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Abstract

On how transgression and integration of forms comes from internal homs applied on transport n-
functors, on what that looks like after passing to a Lie ∞-algebraic description and how it realizes the
notion of integration without integration.
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1 Introduction

For X a smooth space, there is a canonical isomorphism of n-categories [1, 5, 6]

{smooth n-functors from n-paths in X to BnR} ' {n-forms on X} . (1)

Here and in the following, for G any abelian group we write BnG for the n-groupoid with just one element
in degrees below n and with G in degree n.

Integration of an n-form ω on X over an n-dimensional subspace Σ

φ : Σ→ X

is the same thing as

• first transgressing ω to a 0-form tgΣω on the space maps(Σ, X),

• then evaluating that at φ ∈ maps(Σ, X).∫
Σ

φ∗ω = (tgΣω)(φ) .

By itself, this statement is just a weird reformulation of the comparativly more elementary notion of
integration, based on the fact that transgression consists of pullback followed by fiber integration.

But the important point is: it is transgression, not integration itself, which is naturally represented on
the left hand of our equivalence 1.

Theorem 1 ([6]) Let Σ = Sn be the n-sphere. Let

tra : Pn(X)→ BnU(1)

be a smooth n-functor on n-paths in X, coming from an n-form ω under the above equivalence. Then the
smooth 0-functor

Sntra := Hom(BnZ, tra) : P0(SnX)→ U(1)

comes from the 0-form tgSnω.

Here SnX = maps(Sn, X) denotes the n-sphere space of X.
So

nFunct∞(Pn(X),BnU(1))

Hom(BnZ,−)

��

' // Ωn(X)

tgSn

��
0Func∞(P0(SnX), U(1)) ' // Ω0(SnX)

tra_

Hom(BnZ,−)

��

� ' // ω_

tgSn

��
Sntra � ' //

∫
Σ

(−)∗ω

This says that transgression, and hence integration of forms, is the same, under our equivalence 1, as
forming an inner hom on n-functors.

That this works so easily has to do with the fact that BnZ is an “integral” model for the n-sphere, which
we should think of as the n-groupoid freely generated from the the fundamental n-path on Sn:

BnZ � � // Pn(Sn) .

If we want to describe everything Lie ∞-algebraically, we have to use the path n-groupoid on the right,
instead. We will find that the above statement still remains true after we divide out equivalences of n-
functors. We show that this quotienting is the forming of equivalence classes which underlies the idea of
integration without integration [2, 3].
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2 Integration over S1

Not to get distracted by inessential distractions, we’ll focus on S1 for the time being.

2.1 Functorial integration on S1

Consider P1(S1), the path 1-groupoid of the circle, where we had BZ before.
Let X be a smooth space and

tra : P1(X)→ BU(1)

a smooth 1-functor coming from a 1-form A ∈ Ω1(X). Hitting this with

Hom(P1(S1),−)

produces
Hom(P1(S1), tra) : Hom(P1(S1),P1(X))→ Hom(P1(S1),BU(1)) (2)

By again appliyng the equivalence 1, we know that the groupoid Hom(P1(S1),BU(1)) has as objects all
1-forms ω on the circle, and morphisms

λ : ω → ω′

all 0-forms (functions) such that
ω′ = ω + dλ .

So unlike for Hom(BZ,BU(1)), an object is not quite an element in U(1), but instead a 1-form which
induces an element in U(1) by integrating it over the circle. In fact, it’s the isomorphism classes of objects
in Hom(P1(S1),BU(1)) which correspond to elements of U(1).

So we do get our expected holonomy functor by quotienting out isomorphism

Hom(P1(S1),P1(X))
Hom(P1(S1),tra) //

/∼

��

Hom(P1(S1),BU(1))

/∼

��
LX

exp(
∫
i(−)) // U(1)

. (3)

We have integrated the 1-form without integrating it. We have just waved an abstract-nonsense wand
above it. If you like abstract nonsense, that’s pleasing. If not, I should describe how this is actually useful
for quantization and for understanding BV-formalism. But that’s a longer story, which I won’t complete
here. But let’s start with some aspects.

2.2 Lie ∞-algebraic integration on S1

I now consider the situation from the point of view of [4].
Then a smooth 1-functor from paths in X to BU(1), hence a 1-form on X, is the same as a morphisms

of differential graded-commutative algebras (DGCAs)

Ω•(X) W(u(1))
(A,dA)oo .

Here W(u(1)) denotes the Weil algebra of u(1), which is the free differential graded-commutative algebra on
a single degree 1 generator.

As described in [4], the notion of inner hom we want to use here is, for any two DGCAs A and B

Ω•(maps(B,A)) ,
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the DGCA of differential forms on the smooth space of DGCA morphisms from B to A, which is the presheaf
of sets on open subsets U of Euclidean spaces given by

U 7→ HomDGCAs(B,A⊗ Ω•(U)) .

The functor
Ω•(maps(−−,Ω•(S1))) : DGCAs→ DGCAs

is the analog of our Hom(P1(S1),−) above.
Applying it to (A, dA) we get a DGCA morphism

Ω•(maps(Ω•(X),Ω•(S1))) Ω•(maps(W(u(1)),Ω•(S1)))
tgS1 (A,dA)oo

as the Lie analog of 2.
We need to understand what it means, in this picture, to form the quotient which amounts to forming

the integral, as in 3.
I shall be making the following

Claim. Forming the integral of A over circles φ : S1 → X amounts to restricting the transgressed u(1)-
connection morphism to the characteristic forms in Ω•(maps(W(u(1)),Ω•(S1))).

Recall from [4] what that means:
Hitting the sequence of forms on the universal u(1)-bundle

CE(u(1))

Ω•(X) W(u(1))

OOOO

(A,dA)oo

inv(u(1)) = CE(bu(1))
� ?

OO

with our transgression functor yields

Ω•(maps(CE(u(1)),Ω•(S1)))

Ω•(maps(Ω•(X),Ω•(S1))) Ω•(maps(W(u(1)),Ω•(S1)))

OOOO

tgS1 (A,dA)oo

Ω•(maps(CE(bu(1)),Ω•(S1)))
� ?

OO

.

With respect to the surjection
Ω•(maps(CE(u(1)),Ω•(S1)))

Ω•(maps(W(u(1)),Ω•(S1)))

i∗
OOOO

we can form the basic elements in Ω•(maps(W(u(1)),Ω•(S1))) (those invariant under vertical derivations)
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and the claim is that the image of these knows about the integral of A over the circles φ : S1 → X:

Ω•(maps(CE(u(1)),Ω•(S1)))

Ω•(maps(Ω•(X),Ω•(S1))) Ω•(maps(W(u(1)),Ω•(S1)))

OOOO

tgS1 (A,dA)oo

Ω•(maps(W(u(1)),Ω•(S1)))basic

� ?

OO

integrationXXXXXXXX

llXXXXXXXX

.

I now describe some details of this. We need to understand what Ω•(maps(W(u(1)),Ω•(S1))) looks like.
This was described in [4] already for u(1) replaced by an arbitrary Lie algebra, but in the simple case of
interest here this deserves to be said again:

Denote by a and σa the canonical degree 1 and 2 generators of W(g), with dW(g) : a 7→ σa. Then for
U any open subset of a Euclidean space, on which we consider the canonical coordinate functions {xµ}, we
find that a general morphism f∗ W(u(1))→ Ω•(S1)⊗ Ω•(U) is like

a � f∗ //_

dW(u(1))

��

ω + λµdx
µ

_

dS1+dU

��
σa � f∗ // dUω+(dS1λ)∧dxµ

=αµ∧dxµ+βµνdxµ∧dxν

where

• ω ∈ Ω1(S1)

• λ ∈ Ω0(S1)

• αµ ∈ Ω1(S1)

• βµν ∈ Ω0(S1) .

By postcomposing this with a 1-current c1 : Ω1(S1)→ R on the circle we obtain the 0-form

U 7→ c(ω) ∈ Ω0(U)

and the 1-forms
U 7→ c(αµ) ∈ Ω1(U)

on maps(W(u(1)),Ω•(S1)).
Similarly for postcompositon with currents of other degrees.
Notice, in particular, that a function c(ω) on this space of forms in the circle has, by the equality on the

bottom right corner of the above diagram, the differential

d(c(ω)) = c(dS1λ) + c(αµ) .

The first contribution on the right is the change due to a gauge transformation of 1-forms A 7→ A+ dρ,
the second one that due to a shift which is not pure gauge.
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So what are the basic (the invariant) 0-forms here? One sees that the projection

Ω•(maps(CE(u(1)),Ω•(S1)))

Ω•(maps(W(u(1)),Ω•(S1)))

i∗
OOOO

restricts functions on the space of 1-forms on S1 to the subset of closed 1-forms, and sends c(αµ) and
c(βµν) to 0.

A basic form on the space of 1-forms on the circle is one which all whose indecomposable components
are annihilated by this projection and such that the same is true for its differential.

But this means that a basic 0-form on the space of 1-forms on the circle is a 0-form which comes from a
1-current c on S1

• such that U 7→ c(ω) vanishes on flat 1-forms

• such that in U 7→ d(c(ω)) = c(dS1λ) + c(αµ) the first term after the equality sign vanishes.

A little reflection shows that this is true precisely for one single current, namely the integration operation

c : Ω1(S1)→ R

α 7→
∫
S1
α .

Conclusion Passing to equivalence classes of objects has a nice description in the DGCA-formulation of
the Lie ∞-algebraic perspective: it amounts to looking at “basic 0-forms” aka characteristic 0-forms.

These are precisely the elements that compute integrals, in the above sens.
Again, we have done integration without integration: we integrated a 1-form simply by passing to the

characteristic 0-forms on the space of 1-forms on the circle.

3 Transgression of differential forms

We have identified integrals of forms with characteristic 0-forms on the space of all forms. To exhibit the
relation to transgression of forms and to fiber integration more explicitly, it may be helpful to consider
generally forms on mapping spaces obtained from transgression of forms.

Definition 1 (forms on mapping spaces from transgression) For A any DGCA, Y any smooth man-
ifold of dimension d, and ω ∈ A any element of degree n ≥ d, we denote by∫

Y

ev∗ω ∈ Ωn−d(maps(A,Ω•(Y )))

the (n− d)-form on the space of morphisms from A to Ω•(Y ) given by the assignment∫
Y

ev∗ω
∣∣∣∣
U

: (ev∗U ∈ HomDGCAs(A,Ω•(U)⊗ Ω•(Y ))) 7→ (
∫
Y

ev∗U (ω) ∈ Ω•(U))

for all test domains U ∈ S.

Here ev∗U is just our suggestive name for any element in HomDGCAs(A,Ω•(U)⊗ Ω•(Y ).
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Example. (ordinary transgression forms) For A = Ω•(X) with X some smooth manifold, a DGCA
morphism

ev∗U : Ω•(X)→ Ω•(Y )⊗ Ω•(U)

comes from a smooth map evU : U × Y → X.

4 Chern-Simons integrals

We now compute the parallel transport of a membrane (the 3-particle) propagating on the classifying space
BG and coupled to the canonical Chern-Simons 3-bundle with connection on BG, along the lines described
in [4].

Let g be any semisiple Lie algebra, µ its canonical 3-cocycle and P the corresponding invariant polynomial
and cs the corresponding transgression element. The canonical Chern-Simons 3-bundle on BG is then given
by the b2u(1)-connection descent object

CE(g) CE(b2u(1))
µoo

W(g)

OOOO

W(b2u(1))
(cs,P )oo

OOOO

inv(g)
� ?

OO

CE(b3u(1))Poo
� ?

OO

.

Now let par be a 3-dimensional manifold, the parameter space (worldvolume) of the 3-particle (mem-
brane). Coupling the membrane to the above 3-connection amounts to applying the functor

Ω•(maps(−,Ω•(par))) : DGCAs→ DGCAs

to the above diagram, thus transgressing the 3-bundle to configuration space

conf = maps(W(g),Ω•(par)) .

Entirely analogously to the discussion in 2.2 this yields

Ω•(maps(CE(g),Ω•(par)) Ω•(maps(CE(b2u(1)),Ω•(par))
tgparµoo

Ω•(maps(W(g),Ω•(par))

OOOO

Ω•(maps(W(b2u(1)),Ω•(par))
tgpar(cs,P )

oo

OOOO

Ω•(maps(W(b2u(1)),Ω•(par))basic

� ?

OO

integrationSSSSSSSSSSSSSS

iiSSSSSSSSSSSSSS

.
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The morphism labeled “integration” here indeed computes the Chern-Simons intgeral over the worldvol-
ume of the membrane, as described now.

For k ∈ R any constant let again ω ∈ Ω0(maps(W(b2u(1))),Ω•(par)) given on each test domain U by

(f∗ : W(b2u(1))→ Ω•(par)⊗ Ω•(U)) � ωU // (k
∫

par
f∗(a) ∈ Ω0(U))

be the characteristic 0-form on the space of 3-forms on par, as in 2.2, where now

a ∈W(b2u(1))

denotes the canonical degree 3-generator.
Mapping this along

Ω•(maps(W(g),Ω•(par)) Ω•(maps(W(b2u(1)),Ω•(par))
tgpar(cs,P )

oo

produces the 0-form

(tgpar(cs, P ))(ω) ∈ Ω0(maps(W(g),Ω•(par))) = Ω0(Ω1(par, g))

on the space of g-valued 1-forms on par which is given on each test domain U by

(A ∈ Ω•(par, g)) � // k
∫

par
(A,FA)((cs, P )(a))

= k
∫

par
CS(A,FA) ∈ Ω0(U)

.

As claimed, this is indeed the Chern-Simons action functional. Recall that we obtain this merely by
transgressing the canonical Chern-Simons 3-bundle to the configuration space of the membrane and then
looking at the characteristic 0-forms.

References

[1] Baez & S. Higher gauge theory

[2] L. Dickey (unidentified book)

[3] L. H. Kauffman, Vassiliev invariants and functional integration without integration, in Stochastic
analysis and mathematical physics, p 91-114

[4] H. Sati, S., J. Stasheff, L∞-connections and applications to String and Chern-Simons n-transport

[5] S. & Waldorf, Parallel transport and functors

[6] S. & Waldorf, 2-Functors vs. differential forms

8


