gerbe modules from 2-sections

Schreiber*

November 28, 2006

Abstract

From the point of view of 2-transport, a gerbe with connection is a certain 2-functor. A section of it is a generalized object of that 2-functor. This note briefly indicates how sections, in this sense, of gerbes transgressed to the configuration space of the open 2-particle (string) associate gerbe modules to the 2-particle's endpoints.

We want to consider an open 2-particle of the form par $\equiv \{a \rightarrow b\}$ propagating on a smooth space X and coupled to an abelian gerbe with connection. One way to to realize this gerbe with connection is as a smooth 2-functor

tra :
$$\mathcal{P}_2(U^{\bullet}) \to \Sigma(1d\text{Vect})$$
,

where $\mathcal{P}_2(U^{\bullet})$ is the 2-category of 2-paths in the 2-groupoid associated with a chosen surjective submersion $U \to X$.

This is hence our target space, $tar \equiv \mathcal{P}_2(U^{\bullet})$.

Correspondingly, configuration space is the sub-2-category conf \subset [par, tar] containing only those morphisms which do not properly translate the 2-particle.

Definition 1 Objects in conf are objects in [par, tar], i.e. morphisms in $\mathcal{P}_2(U^{\bullet})$. Morphisms in conf are all pseudonatural transformations that are generated from 2-cells in $\mathcal{P}_2(U^{\bullet})$ of the form

^{*}E-mail: urs.schreiber at math.uni-hamburg.de

expressing the transition of a path γ from patch i to patch j, as well as those of the form

All 2-morphisms in conf are taken to be identities.

Let 1: tra $\rightarrow \Sigma(1d\text{Vect})$ be the trivial 2-functor that sends everything to the identity. Let tra_{*} : conf \rightarrow [par, $\Sigma(1d\text{Vect})$] be the transgression of our gerbe with connection to configuration space.

The space of sections is sect = $[1_*, tra_*]$.

Observation 1 A section $e : 1_* \to \text{tra}_*$ is a choice of gerbe module E_a and E_b for the endpoints of the 2-particle, together with a section of the line bundle over path space that fits into a morphism of gerbe modules $E_a \to E_b$.

Proof. A section, being a pseudonatural transformation of 2-functors, functorially maps $\text{Hom}_1(\text{conf})$ to squares in [par, $\Sigma(1d\text{Vect})$].

The existence of the square on the right in turn translates into naturality equations of the form

Here $V_{\gamma,i}$ denotes the fiber over path space, $g_{ij}(x)$ is the fiber of the transition bundle of the gerbe, and $g_{ij}(\gamma)$ is the connection on the transition bundle.

Hence the $e_{\gamma,i,j}(a)$ form precisely a representation of the groupoid $U^{[2]}$ twisted by the bundle gerbe. Functoriality of e translates into functoriality of this groupoid representation. It follows that the $e_{\gamma,i}(a)$ are the fibers of a gerbe module.

Finally, the above equation itself says that $e_{\gamma,i}(a \to b)$ is a morphism of twisted groupoid representations, hence a morphism of gerbe modules. \Box

Notice that in the case that the gerbe modules involved are trivial (trivial line bundles), $e_{\gamma,i}(a \to b)$ is nothing but an ordinary section of the line bundle V over path space.