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Abstract

The general framework of globular extended QFT is applied to the
string propagating on the classifying space of a strict 2-group.
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1 Introduction

This is supposed to be a nontrivial but simple example of a general idea that
goes as follows.

There is a mystery that demands to be understood:
∗E-mail: urs.schreiber at math.uni-hamburg.de
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Mystery 1 The theory of gerbes with connection in terms of local data exhibits
a lot of structural resemblance to state sum models of 2-dimensional quantum
field theory.

Why is that?

Does this point to a deeper pattern that we might want to understand?

1.1 Quantization of parallel n-transport

After a little bit of reflection, I think the pattern is

a) n-Bundles with connection are naturally conceived in terms of parallel
transport n-functors.

b) Coupling these n-connections to an n-particle amounts to transgressing
these n-functors to a suitable configuration space.

c) Quantizing these charged n-particles amounts to pushing the transgressed
n-functors forward to a point.

From this point of view, evolution in the quantum field theory of the charged
n-particle is an n-functor that is inherently obtained from the parallel transport
n-functor that expresses the background field that the particle propagates in.

Both, the original parallel transport n-functor as well as the resulting quan-
tum propagation n-functor may be locally trivialized. For the former this yields
the local description of gerbe holonomy. For the latter this yields the state sum
description of QFT.
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Figure 1: Quantization, categorification and local trivialization.
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classical data quantum theory
background field n-particle

name of
n-functor parallel transport action quantum propagation

image of
n-functor monodromy classical phases quantum amplitudes

with values in phas = nVect

domain
on target space

tar
on configuration space

conf ⊂ [par, tar]
on parameter space

par
in

symbols tra : tar → phas tra∗ : conf → [par,phas] q(tra) : par → phas

operation
in physics terms

coupling

88

quantization

88

correspondence

conf × par
ev

yysssssssss
p

%%KKKKKKKKKK

tar par

operation
in symbols

[tar,phas] ev∗ //

coupling

77
[conf × par,phas]

p̄∗ //

quantization

77
[par,phas]

tar � // ev∗tar � // p̄∗ev∗tar

elements

flat sections
e : 1 → tra

in
Γ(tra) = Hom(1, tra)

states
ψ : 1• → q(tra)

in
Hom(1∗, tra∗) ' Hom(1•, q(tra))

pairing of
elements holonomy correlator

Table 1: The charged n-particle and its quantization. The process be-
gins with a parallel transport n-functor tra for an n-bundle with connection,
modelling a physical background field. It continues by specifying certain maps
into the domain of the parallel transport and transgressing tra to the configura-
tion space of all these maps. This models the coupling of the background field
to a charged n-particle (a point particle, a string, a membrane, etc.). Finally,
the transgressed n-functor may be pushed forward to a point. This yields the
quantum theory of the charged n-particle coupled to the given background field.
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1.2 Example: string on BG2

By the string on the classifying space of a strict 2-group we here want to un-
derstand the following example of a charged n-particle.

Fix a strict 2-group G2 and set

• n = 2

• par = Σ(Z)

• tar = Σ(G2) , G2 a strict 2-group

• phas = Bim

• tra = 1 ∈ [Σ(G2),Bim]

The fact that n = 2 means that we are one categorification step above the
ordinary theory of point particles coupled to ordinary vector bundles.

The fact that par = Σ(Z), which is the additive group of integers regarded
as a category with a single object, means that we are considering 2-particles

that look like strings •
��
• stretching from • to •.

The fact that tar = Σ(G2), which is G2 regarded as a 2-groupoid with a
single object, means that these strings propagate on the classifying space BG2

of G2, since the realization |Σ(G2)| of the nerve of G2 is

|Σ(G2)| = BG2 .

The fact that phas = Bim means that everything takes values in those well-
behaved 2-vector spaces that are in the image of the canonical inclusion

Bim ↪→ VectMod := 2Vect .

We assume that we are working over complex vector spaces.
The fact that tra = 1 means that we consider a trivial rank one 2-vector

bundle with trivial connection on target space.
Clearly, in particular this last condition can be replaced by something more

interesting.
Given this data, we can determine its quantization:

Proposition 1 The quantum transport

q(tra) : Σ(Z) → Bim

of the above system is

q(tra) : ( • // • ) 7→ C[ΛG2]
Id // C[ΛG2] .
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Here
ΛG2 = [Σ(Z),Σ(G2)]/ ∼

is the groupoid obtained by identifying isomorphic 1-morphisms in configuration
space, and

C[ΛG2]

is the associated groupoid algebra, over the complex numbers.
This implies that a state ψ of the system

ψ : 1 → q(tra)

is

• a representation ψ(•) of ΛG2 over the point •

• an endomorphism ψ(•)
ψ(•→•)// ψ(•) of this representation over the string

• → •.

In string theory terminology, we would call ψ(•) a D-brane.
Of special interest is the case where G is a compact, simple and simply

connected Lie group, and where

G2 = Stringk(G)

is the string 2-group of G, which comes from the level k ∈ H3(G,Z).
Then, as discussed elsewhere,

• The state ψ(•) is an AdG-equivariant gerbe module of the gerbe at level
k on G.

As also discussed elsewhere, interaction of strings corresponds to the fusion
product on these gerbe modules.
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2 The quantum theory of the charged n-particle

2.1 The definition

Definition 1 A charged n-particle(
par γ∈conf // tar tra // phas

)
is

• an (n− 1)-category par, called parameter space and thought of as mod-
elling the shape and internal structure of the n-particle

• an n-category, tar, called target space and thought of as modelling the
space that the n-particle propagates in

• an n-category phas = nVect, being the n-category of some notion of n-
vector spaces

• an n-functor tra : tar → phas, thought of as encoding the parallel trans-
port in an n-bundle with connection on target space

• a choice of sub-n-category conf ⊂ [par, tar], thought of as encoding the
configuration space of the n-particle.

Given a charged n-particle, we obtain the diagram

conf × partar

conf

par

evoo

p1

::uuuuuuuuuu

p2
$$IIIIIIIIII ,

where the arrow on the left is the restriction of the canonical evaluation map
ev : [par, tar] × par → tar along the inclusion conf ↪→ [par, tar], and where p1

and p2 are the obvious projection on the first and the second factor, respectively.
There is a corresponding diagram of pullbacks

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p∗1

||yy
yy

yy
yy

yy
y

p∗2

bbEEEEEEEEEEE

.
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If the morphisms on the right have adjoints, p̄∗1 and p̄∗2, respectively, we get

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p̄∗1

<<yyyyyyyyyyy

p̄∗2 ""EE
EE

EE
EE

EE
E .

The composition of morphisms along the above route is transgression, whereas
the composition along the lower route is quantization.

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p̄∗1yyyyy

<<yyyy

p̄∗2

EEE
EE

""EEEE

t
00

q ..

Definition 2 Given a charged n-particle(
par γ∈conf // tar tra // phas

)
,

its (extended, globular) quantum theory is the image

q(tra) : par → phas

of tra under this quantization map.

Remark. It is extended because it is an n-functor.
It is globular because we think of the globular morphisms in the domain par

directly as the extended cobordisms on which the QFT is defined. This means
in particular that every n-cobordisms in par has the topology of an n-disk.

The value of our QFT on topologically nontrivial cobordisms will be taken
to be its value on any globular cutting of that cobordisms followed by a suitable
trace operation.

Caveat. Without further qualification, this definition captures only what would
be called the kinematics of the quantum theory.
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A charged n-particle...
(

par γ∈conf // tar tra // phas
)

... comes with
a configuration space of maps
from its parameter space
into its target space...

conf × partar

conf

par

evoo

p1

::uuuuuuuuuu

p2
$$IIIIIIIIII

... and a coupling to
a transport functor
on target space...

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p∗1

||yy
yy

yy
yy

yy
y

p∗2

bbEEEEEEEEEEE

...which induces transport functors
on configuration space
and on parameter space...

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p̄∗1yyyyy

<<yyyy

p̄∗2

EEE
EE

""EEEE

t
00

q ..

...that are known as the
transgression
and the quantization
of the n-particle.

tra

t(tra)

q(tra)

8

transgression ..

�

quantization 00

Table 2: The story of the charged n-particle. A drama in three acts.
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2.2 How to compute the space of n-sections

For computing the quantization, it is convenient to proceed as follows.
We take the product conf ×par to be the adjoint to the internal hom. Then

[conf × par,phas] ' [conf, [par,phas]] .

The image of tra : tar → phas under

[tar,phas] ev∗ // [conf × par,phas] ∼ // [conf, [par,phas]]

tar � // tar∗

is simply postcomposition with tra:

tra∗ : ( par

γ

##

γ′

;;tar�� ) 7→ ( par

γ

##

γ′

;;tar tar // phas�� ) .

The fush-forward

[conf × par,phas]
p̄∗1 // [par,phas]

then corresponds to the push-forward

conf
p // {•}

[conf, [par,phas]]
p̄∗ // [{•}, [par,phas]] ∼ // [par,phas]

tar∗
� // q(tra)

.

This q(tra) is then defined by

Hom(p∗f•, tra∗) ' Hom(f•, q(tra)) ,

for any f• : • → [par,phas].
In practice, it is usually sufficient to consider this equivalence for f• = 1•,

the tensor unit in [{•}, [par,phas]].
This is what we shall do in the following example.
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3 Our Example: the string on the classifying
space of a 2-group

Here we regard a special case of a globular extended quantum field theory of a
charged n-particle.

3.1 The setup: parameter space, target space, etc.

We set n = 2 and take parameter space to be

par = Σ(Z)

which we draw like
Σ(Z) = {• → •}

and think of as modelling a string that stretches from something back to that
something. We’ll discover what that something can be as we proceed.

This string is taken to propagate on a target space

tar = Σ(G2) ,

which is the 2-category obtained by thinking of a strict 2-group G2 as a one-
object 2-groupoid.

Noticing that an element

γ : Σ(Z) → Σ(G2)

in configuration space
conf = [Σ(Z),Σ(G2)]

is, when we send it to the world of topological spaces by taking nerves and
geometric realizations

|γ| : |Σ(Z)| → |Σ(G2)|

a based loop in the classifying space of G2:

|γ| : S1
• → BG2• ,

we say that conf models the configurations of a string that propagates on the
classifying space of a strict 2-group.

Notice, however, that this description is somewhat imprecise. In fact, our
globular formalism remembers the difference between a circular open string and
a closed string. This point will be addressed in detail later on.

All that remains to be specified, now, is the 2-bundle with connection on
target space that we wish to couple our 2-particle to. For the moment, we shall
be content with understanding the simple case where this 2-bundle is trivial, of
rank one and with trivial connection.

This means that we take

tra = 1 : Σ(G2) → Bim ↪→ 2Vect
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to be the tensor unit in the 2-category of all such 2-functors:

1 : •

g

��

g′

BB•h
��

7→ C

C

��

C

AA CId
��

.

3.2 Quantization: sections and push-forward to the point

Quantization of the above system amounts to finding

q(tra∗) : {•} → [Σ(Z),Bim]

such that

Hom[conf,[par,phas]](1∗, tra∗) ' Hom[{•},[par,phas]](1, q(tra∗)) .

We call
Γ(tra∗) = Hom(1∗, tra∗)

the space of sections of the n-bundle on configuration space.
Remember that we want to concentrate on tra∗ = 1∗.
As we have shown elsewhere, we find

Proposition 2

Γ(1∗) = ΛRep(ΛG2) .

Here
ΛG2 = conf/ ∼

is the loop groupoid of G2 obtained by identifying isomorphic 1-morphisms
in conf = [Σ(Z),Σ(G2)]. This is a slight generalization of Willerton’s loop
groupoid.

Moreover
Rep(ΛG2) = [ΛG2,Vect]

is the category of representations of the loop groupoid and

ΛRep(ΛG2) = [Σ(Z),Rep(ΛG2)]

is the category of loops inside the category of representations of the loop groupoid.
An object in there is an automorphism

ρ

L

��
ρ
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of a representation ρ of ΛG2.
The quantization q(1∗) that we are after will have to be a functor on the

point, with an equivalent space of sections.
We find that, up to equivalence,

q(1∗) : {•} → [par,phas]

is given by
q(1∗)(•) = (C[ΛG2]

Id→ C[ΛG2]) ,

where C[ΛG2] denotes the groupoid algebra of ΛG2.
Notice that under the embedding

Bim ↪→ 2Vect

we have
C[ΛG2] 7→ ModC[ΛG2] ' Rep(ΛG2) .

A section of q(1∗)
e : 1• → q(1∗)

is a square

C Id //

e•

��

C

e•

��
C[ΛG2]

Id
// C[ΛG2]

e•→•{� ��
���
�

in Bim. Notice that this means that e• is a module for C[ΛG] and that e•→• is
an automorphism of that representation.

This way we discover that, indeed

End(1∗) ' [1, q(1∗)] .

q(1∗) is the quantization of our 2-bundle on our target space.
In conclusion, we hence find that the globular extended QFT coming from

the string propagating “on a 2-group” G2 yields a propagation 1-functor on
parameter space

q(1∗) : par → Bim ↪→ 2Vect

of the form

q : ( • // • ) 7→ ( C[ΛG2]
Id // C[ΛG2] ) .

3.3 Nontrivial topology: traces and states of closed string

A trace is what distiguishes a circular path from a circle.
A trace is what distinguishes a circular open string from a closed string.
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Gluing. We need a trace to glue the ends of

ρ

L

��
ρ

.

This gives

Tr

ρ

L

��
ρ

=

1

1

ρ ρ∗

ρ ρ∗

L
��

Id

OO

mm

��

--

KK

,

where 1 denotes the tensor unit in Rep(ΛG2), that is the trivial 1-dimensional
representation.

The result of the trace is an endomorphism of the trivial representation:

Tr : Λ(RepΛG2) → End1RepΛG2
.

Notice that an endomorphism of the trivial representation of a groupoid is
a function on the set of its connected components.

States of open and of closed strings. In conclusion, we find that our
globular extended QFT assigns to the open string states that are objects in the
category

ΛRep(ΛG2) .

An object in here
ρ

L

��
ρ

can be thought of as the state of an open string that sits on a “ρ-brane”.
(Indeed, as discussed elsewhere, for the case that G2 = StringG, representations
ρ of ΛG2 correspond to G-equivariant modules of the canonical gerbe on G,
hence to D-branes on G in the familiar sense.)

To the closed string, on the other hand, it assigns states that are objects in

Tr(ΛRep(ΛG2)) = End1RepΛG2
,

which is the space of functions on connected components of ΛG2.
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3.4 The disk correlator

Given a quantum state of our string on Σ(G2)

e1 : 1 → q(tra∗)

and given a costate
ē2 : q(tra∗) → 1

we may pair both in a canonical fashion to obtain

(ē2, e1) : 1
e1 // q(tra∗)

ē2 // 1 .

This lives in End(1), which itself is monoidal. So we may choose a second order
section

D1 : Id1 → (ē2, e1)

and a second order cosection

D̄2 : (ē2, e1) → Id1

and form the second order pairing:

(D̄2, D1) =

1

e1

��

Id

��

Id

��

q(tra∗)

Id

��
Id

��
q(tra∗)

ē2

��
1

D1 +3 D̄2 +3Id +3 .

As explained elsewhere, this may be addressed as a disk correlator in our QFT.
Concretely, this is a modification of transformations of 2-functors, whose
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single component is the 2-cell

C

e1(•)

��
Id

##

Id // C

e1(•)

��
Id

{{

C[ΛG2] Id //

ē2(•)

��

C[ΛG2]

ē2(•)

��
C

Id
// C

e1(•→•){� ��
���
�

ēe(•→•){� ��
���
�

D1(•)ksD̄2(•)ks

in Bim.
For simplicity, consider the example where

e1(•) = N

is any right C[ΛG2]-module and where

ē2(•) = N∨

is the corresponding dual left C[ΛG2]-module.
Then the duality on these provides canonical choices for D1 and D̄2.
If we further abbreviate

A := C[ΛG2]

and
L := CAA

for A regarded as a right A-module over itself and

R := AAC

as A regarded as a left A-module over itself, then, as discussed elsewhere, the
above 2-cell in Bim may equivalently be rewritten – after applying local trivial-
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ization and after passing from globular to dual string diagrams – as

e1

ē2

N

N∨

A

N





N

&&

N∨

N∨

yy

R

��

R

""

GGG

R∨

R∨

{{www

L
R

L





R

.
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