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Abstract

We describe the general framework of the charged n-particle in the differential realm (Lie∞-algebroids
instead of Lie∞-groupoids) and show how it reproduces aspects of the standard BV formalism. We spell
out the example of ordinary gauge theory in detail.
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tangent category inner automorphism
(n + 1)-group

inner derivation
Lie (n + 1)-algebra Weil algebra

shifted
tangent bundle

CE(Lie(TBG)) CE(Lie(INN(G))) CE(inn(g)) W(g) C∞(T [1]g)

Figure 1: A remarkable coincidence of concepts relates the notion of tangency to the notion of universal
bundles. See [1] and [2].

1 Introduction

2 The charged n-particle

We address as the concept of the “charged n-particle” a general diagrammatic formulation for quantum field
theories of general σ-model type. The idea is to fix the general structure of such QFTs in as abstract and
clean terms as possible, such that any internalization of this concept into any suitable context provides us
with all the information about what σ-model like quantum field theory means in that context.

The only property of the ambient context category T which we require here is that it is monoidal and
that it comes equipped with a functor

maps(−,−) : T op × T → T

which behaves sufficiently like an internal hom. For the time being we will not actually require this functor
to be necessarily the internal hom with respect to the tensor product, for reasons discussed in more detail
in 4.1.

Then a charged n-particle internal to T is a diagram

maps(par, tar)⊗ par

wwwwnnnnnnnnnnnnn
ev

''OOOOOOOOOOOOO

par tar tra // phas

in T .
We write

conf := maps(par, tar) .

The morphism tra induces the action

exp(S) : 1→ maps(conf,maps(par, tar)) .

3 BV-formalism: horizontal inner derivations on configuration
space

BV-formalism is usually described in the language of supermanifolds. In that language the basic object of
interest is the shifted cotangent bundle to the supermanifold of physical fields and ghosts.

Using the relation between tangent categories, inner automorphisms (n + 1)-groups, Weil algebras, inner
derivation Lie (n + 1)-algebras and shifted tangent bundles

CE(Lie(TBG)) = CE(Lie(INN(G))) = CE(inn(g)) = W(g) = C∞(T [1]g)
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we see that there is a more Lie-algebraic interpretation of the setup of BV-formalism.
We will assume now, and demonstrate in concrete examples in 5, that in our setup of the charged

n-particle internal to DGCAs we have that configuration space is the Weil algebra of something:

conf = W(g, V ) .

(I write g for Lie ∞-algebras and (g, V ) for Lie ∞-algebroids without, at the moment, explaining anything
much about that. The main point of relevance here is that CE(g) is of positive degree, while CE(g, V ) is in
general only of non-negative degree.)

Then notice the universal (g, V )-bundle
CE(g, V )

W(g, V )

i∗

OOOO

When translating between the two perspectives W(g, V ) and C∞(T ∗[1](g, V )) we find the dictionary
displayed in table 1.

BV-terminology
DGCA

interpretation
Lie ∞-groupoid
interpretation

fields
degree 0 generators

of CE(g, V )
objects of

configuration space
fields
and
ghosts

ghosts
degree 1 generators

of CE(g, V )
morphisms in

configuration space

n-fold ghosts
degree n generators

of CE(g, V )
n-morphisms in

configuration space

antifields
degree 1 horizontal

derivations in W(g, V )
paths of
objects

antifields
and

antighosts
antighosts

degree 2 horizontal
derivations in W(g, V )

paths of
1-morphisms

anti-ghosts-of-ghosts
degree 3 horizontal

derivations in W(g, V )
paths of

2-morphisms

Table 1: Dictionary between BV-terminology and Lie-∞-algebraic entities.

4 DGCAs of maps

We now explain and put into perspective the following definition, which is used extensively in 5.

Definition 1 For A and B any two DGCAs, we write

maps(B,A) := Ω•(HomDGCAs(B,A⊗ Ω•(−)))

for the DGCA of differential forms on the presheaf over manifolds whose set of plots on any domain U is
HomDGCAs(B,A⊗ Ω•(U)).
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4.1 An approximation to the internal hom in DGCAs

Throughout I write capital Hom for Hom-sets and lower case hom for internal Hom-objects, or their “ap-
proximations” to be discussed here.

We write DGCAs for the category whose objects are differential graded commutative algebras in non-
negative degree, and

S∞ := SetS
op

for the category of generalized smooth spaces, namely of presheaves over the site S, which is any one of the
sites of manifolds, the site of open subsets of R ∪ R2 ∪ R3 ∪ · · · , or the like.

We have contravariant functors going back and forth between these two categories, forming an adjunction.
The functor

Ω•(·) : S∞ → DCGAs

acts as
Ω• : X 7→ HomS∞(X, Ω•) ,

where, in turn, here on the right Ω• denotes the smooth space of all differential forms, given by the object
in S∞ which acts as

Ω• : U 7→ Ω•(U) ,

where on the right we have the ordinary algebra of differential forms on U .
The contravariant functor

S∞ DGCAsoo : Hom(−,Ω•(−))

acts as
(XA : U 7→ Hom(A,Ω•(U))) A

�oo : HomDGCAs(−,Ω•(−)) .

Notice that S∞, being a topos, has lots of nice properties. In particular it is cartesian closed. The inner
hom is

homS∞(X, Y ) : U 7→ Hom(X × U, Y ) .

On the other hand, the category DGCAs doesn’t have these nice properties in general, except after one
restricts to a suitably well behaved subcategory. (I suspect, though, that the above adjunction can be turned
into an equivalence on cohomology, but I am not sure yet.)

But we can use the above adjunction to “pull back” the inernal hom in S∞ to DGCAs, meaning that we
consider

homDGCAs(−,−) : (DGCAs)op ×DGCAs
Hom(−,Ω•(−))op×Hom(−,Ω•(−))op // (S∞)op × S∞

homS∞ (−,−) // S∞
Ω• // DGCAs .

So given DGCAs A and B, we get

homDGCAs(B,A) = Ω•(homS∞(XA, XB)) .

Proposition 1 We have a canonical surjection of DGCAs

Ω•(HomDGCAs(B,A⊗ Ω•(−))) oooo homDGCAs(B,A) .

Proof. This comes from the canonical inclusion of smooth spaces

HomDGCAs(B,A⊗ Ω•(−)) � � // HomS∞(XA ×−, XB)

which comes, on each U ∈ S, from the inclusion of sets

HomDGCAs(B,A⊗ Ω•(U)) ↪→ HomS∞(XA × U,XB)
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which is given by

(f∗ : B → A⊗ Ω•(U)) 7→ (V 7→ (HomDGCAs(A,Ω•(V ))×HomS(V,U)
◦f∗→ HomDGCAs(B,Ω•(V )))) .

�

All this must mean something deeper than I can currrently appreciate. But the practical implication is
that I am going to consider the construction HomDGCAs(B,A⊗ Ω•(−)) in the following examples.

Definition 2 (currents) For A any DGCA, we say that a current on A is a smooth linear map

c : A→ R .

For A = Ω•(X) this reduces to the ordinary notion of currents.

Proposition 2 For each element b ∈ B and current c on A, we get an element in Ω•(HomDGCAs(B,A ⊗
Ω•(−))) by mapping, for each U ∈ S

HomDGCAs(B,A⊗ Ω•(U))→ Ω•(U)

f∗ 7→ c(f∗(b)) .

If b is in degree n and c in degree m ≤ n, then this differential form is in degree n−m.

5 Applications

5.1 Spaces of Lie ∞-algebra valued forms

Let g be any (finite dimensional) Lie ∞-algebra, CE(g) its Chevalley-Eilenberg DGC algebra and W(g) its
Weil DGCA.

For Y any smooth space, g-valued differential forms on Y are DGCA morphisms

Ω•(Y ) W(g)
(A,FA)oo .

So the set of g-valued differential forms is

HomDGCAs(W(g),Ω•(Y )) .

We want to consider the algebra of differential forms on the smooth space of g-valued forms on Y :

maps(W(g),Ω•(Y ))

according to definition 1.

5.2 The configuration space of ordinary gauge theory

Let g be an ordinary Lie algebra and Y be some manifold. The configuration space of ordinary g-gauge
theory (assuming trivial bundles for the moment) is

Ω•(Y, g) := HomDGCAs(W(g),Ω•(Y )) .

We now analyze the algebra
maps(W(g),Ω•(Y ))

and demonstrate that it is itself the Weil algebra of some Lie 2-algebroid.
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To make contact with the physics literature and most of the BV-literature, we describe everything in
components.

So let Y = Rn and let {xµ} be the canonical set of coordinate functions on Y . Choose a basis {ta} of g
and let {ta} be the corresponding dual basis of g∗. Denote by

δyι ∂
∂xµ

the delta-current on Ω•(Y ) which sends a 1-form ω to

ωµ(y) := ω(
∂

∂xµ
)(y) .

Summary of the main result. Recall that the Weil algebra W(g) is generated from the {ta} in degree
1 and the σta in degree 2, with the differential defined by

dta = −1
2
Ca

bct
b ∧ tc + σta

d(σta) = −Ca
bct

b ∧ (σtc) .

We will find that maps(W(g),Ω•(Y )) does look pretty much entirely like this, only that all generators
are now forms on Y .

fields
{
Aa

µ(y), (FA)µν(y) ∈ Ω0(Ω(Y, g)) | y ∈ Y, µ, ν ∈ {1, · · · ,dim(Y ), a ∈ {1, . . . ,dim(g)}}
}

ghosts
{
ca(y)Ω1(Ω(Y, g)) | y ∈ Y, a ∈ {1, . . . ,dim(g)}}

}
antifields

{
∂

∂δAa
µ(y) ∈ Hom(Ω1(Ω(Y, g)), R) | y ∈ Y, µ ∈ {1, · · · ,dim(Y ), a ∈ {1, . . . ,dim(g)}}

}
anti-ghosts

{
∂

∂βa(y) ∈ Hom(Ω2(Ω(Y, g)), R) | y ∈ Y,dim(Y ), a ∈ {1, . . . ,dim(g)}}
}

Table 2: The BV field content of gauge theory obtained from our almost internal hom of dg-algebras,
definition 1. The dgc-algebra maps(W(g),Ω•(Y )) is the algebra of differential forms on a smooth space of
maps from Y to the smooth space underlying W(g).

Remark. Before looking at the details of the computation, recall that an n-form ω in maps(W(g),Ω•(Y ))
is an assignment

U

φ

��

HomDGCAs(W(g),Ω•(Y × U))
ωU // Ω•(U)

V HomDGCAs(W(g),Ω•(Y × V ))
ωV //

φ∗

OO

Ω•(V )

φ∗

OO

of forms on U to g-valued forms on Y × U for all manifolds U , conatural in U .
We concentrate on those n-forms ω which arise in the way of proposition 2.
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0-Forms. The 0-forms on the space of g-value forms are constructed as in proposition 2 from an element
ta ∈ g∗ and a current δyι ∂

∂xµ
using

taδyι ∂
∂xµ

and from an element σta ∈ g∗[1] and a current

δyι ∂
∂xµ

ι ∂
∂xν

.

This way we obtain the families of functions (0-forms) on the space of g-valued forms:

Aa
µ(y) : (Ω•(Y × U)←W(g) : A) 7→ (u 7→ ι ∂

∂xµ
A(ta)(y, u))

and
F a

µν(y) : (Ω•(Y × U)←W(g) : FA) 7→ (u 7→ ι ∂
∂xµ

ι ∂
∂xν

FA(σta)(y, u))

which pick out the corresponding components of the g-valued 1-form and of its curvature 2-form, respectively.
This are the fields.

1-Forms. A 1-form on the space of g-valued forms is obtained from either starting with a degree 1 element
and contracting with a degree 0 delta-current

taδy

or starting with a degree 2 element and contracting with a degree 1 delta current:

(σta)δy
∂

∂xµ
.

To get started, consider firstt the case where U = I is the interval. Then a DGCA morphism

(A,FA) : W(g)→ Ω•(Y )⊗ Ω•(I)

can be split into its components proportional to dt ∈ Ω•(I) and those not containing dt.
We hence can write the general g-valued 1-form on Y × I as

(A,FA) : ta 7→ Aa(y, t) + ga(y, t) ∧ dt

and the corresponding curvature 2-form as

(A,FA) : σta 7→ (dY + dt)(Aa(y, t) + ga(y, t)∧ dt) +
1
2
Ca

bc(Aa(y, t) + ga(y, t)∧ dt)∧ (Ab(y, t) + gb(y, t)∧ dt)

= F a
A(y, t) + (∂tA

a(y, t) + dY ga(y, t) + [g,A]a) ∧ dt .

By contracting this again with the current δy
∂

∂xµ we obtain the 1-forms

t 7→ ga(y, t)dt

and
t 7→ (∂tA

a
µ(y, t) + ∂µga(y, t) + [g,Aµ]a)dt

on the interval.
We will identify the first one with the component of the 1-forms on the space of g-valued forms on Y called

the ghosts and the second one with the 1-forms which are killed by the derivations called the anti-fields.
To see more of this structure, consider now U = I2, the unit square.
Then a DGCA morphism

(A,FA) : W(g)→ Ω•(Y )⊗ Ω•(I2)

can be split into its components proportional to dt1, dt2 ∈ Ω•(I2).
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We hence can write the general g-valued 1-form on Y × I as

(A,FA) : ta 7→ Aa(y, t) + ga
i (y, t) ∧ dti ,

and the corresponding curvature 2-form as

(A,FA) : σta 7→ (dY + dI2)(Aa(y, t) + ga
i (y, t) ∧ dti + ha(y, t)dt1 ∧ dt2)

+
1
2
Ca

bc(Aa(y, t) + ga
i (y, t) ∧ dti + ha(y, t)dt1 ∧ dt2) ∧ (Ab(y, t) + gb

i (y, t) ∧ dti)

= F a
A(y, t) + (∂tiAa(y, t) + dY ga

i (y, t) + [gi, A]a) ∧ dti

+(∂ig
a
j + [gi, gj ]a)dti ∧ dtj .

By contracting this again with the current δy
∂

∂xµ we obtain the 1-forms

t 7→ ga
i (y, t)dti

and
t 7→ (∂tA

a
µ(y, t) + ∂µga

i (y, t) + [gi, Aµ]a)dti

on the unit square.
This are again the local values of our

ca(y) ∈ Ω1(Ω•(Y, g))

and
δAa

µ(Y ) ∈ Ω1(Ω•(Y, g)) .

The second 1-form vanishes in directions in which the variation of the g-valued 1-form A is a pure gauge
transformation induced by the function ga which is measured by the first 1-form.

Notice that it is the sum of the exterior derivative of the 0-form Aa
µ(y) with another term.

δAa
µ(y) = d(Aa

µ(y)) + δgA
a
µ(y) .

The first term on the right measure the change of the connection, the second subtracts the contribution to
this change due to gauge transformations. So the 1-form δAa

µ(y) on the space of g-valued forms vanishes
along all directions along which the form A is modfied purely by a gauge transformation.

The δAa
µ(y) are the 1-forms the derivations dual to which will be the antifields.

2-Forms. We have already seen the 2-form appear on the standard square. We call this 2-form

βa ∈ Ω2(Ω•(Y, g)) ,

corresponding on the unit square to the assignment

βa : (Ω•(Y × I2)←W(g) : A) 7→ (∂ig
a
j + [gi, gj ]a)dti ∧ dtj .

There is also a 2-form in the game, coming from (σta)δy.
Then one immediately sees that our forms on the space of g-valued forms satisfy the relations

dca(y) = −1
2
Ca

bcc
b(y) ∧ cc(y) + βa(y)

and
dβa(y) = −Ca

bcc
a(y) ∧ cb(y) .

The 2-form β on the space of g-valued forms is what is being contracted by the horizontal derivations
called the antighosts.

We see, in total, that Ω•(Ω•(Y, g)) is the Weil algebra of a DGCA, which is obtained from the above
formulas by setting β = 0 and δA = 0. This DGCA is the algebra of the gauge groupoid, that where the
only morphisms present are gauge transformations.

I just did this computation here over U = I2. But I think it is clear how the computation generalizes
and that this result is indeed true.
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