
Impressions on ∞-Lie theory

Urs

February 26, 2008

Abstract

I chat about some of the known aspects of the categorified version
of Lie theory – the relation between Lie ∞-algebras and Lie ∞-groups
– indicate how I am thinking about it, talk about open problems to be
solved and ideas for how to solve them.

Contents

1 Setting and Plan 2
1.1 Recent insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 A shift in perspective . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Lie ∞-algebra integration is forming weak fundamental
groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Lie ∞-group differentiation is forming the dg-algebra of
differential forms . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The main question of ∞-Lie theory under this shift of perspective 5

1



1 Setting and Plan

For much of the math that pertains to all things more or less geometric – in
particular for pretty much all the math that is relevant in (“formal high energy”)
physics – Lie theory, which relates

Lie groups ↔ Lie algebras ,

is like the bridge between left and right hemisphere.
With the realization that Lie groups and Lie algebras are just the first step

of an infinite ladder all of which is crucially relevant for the subjects mentioned,
the urge is to understand the ∞-categorified version of Lie theory, such as to
obtain a good understanding of whatever the double arrow in

Lie ∞-groups ↔ Lie ∞-algebras

might mean.

1.1 Recent insights

There has recently occurred a crucial step forward with understanding this
double arrow.

First, [4] noticed that the age-old construction due to Sullivan [9], going by
his name, is secretly precisely the prescription for integrating L∞-algebras to
∞-groupoids.

There are some technicalities in when and how to say that an∞-group is Lie
(smooth). The bulk of [4] as well as of [5] are concerned with (different!) ways
to realize the Lie structure on the ∞-group resulting from this general idea.

Then in [6] and independently in [5], a general systematic method to produce
a Lie ∞-algebra from a given Lie ∞-group has been given.

Little is known at the moment about to which extent these two constructions
are mutually inverse.

1.2 Main idea

The main idea underlying [9] and hence [4] (as opposed to the technical details
of [4] and [5]) is easy and straightforward and deserves to be emphasized.

Recall that a convenient model for an ∞-groupoid is a Kan complex : a
simplicial thing satisfying an extra condition called the “Kan condition”. And
recall that an ∞-group should be nothing but an ∞-groupoid with a single
object.

Given that, the main idea of integrating a Lie ∞-algebra to a Lie ∞-group
is

Slogan 1 (Lie ∞-algebra → Lie ∞-group) The ∞-group
∫

g integrating a
given Lie ∞-algebra g is the simplicial thing whose collection of n-simplices is
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the collection of flat g-valued differential forms on the standard n-simplex ∆n:(∫
g

)
n

:= Ω•flat(∆
n, g) .

This is the age-old construction underlying Sullivan models in rational ho-
motopy theory. Apparently [4] was the first to notice that the resulting sim-
plicial thing actually also satisfies the Kan conditions and hence qualifies as an
∞-groupoid.

And the main idea for going the other way is

Slogan 2 (Lie ∞-group → Lie ∞-algebra) The Lie ∞-algebra Lie(G) of a
given ∞-group G is the thing whose Chevalley-Eilenberg algebra CE(Lie(g)) is
the algebra of differential forms on the Kan complex corresponding to G.

This is described in [6] and mentioned in [5]. More precisely, this involves
mapping a simplicial space build from the “odd line” into the simplicial space
given by G, and then considering the space of functions on the resulting graded
space. Noticing that functions on maps from the odd line into anything are
differential forms on that, the above slogan is obtained.

Currently little is known beyond the mere definition of the constructions cor-
responding to these slogans and a handful of concrete examples. In particular,
the following question seems to be open:

Question 1 What is the precise relation between these two constructions?

1.3 A shift in perspective

I will now propose a certain way to think of precisely these two constructions.
This is supposed to be a trivial reformulation of the main idea. So if it appears
as such to the reader, all the better. Trivial as it is, I am thinking that it is
useful. Later I will also make a proposal concerning more the technical details
behind the main idea.

1.3.1 Lie∞-algebra integration is forming weak fundamental groupoids

Observation 1 (trivial but helpful) There is a generalized smooth space Xg,
such that the Lie ∞-groupoid

∫
g integrating the Lie ∞-algebra g according to

slogan 1 is its weak fundamental ∞-groupoid:∫
g = Π∞(Xg) . (1)

Here by a “generalized smooth space” I mean a sheaf on suitable smooth
test domains (convex subsets of Euclidean spaces, say). That smooth space is
the sheaf which sends each test domain U to the set of flat g-valued forms on
U :
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Xg : U 7→ Ω•flat(U, g) .

By the “fundamental ∞-groupoid” Π∞(X) of any generalized smooth space
X I mean the Kan complex whose space of n-simplices is simply the space of
singular n-simplices in X:

(Π∞(X))n := Hom(∆n, X) .

(There is a slight technical issue here with realizing this simplicial smooth
space as a Kan complex. I think this is naturally dealt with by using maps with
“sitting instants” at the boundary, the way it is done for 1-path groupoids in
smooth spaces in [8].)

Then observation 1 is a direct application of the Yoneda lemma, which says
that

(Π∞(Xg))n := Hom(∆n, Xg)
Yoneda' Xg(∆n) := Ω•flat(∆

n, g) =:
(∫

g

)
n

.

If we agree that this reformulation of the Kan complexes appearing in slogan
1 as fundamental ∞-groupoids of certain smooth spaces is trivial, let’s also try
to agree that it is helpful.

The first aspect that I find helpful is that this perspective suggests that we
also consider other flavors of path n-groupoids of a given smooth space.

I think that

Observation 2 (strict globular fundamental n-groupoids of smooth spaces)
For every generalized smooth space X, there is its strict globular fundamental
path n-groupoid

Πstr
n (X)

defined as follows: (k < n)-morphisms are maps [0, 1]k → X modulo thin ho-
motopy, while n-morphisms are maps [0, 1]n → X modulo full homotopy.

A homotopy [0, 1]k+1 → X here is called thin if every (k + 1)-form on X pulled
back along it vanishes. Compare [8].

So if our Lie∞-algebra happens to be a Lie n-algebra, we need not integrate
it to a weak Lie ∞-group following slogan 1 and observation 1. We can also
integrate it to a strict globular n-group G by setting

BG := Πstr
n (Xg) .

Here and always, I write BG for the one-object n-groupoid corresponding
to the n-group G.

I think the following examples can be checked:

• For g an ordinary Lie algebra, the G in

BG = Πstr
1 (Xg)
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is the ordinary simply connected Lie group integrating G: by unwrap-
ping the definitions on the right hand, one finds that this amounts to the
well-known “integration without integration” of Lie algebras in terms of
equivalence classes of parallel transport along intervals.

• For gµ the String Lie 2-algebra (from [1, 2] with terminology as in [7]) the
strict 2-group Gµ in

BGµ = Πstr
2 (Xgµ)

is a strict version of the String Lie 2-group essentially being that appearing
in [2], but with a different rule for horizontal composition. I am claiming
that this strict Gµ is implicitly used in [3]. (Which is an example for:
strict versions of Lie n-groups are useful in concrete computations.)

1.3.2 Lie ∞-group differentiation is forming the dg-algebra of differ-
ential forms

The previous subsection tries to say that it is not so much the Kan complex∫
g

which should first come to mind when integrating Lie ∞-algebra g, but rather
the smooth space

Xg .

Given any smooth space X, we immediately obtain the differential graded
commutative algebra of differential forms on it:

Ω•(X) := Hom(X, Ω•(−)) .

I believe that if we don’t pass from the smooth space Xg to its infty-path
groupoid Π∞(Xg) =

∫
g, then the construction of [6] amounts to nothing but

sending a smooth space to its algebra of differential forms.
But I need to check that in more detail.

1.4 The main question of ∞-Lie theory under this shift of
perspective

The above would mean that the construction

[4, 5] : Lie ∞-algebras oo // Lie ∞-groups : [6, 5]
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is really nothing but the adjunction [10]

DGCAs � smooth spaces

A
� // (XA := Hom(A,Ω•(−)))

Hom(X, Ω•(−)) oo �
X

(2)

induced by the ambimorphic object [10] Ω•(−) (a DGCA-valued sheaf), as de-
scribed in [7].

If so, the main open question induced by 1, is

Question 2 To which degree is 2 an equivalence in cohomology?

Notice that there is canonically an inclusion

A
� � // Ω•(XA)

and we are asking to which degree this fails to be onto in cohomology.
Notice that Sullivan [9], who is working with something like polynomial

forms, does prove that the expected equivalence in his setup does hold. Since we
are really just changing perspective on that construction, it should be true that
the issue is entirely in understanding how the proof generalizes from polynomial
to smooth differential forms.

Smooth algebras of differential forms In dicussion with Todd Trimble
and Andrew Stacey, it seemed to emerge that the problem that keeps 2 from
being an equivalence instead of a mere adjunction might be due to the fact that
the DGCA Ω•(X) of differential forms on a smooth space does not manifestly
remember the smoothness of that space.

If we restrict to 0-forms aka smooth functions, the natural solution seems to
be to regard

Ω0(X) := Hom(X, Ω0(−))

not just as an algebra, but actually as a co-pre-sheaf

Ω0(X) : U 7→ Hom(X, Ω0(−, U))

which we may test on test co-domains.
This co-pre-sheaf happens to be monoidal, in that it respects the carte-

sian product of test codomains. Such monoidal co-pre-sheaves are called C∞-
algebras []. And these enjoy plenty of nice properties which the more naive mere
algebra of functions on a smooth space is lacking.

It remains to extend this construction to form C∞DGCAs. I am thinking
that in order to handle this we need to define C∞-modules and equip Ωn(X)
with the structure of a C∞-module over Ω0(X). Then we’d might make the
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definition: a C∞DGCA is a DGCA whose degree 0 part is a C∞-algebra
and whose degree n-parts are each C∞-modules of this C∞-algebra.

Then we might have a chance to get an equivalence

C∞DGCAs ' smooth spaces .

If so, lots of nice consequences would result...
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