
fda Laboratory

Schreiber∗

December 14, 2006

Abstract

I list a couple of free graded-commutative differential algebras, Koszul
dual to various semistrict Lie n-algebras.

Example 1 (Lie algebra)

Let g be a Lie algebra. Choose a basis {aa} of g∗ and let the structure constants
in the dual basis be Ca

bc. Consider the free graded-commutative algebra
∧•

g∗,
where g∗ is in degree 1. Define a differential on that by

daa +
1
2
Ca

bcq
bqc = 0 .

Nilpotency of d follows from the Jacobi-identity in g

d2aa = d(−1
2
Ca

bca
bac)

=
1
2
Ca

b[cC
b
de]a

cadae

= 0 .

Example 2 (deRham complex of Rn)

Consider example 1 for g = Lie(Rn). Then
∧•

g∗ is just the complex of differ-
ential forms on Rn with differential the deRham differential.

Example 3 (trivial flat connection)

An fda-morphism from the Lie algebra g to the deRham complex is a g-valued
1-form on Rn with vanishing curvature.

Example 4 (differential crossed module)
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Let (g, h) be a differential crossed module. Choose a basis {aa} of g∗ and a
basis

{
bi

}
of h∗. In this basis, let the structure constants of g be Ca

bc. Let the
action of g on h have structure constants αi

aj . Let the morphism from h to g
have components tai.

The fact that α is an action (by derivations)

α(aa)(α(ab)(bi)) = α([aa, ab])(bi) + α(ab)(α(aa)(bi))

reads in components
2αi

[a|j|α
j
b]k = αi

ckC
c
ab .

One of the conditions on the differential crossed module is

t(α(aa)(bi)) = [aa, t(bi)] .

In components this reads
tbjα

j
ai = Cb

act
c
i .

The other condition is
α(t(bi))(bj) = [bi, bj ] .

This says that αi
akt

a
j = C̃i

jk are the structure constants of h. In particular,
this implies that the expression is antisymmetric in the two lower indices.

Consider the free graded-commutative algebra
∧•(g∗⊕h∗) with g∗ in degree

1 and h∗ in degree 2. Define a differential on that by

daa +
1
2
Ca

bca
bac + taib

i = 0

dbi + αi
aja

abj = 0 .

Nilpotency of d follows from

d2aa = d(−1
2
Ca

bca
bac − taib

i)

=
1
2
Ca

bcC
b
dea

cadae − Ca
bca

btcib
i + taiα

i
bja

bbj

= 0 ,

where the first term vanishes again by the Jacobi identity on g and the second
two terms by the first of the two crossed module conditions. Also

d2bi = d(−αi
aja

abj)

= −αi
aj(−

1
2
Ca

bca
bac − takb

k)bj + αi
aja

a(−αj
bka

bbk)

= (αi
aj

1
2
Ca

bc − αi
bkα

k
cj)abacbj + αi

a(jt
a

k)b
kbj

= 0 .

These two terms vanish by the relations discussed above (α is an action com-
patible with t).
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Example 5 (flat and fake-flat 2-connection)

An fda-morphism from the crossed module (h→ g) to the deRham complex
is a g-valued 1-form A and an h-valued 2-form B satisfying FA + t(B) = 0 and
dAB = 0.

Example 6 (inner derivation 2-algebra of g)

The Lie 2-algebra of inner derivations of the Lie algebra g is the crossed
module (g → g). Hence, by example 5, an fda-morphism from (g → g) to
the deRham complex is an arbitrary g-valued 1-form A on Rn. The 2-form
B involved is fixed to be the curvature of the 1-form. The flatness condition
dAB = 0 is the Bianchi identity.

—– begin of new part —-

Example 7 (general semistrict Lie 2-algebra)

Baez-Crans have defined semistrict Lie-2-algebras and shown that they are
equivalent to 2-term L∞ algebras. These, in turn, are the same as general
differential structures on Λ•(V ∗

0 ⊕ V ∗
1 ). In a basis {aa} of V ∗

0 and {bi} of V ∗
1

the most general differential acts as

daa +
1
2
Ca

bca
bac + taib

i = 0

and
dbi + αi

aja
abj +

1
6
ri

abca
aabac = 0 .

The differential crossed module discussed above is obtained for ri
abc = 0. In

the Lie-2-algebra picture, r encodes a nontrivial Jacobiator.
In order to compare this to the Baez-Crans notation, use the following dic-

tionary (where {aa} and {bi} are the bases dual to {aa} and {bi}, respectively):

1
2
Ca

bcaa = l2(ab, ac)

1
2
αi

ajbi = l2(ab, bi)

taiaa = d(bi)

1
6
ri

abc =
1
2
l3(aa, ab, ac) .

Example 8 (morphisms of Lie-2-algebras)

Lie 2-algebras, due to their category-theoretic nature, have a rather obvious
notion of 1- and 2-morphisms between them, as explained by Baez-Crans.

A natural notion of 1-morphism between FDAs is a map that is at the same
time an algebra homomorphism and a chain map. The respect for the (free)
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algebra structure says that such a morphism is already fixed once we know its
action on the generators.

A natural notion of 2-morphism would be a chain homotopy. But it turns
out that, in order to reproduce the 2-morphisms of Baez-Crans Lie 2-algebras
this way, we need a slight modification of this, namely a chain homotopy up to
linear order.

To see this, we will now work out these morphisms explicitly.
First recall the Baez-Crans definition of morphism of 2-term L∞-algebras.

Definition 1 A morphism
ϕ : V → V ′

of 2-term L∞-algebras V and V ′ are maps

φ0 : V0 → V ′
0

φ1 : V1 → V ′
1

together with a skew-symmetric map

φ2 : V0 ⊗ V0 → V ′
1

satisfying
φ0(d(h)) = d′(φ1(h))

as well as
d(φ2(x, y)) = φ0(l2(x, y))− l2(φ0(x), φ0(y))

φ2(x, dh) = φ1(l2(x, h))− l2(φ0(x), φ1(h))

and finally

l3(φ0(x), φ0(y), φ0(z))− φ1(l3(x, y, z)) =
φ2(x, l2(y, z)) + φ2(y, l2(z, x)) + φ2(z, l2(x, y)) +
l2(φ0(x), φ2(y, z)) + l2(φ0(y), φ2(z, x)) + l2(φ0(z), φ2(x, y)) .

We now show how this is reproduced by a chain map algebra homomorphism
between the corresponding dual FDA.

Let {aa} and {bi} as above be a basis for (Λ•(V ∗
0 ⊕ V ∗

1 ), dV ) and let {a′a}
and {b′i} be a basis of another Lie 2-algebra. (Λ•(W ∗

0 ⊕W ∗
1 ), dW ).

Then a morphism

q : (Λ•(V ∗
0 ⊕ V ∗

1 ), dV ) → (Λ•(W ∗
0 ⊕W ∗

1 ), dW )

reads in that basis
q : aa 7→ qa

ba
′b

and
q : bi 7→ qi

jb
′j + qi

aba
′aa′b ,
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where the chain map condition demands that the coefficients satisfy

−1
2
Ca

bcq
b
dq

c
ea
′da′e − taiq

i
jb
′j − taiq

i
bca

′ba′c = −qa
d
1
2
C ′dbca

′ba′c − qa
dt
′d

ib
′i

and

−αi
ajq

a
bq

j
ka

′bb′k − αi
ajq

a
bq

j
cda

′ba′ca′d − 1
6
ri

abcq
a

dq
b
eq

c
fa

′da′ea′f

= d′(qi
jb
′j + qi

aba
′aa′b)

= −qi
jα

′j
aka

′ab′k − 1
6
qi

jr
j
abca

′aa′ba′c + qi
abC

′b
cda

′aa′ca′d + 2qi
abt

′b
ja
′ab′j

hence
1
2
Ca

deq
d
bq

e
c + taiq

i
bc =

1
2
qa

dC
′d

bc

and
taiq

i
j = qq

dt
′d

j

and
αi

ajq
q
bq

j
k = qi

jα
′j

ak − 2qi
abt

b
j

and
αi

djq
d
[aq

j
bc] +

1
6
ri

defq
d
[aq

e
bq

f
c] =

1
6
qi

jr
j
[abc] − qi

[a|b|C
′b

cd] .

One can check that this are indeed the equations defining a morphism of Lie-2-
algebras.

Definition 2 A 2-morphism
τ : φ⇒ ψ

of 1-morphisms of 2-term L∞-algebras is a map

τ : V0 → V ′
1

such that
ψ0 − φ0 = [d, τ ]0

ψ1 − ψ0 = [d, τ ]1

and

φ2(x, y)− ψ2(x, y) = l2(φ0(x), τ(y)) + l2(τ(x), ψ0(y))− τ(l2(x, y))

This is reproduces in terms of FDAs as follows.
Define a 2-morphism τ : q → q′ between morphisms of FDAs to be a map

of degree -1 which on the generators acts as

τ : bi 7→ τ i
aa

′a

and
τ : aa 7→ 0 ,
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like a chain homotopy would, but then extend this to a q-Leibnitz-operator
to all of Λ•V ∗. This means that, for instance

τ : bibjbk 7→ τ(bi)q(bjbk) + q(bi)τ(bj)q(bk) + q(bibj)τ(bk) .

This way we get
[d, τ ] : aa 7→ taiτ

i
ba
′b

and
[d, τ ] : bi 7→ −1

2
τ i

aC
′a

bca
′ba′c − τ i

at
′a

jb
′j + αi

ajτ
j
ba
′aa′b .

One can check that with these formulas the condition

q − q′ = [d, τ ]

evaluated on generators does reproduce the above definition of 2-morphism of
2-term L∞-algebra.

But then, of course, this condition holds on all of Λ•V only up to terms with
at most one occurence of τ .

We might want to address such a chain homotopy up to linear terms a
linearized chain homotopy.

—– end of new part —-

Example 9 (Chern-Simons 3-algebra)

Let g be any Lie algebra. Choose a dual basis {aa}, let Ca
bc be the structure

constants in that basis and kab be the components of the Killing form. Let h
be the Lie algebra of U (1) and consider the free graded-commutative algebra∧•(g∗ ⊕ g∗ ⊕ h∗) with the first summand g∗ in degree 1, the second one in
degree 2 and with h∗ in degree 3. Denote by {ba} the basis of the g∗-summand
in degree 2; and by {c} a basis of h∗

Invariance of the Killing form

k ([aa, ab], ac) + k (ab, [aa, ac]) = 0

reads in components
C(ab)c = 0 ,

where Cabc ≡ kadC
d

bc.
On that algebra, define the differential

daa +
1
2
Ca

bca
bac + ba = 0

dba + Ca
bca

bbc = 0
dc+ kabb

abb = 0 .
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The first two equations are precisely those of the crossed module g → g from
example 6. So we just need to check that

d2c = d(−kabb
abb)

= −2tabC
b
dea

dbeba

= 2C(ae)da
dbeba

= 0

by the invariance of k.

Example 10 (Chern-Simons 3-form)

An fda morphism from the Chern-Simons 3-algebra of example 9 to the
deRham complex is a g-valued 1-form A, a g-valued 2-form B and a 3-form C
satisfying FA + B = 0 and dC + t(B ∧B) = 0. Hence it is, up to an exact
3-form, really just that 1-form A, which gives rise to its curvature 2-form FA

and its Chern-Simons 3-form C ∝ CSA = t(A ∧ dA) + 2
3 t(A ∧A ∧A).

Example 11 (String 2-algebra)

For g any Lie algebra and h = Lie(R), consider
∧•(g∗ ⊗ h∗) with g∗ in degree

1 and h∗ in degree 2. In terms of a dual basis {aa} of g∗ and {c} of h∗ define a
differential by

daa +
1
2
Ca

bc = 0

db+
1
6
Cabca

aabac = 0 ,

where Cabc = kaa′Ca′
bc as in example 9. This is nilpotent

d2b = d(−1
6
Cabca

aabac)

=
1
2
Cabca

aab(
1
2
Cc

dea
dae)

= 0

due to the Jacobi identity.
The Lie 2-algebra defined by the above fda is known as the skeletal version

of the Lie 2-algebra stringg.

Example 12 (inner derivation 3-algebra of stringg)

We want to find something like the 3-algebra of inner derivations of the
2-algebra from example 11.

So we are looking for an FDA defined on
∧•(g∗ ⊗ (g∗ ⊗ h∗)⊗ h∗) with the

first g∗ in degree 1, the bracket term in degree 2 and the last h∗ in degree 3.
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Denote by {ra} the chosen dual basis of g∗, interpreted in degree 2 and by
c the basis of h∗ in degree 3.

The action of the differential on aa and ra should be as in example 6

daa +
1
2
Ca

bca
bac + ra = 0

dra + Ca
bca

brc = 0 .

This allows to have the following terms in the equation for db

db+
1
6
Cabca

aabac + ukaba
arb − c = 0 ,

where u ∈ R is some constant which we use to parameterize our choices. Nilpo-
tency of d requires that

d2b = d(−1
6
Cabca

aabac − ukaba
arb + c)

= dc+
1
2
Cabca

aabrc − u
(
−1

2
kabC

a
cda

cadrb − kabr
arb + kaba

aCb
cda

crd

)
= dc+

1
2
(1− u)Cabca

aabrc + ukabr
arb .

Clearly, a special situation is u = 1, so let’s concentrate on that. Then we have

daa +
1
2
Ca

bca
bac + ra = 0

dra + Ca
bca

brc = 0

db+
1
6
Cabca

aabac + kaba
arb − c = 0

dc+ kabr
arb = 0 .

That d2c = 0 follows as in example 9.

Example 13 (stringg-3-connection)

An fda morphism of the 3-algebra of example 12 to the deRham complex is a
g-valued 1-form A together with a real 3-form B and a real 3-form H satisfying

H = dB +
1
6
CabcA

a ∧Ab ∧Ac − kabA
aF b

= dB −
(
kabA

adAb +
1
3
CabcA

a ∧Ab ∧Ac

)
= dB − CS(A) .

Example 14 (inner derivation 3-algebra of (h→ g))

Let (h→ g) be a differential crossed module. We want to find the 3-algebra
of inner derivations of (h→ g), in analogy to example 6.
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I did this computation at the level of groups and then differentiated. The
result is the following fda.

Let the vector space be
∧•(g∗ ⊗ (g∗ ⊗ h∗) ⊗ h∗), where the first g∗ is in

degree 1, the (g∗ ⊗ h∗) is in degree two and h∗ is in degree 3.
Denote a chosen basis of g∗ in degree 1 by {qa}, a basis of g∗ in degree 2 by

{ra}, a basis of h∗ in degree 2 by
{
si

}
and, finally, a basis of h∗ in degree 3 by{

ti
}
.

Let Ca
bc, αi

aj and tia be the tensors characterizing the crossed module
(h→ g) as in example 4.

Define a differential by

dqa +
1
2
Ca

bcq
bqc + tais

i + ra = 0

dra + Ca
bcq

brc + tait
i = 0

dsi + αi
ajq

asj − ti = 0
dti + αi

ajq
atj + αi

ajr
asj = 0

This looks complicated. But it’s really (except for the constants) the only thing
that can be written down using only the data provided by the crossed module
(h→ g).

Checking that this is indeed nilpotent is - guess what - straightforward but
tedious:

d2qa = d(−1
2
Ca

bcq
bqc − tais

i − ra)

= Ca
bcq

b(−1
2
Cc

deq
dqe − tcis

i − rc) + tai(αi
bjq

bsj − ti) + Ca
bcq

brc + tait
i

=
1
2
Ca

bcC
c
deq

cqdqe

+(−Ca
bct

c
i + tajα

j
bi)qbsi

= 0

d2ra = d(−Ca
bcq

brc − tait
i)

= Ca
bc(

1
2
Cb

deq
dqe + tbis

i + rb)rc − Ca
bcq

b(Cc
deq

dre + tcit
i) + tai(αi

bjq
btj + αi

bjr
bsj)

= (
1
2
Ca

bcC
b
de − Ca

b[eC
b
d]c)qdqerc

+(−Ca
bct

c
j + taiα

i
bj)rbsj

+Ca
bcr

brc

+(−Ca
bct

c
i + tajα

j
bi)qbti

= 0

d2si = d(−αi
ajq

asj + ti)
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= αi
aj(

1
2
Ca

bcq
bqc + taks

k + ra)sj − αi
ajq

a(αj
bkq

bsk − tj)− αi
ajq

atj − αi
ajr

asj

= (
1
2
αi

ajC
a

bc − αi
bkα

k
cj)qbqcsj

+αi
ajt

a
ks

ksj

= 0

d2ti = d(−αi
ajq

atj − αi
ajr

asj)

= αi
aj(

1
2
Ca

bcq
bqc + taks

k + ra)tj − αi
ajq

a(αj
bkq

btk + αj
bkr

bsk)

+αi
aj(Ca

bcq
brc + takt

k)sj + αi
ajr

a(αj
bkq

bsk − tj)

= (
1
2
αi

ajC
a

bc − αi
bkα

k
cj)qbqctj

+(αi
ajt

a
k + αi

akt
a

j)sktj

+(−αi
ajα

j
bk + αi

ckC
c
ab + αi

bjα
j
ak)qarbsk

= 0

All these expressions vanish after using the identities already listed in example
4.

Example 15 (non-flat 2-connection)

An fda-morphism from the fda of inner derivations of a strict Lie 2-algebra
(h→ g) (example 14) to the deRham fda (example 2) is the same as a g-valued
1-form A and an h-valued 2-form B on Rn, which give rise to the g-valued
2-form

β = FA + t(B)

and the h-valued 3-form
H = dAB

satisfying
dAβ = t(H)

and
dAH + β ∧B = 0 .

We may regard this as a flat 3-connection with values in inner derivations of
(h → g). Alternatively, it is an arbitrary 2-connection with 2-curvature β and
3-curvature H, satisfying two Bianchi identities.

Example 16 (morphisms of Inn(h→ g) connections)

Given two connections (chain maps that respect the algebra structure) Φ :
Inn(h→ g) → deRham, recall that a 1-morphism between these is a chain
homotopy ε which is Φ-Leibnitz. For instance, if ra is of degree 2 as above, then

ε
(
rarbrc

)
= ε(ra) Φ(rbrc) + Φ(ra) ε

(
rb

)
Φ(rc) + Φ

(
rarb

)
ε(rc) .
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A 2-morphism between such 1-morphisms is a Φ-Leibnitz homotopy of chain
homotopies, and so on.

Let Q = (dInn(h→g)) ⊕ ddr be the differential of the direct sum complex
Inn(h→ g)⊕ Ω•

dR.
As above, set Φ(qa) = Aa, Φ(ra) = βa, Φ

(
si

)
= Bi and Φ

(
ti

)
= Hi.

For 1-morphisms between Φ and Φ′, set ε(qa) = ln ga, ε
(
si

)
= ai ε(ra) = 0

ε
(
ti

)
= di.

Then Φ′ − Φ = [Q, ε]. And

(A′ −A)a = [Q, ε](qa) = d ln ga + Ca
bcA

b(ln gc)− taia
i

(B′ −B)i = [Q, ε](si) = dai − αi
aj(ln ga)Bj + αi

ajA
aaj + di .

One sees that this is the first order version of

A′ = g−1Ag + g−1dg − t(a)

and
B′ = g−1Bg + dAa+ a ∧ a+ d ,

which are the relations familiar from transitions in nonabelian gerbes. Had we
not set ε(ra) = 0 but ε(ra) = pa then there would have been an additional
degree of freedom in the first equation, leading to

A′ = g−1Ag + g−1dg − t(a)− p .

Let’s ignore this extra freedom for the moment and concentrate again on the
case ε(ra) = 0.

The transformation of the 2-form and 3-form curvature to first order is found
to be

(β′ − β)a = [Q, ε] (ra) = −Ca
bc(ln gb)βc − taid

i

and

(H ′ −H)i = [Q, ε]
(
ti

)
= ddi − αi

aj(ln ga)Hi + αi
ajA

adj − αi
ajβ

aaj .

This is the first order expansion of

β′ = g−1βg − t(d)

and
H ′ = g−1Hg + dAd− β(a)± [a, d] .

The last term in the last equation is entirely second order in the transition data,
hence cannot be seen in the above first order formalism at all. But including
it makes the above indeed reproduce the transition equations for 2- and 3-form
curvature known from nonabelian gerbes.
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