$\operatorname{End}(\Sigma(C_2))$ -2-Transport

Schreiber*

September 27, 2006

Abstract

Principal 2-transport with respect to a 2-group G_2 involves the automorphisms 3-group $AUT(G_2)$. Propagation in 2-dimensional field theory is similar, but uses a 2-monoid C_2 instead of a 2-group G_2 . Hence the 3-monoid $END(C_2)$ should play a role here.

We compute the inner part of $END(C_2)$ for C_2 a braided monoidal category with duals. Then we show that bimodule homomorphisms internal to $END(C_2)$ give rise to morphisms of left- and right-induced bimodules

In our applications, C_2 will be abelian. Therefore we call a monad in $\Sigma(C_2)$ an algebra internal to C_2 .

A lax functor

$$\left\{ \begin{array}{c} a & \downarrow \\ \end{array} \right\} \to \Sigma(C_2)$$

A lax functor $\left\{\begin{array}{c} a & \downarrow \\ b \end{array}\right\} \to \Sigma(C_2)$ is the same as an algebra A_a , an algebra A_b , two A_a - A_b bimodules and a bimodule homomorphism between these, all internal to C_2 .

Writing r for the right action on a bimodule, respect for the right module structure is in particular expressed by

We want to understand what happens with this situation as we pass from $\Sigma(C_2)$ to End($\Sigma(C_2)$).

^{*}E-mail: urs.schreiber at math.uni-hamburg.de

The inner part of $\operatorname{End}(\Sigma(C_2))$. For $R \in \operatorname{Obj}(C_2)$, consider the inner endomorphism of $\Sigma(C_2)$ obtained by conjugation with R

Using duality on objects in C_2 , this functor has lax and op-lax respect for horizontal composition.

Between two such morphism, we have 2-morphisms

given by pseudonatural transformations which are represented by functorial assignments $\,$

where

Here and in the following the 2-morphism b denotes the respective braiding operation.

This f respects horizontal composition using the op-lax compositor

and it respects the identity in an op-lax way

In the above form, f depends only on the isomorphism class of v_f , since

by the functoriality of the braiding. On the other hand, a 3-morphism

being a modification of pseudonatural transformations, is a 2-cell

such that

If Q has at least a one-sided inverse

$$\bullet \underbrace{\begin{array}{c} u_f \\ \psi_Q \\ \psi_{\bar{Q}} \end{array}}_{u_f} \bullet \quad = \quad \bullet \underbrace{\begin{array}{c} u_f \\ \psi_{\bar{Q}} \\ \psi_{\bar{Q}} \end{array}}_{u_f} \bullet$$

this condition is equivalent to

This is analogous to the action of isomorphisms on v_f above. The vertical composition of two such 2-morphisms

is represented by the assignment

We find the horizontal composition

by whiskering with identity 2-cells and applying vertical composition. The result

should be

For our applications, we can assume all the units

$$\mathrm{Id} \to R^* \otimes R$$

of the dualities in C_2 to have right inverses.

Then there is a modification with one-sided inverse given by $u_f \to R^* \otimes R \otimes u_f \stackrel{R^* \otimes b}{\to} R^* \otimes u_f \otimes R$ with

Bimodule homomorphisms in $\operatorname{End}(\Sigma(C_2))$. Using the above, we can work out the diagram

$$C_{2} \xrightarrow{\operatorname{Ad}_{N'}} C_{2} \xrightarrow{\operatorname{Ad}_{A}} C_{2} = \underbrace{\begin{array}{c} \operatorname{Ad}_{N} & C_{2} \\ \operatorname{Ad}_{N'} & \operatorname{Ad}_{N} & C_{2} \end{array}}_{\operatorname{Ad}_{N}} C_{2} = \underbrace{\begin{array}{c} \operatorname{Ad}_{N} & \operatorname{Ad}_{A} \\ \operatorname{Ad}_{N} & \operatorname{Ad}_{N} & C_{2} \end{array}}_{\operatorname{Ad}_{N'}} C_{2}$$

in $\Sigma(\operatorname{End}(C_2))$.

For our applications we are interested in the case where the right actions r are pseudonatural transformations with $u_r = \operatorname{Id}$ and $v_r = \operatorname{Id}$.

In this case, using our results on the nature of inner 2-morphisms in $\operatorname{End}(\Sigma(C_2))$, we find that the above equation says in terms of string diagrams in C_2 that

This is equivalent to

$$\begin{array}{c|cccc}
N & u_f & A \\
N & u_f & A \\
\downarrow & & & \\
v_f & N' & A
\end{array} =
\begin{array}{c|cccc}
N & u_f & A \\
\downarrow & & & \\
N & A & u_f \\
\downarrow & & & \\
N & & & \\
V_f & N'
\end{array}$$

which says that a morphism of bimodules in $\operatorname{End}(\Sigma(C_2))$ is a morphism of left-and right-induced bimodules in $\Sigma(C_2)$.