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Abstract

How Lie algebra cocycles, invariant polynomials and transgression ele-
ments manifest themselves in terms of the dual of the Lie 2-algebra inn(g)
associated with every Lie algebra g. And how that helps to see that every
transgression element gives rise to an exact sequence of Lie (2n + 1)-
algebras

0→ gµ → csk(g)→ chk(g)→ 0
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1 Characteristic classes in terms of inn(g)∗ coho-
mology

Lie algebra cohomology, invariant polynomials and Chern-Simons elements can
all be conveniently conceived in terms of the quasi-free differential graded alge-
bra corresponding to the Lie 2-algebra

inn(g)

of inner derivations of the Lie algebra g.
The relation to the more common formulation of these phenomena in terms

of the cohomology of the universal G-bundle comes from the fact that this
universal bundle is the realization of the nerve of INN(G).

1.1 Formulation in terms of the cohomlogy of EG

Let G be a compact, simply connected simple Lie group.
The classical formulation of

• Lie algebra cocycles

• invariant polynomials

• transgression induced by Chern-Simons elements

is the following.
Consider the fibration corresponding to the universal principal G-bundle:

G // EG
p // BG .

• A Lie algebra (2n + 1)-cocycle µ (with values in a trivial module) is an
element

µ ∈ H2n+1(g, R) .

By compactness of G, this is the same as an element in de Rham coho-
mology of G:

µ ∈ H2n+1(G, R) .

• An invariant polynomial k of degree n + 1 represents an element in

k ∈ H2n+2(BG, R) .

• A transgression form mediating between µ and k is a cochain cs ∈ Ω2n+1(EG)
such that

cs|G = µ

and
d cs = p∗k .
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cocycle Chern-Simons inv. polynomial

G // EG
p // BG
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Figure 1: Lie algebra cocycles, invariant polynomials and transgression
forms in terms of cohomology of the universal G-bundle.

1.2 Formulation in terms of cohomology of inn(g)∗

The universal G-bundle may be obtained from the sequence of groupoids

Disc(G) → INN(G) → ΣG

by taking geometric realizations of nerves:

Disc(G) //
_
|·|

��

INN(G) //
_
|·|

��

ΣG_

|·|
��

G // EG // BG

.

Disc(G) and INN(G) are strict 2-groups, coming from the crossed modules

Disc(G) = (1 → G)

and
INN(G) = (Id : G → G) .

On the other hand, ΣG is a 2-group only if G is abelian.

1.2.1 Cocycles, invariant polynomials and Chern-Simons elements

Differentially, this corresponds to the sequence

Disc(G) //
_

Lie

��

INN(G)
p //

_

Lie

��

ΣG_

��∧•
sg∗

∧•(sg∗ ⊕ ssg∗)oo ∧•(ssg∗)
p∗oo

.
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In terms of this, we have

• A Lie algebra (2n + 1)-cocycle µ (with values in a trivial module) is an
element

µ ∈
∧(2n+1)(sg∗)

dgµ = 0 .

• An invariant polynomial k of degree n + 1 is an element

k ∈
∧n+1(ssg∗)

dinn(g)k = 0 .

• A transgression form cs inducing a transgession between a (2n+1)-cocycle
µ and a degree (n + 1)-invariant polynomial is a degree (2n + 1)-element

cs ∈
∧

(sg∗ ⊕ ssg∗)

such that
cs|∧•

(sg∗)
= µ

and
dinn(g)cs = p∗k .

cocycle Chern-Simons inv. polynomial

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))
i∗oooo (

∧•(ssg)∗)_?
p∗oo

0

0 p∗k
_
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OO

k
�

p∗
oo

µ
_

dg

OO

cs�i∗oo _
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OO

Figure 2: Lie algebra cocycles, invariant polynomials and transgression
elements in terms of cohomology of inn(g).
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1.2.2 Transgression and the trivializability of inn(g)

It is important that
EG is contractible

⇔ INN(G) is trivializable
⇔ the cohomology of inn(g)∗ = (

∧•(sg∗ ⊕ ssg∗), dinn(g)) is trivial
⇔ there is a homotopy τ : 0 → Idinn(g), i.e. [dinn(g), τ ] = Idinn(g) .

This implies that if
cs

is to be a transgression element mediating between µ and k, then we have

cs = τ(p∗k) + dinn(g)q .

So for every invariant polynomial k

dinn(g)k = 0

a “potential” c does exist. The nontrivial condition is then that cs restricted to
g is a cocyle.

cocycle Chern-Simons inv. polynomial

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))
i∗oooo (

∧•(ssg)∗)? _
p∗oo

0

0 p∗k
_

dinn(g)

OO

τ

��

k
�

p∗
oo

µ
_

dg

OO

cs�i∗oo _
dinn(g)

OO

Figure 3: The homotopy operator τ exists due to the trivializability of
inn(g).

1.3 Formulation in terms of components

From the inn(g)-description it is easy to read off the properties of cocycles and
invariant polynomials in terms of components:

Fix a Lie algebra g and a basis {Xa} with dual basis {ta}, regarded as a
basis of sg∗ and {ra}, regarded as a basis of ssg∗.
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• A Lie (2n + 1)-cocylce is a completely antisymmetric tensor

µ = µ(t) = µa1···a2n+1t
a1 ∧ · · · ta2n+1

such that ∑
i=12n+1

(−1)iµ[a1···ai···a2n+1C
ai

bc] = 0 .

• A degree n+1 symmetric invariant polynomial is a completely symmetric
tensor

k = k(r) = ka1···an+1r
a1 ∧ · · · ∧ ran+1

such that ∑
i=12n+1

ka1···ai···an+1C
ai

bc = 0 .

By explicitly computing the homotopy operator τ (compare Chern and Si-
mons [?]), using the theory of derivation homotopies, we find that the restriction

τ(k(r))|∧•
(sg∗)

has components proportional to

ka1a2···an+1t
a1 ∧ (dgt

a1) ∧ · · · (dgt
an+1) .

2 Lie (2n+1)-algebras from characteristic classes

Lie cocycles, invariant polynomials and Chern-Simons elements induce Lie (2n+
1)-algebra extensions of Lie algebras.

2.1 Lie n-algebras of Baez-Crans type

For each (n + 1)-cocycle µ of a Lie algebra g we obtain a Lie n-algebra

gµ

of Baez-Crans type.

In words. This has the same objects as g and the only nontrivial morphisms
live in a 1-dimensional space of n-morphisms. The coherence of the Jacobiator
at that level is precisely the cocycle µ.
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In L∞-language. On the graded commutative coalgebra

Ss(sg⊕ snR)

we have the nilpotent degree -1 codifferential

D = d2 + dn+1

with
d2(sX, sY ) = s[X, Y ]

and
dn(sX1, · · · , sXn+1) = snµ(X1, · · · , Xn+1)

for all X, Y,Xi ∈ g .

In differential coalgebra language. On the dual graded commutative al-
gebra ∧•(sg∗ ⊕ snR∗)

‘ we have the nilpotent degree +1 differential

dgµ

which is such that
dgµ |∧•

(sg∗)
= dg

and
db = −µ ,

where b is the canonical basis of snR.

2.2 Lie (2n + 1)-algebras of Chern type

For each degree (n + 1) invariant polynomial k of a Lie algebra g we obtain a
Lie 2n + 1-algebra

chk(g)

of Chern type.

In words. This has the same objects and 1-morphisms as inn(g) The only
further nontrivial morphisms live in a 1-dimensional space of 2n+1-morphisms.
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In L∞-language. On the graded commutative coalgebra

Ss(sg⊕ ssg⊕ s2n+1R)

we have the nilpotent degree -1 codifferential

D = d1 + d2 + dn+1

with
d1(ssX) = sX

d2(sX, sY ) = s[X, Y ]

d2(sX, ssY ) = ss[X, Y ]

and
dn+1(ssX1, · · · , ssXn+1) = s2n+1k(X1, · · · , Xn+1)

for all X, Y,Xi ∈ g .

In differential coalgebra language. On the dual graded commutative al-
gebra ∧•(sg∗ ⊕ ssg∗ ⊕ s2n+1R∗)

‘ we have the nilpotent degree +1 differential

dchk(g)

which is such that
dchk(g)|∧•

(sg∗⊕ssg∗)
= dinn(g)

and
dc = k(r) = ka1···an+1r

a1 ∧ · · · ∧ ran+1 ,

where c is the canonical basis of s2n+1R and where {ra} is a basis of ssg∗.

2.3 Lie (2n + 1)-algebras of Chern-Simons type

For each Chern-Simons element cs of degree (2n + 1), relating an invariant
polynomial k of degree n + 1 with a cocycle µk of degree 2n + 1 we obtain a Lie
2n + 1-algebra

csk(g)

of Chern-Simons type.

In words. This has the same objects and 1-morphisms as inn(g) The only
further nontrivial morphisms live in a 1-dimensional space of 2n-morphisms
and in a 1-dimensional space of 2n + 1-morphisms.
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In differential coalgebra language. On the dual graded commutative al-
gebra ∧•(sg∗ ⊕ ssg∗ ⊕⊕s2nR∗ ⊕ s2n+1R∗)

we have the nilpotent degree +1 differential

dcsk(g)

which is such that
dcsk(g)|∧•

(sg∗⊕ssg∗)
= dinn(g)

and
db = −cs + c

dc = k(r) .

Here {b} is the canonical basis of s2nR∗, {c} is the canonical basis of s2n+1R∗

and {ra} is a basis of ssg∗.

Theorem 1 • For each Chern-Simons element cs relating a degree (n + 1)
invariant polynomial k on a Lie algebra g with a (2n + 1)-cocycle µk we
have an exact sequence of Lie (2n + 1)-algebras

0 → gµk
→ csk(g) → csk(g) → 0 .

• The Lie (2n + 1)-algebra csk(g) is trivializable

csk(g) ' inn(gµk
) .

9



G // EG // BG top. spaces

Disc(G) � � i //
_
|·|

OO

_

Lie

��

INN(G)
p // //

_
|·|

OO

_

Lie

��

ΣG
_
|·|

OO

_

��

Lie groupoids

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))oooo (
∧•(ssg)∗)? _oo free graded comm.

algebras

g � � //

∼(·)∗

inn(g)

∼(·)∗

Lie 2-algebras

elements in
cohomology

��

cocycle
Chern-Simons

element inv. polynomial

0

0 p∗kF

τ

��

_
dinn(g)

OO

k
�p∗oo

µ
_

dg

OO

cs�i∗oo _
dinn(g)

OO

g � � // inn(g) = // inn(g)

gµ
� � //

OOOO

csk(g) // //

OOOO

chk(g)

OOOO

Lie (2n + 1)-algebras

inn(gµ)

∼

Baez-Crans Chern-Simons Chern

Figure 4: Chern Lie (2n + 1)-algebras: for each Lie algebra (n + 1) cocycle
µ which is related by transgression to an invariant polynomial k we obtain an
exact sequence of Lie (2n + 1)-algebras.
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