Morphisms of 3-Functors

Schreiber*

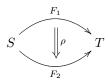
August 28, 2006

Abstract

The diagrams defining morphisms of 3-functors.

1 Morphisms of 2-Functors

Definition 1 Let $S \xrightarrow{F_1} T$ and $S \xrightarrow{F_2} T$ be two 2-functors. A pseudonatural transformation



is a map

$$F_{1}(x) \xrightarrow{F_{1}(\gamma)} F_{1}(y)$$

$$Mor_{1}(S) \ni \qquad x \xrightarrow{\gamma} y \qquad \mapsto \qquad \bigcap_{\rho(x)} \left| \begin{array}{c} F_{1}(\gamma) \\ \\ \\ \\ \end{array} \right|_{\rho(\gamma)} \left| \begin{array}{c} F_{1}(y) \\ \\ \\ \\ \\ \end{array} \right|_{\rho(y)} \qquad \in \operatorname{Mor}_{2}(T)$$

$$F_{2}(x) \xrightarrow{F_{2}(\gamma)} F_{2}(y)$$

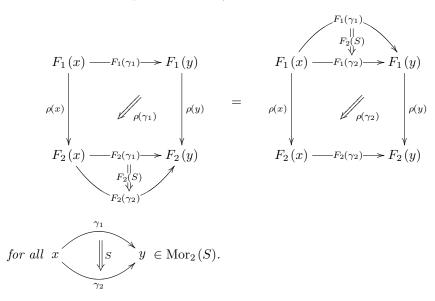
which is functorial in the sense that

$$F_{1}(x) \xrightarrow{F_{1}(\gamma_{1})} F_{1}(y) \xrightarrow{F_{1}(\gamma_{2})} F_{1}(z) \qquad F_{1}(x) \xrightarrow{F_{1}(\gamma_{1} \cdot \gamma_{2})} F_{1}(z)$$

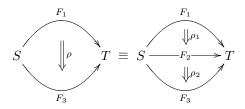
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

 $^{^*\}mbox{E-mail:}$ urs.schreiber at math.uni-hamburg.de

and which makes the pseudonaturality tin can 2-commute



Definition 2 The vertical composition of pseudonatural transformations



is given by

Fiven by
$$F_{1}(x) \longrightarrow F_{1}(y) \qquad F_{1}(x) \longrightarrow F_{1}(y)$$

$$\rho(x) \qquad \rho(y) \qquad \equiv \qquad F_{1}(x) \longrightarrow F_{1}(y)$$

$$\rho_{1}(x) \qquad \rho_{1}(y) \qquad \rho_{1}(y)$$

$$F_{2}(x) \longrightarrow F_{2}(y) \qquad \rho_{2}(y)$$

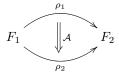
$$F_{3}(x) \longrightarrow F_{3}(y) \qquad F_{3}(x) \longrightarrow F_{3}(y)$$

$$F_{3}(x) \longrightarrow F_{3}(y) \longrightarrow F_{3}(y)$$

$$F_{4}(x) \longrightarrow F_{5}(y) \longrightarrow F_{5}(y)$$

Definition 3 Let $F_1 \xrightarrow{\rho_1} F_2 F_1 \xrightarrow{\rho_2} F_2$ be two pseudonat-

ural transformations. A modification (of pseudonatural transformations)



is a map

$$\mathrm{Obj}(S) \ni x \mapsto F_1(x) \qquad \qquad \downarrow^{\rho_1(x)} \\ F_2(x) \in \mathrm{Mor}_2(T)$$

such that

$$F_{1}(x) \xrightarrow{F_{1}(\gamma)} F_{1}(y) \qquad F_{1}(x) \xrightarrow{F_{1}(\gamma)} F_{1}(y)$$

$$\downarrow \rho_{2}(x) \xrightarrow{\rho_{1}(x)} \rho_{1}(x) \qquad \downarrow \rho_{1}(\gamma) \qquad \downarrow \rho_{2}(x) \qquad \downarrow \rho_{2}(\gamma) \qquad \downarrow \rho_{2}(\gamma) \qquad \downarrow \rho_{2}(y) \qquad \downarrow \rho_{1}(y)$$

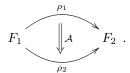
$$\downarrow \rho_{2}(x) \xrightarrow{F_{2}(\gamma)} F_{2}(y) \qquad F_{2}(x) \xrightarrow{F_{2}(\gamma)} F_{2}(y)$$

for all $x \xrightarrow{\gamma} y \in \text{Mor}_1(S)$.

Definition 4 The horizontal and vertical composite of modifications is, respectively, given by the horizontal and vertical composites of the maps to 2-morphisms in $Mor_2(T)$.

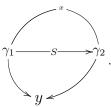
Definition 5 Let S and T be two 2-categories. The **2-functor 2-category** T^S is the 2-category

- 1. whose objects are functors $F: S \to T$
- 2. whose 1-morphisms are pseudonatural transformations $F_1 \xrightarrow{\rho} F_2$
- 3. whose 2-morphisms are modifications

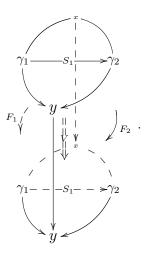


2 Morphisms of 3-Functors

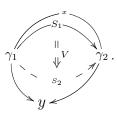
We shall regard 3-categories as special categories internal to 2Cat. From this point of view, a 3-category has a 2-category of objects S, each of which looks like



In a general category internal to 2Cat, we similarly have a 2-category of morphisms $S_1 \xrightarrow{V} S_2$, that look like



We shall restrict attention to the special case where the vertical faces here are identities. Then the above shape looks like

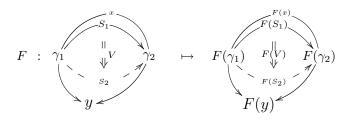


Instead of saying that V is a morphism of a category internal to 2Cat, we say V is a 3-morphism. Similarly, S_1 , S_2 are 2-morphisms, γ_1 , γ_2 are 1-morphisms and x and y are objects.

We would have arrived at the same picture had we regarded categories enriched over 2Cat. However, we find that thinking of 3-morphisms as morphisms

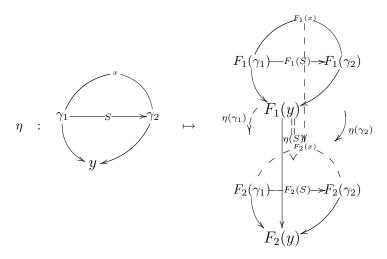
of a category internal to 2Cat facilitates handling morphisms of 3-functors, to which we now turn.

A 3-functor $F:S\to T$ between 3-categories S and T is a functor internal to 2Cat, hence a map

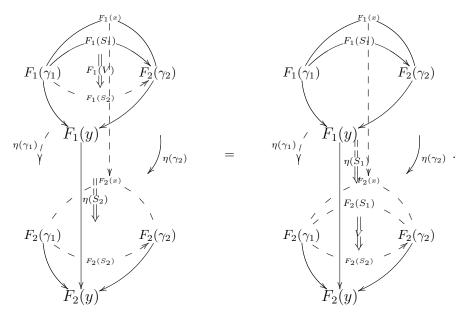


that respects vertical composition strictly and is 2-functorial up to coherent 3-isomorphisms with respect to the composition perpendicular to that.

A 1-morphism $F_1 \xrightarrow{\eta} F_2$ between two such 3-functors is a natural transformation internal to 2Cat, hence a 2-functor from the object 2-category to the morphism 2-category, hence a 2-functorial assignment

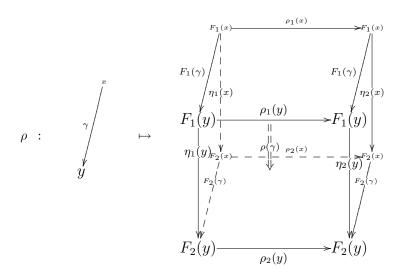


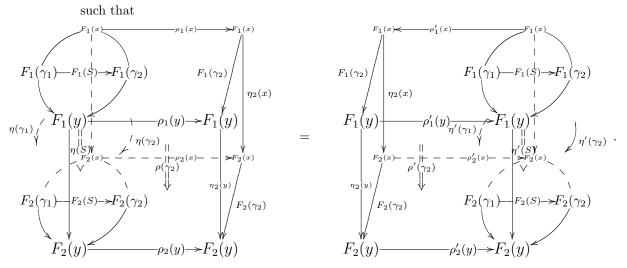
that satisfies the naturality condition



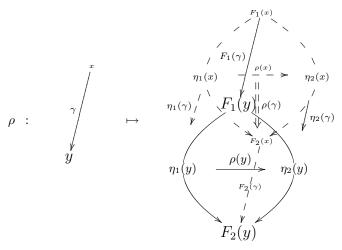
Accordingly, 2-morphisms and 3-morphisms of our 3-functors are 1-morphisms and 2-morphisms of these 2-functors $\eta.$

Hence a 2-morphism $\eta \xrightarrow{\rho} \eta'$ of our 3-functors is a 1-functorial assignment

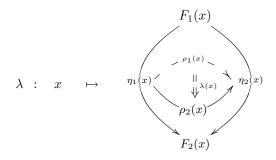




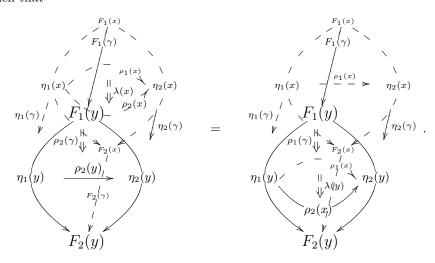
We want to restrict attention to those ρ for which the horizontal 1-morphisms $\rho_1(x)$, $\rho_2(x)$, etc. are identities.



Proceeding this way, a modification $\lambda: \rho_1 \to \rho_2$ of transformations ρ gives us a 3-morphisms of 3-functors. This now is a map



such that



We thus get a 3-category of 3-morphisms of 3-functors.