Lie algebra cohomology and inn(g)

May 29, 2007

Abstract

How Lie algebra cocycles, invariant polynomials and transgression ele-
ments manifest themselves in terms of the dual of the Lie 2-algebra inn(g)
associated with every Lie algebra g. And how that helps to see that every
transgression element gives rise to an exact sequence of Lie (2n + 1)-
algebras

0 — gu — csk(g) — chix(g) — 0

Contents

1 Characteristic classes in terms of inn(g)* cohomology
1.1 Formulation in terms of the cohomlogy of EG
1.2 Formulation in terms of cohomology of inn(g)* . ... ... ...

1.2.1  Cocycles, invariant polynomials and Chern-Simons elements
1.2.2  Transgression and the trivializability of inn(g)
1.3 Formulation in terms of components

2 Lie (2n + 1)-algebras from characteristic classes
2.1 Lie n-algebras of Baez-Crans type . . . . ... .. ... .....
2.2 Lie (2n + 1)-algebras of Chern type . . . . . . . ... ... ....
2.3 Lie (2n + 1)-algebras of Chern-Simons type . . . . ... ... ..

CL Ut W W NN

oo



1 Characteristic classes in terms of inn(g)* coho-
mology

Lie algebra cohomology, invariant polynomials and Chern-Simons elements can
all be conveniently conceived in terms of the quasi-free differential graded alge-
bra corresponding to the Lie 2-algebra

inn(g)

of inner derivations of the Lie algebra g.

The relation to the more common formulation of these phenomena in terms
of the cohomology of the universal G-bundle comes from the fact that this
universal bundle is the realization of the nerve of INN(G).

1.1 Formulation in terms of the cohomlogy of EG

Let G be a compact, simply connected simple Lie group.
The classical formulation of

e Lie algebra cocycles
e invariant polynomials
e transgression induced by Chern-Simons elements

is the following.
Consider the fibration corresponding to the universal principal G-bundle:

G — EG —= BG .

e A Lie algebra (2n + 1)-cocycle p (with values in a trivial module) is an

element
pe H" (g, R).

By compactness of GG, this is the same as an element in de Rham coho-

mology of G:
pw€ H G R).

e An invariant polynomial k of degree n + 1 represents an element in

k € H*"%(BG,R).

e A transgression form mediating between p and k is a cochain cs € Q*"*1(EG)
such that
cslg = p
and
des =p*k.
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Figure 1: Lie algebra cocycles, invariant polynomials and transgression
forms in terms of cohomology of the universal G-bundle.

1.2 Formulation in terms of cohomology of inn(g)*
The universal G-bundle may be obtained from the sequence of groupoids
Disc(G) — INN(G) — G
by taking geometric realizations of nerves:
Dis¢(G) —— INN(G) — =G .
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Disc(G) and INN(G) are strict 2-groups, coming from the crossed modules
Disc(G) = (1 — G)

and
INN(G)=(1d: G — G).

On the other hand, 3G is a 2-group only if G is abelian.

1.2.1 Cocycles, invariant polynomials and Chern-Simons elements
Differentially, this corresponds to the sequence
Disc(G) —— INN(G) — 22— ¢

S

A*sg* <—— N"(sg* @ ssg*) <—— A\°(s50%)



In terms of this, we have
e A Lie algebra (2n + 1)-cocycle p (with values in a trivial module) is an
element
2n+1),  «
pe N (sg%)
dgpt =10.

e An invariant polynomial k of degree n + 1 is an element

ke /\nJrl(SSg*)

dinn(g)k = 0.

e A transgression form cs inducing a transgession between a (2n+1)-cocycle
w and a degree (n + 1)-invariant polynomial is a degree (2n + 1)-element

cs € /\(sg* ® ssg”)

such that
eI\ (sgr) =
and
dinn(g)Cs = p*k.
cocycle Chern-Simons inv. polynomial
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Figure 2: Lie algebra cocycles, invariant polynomials and transgression
elements in terms of cohomology of inn(g).




1.2.2 Transgression and the trivializability of inn(g)

It is important that
EG is contractible
< INN(Q) is trivializable
& the cohomology of inn(g)* = (A°(sg* @ s59"), dinn(g)) is trivial
& there is a homotopy 7 : 0 — Idinn(g) i-. [dinn(g): 7] = Idinn(g) -
This implies that if
cs

is to be a transgression element mediating between p and k, then we have
cs = T(p*k) + dinn(g)q-
So for every invariant polynomial k

d k=0

inn(g)

a “potential” ¢ does exist. The nontrivial condition is then that cs restricted to
g is a cocyle.

cocycle Chern-Simons inv. polynomial
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Figure 3: The homotopy operator 7 exists due to the trivializability of
inn(g).
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1.3 Formulation in terms of components

From the inn(g)-description it is easy to read off the properties of cocycles and
invariant polynomials in terms of components:

Fix a Lie algebra g and a basis {X,} with dual basis {t*}, regarded as a
basis of sg* and {r®}, regarded as a basis of ssg*.



e A Lie (2n + 1)-cocylce is a completely antisymmetric tensor

= ,LL(t) = /Lal.i.azn_'_ltal A ... glentl

such that )
Z (71)7‘#[“1"'(%'”‘12”4»1Caibc] =0.

7;:12n+l

e A degree n+ 1 symmetric invariant polynomial is a completely symmetric
tensor

k= k(T) = kalmanJrlral A Attt

such that
D> kayasean, C%e = 0.

i:12n+1

By explicitly computing the homotopy operator 7 (compare Chern and Si-
mons [?]), using the theory of derivation homotopies, we find that the restriction

T(k(r))‘/\.(sg*)
has components proportional to

k(l1112~~an+1ta1 A (dgtal) A (dgtan+1) )

2 Lie (2n+1)-algebras from characteristic classes

Lie cocycles, invariant polynomials and Chern-Simons elements induce Lie (2n+
1)-algebra extensions of Lie algebras.

2.1 Lie n-algebras of Baez-Crans type
For each (n + 1)-cocycle p of a Lie algebra g we obtain a Lie n-algebra
9u
of Baez-Crans type.
In words. This has the same objects as g and the only nontrivial morphisms

live in a 1-dimensional space of n-morphisms. The coherence of the Jacobiator
at that level is precisely the cocycle p.



In L -language. On the graded commutative coalgebra
S°(sg @ s"R)
we have the nilpotent degree -1 codifferential
D =dy+dpt1
with
dy(sX,sY) = s[X,Y]

and
dn(s X1, -+ 8Xng1) = 8" (X, -+, Xng1)

forall X,Y, X, €g.
In differential coalgebra language. On the dual graded commutative al-
gebra
N (sg” & s"R”)
¢ we have the nilpotent degree +1 differential

dg

I

which is such that
dg”‘/\.(sg*) = dg

and
db = —K,

where b is the canonical basis of s"R.

2.2 Lie (2n + 1)-algebras of Chern type

For each degree (n + 1) invariant polynomial k& of a Lie algebra g we obtain a
Lie 2n + 1-algebra

ch(g)
of Chern type.

In words. This has the same objects and 1-morphisms as inn(g) The only
further nontrivial morphisms live in a 1-dimensional space of 2n + 1-morphisms.



In L -language. On the graded commutative coalgebra
S*(sg @ ssg @ s TIR)
we have the nilpotent degree -1 codifferential

D=dy+dy+dns1

with
dqi(ssX) =sX
da(sX,sY) =s[X,Y]
da(sX,s8Y) = ss[X,Y]
and

dn+1(SSX1, T SSX’n+1) = 82n+1k(X17 Ty X’n+1)
forall X,Y, X; €g.

In differential coalgebra language. On the dual graded commutative al-
gebra
/\.(Sg* o ssg* EBS2TL+1R*)

* we have the nilpotent degree +1 differential

dChk(g)

which is such that

dchk(g)|/\.(sg*@ssg*) = dinn(g)

and

dC = k(’l") = kal"‘an+1ral A A ran+1 ,

where c is the canonical basis of s2" 'R and where {r®} is a basis of ssg*.

2.3 Lie (2n + 1)-algebras of Chern-Simons type

For each Chern-Simons element c¢s of degree (2n + 1), relating an invariant
polynomial k of degree n + 1 with a cocycle py, of degree 2n + 1 we obtain a Lie
2n + 1-algebra

csk(g)

of Chern-Simons type.

In words. This has the same objects and 1-morphisms as inn(g) The only
further nontrivial morphisms live in a 1-dimensional space of 2n-morphisms
and in a 1-dimensional space of 2n + 1-morphisms.



In differential coalgebra language. On the dual graded commutative al-
gebra
/\.(Sg* @ ssg* @ @82nR* @ 82n+1R*)

we have the nilpotent degree +1 differential

des. (g)
which is such that
desy (g) \/\°(sg*®ssg*) = dinn(g)
and
db=—cs+c
de = E(r).

Here {b} is the canonical basis of s>"R*, {c} is the canonical basis of s>"T1R*
and {r®} is a basis of ssg*.

Theorem 1 e For each Chern-Simons element cs relating a degree (n+ 1)
invariant polynomial k on a Lie algebra g with a (2n + 1)-cocycle py we
have an exact sequence of Lie (2n + 1)-algebras

0 — gy, — csk(g) — csp(g) — 0.
e The Lie (2n + 1)-algebra csi(g) is trivializable

cs(g) ~ inn(gy, ) -
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Figure 4: Chern Lie (2n + 1)-algebras: for each Lie algebra (n + 1) cocycle
w1 which is related by transgression to an invariant polynomial k we obtain an
exact sequence of Lie (2n + 1)-algebras.
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