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1 Introduction

A braided monoidal category – also called a “doubly monoidal category” – is
the same as a 3-category with only a single object and a single 1-morphism –
also called a “doubly stabilized 3-category”.

Considerations in quantum field theory have lead people [1, 2] to consider
generalizations of braided monoidal categories, where the braiding receives a
twist by the action of a (finite) group G. These are called G-equivariant
monoidal categories.

Here we discuss which kinds of 3-categories correspond to G-equivariant
monoidal categories. We introduce the concept of a G-stabilized 3-category and
show that G-stabilized 3-categories are equivalent to G-equivariant monoidal
categories.

ordinary case G-equivariant case

doubly monoidal
1-category

braided monoidal
1-category

G-equivariant monoidal
1-category

doubly stabilized
3-category

3-category with single object
and single 1-morphism

3-category with ΣG
in lowest degree

Table 1: A braided monoidal category is the same as a 3-category which in
degree 0 and 1 “looks like point”. We show that a G-equivariant monoidal
category is a 3-category which in degree 1 “looks like a group”.
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2 Strict G-equivariant monoidal structure

We first recall the definition of a G-equivariant category, for the special case that
the G-action is strict. Then we reformulate that in terms of Gray 3-categories.
(These are briefly reviewed in A).

In the next section we discuss the case where the G-action is non-strict.
It is still clear in that case how to pass from G-stabilized 3-categories to G-
equivariant categories. But if there is always a procedure going the other way
round is less clear in the weak case.

2.1 Strict G-equivariant monoidal categories

Definition 1 (G-equivariant monoidal category). For G a finite group, a G-
equivariant monoidal category is

• a monoidal category (C,⊗, 1) which is the direct sum (in Cat)

C =
⊕
g∈G

Cg

of full subcategories Cg, one for each element of G, such that the degree
map

dg : C → G

is monoidal, i.e.
⊗ : Cg × Ch → Cgh ;

• equipped with a strict monoidal G-action

R : C ×G → C

which is such that
Rg : Ch → Cghg−1 ;

• and equipped with a coherent G-twisted braiding

C × C
⊗ //

σ

��

C

C × C
R(·,dg(·))

// C × C

⊗

OO

∼b

��

.

Here σ denotes the braiding in Cat.

3



Remark. Kirillov [2] in addition demands that

• C is abelian;

• C is rigid as a monoidal category;

• and that 1 is simple.

Then he calls this structure a G-equivariant fusion category. Since these extra
conditions do not affect the construction we are after, we will ignore them.

Example (graded vector spaces) The category Vect[G] of G-graded vector
spaces is a G-equivariant category with trivial R-action and trivial braiding.

Notice that with our definition of G-equivariant category only homogenoeus
G-graded vector spaces are obtainable. If we want to allow for the direct sum
of vector spaces in different degree, we have to replace the direct sum

C :=
⊕
g∈G

Cg

in Cat with the direct sum in the abelian category of vector spaces, as in Kir-
illov’s definition of G-equivariant fusion categories. A similar remark applies to
the next example.

Example (super vector spaces) The category

C = SVect

of (finite dimensional, say) super vector spaces with grading-preserving linear
maps between them is a Z2-equivariant monoidal category

SVect = Vecteven ⊕Vectodd .

It is in fact even a fusion category in Kirillov’s sense.
The action R here is trivial. The Z2-twisted braiding b is that which in-

troduces a sign whenever two odd vector spaces are interchanged in the tensor
product.

Example (strict 2-groups) Suppose that the G-equivariant monoidal cat-
egory C is discrete, i.e. has only identity morphisms. Then it is just a G-
equivariant monoid. If this monoid happens to be a group, H, then it constitutes
axactly the same structure as a crossed module

H
t // G

α // Aut(H)

of groups, where t = dg and α = R. Conversely, every crossed module can be
regarded as a G-equivariant monoid this way.

We know that crossed modules are also the same as strict 2-groups, which
are, in turn, strict one object 2-groupoids. This is a special case of our general
result.
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Remark. It seems natural to try to further weaken the concept of a G-
equivariant category in various ways. Regarding the previous example we would,
for instance, also want to regard weak 2-groups and in particular weak 3-groups
as suitably equivariant categories. The Turaev-Kirillov definition excludes this
possibility. But our reformulation in terms of stabilized 3-categories indicates
the obvious way how to generalize this suitably.

2.2 Stabilized n-categories

2.2.1 Review of k-tuply stabilized n-categories

An n-category with only a single j-morphism for 0 ≤ j ≤ k − 1 is also called a
k-tuply stabilized n-category. This is equivalently an (n− k)-category which is

• monoidal if k ≥ 1

• braided monoidal if k ≥ 2

• symmetric braided monoidal if k ≥ 3

• “k-tuply” monoidal in general.

Given a k-tuply monoidal n-category C, we write

ΣC

for the corresponding (k − 1)-tuply monoidal (n + 1)-category; and generally

ΣjC

for the corresponding (k − j)-tuply monoidal (n + j)-category.

Example. The standard example is a monoid G (associative and unital; a
monoidal 0-category), which is the same as a once stabilized 1-category, which
we write ΣG. If the monoid is abelian, it comes from a 2-category ΣΣG := Σ2G
with a single object and a single morphism.

The stabilization hypothesis In fact, an abelian monoid, hence a doubly
monoidal 0-category is already also a k-tuply monoidal 0-category for all k ≥ 2
in that for all n ≥ 2 an (n − 2)-tuply stabilized n-category is nothing but an
abelian monoid.

A similar phenomenon is observed for k-tuply monoidal 1-categories. For all
k ≥ 3 these are symmetric braided monoidal categories.

The Baez-Dolan stabilization hypothesis says that this pattern continues: for
all k ≥ n + 2 a k-tuply monoidal n-category is equivalently an (n + 1)-tuply
monoidal n-category.

An braided monoidal category is a 3-category with a single object and a
single 1-morphism. We shall recall the mechanism behind this fact now, but
generalized to G-equivariant categories.
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2.2.2 G-Stabilized Gray 3-categories

We need to slightly generalize the stabilization process of n-categories from the
situation where there is just a single j-morphism, to the case where there is a
(j − 1)-group of j-morphisms. In need of some terminology for this situation,
we shall make the following definition.

Definition 2 (G-stabilized 3-category). Let G be a finite group and K be a
Gray 3-category

• with a single object
Obj(K) = {•} ;

• such that there is a finite group G with

HomK(Id•,−) :=
⊕
g∈G

HomK(Id•, •
g // • ) ,

where
• g1 // • g2 // • = • g1g2 // • .

Then we call K a G-stabilized (Gray) 3-category

Our main point then is the following observation.

Proposition 1. For K a G-stabilized Gray 3-category, the (1-)category

C := HomK(Id•,−)

is (naturally equipped with the structure of) a G-equivariant abelian monoidal
category.

Proof.

• The tensor product in C is composition along the single object in K:

•

Id

��

g

BB•

Id

��

h

BB•U

��

V

��

:= •

Id

��

gh

BB•U⊗V

��

.
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• The G-action R is conjugation with 1-morphisms in K

Rg : •

Id

��

h

BB•U

��

7→ • g // •

Id

��

h

BB•
g−1

// •U

��

:= •

Id

��

ghg−1

BB•gU

��

.

This extends in the obvious way to a functorial action also on morphisms
f : U → V

U

��

V

=
H T

BB

j v
�

f
��
�
�
�
�

h

yy

Id

%%
•

•

7→

U

��

V

=
H T

BB

j v
�

f
��
�
�
�
�

h

yy

Id

%%
•

•

•

•

g−1

��

g
��
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• The G-twisted braiding isomorphism is the following 3-isomorphism in K:

•

Id

��

g

BB•

Id

��

h

BB•U

��

V

��

:= •

Id

��

g

BB•

Id

��
•U

��

•

g

BB•

Id

��

h

BB•V

��

= •

Id

��

g

BB•

Id

��
•U

��

•

g

BB•

Id

��

h

BB•
g−1

// • g // •V

��

= •

Id

��
•

Id

��

g

BB•U

��

•

Id

��

ghg−1

BB•

g

BB•gV

��

' •

Id

��

ghg−1

BB•

Id

��
•gV

��

•

ghg−1

BB•

Id

��

g

BB•U

��

:= •

Id

��

ghg−1

BB•

Id

��

g

BB•gV

��

U

��

.

The first step is just the definition of the horizontal product, described in A.
Then the identity morphism is decomposed as gg−1 and the definition of the

8



conjugation action R is used. The only non-identity step is then the isomorphism
which relates the two ways of horizontally composing 2-morphism, as described
in A.

Finally, it is clear that the coherence law in the Gray 3-category ensures the
coherence of the resulting G-equivariant category.

�

The converse statement is now straightforward.

Proposition 2. Every G-equivariant monoidal category gives rise to a G-
stabilized 3-category.

Proof. To define the 3-category K given the abelian G-equivariant monoidal
category C, let HomK(Id•,−) := C and use the identifications from the proof of
proposition 1. All that remains to be constructed are then the Hom-categories

HomK( •
g // • , • h // • ) for arbitrary g, h ∈ G. But these are already

fixed by the fact that postcomposition with 1-morphisms • g // • must be
an isomorphism of categories

Ch → Chg .

Therefore the subcategories HomK( •
g // • , • h // • ) are canonically iso-

morphic to HomK(Id•, •
hg−1

// • ) . We write

•

g

��

h

BB•(g,U)

��

:= •

Id

��

hg−1

BB•
g // •U

��

�

Corollary 1. There is a bijective correspondence between G-equivariant abelian
monoidal 1-categories and G-stabilized abelian Gray 3-categories.

Proof. The two constructions in proposition 1 and 2 are clearly inverse to
each other. �

3 Weak G-equivariant monoidal structure

The original definition of G-equivariant categories in [1, 2] does allow the action

R : C ×G → C
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to respect composition only up to coherent isomorphism. This is of course a
natural requirement for the action of a group on a category.

But even more naturally we would allow not just a group action, but a (weak)
2-group action, such that Turaev-Kirillov’s definition appears as a special case
of that.

In general, n-groups G(n) want to act on (n− 1)-categories, since the action
is an n-functor

ρ : ΣG(n) → (n− 1)Cat .

(Notice that both ΣG(n) as well as (n− 1)Cat are n-categories.)
Therefore we now generalize the concept of G-equivariant categories as fol-

lows:

Definition 3 (G(2)-stabilized 3-category). Let G(2) be a (possibly weak) 2-group.
Let K be a (possibly weak) 3-category. We say that K is G(2)-stabilized if

• Obj(K) = {•}

• Mor1(K) = Mor1(ΣG(2))

• there is an inclusion
ΣG(2)

� � // K

which is the identity on 1-morphisms.

Remark. Definition 2 of a G-equivariant category arises again as a special
case of a G(2)-equivariant category for

G(2) := Disc(G) .

Here Disc(G) denotes the “discrete” 2-group over the (1-)group G, that is the
2-group obtained by regarding G as a category with set of objects being G and
only identity morphisms.

(Notice the difference between Disc(G) and ΣG. The former is always a
2-group, the latter is a 2-group if and only if G is abelian.)

Remark. Apart from the weakening, a qualitatively new aspect of G(2)-stabilized
as opposed to simply G-stabilized 3-categories is that the former may have two
kinds of 2-morphisms: those in the image of the injection ΣG(2)

� � // K and
those not in that image.

This leads to a new kind of conjugation action in G(2)-stabilized 3-categories,

namely conjugation by 2-morphisms •
��
?? •g�� in ΣG(2):
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U

��

V

=
H T

BB

j v
�

f
��
�
�
�
�

h

yy

Id

%%
•

•

7→

U

��

V

=
H T

BB

j v
�

f
��
�
�
�
�

h

yy

Id

%%
•

•

•

•

%% yy

g−1 +3

## {{

g +3

.

Example. (ein Versuch zu Super-Fusions-Kategorien, als Frage gedacht)
Let C be a abelian braided monoidal category and consider two copies of that,
to be called Ceven and Codd. Form the abelian category

Ceven ⊕ Codd

freely generated from these under direct sum and . Take this to be a Z2-
stabilized 3-category, with the nontrivial element σ of Z2 the degree of Codd.

Furthermore, fix an object J ∈ Obj(Codd) which is its own weak multiplica-
tive inverse

J ⊗ J ' 1 .

Just for simplicitly I shall assume for the moment this can be strictified, so that
I am allowed to write J ⊗ J = 1.

Then we get an injection

(Z2 → Z2)
� � // C

of the strict 2-group coming from the crossed module

Z2
t=Id // Z2

α // 1

by

•

Id

��

σ

DD•σ
��

7→ •

Id

��

σ

DD•J
��

.

This would make K a (Z2 → Z2)-stabilized 3-category. We might maybe want
to take conjugation by J
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U

��

V

=
H T

BB

j v
�

f
��
�
�
�
�

h

yy

Id

%%
•

•

7→

U

��

V

=
H T

BB

j v
�

f
��
�
�
�
�

Id

yy

Id

%%
•

•

•

•

Id

%%

σ

yy

J +3

Id

##
σ

{{
J +3

.

to act nontrivially, somehow.

Definition 4 (G(2)-equivariant monoidal category). A monoidal category C is
called a G(2)-equivariant monoidal category if it arises as

C = HomK(Id•,−−)

of a G(2)-stabilized 3-category K.

Example. For G any finite group, the category 1dVect[G] of G-graded 1-
dimensional vector spaces and isomorphism between these is a weak 2-group,
equivalent to Disc(G), the discrete 2-group over the ordinary group G. The
product operation is the ordinary tensor product in Vect. The inversion functor

(·)−1 : 1dVect[G] → 1dVect[G]

is

(·)−1 : ( V
f // W ) 7→ ( V ∗ f∗−1

// W ∗ ) .

With V in degree g we have to take V ∗ to be in degree g−1. Then...

A Gray 3-categories

Definition 5 (Gray 3-category). A Gray 3-category is a 3-category which is
strict except possibly for the exchange law for composition of 2-morphisms.

So the only possibly nontrivial structure morphisms in a Gray 3-category
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are the 3-isomorphisms

a

f1

��
b

f1

��

f ′2

BB cU

��

a

f1

��

f ′1

BB b

f ′2

BB cV

��

'
a

f1

��

f ′1

BB b

f2

��
cV

��

a

f ′1

BB b

f2

��

f ′2

BB cU

��

.

Remark. The relevance of Gray 3-categories is that every weak 3-category is
equivalent to some Gray 3-category. (In contrast to weak 2-categories, each of
which is equivalent to some strict 2-category.) In this sense Gray 3-categories
are “semistrict” – as strict as possible without losing full generality.

Remark. When the exchange law isomorphism is nontrivial, the horizontal
composition of 2-morphism has two possible interpretations. We shall agree to
read

a

f1

��

f ′1

BB b

f2

��

f ′2

BB cU

��

V

��

:=
a

f1

��

f ′1

BB b

f2

��
cU

��

a

f ′1

BB b

f2

��

f ′2

BB cV

��

.
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