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Abstract

Principal 2-transport with respect to a 2-group Gs involves the auto-
morphisms 3-group AUT(G2). Propagation in 2-dimensional field theory
is similar, but uses a 2-monoid C> instead of a 2-group G2. Hence the
3-monoid END(C) should play a role here.

We compute the inner part of END(C2) for Cs a braided monoidal cat-
egory with duals. Then we show that bimodule homomorphisms internal
to END(C?) give rise to morphisms of left- and right-induced bimodules
in Cz.

In our applications, Co will be abelian. Therefore we call a monad in X (C5)
an algebra internal to Ca.
A lax functor /i—L\

{ a b } — E(CQ)
N
is the same as an algebra A,, an algebra A, two A,-A, bimodules and a bi-
module homomorphism between these, all internal to Cs.

Writing r for the right action on a bimodule, respect for the right module
structure is in particular expressed by
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We want to understand what happens with this situation as we pass from
Y (C3) to End (X(C2)).
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The inner part of End(X(C3)). For R € Obj(Cs), consider the inner endo-
morphism of ¥ (C3) obtained by conjugation with R

Ad R : CQ — 02

Using duality on objects in Cs, this functor has lax and op-lax respect for

horizontal composition.
Between two such morphism, we have 2-morphisms
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given by pseudonatural transformations which are represented by functorial as-

signments
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Here and in the following the 2-morphism b denotes the respective braiding

operation.
This f respects horizontal composition using the op-lax compositor
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and it respects the identity in an op-lax way
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In the above form, f depends only on the isomorphism class of vy, since
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by the functoriality of the braiding.

On the other hand, a 3-morphism
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this condition is equivalent to
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This is analogous to the action of isomorphisms on vy above.
The vertical composition of two such 2-morphisms
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is represented by the assignment
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We find the horizontal composition
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by whiskering with identity 2-cells and applying vertical composition. The result



should be
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For our applications, we can assume all the units
Id—-R"®R

of the dualities in C5 to have right inverses.
Then there is a modification with one-sided inverse given by uy — R*® R®
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Bimodule homomorphisms in End (X (C5)). Using the above, we can work
out the diagram
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in ¥ (End (Cy)).

For our applications we are interested in the case where the right actions r
are pseudonatural transformations with u, = Id and v, = Id.

In this case, using our results on the nature of inner 2-morphisms in End (X (C3)),
we find that the above equation says in terms of string diagrams in Cs that
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which says that a morphism of bimodules in End (3 (C3)) is a morphism of left-
and right-induced bimodules in ¥ (Cy).



