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Abstract

The diagrams defining morphisms of 3-functors.

1 Morphisms of 2-Functors

Definition 1 Let § LT and S LN T be two 2-functors. A pseudo-
natural transformation
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and which makes the pseudonaturality tin can 2-commute
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for all z ﬂs Y € Mory (5).
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Definition 2 The vertical composition of pseudonatural transformations
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Definition 3 Let [}, ———F, I

F> be two pseudonat-



ural transformations. A modification (of pseudonatural transformations)
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for all x —>y € Mory (S).

Definition 4 The horizontal and wvertical composite of modifications is, re-

spectively, given by the horizontal and vertical composites of the maps to 2-
morphisms in Mors (T).

Definition 5 Let S and T be two 2-categories. The 2-functor 2-category T°
is the 2-category

1. whose objects are functors F: S — T

2. whose 1-morphisms are pseudonatural transformations Fy L. Fy

3. whose 2-morphisms are modifications



2 Morphisms of 3-Functors

We shall regard 3-categories as special categories internal to 2Cat. From this
point of view, a 3-category has a 2-category of objects S, each of which looks

like / -
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In a general category internal to 2Cat, we similarly have a 2-category of mor-

phisms Sy AN Ss , that look like
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We shall restrict attention to the special case where the vertical faces here are
identities. Then the above shape looks like
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Instead of saying that V' is a morphism of a category internal to 2Cat, we say
V is a 3-morphism. Similarly, Sy, S are 2-morphisms, 71, 72 are 1-morphisms
and z and y are objects.

We would have arrived at the same picture had we regarded categories en-
riched over 2Cat. However, we find that thinking of 3-morphisms as morphisms




of a category internal to 2Cat facilitates handling morphisms of 3-functors, to
which we now turn.

A 3-functor F': S — T between 3-categories S and T is a functor internal
to 2Cat, hence a map
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that respects vertical composition strictly and is 2-functorial up to coherent
3-isomorphisms with respect to the composition perpendicular to that.

A 1-morphism F} . F5 between two such 3-functors is a natural trans-
formation internal to 2Cat, hence a 2-functor from the object 2-category to the
morphism 2-category, hence a 2-functorial assignment
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that satisfies the naturality condition
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Accordingly, 2-morphisms and 3-morphisms of our 3-functors are 1-morphisms
and 2-morphisms of these 2-functors 7.

Hence a 2-morphism 7 - 1’ of our 3-functors is a 1-functorial assign-
ment
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such that
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We want to restrict attention to those p for which the horizontal 1-morphisms
p1(x), p2(x), etc. are identities.

Proceeding this way, a modification A : p; — po of transformations p gives us a
3-morphisms of 3-functors. This now is a map
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such that
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We thus get a 3-category of 3-morphisms of 3-functors.



