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Abstract

Arrow theory of n-dimensional quantum objects charged under an n-
transport on their target space.
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1 The concept

There is a mystery that demands to be understood:

Mystery 1 The theory of gerbes with connection in terms of local data exhibits
a lot of structural resemblance to state sum models of 2-dimensional quantum
field theory.

Why is that?

Does this point to a deeper pattern that we might want to understand?
After a little bit of reflection, I think the pattern is

a) n-Bundles with connection are naturally conceived in terms of parallel
transport n-functors.
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b) Coupling these n-connections to an n-particle amounts to transgressing
these n-functors to a suitable configuration space.

c) Quantizing these charged n-particles amounts to pushing the transgressed
n-functors forward to a point.

From this point of view, evolution in the quantum field theory of the charged
n-particle is an n-functor that is inherently obtained from the parallel transport
n-functor that expresses the background field that the particle propagates in.

Both, the original parallel transport n-functor as well as the resulting quan-
tum propagation n-functor may be locally trivialized. For the former this yields
the local description of gerbe holonomy. For the latter this yields the state sum
description of QFT.
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Figure 1: Quantization, categorification and local trivialization.
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classical data quantum theory
background field n-particle

name of
n-functor parallel transport action quantum propagation

image of
n-functor monodromy classical phases quantum amplitudes

with values in phas = nVect

domain
on target space

tar
on configuration space

conf ⊂ [par, tar]
on parameter space

par
in

symbols tra : tar → phas tra∗ : conf → [par,phas] q(tra) : par → phas

operation
in physics terms

coupling

88

quantization

88

correspondence

conf × par
ev

yysssssssss
p

%%KKKKKKKKKK

tar par

operation
in symbols

[tar,phas] ev∗ //

coupling

77
[conf × par,phas]

p̄∗ //

quantization

77
[par,phas]

tar � // ev∗tar � // p̄∗ev∗tar

elements

flat sections
e : 1 → tra

in
Γ(tra) = Hom(1, tra)

states
ψ : 1• → q(tra)

in
Hom(1∗, tra∗) ' Hom(1•, q(tra))

pairing of
elements holonomy correlator

Table 1: The charged n-particle and its quantization. The process be-
gins with a parallel transport n-functor tra for an n-bundle with connection,
modelling a physical background field. It continues by specifying certain maps
into the domain of the parallel transport and transgressing tra to the configura-
tion space of all these maps. This models the coupling of the background field
to a charged n-particle (a point particle, a string, a membrane, etc.). Finally,
the transgressed n-functor may be pushed forward to a point. This yields the
quantum theory of the charged n-particle coupled to the given background field.
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2 Definitions

kinematics dynamics
vector bundle V → X connection ∇

space of states evolution operator
H U(t) : H → H

objects morphisms
space of sections path integral

Table 2: Quantization involves a kinematical and a dynamical aspect.

2.1 Kinematics

Definition 1 A charged n-particle(
par γ∈conf // tar tra // phas

)
is

• an (n− 1)-category par, called parameter space and thought of as mod-
elling the shape and internal structure of the n-particle

• an n-category, tar, called target space and thought of as modelling the
space that the n-particle propagates in

• an n-category phas = nVect, being the n-category of some notion of n-
vector spaces

• an n-functor tra : tar → phas, thought of as encoding the parallel trans-
port in an n-bundle with connection on target space

• a choice of sub-n-category conf ⊂ [par, tar], thought of as encoding the
configuration space of the n-particle.

Given a charged n-particle, we obtain the diagram

conf × partar

conf

par

evoo

p1

::uuuuuuuuuu

p2
$$I

IIIIIIIII ,
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where the arrow on the left is the restriction of the canonical evaluation map
ev : [par, tar] × par → tar along the inclusion conf ↪→ [par, tar], and where p1

and p2 are the obvious projection on the first and the second factor, respectively.
There is a corresponding diagram of pullbacks

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p∗1

||yy
yy

yy
yy

yy
y

p∗2

bbEEEEEEEEEEE

.

If the morphisms on the right have adjoints, p̄∗1 and p̄∗2, respectively, we get

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p̄∗1

<<yyyyyyyyyyy

p̄∗2 ""E
EE

EE
EE

EE
EE

.

The composition of morphisms along the above route is transgression, whereas
the composition along the lower route is quantization.

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p̄∗1yyyyy

<<yyyy

p̄∗2

EEE
EE

""E
EEE

t
00

q ..

Definition 2 Given a charged n-particle(
par γ∈conf // tar tra // phas

)
,

the kinematic part of its (extended, globular) quantum theory is the image

q(tra) : par → phas

of tra under this quantization map.
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Remark. It is extended because it is an n-functor.
It is globular because we think of the globular morphisms in the domain par

directly as the extended cobordisms on which the QFT is defined. This means
in particular that every n-cobordisms in par has the topology of an n-disk.

The value of our QFT on topologically nontrivial cobordisms will be taken
to be its value on any globular cutting of that cobordisms followed by a suitable
trace operation.

We then have the following terminology:

Definition 3 (sections and states) Let 1 : par → phas denote the tensor
unit in the respective functor category. By abuse of notation, we also write 1
for its pullback to conf × par and 1∗ for the corresponding functor from conf to
[par,phas].

By definition, we have an isomorphism

Hom[conf,[par,phas]](1∗, tra∗) ' Hom[par,phas](1, q(tra)) .

An object on the left
e : 1∗ → tra∗

is a section of the n-bundle that the n-particle couples to.
An object on the right

ψ : 1 → q(tra)

is a state of the quantum n-particle.
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A charged n-particle...
(

par γ∈conf // tar tra // phas
)

... comes with
a configuration space of maps
from its parameter space
into its target space...

conf × partar

conf

par

evoo

p1

::uuuuuuuuuu

p2
$$I

IIIIIIIII

... and a coupling to
a transport functor
on target space...

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p∗1

||yy
yy

yy
yy

yy
y

p∗2

bbEEEEEEEEEEE

...which induces transport functors
on configuration space
and on parameter space...

[conf × par,phas][tar,phas]

[conf,phas]

[par,phas]

ev∗ //

p̄∗1yyyyy

<<yyyy

p̄∗2

EEE
EE

""E
EEE

t
00

q ..

...that are known as the
transgression
and the quantization
of the n-particle.

tra

t(tra)

q(tra)

8

transgression ..

�

quantization 00

Table 3: The story of the charged n-particle. A drama in three acts.
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2.2 Dynamics

Definition 4 A worldvolume or diagram of a charged n-particle(
par γ∈conf // tar tra // phas

)
is

• an n-category worldvol

• a collection of n-functors

ini : par → worldvol

for i = 1, 2, · · ·nin

• a collection of n-functors

outi : par → worldvol

for i = 1, 2, · · ·nout.

Definition 5 Given a worldvolume of an n-particle, as above, a choice of sub-
category

hist ⊂ [worldvol, tar] ,

which is compatible with the choice of configuration space in that

in∗i hist ' conf

and
out∗i hist ' conf

for all ingoing and outgoing copies of the n-particle, is called a space of his-
tories, or space of trajectories, or space of paths of the n-particle, over
the given worldvolume.

Of particular interest are worldvolumes that are cylinders over parameter
space. We say a diagram (worldvol, in, out) is a cylinder, if there is a unique
transformation

par

in

""

out

<<worldvol��
.
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Notice that this induces a transformation

hist× worldvol

conf × par conf × par

tar

out∗

����
��

��
��

��
��

�

in∗

��?
??

??
??

??
??

??

ev

����
��

��
��

��
��

�

ev

��?
??

??
??

??
??

?? cyl
s{ oooooo .

We can regard this as a correspondence for states that involves a pullback
along in∗, then a composition with cyl

hist× worldvol

conf × par conf × par

tar

phas

out∗

����
��

��
��

��
��

�

in∗

��?
??

??
??

??
??

??

ev�
��

��
�

����
��

��
ev
??

??
??

��?
??

??
?

tra

��

1

yy

cyl
s{ oooooo

es{ oo
oooo

and finally a push-forward along out∗.
The pullback here is canonically defined. All the subtlety is within the

definition of the push-forward along out∗.
For n = 1, the space of sections is just a 0-category (a set) and no notion of

adjoint functors is available to define the push-formward.
However, we can naturally push-forward in the world of sets when we have

the structure of a measure available.

Definition 6 (propagation by path integral) Given an n-particle par and
a cylinderical worldvolume

worldvol

par

in

::ttttttttt
par

out

ddJJJJJJJJJ
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and given that the category hist of paths is internal to measure spaces the path
integral propagator along worldvol is the map of sections

Hom(1, tra) → Hom(1, tra)

defined first pulling back along in∗, then transporting with cyl and the pushing
forward, using the measure dµ on hist, along out∗

e 7→
∫

(out∗)−1

cyl∗tra(in∗e) dµ
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From one copy of an n-particle

conf × par

tar

phas

ev�
��

��
�

����
��

��

tra

��

and another copy

conf × par

tar

phas

ev
??

??
??

��?
??

??
?

tra

��

that are incoming and
outgoing on a worldvolume cyl...

hist× worldvol

conf × par conf × par

tar

phas

out∗

����
��

��
��

��
��

�

in∗

��?
??

??
??

??
??

??

ev�
��

��
�

����
��

��
ev
??

??
??

��?
??

??
?

tra

��

cyl
s{ oooooo

Table 4: A cobordism between two copies of an n-particle...
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...we can form the pull back of a state e
of the incoming n-particle,

conf × par

1

$$

ev∗tra

::phase
��

,

to the worldvolume,
e 7→ in∗e ,

hist× worldvol

conf × par

tar

phas

in∗

��?
??

??
??

??
??

??

ev�
��

��
�

����
��

��

tra

��

1

yy

es{ oo
oooo

then transport it over the worldvolume

in∗e 7→ cyl∗tra(in∗e),

hist× worldvol

conf × par conf × par

tar

phas

out∗

����
��

��
��

��
��

�

in∗

��?
??

??
??

??
??

??

ev�
��

��
�

����
��

��
ev
??

??
??

��?
??

??
?

tra

��

1

yy

cyl
s{ oooooo

es{ oo
oooo

and finally push it forward
along out∗ to the outgoing n-particle

cyl∗tra(in∗e) 7→ e′ :=
∫

(out∗)−1

cyl∗tra(in∗e) dµ

conf × par

tar

phas

ev
??

??
??

��?
??

??
?

tra

��

1

��

e′
s{ oooooo

Table 5: ... allows to propagate incoming to outgoing states by means of a
path integral. 12



2.3 Observables

Definition 7 The algebra of observables of an n-particle is that submonoid
of the monoid of endomorphisms of the space of sections

sect O // sect

which contains the elements connected to the identity in the sense that

sect

Id

  

O

>>sect��
,

where we regard sect as an n-category with two objects, i.e. those that are given
in components by

conf

1∗

��
tra∗ //

exp (v)

��

tra∗
GG

GG
GG

GG
G

##G
GGGGGGG

[par,phas]

Id

��
conf

tra∗
// [par,phas]

e��

g{� ��
���
�

{� ��
���
�

=

conf 1∗ //

exp (v)

��
1∗

,,

[par,phas]

Id

��
conf 1∗ //

tra∗

DD
[par,phas]

e′��

f{� �
����
� .
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• The endomorphisms of the trivial functor

posobs = End(1∗)

act by precomposition

 conf

1∗

##

tra∗

;;
[par,phas]e

��

 :=


conf

1∗

��1∗ ((

tra∗

;;
[par,phas]e′��

f��


This is the monoid of position operators.

• The automorphisms of the transport functor

G = Aut(tra∗)

act by postcomposition.

 conf

1∗

##

tra∗

;;
[par,phas]e′

��

 :=


conf

1∗

##

tra∗

66

tra∗

DD
[par,phas]e��

g��


This is the group of local gauge transformations.

• Invertible flows act as translation operators:

 conf

1∗

##

tra∗

;;
[par,phas]e′

��

 := conf
exp(v)(t)−1

// conf //

1∗

��
Cob

Id

  

exp(v)(t)

>>Cob
tra∗ // [par,phas]

��

e��

.

Table 6: Monoids acting on the space of sections, sect =
Hom[conf,[par,phas]](1∗, tra∗).
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3 Supplementary Concepts

3.1 Vector Fields and Flows

We formulate the arrow theory of a flow along a vector field.
Let P1 be a category. Let

F(P1) ⊂ Σ(Aut(P))

be the category whose single object is P1, and whose morphisms are natural
transformations

P1

Id

��

t

??P1��

with composition being horizontal composition of natural transformations.

Definition 8 For R some group, an R-flow on P1 is a functor

exp(v) : Σ(R) → F (P1) .

An R-flow on Cob is compatible with the configuration space symmetries if

conf

��

exp(v)(t) // conf

��
Cob

exp(v)(t)
// Cob

∼{� �
���

.

In that case, the R-flow exp(v) defines, for any t ∈ R, a translation operator

exp(v)(t) : sect → sect

on the space of states, which sends any section e to

 conf

1∗

##

tra∗

;;
[par,phas]e

��

 7→ conf
exp(v)(t)−1

// conf //

1∗

��
Cob

Id

  

exp(v)(t)

>>Cob
tra∗ // [par,phas]

��

e��

.
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