2 ,,

inn(g(n))

g(n)

, �

::uuuuuuuuu
x� yy

yy
yy

yy
yy

yy

yy
yy

yy
yy

yy
yy

whose dual component maps trivialize when pulled back along∧•(inn(g(n))∗) sg(n))∗? _oo ,

i.e which are such that ∧•(g∗(n))f∗1

��∧•(h∗(n))
∧•(inn(g(n))∗)

ffffNNNNNNNNNNN

xxxxppppppppppp
sg∗(n)

? _oo

∧•(g∗(n))
f∗2

YY

u} sssssssssssssss

sssssssssssssss
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vanishes.

3.1 1-Morphisms of Lie n-algebras

Definition 9 (morphisms of qDGCAs) A morphisms of two qDGCAs

f : (
∧•(sW ∗), dW ) → (

∧•(sV ∗), dV )

is a linear map which respects both the graded-commutative algebra structure
and the differential. In other words, it is a chain map that at the same time is
a homomorphism (of degree 0) of graded algebras.

Remark. It is crucial that both these properties are respected by the mor-
phism. The respect for the free algebra structure implies that any morphism of
qDGCAs is already determined by its value f |sV ∗ on generators. The respect
for the differential then implies that the L∞-structure on sV is respected.

qDGCAs with morphisms as above clearly form a 1-category. In order to get
a handle on higher morphisms of qDGCAs it is helpful to first consider qDGCAs
whose differential acts freely.

3.2 Free differential graded-commutative algebras

Definition 10 (free qDGCAs) For V any graded vector space, we say the
free qDGCA on V is the free graded-commutative algebra∧•(sV ∗ ⊕ ssV ∗)

together with the free differential defined by

d|sV ∗ = σ

and
d|ssV ∗ = 0 ,

where σ : sV ∗ → ssV ∗ is the canonical isomorphism of a graded vector space
with its shifted copy.

Free qDGCAs by themselves are trivializable, in a sense to me made precise
below, but they prove to be a useful tool for handling non-free qDGCAs.

Morphisms of free qDGCAs are given bydefinition 9. Following the remark
below that definition, we want higher morphisms of free qDGCAs to be given
in terms of higher chain homotopies which are fixed already by their value on
generators.

Definition 11 (higher morphisms involving free qDGCAs) Let (
∧•(sW ∗⊕

ssW ∗), dW ) be a free qDGCA and let (
∧•(sV ∗), dV ) be any qDGCA.

A 1-morphism

f∗ : (
∧•(sW ∗ ⊕ ssW ∗), dW ) → (

∧•(sV ∗), dV )
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is, as in definition 9, an algebra homomorphism which is also a chain map.
For j > 1, a j-morphism h

τ1

��

τ2

AAh

��

is a chain homotopy of order (j − 1) between between two (j − 1)-morphisms
τ1 and τ2, with the special property that it comes from a linear map of degree
−(j − 1)

h : sW ∗ ⊕ ssW ∗ →
∧•(sV ∗)

from the generators of the domain to the GCA of the codomain, such that

τ2 − τ1 = [d, h]

on (sW ∗ ⊕ ssW ∗), and which is extended to a chain homotopy∧•(sW ∗ ⊕ ssW ∗) →
∧•−(j−1)(sV ∗)

by setting
h : x1 ∧ · · · ∧ xn 7→

1
n!

∑
σ

ε(σ)
n∑
k=1

(−1)
k−1P

i=1
(j−1)|xσ(i)|

f∗1 (xσ(1)∧· · ·∧xσ(k−1))∧h(xσ(k))∧f∗2 (xσ(k+1)∧· · ·∧xσ(n))

for all x1, · · · , xn ∈ (sW ∗ ⊕ ssW ∗), where f∗1 and f∗2 are the underlying source
and target 1-morphisms, respectively.

Remark. Notice where the assumption that the domain is a free qDGCA
is crucial for this definition to make sense: we may indeed evaluate [d, h] en-
tirely without leaving the space (sW ∗⊕ ssW ∗) of generators, since, by the very
definition of free qDGCAs d, acts as an endomorphism of that space.

For instance, with x ∈ sW ∗ a generator, with σx ∈ ssW ∗ its image shifted
in degree, we have

τ2(x)− τ1(x) = dh(x) + (−1)jh(σ(x))

and
τ2(σx)− τ1(σx) = dh(σx) .

Proposition 6 The extension used in the above definition is indeed well de-
fined.
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Proof. We need to check that the chain homotopy property

τ2 − τ1 = [d, h] ,

which was explicitly demanded to hold only on generators, in fact holds on
arbitrary products of generators.

So let x1 ∧ · · · ∧ xn be the product of any collection of generators. The first
thing to notice is that [d, h](x1 ∧ · · · ∧ xn) evaluates to

1
n!

∑
σ

ε(σ)
n∑
k=1

(−1)
k−1P

i=1
(j−2)|xσ(i)|

f∗1 (xσ(1)∧· · ·∧xσ(k−1))∧[d, h](xσ(k))∧f∗2 (xσ(k+1)∧· · ·∧xσ(n)) .

All other terms cancel due to the way the signs work. This means already that
for all (j ≥ 3)-morphisms h we have indeed that [d, h] is the difference of two
(j − 1)-morphisms.

For j = 2, in which case h has to be chain homotopy

f∗1
h // f∗2

between the two algebra homomorphisms f∗1 and f∗2 , we need to check that
indeed f∗2 −f∗1 = [d, h] on all products of generators. This follows from rewriting
the sum a little:

[d, τ ](x1 ∧ · · · ∧ xn)

=
1
n!

∑
σ

ε(σ)
n∑
k=1

f∗1 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ [d, τ ](xσ(k)) ∧ f∗2 (xσ(k+1) ∧ · · · ∧ xσ(n))

=
1
n!

∑
σ

ε(σ)
n∑
k=1

f∗1 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ (f∗2 − f∗1 )(xσ(k)) ∧ f∗2 (xσ(k+1) ∧ · · · ∧ xσ(n))

=
1
n!

∑
σ

ε(σ)

(
n∑
k=1

f∗1 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ f∗2 (xσ(k) ∧ · · · ∧ xσ(n))

−
n∑
k=1

f∗1 (xσ(1) ∧ · · · ∧ xσ(k)) ∧ f∗2 (xσ(k+1) ∧ · · · ∧ xσ(n))

)
= (f∗2 − f∗1 )(x1 ∧ . . . ∧ xn) .

�

Remark 1 Notice that this means in particular that not only do all j-morphisms
of the above kind come from a degree −(j − 1)-map h on generators, but also,
for every choice of (j−1)-morphism τ1 each such map h on generators provides

a j-morphism τ1
h // (τ1 + [d, h]) .
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Example. For examples of Lie n-algebras of low n, we mainly need the formula
from definition 11 on products of two generators, where it becomes

τ : a ∧ b 7→ 1
2

(
τ(a) ∧ (f∗1 + f∗2 )(b) + (−1)|a|(f∗1 + f∗2 )(a) ∧ τ(b)

)
(1)

for all a, b ∈ (sW )∗.
Proof. By applying the general formula to this special case, one gets

τ(a ∧ b) =
1
2

(
τ(a) ∧ f∗2 (b) + (−1)|a|f∗1 (a) ∧ τ(b)

)
+

1
2
(−1)|a||b|

(
τ(b) ∧ f∗2 (a) + (−1)|b|f∗1 (a) ∧ τ(a)

)
=

1
2

(
τ(a) ∧ f∗2 (b) + (−1)|a|f∗1 (a) ∧ τ(b)

)
+

1
2

(
(−1)|a|f∗2 (a) ∧ τ(b) + τ(a) ∧ f∗1 (a)

)
�

Definition 12 (Composition of n-morphisms) We let

• the composition of any n-morphism h with any 1-morphism f∗ along an
object be by the obvious pre- or postcomposition of the component maps.

For instance the component map of

(
∧•(sW )∗, d)

f∗1 // (
∧•(sV )∗, d)

f∗2

##

f ′2
∗

;;
(
∧•(sU)∗, d)

f∗3 // (
∧•(sT )∗, d)τ

��

on generators is f∗3 ◦ τ ◦ f∗1 ;

• the composition of any two n-morphisms along any (1 ≤ k < n)-morphism
be given, on generators, by the sum of the respective component maps.

For instance, given 2-morphisms

(
∧•(sW )∗)

f∗1

��
f∗2

//

f∗3

BB
(
∧•(sV )∗)

τ1

��

τ2

��

15



the component map of their composite along the 1-morphism f∗2 on gen-
erators is τ1 + τ2.

We need to check that this definition makes sense, in that the compound n-
morphisms defined by the sum of their component maps of generators as above
do have the right source and target.

For the time being, we check this only for 2-morphisms (and for 1-morphisms
there is nothing to be checked).

Proposition 7 The composition of 2-morphisms along a common 1-morphism,
as above, does respect source and target 1-morphisms.

Proof. Write τ2◦τ1 for the 2-morphism starting at f∗1 whose component map
on generators is τ1 + τ2 and which is extended to a 2-morphism following def.
11. By remark 1 we are guaranteed that these component maps do correspond
to some 2-morphism with target f∗1 + [d, τ2 ◦ τ1]. We need to check that this
target coincides with f∗3 .

On the other hand, we know that the ordinary sum τ1 + τ2 of these chain
homotopies, directly interpreted as this sum not only on generators, but on all
elements of the qDGCA, does have the right target, since

f∗3 = f∗1 + [d, τ1 + τ2] .

In order to show that also

f∗3 = f∗1 + [d, τ2 ◦ τ1]

it is sufficient to exhibit a second order chain homotopy

δ :
∧•(sW ∗) →

∧•−2
sV ∗

such that
τ2 + τ1 − τ2 ◦ τ1 = [d, δ] .

We claim that the assignment

δτ1,τ : (x1 ∧ · · · ∧ xn) 7→

1
n!

∑
σ

ε(σ)
∑

1≤k1<k2≤n

(−1)

k2−1P

i=k1

|xσ(i)|
f∗1 (xσ(1)∧· · ·∧xσ(k1−1))∧τ1(xσ(k1))∧f

∗
2 (xσ(k1+1)∧· · ·∧xσ(k2−1))∧τ2(xσ(k2))∧f

∗
3 (xσ(k2+1)∧· · ·∧xσ(n))

does the job. This is a straightforward matter to check. �
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Remark. The way higher morphisms are composed simply by adding their
component maps on generators implies that all (n > 1)-morphisms have strict
inverses. One would therefore hope that free qDGCAs with n-morphisms and
their composition as defined above form what is called an (∞, 1)-category: a
kind of weak ∞-category for which all (n > 1)-morphisms are equivalences.
Here we don’t attempt to exhibit that entire (∞, 1)-category structure, but just
remark that one cannot expect a strict ∞-category, for the following reason.

Proposition 8 Composition of 2-morphisms of free qDGCAs satisfies the ex-
change law only up to a 3-isomorphism.

Proof. The component map of the vertical composition of

(
∧•(sW )∗, d)

f∗1

##

f ′1
∗

;;
(
∧•(sV )∗, d)

f∗2

##
(
∧•(sU)∗, d)

(
∧•(sW )∗, d)

f ′1
∗

;;
(
∧•(sV )∗, d)

f∗2

##

f ′2
∗

;;
(
∧•(sU)∗, d)

τ1
��

τ2
��

on generators is f∗2 ◦ τ1 + τ2 ◦ f ′1
∗. On the other hand, the component map of

the vertical composition of

(
∧•(sW )∗, d)

f∗1

##
(
∧•(sV )∗, d)

f∗2

##

f ′2
∗

;;
(
∧•(sU)∗, d)

(
∧•(sW )∗, d)

f∗1

##

f ′1
∗

;;
(
∧•(sV )∗, d)

f ′2
∗

;;
(
∧•(sU)∗, d)τ1

��

τ2
��

on generators is τ2 ◦ f∗1 + f ′2
∗ ◦ τ1. Notice that these two composites differ by an

exact term

(τ2 ◦ f∗1 + f ′2
∗ ◦ τ1)− (f∗2 ◦ τ1 + τ2 ◦ f ′1

∗) = [d, τ2] ◦ τ1 − τ2 ◦ [d, τ1] = [d, τ2 ◦ τ1] ,

which means that they are homotopic, which in turn means that the two ways
to compose two 2-morphisms horizontally are connected by a 3-isomorphism. �

Even without the (∞, 1)-category of free qDGCAs fully available, we have
obtained enough structure to obtain the canonical notion of equivalence of free
qDGCAs, using the fact that every (n ≥ 2)-morphism is strictly invertible:

17



Definition 13 (equivalence of free qDGCAs) Two free qDGCAs (
∧•(sV ∗), dV )

and (
∧•(sW ∗), dW ) are called equivalent precisely if there exist 1-morphisms

(
∧•(sV ∗), dV )

f1 // (
∧•(sW ∗), dW )

and

(
∧•(sW ∗), dW )

f2 // (
∧•(sV ∗), dV )

both whose composites are isomorphic to the respective identity 1-morphism:

(
∧•(sV ∗), dV )

f1 ((QQQQQQQQQQQQQ
Id // (

∧•(sW ∗), dW )

(
∧•(sW ∗), dW )

f2

66lllllllllllll��

and
(
∧•(sW ∗), dW )

f2 ((QQQQQQQQQQQQQ
Id // (

∧•(sV ∗), dV )

(
∧•(sV ∗), dV )

f1

66mmmmmmmmmmmm��

Proposition 9 Every free qfDGCA is – not isomorphic but – equivalent to the
trivial qfDGCA.

Proof. Let (g(n))∗ denote any free qDGCA.
We need to show that there is a 2-morphism

(g(n))∗

""EE
EE

EE
EE

E
id // (g(n))∗

0

<<yyyyyyyyy

∼
��

.

This means that we need to find a 2-morphism τ whose component map of
degree -1 satisfies

[dg(n) , τ ] = Id(g(n))∗ .

By defining τ on generators by

τ : a 7→ 0

τ : da 7→ a

for all a ∈ (sV )∗ we get
[dg(n) , τ ] : a 7→ a

[dg(n) , τ ] : da 7→ da .

�
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Remark. This demonstrates that the (∞, 1)-category of free qDGCAs is rather
boring: all its objects are equivalent to the 0-object. Nevertheless, free qDGCAs
will prove to be useful for defining and understanding general qDGCAs.

3.3 The inner derivation Lie (n + 1)-algebra

To every Lie n-algebra g(n) we associate a Lie (n+ 1)-algebra which we denote
inn(g(n)) and think of as the Lie (n + 1)-algebra of inner derivations of g(n).
This interpretation will be expounded on elsewhere. For the present purpose all
that is required is the very structure of inn(g(n)).

Definition 14 For g(n) any Lie n-algebra coming from the qDGCA (
∧•(sV ∗), d)

we write
inn(g(n))

for the Lie (n + 1)-algebra which comes from the qDGCA that is the mapping
cone of the identity on (

∧•(sV ∗), d).

This means in detail the following. The GCA underlying inn(g(n)) is∧•(sV ∗ ⊕ ssV ∗) .

The differential on that may be thought of as acting on sV ∗ ⊕ ssV ∗ as

d′ =
(

d 0
Id −d

)
.

More in detail, if we denote by

σ : sV ∗ → ssV ∗

the canonical isomorphism of a vector space with its shifted copy, and by

Σ :
∧•(sV ∗ ⊕ ssV ∗) →

∧•(sV ∗ ⊕ ssV ∗)

its extension as a graded derivation to the entire graded algebra, then

d′|sV ∗ = d+ σ

and
d′|ssV ∗ = −Σ ◦ d ◦ σ−1 = −d′ ◦ d ◦ σ−1 .

Hence for a ∈ sV ∗ we find

d′d′a = d′(da+ σa) = Σda− Σda = 0 .

and hence
d′d′σa = −d′d′(da) = 0 .

Proposition 10 For any Lie n-algebra g(n), the qDGCA corresponding to the
Lie (n+1)-algebra inn(g(n)) is connected by a 1-isomorphism to a free qDGCA.

19



Proof. Let the qDGCA corresponding to g(n) be (
∧•(sV ∗), dg(n)). Write F (V )

for the free differential graded commutative algebra over (sV )∗. Define a mor-
phism

f : F (V ) → (inn(g(n)))∗

by setting
f : a 7→ a

f : dF (V )a 7→ dinn(g(n))a

for all a ∈ (sV )∗. This clearly satisfies the morphism property. One checks that
its inverse is given by

f−1 : a 7→ a

f−1 : σa 7→ dF (V )a− dg(n)a .

�

Remark. This implies that inn(g(n)) is always trivializable.
We can now translate the notion of higher morphisms of free qDGCAs to

those of the form inn(g(n))∗.

Definition 15 An n-morphism of qDGCAs where the source object is (inn(g(n)))∗

is an order (n− 1)-chain homotopy which becomes an n-morphism of free qDG-
CAs when pulled back along the isomorphism of the proof of proposition 10.

Proposition 11 For g(n) any Lie n-algebra, we have a canonical epimorphism

(
∧•(g(n))∗, dg(n)) (

∧•(inn(g(n)))∗, dinn(g(n)
))oooo

of qDGCAs, whose underlying map of GCAs yields the exact sequence∧•(g∗(n))
∧•(inn(g(n))∗)oooo ∧•(sg(n))∗)? _oo .

3.4 Higher morphisms of Lie n-algebras

We now define higher morphisms of arbitrary Lie n-algebras in terms of re-
stricted higher morphisms involving their inner derivation Lie (n+ 1)-algebras.

Definition 16 For source Lie n-algebra h(n) and target Lie n-algebra g(n), we
take a j-morphism between them to be a j-morphism on the pushforward

g(n)
� � // inn(g(n))

as defined above, restricted to be such that its dual component map vanishes
when pulled back along∧•(inn(g(n))∗)

∧•(sg(n))∗)? _oo ,

20



Example. Here is what this means explicitly for 2-morphisms. A 2-morphism

h(n)

f1

��

f2

@@
g(n)

��

between 1-morphisms of Lie n-algebras is a 2-morphism

g(n) � r

$$IIIIIIIII

h(n)

f1
22

f2 ,,

inn(g(n))

g(n)

, �

::uuuuuuuuu
x� yy

yy
yy

yy
yy

yy

yy
yy

yy
yy

yy
yy

as in definition 15, whose dual component map vanishes when pulled back along∧•(inn(g(n))∗) sg∗(n)
? _oo ,

i.e which is such that the component map of the chain homotopy∧•(g∗(n))f∗1

��∧•(h∗(n))
∧•(inn(g(n))∗)

ffffNNNNNNNNNNN

xxxxppppppppppp
sg∗(n)

? _oo

∧•(g∗(n))
f∗2

YY

u} sssssssssssssss

sssssssssssssss

vanishes.

Remark. Composition of j-morphisms of arbitrary Lie n-algebras is inherited
from the composition law definition 12. We therefore expect these constructions
to yield an (∞, 1)-category of Lie n-algebras. Instead of trying to exhibit that
structure in full generality, we shall here be content with checking that this does
reproduce the 2-category of Lie 2-algebras as given by Baez and Crans.

3.5 The 2-category of Lie 2-algebras

We recall Baez and Crans’s definition of the 2-category of Lie 2-algebras. Then
we show that this is reproduced by restricting our definition of morphisms of
Lie n-algebras to this case.
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In order to set up the discussion of Baez-Crans 2-morphisms of 2-term L∞-
algebras, recall their notation for 1-morphisms of 2-term L∞-algebras (which
is of course just a special case of the general notion of 1-morphisms of L∞-
algebras).

Definition 17 A morphism
ϕ : V →W

of 2-term L∞-algebras V and W is a pair of maps

φ0 : V0 →W0

φ1 : V1 →W1

together with a skew-symmetric map

φ2 : V0 ⊗ V0 →W1

satisfying
φ0(d(h)) = d(φ1(h))

as well as
d(φ2(x, y)) = φ0(l2(x, y))− l2(φ0(x), φ0(y))

φ2(x, dh) = φ1(l2(x, h))− l2(φ0(x), φ1(h))

and finally

l3(φ0(x), φ0(y), φ0(z))− φ1(l3(x, y, z)) =
φ2(x, l2(y, z)) + φ2(y, l2(z, x)) + φ2(z, l2(x, y)) +
l2(φ0(x), φ2(y, z)) + l2(φ0(y), φ2(z, x)) + l2(φ0(z), φ2(x, y)) .

for all x, y, z ∈ V0 and h ∈ V1.

Definition 18 (Baez-Crans) A 2-morphism

τ : φ⇒ ψ

of 1-morphisms of 2-term L∞-algebras is a linear map

τ : V0 →W1

such that

ψ0 − φ0 = tW ◦ τ

ψ1 − φ1 = τ ◦ tv

and

φ2(x, y)− ψ2(x, y) = l2(φ0(x), τ(y)) + l2(τ(x), ψ0(y))− τ(l2(x, y))
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Note that [d, τ ] = dW τ + τdV and that it restricts to dW τ on V0 and to τdV
on V1.

The notion of 1-morphism here is obvious. The nontrivial part is

Proposition 12 2-morphisms of 2-term L∞-algebras as above are precisely the
2-morphism as in definition 16.

Proof.
Let (

∧•(sV ∗
0 ⊕ sV ∗

1 ), dV ) and (
∧•(sW ∗

0 ⊕ sW ∗
1 ), dW ) be the corresponding

qDGCAs and

φ∗, ψ∗ : (
∧•(sW ∗

0 ⊕ sW ∗
1 ), dW ) → (

∧•(sV ∗
0 ⊕ sV ∗

1 ), dV )

be the corresponding dual 1-morphisms.
A 2-morphism

τ∗ : ψ∗ → φ∗

between these is a 2-morphism∧•(sW ∗
0 ⊕ sW ∗

1 )ψ∗

}}∧•(sV ∗
0 ⊕ sV ∗

1 )
∧•(sW ∗

0 ⊕ sW ∗
1 ⊕ ssW ∗

0 ⊕ ssW ∗
1 )

jjjjVVVVVVVVVVVVVVVVVV

tttthhhhhhhhhhhhhhhhhh

∧•(sV ∗
0 ⊕ sW ∗

1 )φ∗

aa

qy kkkkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkkkkkk

.

We now find it very helpful, if maybe somewhat bothersome on general
grounds, to choose bases.

With {ta} a basis for sW ∗
0 and {bi} a basis for sW ∗

1 , this comes from a map

τ∗ : sW ∗
0 ⊕ sW ∗

1 ⊕ ssW ∗
0 ⊕ ssW ∗

1 →
∧•(V ∗

0 ⊕ V ∗
1 )

of degree -1 which acts on these basis elements as

τ∗ : bi 7→ τ iat
′a

and
τ∗ : aa 7→ 0

where we let {t′a} and {b′i} be a basis of sV ∗
0 and sW ∗

1 , respectively.
The requirement that∧•(sW ∗

0 ⊕ sW ∗
1 )φ∗

}}∧•(sV ∗
0 ⊕ sV ∗

1 )
∧•(sW ∗

0 ⊕ sW ∗
1 ⊕ ssW ∗

0 ⊕ ssW ∗
1 )

jjjjVVVVVVVVVVVVVVVVVV

tttthhhhhhhhhhhhhhhhhh
ssW ∗

0 ⊕ ssW ∗
1

? _oo

∧•(sV ∗
0 ⊕ sW ∗

1 )ψ∗

aa

qy kkkkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkkkkkk
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vanishes then restricts the value of τ∗ on dta = − 1
2C

a
bct

a ∧ tb− taibi + ra to be

τ∗ : dta 7→ −taiτ ibt′b

and on dbi = −αiajta ∧ bj + ci to be

τ∗(dbi) = τ∗(−αiajta ∧ bj) .

This needs to be evaluated using the formula of definition 11, using the special
case described in (1).

Using this we get
[d, τ∗] : ta 7→ −taiτ ibt′b

and

[d, τ∗] : bi 7→ −1
2
τ iaC

′a
bct

′bt′c − τ iat
′a
jb
′j + αiaj

1
2
(φ+ ψ)abτ jct′bt′c .

Then
φ∗ − ψ∗ = [d, τ∗]

is equivalent to
(ψab − φab)t′b = taiτ

i
bt
′b

and
(ψij − φij)b′j = τ iat

′a
jb
′j

and

1
2
(φiab − ψiab)t′at′b = −1

2
τ iaC

′a
bct

′bt′c + αiaj
1
2
(φ+ ψ)abτ jct′bt′c .

The first two equation express the fact that τ is a chain homotopy with
respect to t and t′. The last equation is equivalent to

φ2(x, y)− ψ2(x, y) = −τ([x, y]) + [q(x) +
1
2
t(τ(x)), τ(y)]− [q′(y)− 1

2
t(τ(y)), τ(x)]

= −τ([x, y]) + [q(x), τ(y)] + [τ(x), q′(y)]

This is indeed the Baez-Crans condition on a 2-morphism. �
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