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Abstract

Arrow theory of n-dimensional quantum objects charged under an n-
transport on their target space.
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1 The concept
There is a mystery that demands to be understood:

Mystery 1 The theory of gerbes with connection in terms of local data exhibits
a lot of structural resemblance to state sum models of 2-dimensional quantum
field theory.

Why is that?

Does this point to a deeper pattern that we might want to understand?
After a little bit of reflection, I think the pattern is

a) n-Bundles with connection are naturally conceived in terms of parallel
transport n-functors.
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b) Coupling these n-connections to an m-particle amounts to transgressing
these n-functors to a suitable configuration space.

¢) Quantizing these charged n-particles amounts to pushing the transgressed
n-functors forward to a point.

From this point of view, evolution in the quantum field theory of the charged
n-particle is an n-functor that is inherently obtained from the parallel transport
n-functor that expresses the background field that the particle propagates in.

Both, the original parallel transport n-functor as well as the resulting quan-
tum propagation n-functor may be locally trivialized. For the former this yields
the local description of gerbe holonomy. For the latter this yields the state sum
description of QFT.
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Figure 1: Quantization, categorification and local trivialization.



classical data quantum theory

background field n-particle
name of . .
n-functor parallel transport action quantum propagation
image of . .
n-functor monodromy classical phases quantum amplitudes
with values in phas = nVect
domain on target space on configuration space on parameter space
tar conf C [par, tar] par
in
symbols tra : tar — phas tra, : conf — [par, phas] q(tra) : par — phas
operation \_/ \—/
in physics terms - —
coupling quantization
conf X par
correspondence / \
tar par
[tar, phas] > [conf x par, phas] — > [par, phas]
operation \__// \_//
in symbols coupling quantization
tar ! ev*tar! p*ev¥tar
flat sections states
clements e: 1.—> tra P, - q(tra)
in in
I'(tra) = Hom(1, tra) Hom(1,,tra,) =~  Hom(1,,q(tra))
pairing of holonomy correlator
elements

Table 1: The charged n-particle and its quantization. The process be-
gins with a parallel transport n-functor tra for an n-bundle with connection,
modelling a physical background field. It continues by specifying certain maps
into the domain of the parallel transport and transgressing tra to the configura-
tion space of all these maps. This models the coupling of the background field
to a charged n-particle (a point particle, a string, a membrane, etc.). Finally,
the transgressed n-functor may be pushed forward to a point. This yields the
quantum theory of the charged n-particle coupled to the given background field.



2 Definitions

kinematics dynamics
vector bundle V — X connection V
space of states evolution operator
H Uit):H— H
objects morphisms
space of sections path integral

Table 2: Quantization involves a kinematical and a dynamical aspect.

2.1 Kinematics

Definition 1 A charged n-particle

f r
( par vEcon tar tra, phas )

s

e an (n— 1)-category par, called parameter space and thought of as mod-
elling the shape and internal structure of the n-particle

e an n-category, tar, called target space and thought of as modelling the
space that the n-particle propagates in

e an n-category phas = nVect, being the n-category of some notion of n-
vector spaces

e an n-functor tra : tar — phas, thought of as encoding the parallel trans-
port in an n-bundle with connection on target space

e a choice of sub-n-category conf C [par,tar], thought of as encoding the
configuration space of the n-particle.

Given a charged n-particle, we obtain the diagram

conf
D1

ev
tar <——— conf x par ,

par



where the arrow on the left is the restriction of the canonical evaluation map

v : [par,tar] x par — tar along the inclusion conf < [par,tar], and where p;

and po are the obvious projection on the first and the second factor, respectively.
There is a corresponding diagram of pullbacks

[conf, phas]

e

[tar, phas] e [conf x par, phas]

BN

[par, phas]
If the morphisms on the right have adjoints, p¥ and pj, respectively, we get

[conf, phas]

>

[tar, phas] LA [conf x par, phas]

EN

[par, phas]

The composition of morphisms along the above route is transgression, whereas
the composition along the lower route is quantization.

[conf, phas]

/ I
[tar, phas] —ev*> [conf X par, phas]

N\

3
NG

[par, phas]

Definition 2 Given a charged n-particle

f
(par LA tar —22 phas> ,

the kinematic part of its (extended, globular) quantum theory is the image
gq(tra) : par — phas

of tra under this quantization map.



Remark. It is extended because it is an n-functor.

It is globular because we think of the globular morphisms in the domain par
directly as the extended cobordisms on which the QFT is defined. This means
in particular that every n-cobordisms in par has the topology of an n-disk.

The value of our QFT on topologically nontrivial cobordisms will be taken
to be its value on any globular cutting of that cobordisms followed by a suitable
trace operation.

We then have the following terminology:

Definition 3 (sections and states) Let 1 : par — phas denote the tensor
unit in the respective functor category. By abuse of notation, we also write 1
for its pullback to conf x par and 1. for the corresponding functor from conf to
[par, phas].

By definition, we have an isomorphism

Hom[conﬂ[par,phas]] (1*7 tra*) = Hom[par,phas] (1a Q(tra)) .
An object on the left
e:1l, — tra,

is a section of the n-bundle that the n-particle couples to.
An object on the right

¥ 1 — q(tra)

is a state of the quantum n-particle.



A charged n-particle...

. comes with
a configuration space of maps
from its parameter space
into its target space...

. and a coupling to
a transport functor
on target space...

...which induces transport functors
on configuration space
and on parameter space...

...that are known as the
transgression

and the quantization

of the n-particle.

f r
( par vEcon tar tra, phas )

conf

/

€
tar =<——— conf x par

NG
par

[conf, phas]

e

[tar, phas] e [conf x par, phas]

BN

[par, phas]

/ Conf phas

[tar, phas] —ev*> [conf X par, phas]

\ par phas

tra
quantization

Table 3: The story of the charged n-particle. A drama in three acts.



2.2 Dynamics

Definition 4 A worldvolume or diagram of a charged n-particle

f
<par yEcon tar —=2 phas>

18
e an n-category worldvol

e q collection of n-functors
in; : par — worldvol
fori=1,2---ny
e a collection of n-functors
out; : par — worldvol
fori=1,2, - nous-

Definition 5 Given a worldvolume of an n-particle, as above, a choice of sub-
category
hist C [worldvol, tar],

which is compatible with the choice of configuration space in that
in}hist ~ conf

and
out;hist ~ conf

for all ingoing and outgoing copies of the n-particle, is called a space of his-
tories, or space of trajectories, or space of paths of the n-particle, over
the given worldvolume.

Of particular interest are worldvolumes that are cylinders over parameter
space. We say a diagram (worldvol,in,out) is a cylinder, if there is a unique

transformation
in

N

par ﬂ worldvol .



Notice that this induces a transformation

hist x worldvol

N

conf X par conf X par

V%

We can regard this as a correspondence for states that involves a pullback
along in*, then a composition with cyl

\/

hist x worldvol

out™ in

conf X par conf X par

phas

and finally a push-forward along out*.

The pullback here is canonically defined. All the subtlety is within the
definition of the push-forward along out*.

For n = 1, the space of sections is just a 0-category (a set) and no notion of
adjoint functors is available to define the push-formward.

However, we can naturally push-forward in the world of sets when we have
the structure of a measure available.

Definition 6 (propagation by path integral) Given an n-particle par and
a cylinderical worldvolume

worldvol

in out

par par



and given that the category hist of paths is internal to measure spaces the path
integral propagator along worldvol is the map of sections

Hom(1, tra) — Hom(1, tra)

defined first pulling back along in®, then transporting with cyl and the pushing
forward, using the measure du on hist, along out*

€ / cyl*tra(in®e) du

(out*)—1

10



From one copy of an n-particle

and another copy

that are incoming and
outgoing on a worldvolume cyl...

conf x par

//

tar

phas

conf X par

phas

hist x worldvol

conf X par %1 conf X par
cy

\\ //

tar
tla

phas

Table 4: A cobordism between two copies of an n-particle...



...we can form the pull back of a state e
of the incoming n-particle,

hist x worldvol

conf X par
! \
conf x par ue phas , /
ev¥tra tar 4
1
to the worldvolume, ol
e — in*e , l
phas
hist x worldvol
out™ in*
conf X par 1{1 conf X par
4 |
|
then transport it over the worldvolume \ / |
in*e > cyl*tra(in*e), \
yl"tra(in"e) tar
1
tla
phas
conf X par
and finally push it forward \
along out™ to the outgoing n-particle 1
2,
cyltra(in®e) — € := [ cyl"tra(in®e) du ¢
(out*)—1 tar
tla
phas
Table 5: ... allows to propagate incoming to outgoing states by means of a

path integral. 12



2.3 Observables

Definition 7 The algebra of observables of an n-particle is that submonoid
of the monoid of endomorphisms of the space of sections

0]
sect — > sect

which contains the elements connected to the identity in the sense that

where we regard sect as an n-category with two objects, i.e. those that are given
i components by

1.
conf tra.—> [par, phas] conf 1.— [par, phas]
Z, -
exp (v) tra, 1d exp (v) ﬁ%; Id
/ \ L.
conf [par, phas] conf B [par, phas]

tra

e

tra,

13



e The endomorphisms of the trivial functor
posobs = End(1,)

act by precomposition

1.
1. f
/\ G
conf \M/e [par, phas] = conf Je [par, phas]
tra. tra.
This is the monoid of position operators.
e The automorphisms of the transport functor
G = Aut(tra.)
act by postcomposition.
1.
/\ /’1*\
conf ﬂe’ [par, phas] = conf {e [par, phas]
\/ \tra*/
tra. ‘U’g
tras

This is the group of local gauge transformations.

e Invertible flows act as translation operators:

Ue
1.
Id
SN exp(v) ()t 20N

conf \Ue/ [par, phas] = conf conf Cob u Cob e [par, phas] .
tra. exp(o)(8)

Table 6: Monoids acting on the space of sections, sect =
Hom[conf,[panphas]] (1*a tra*).
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3 Supplementary Concepts

3.1 Vector Fields and Flows

We formulate the arrow theory of a flow along a vector field.
Let P; be a category. Let

F(P1) C Z(Aut(P))
be the category whose single object is P;, and whose morphisms are natural

transformations
1d

TN

P1 ﬂ P1
~_
t
with composition being horizontal composition of natural transformations.
Definition 8 For R some group, an R-flow on Py is a functor
exp(v) : X(R) — F(Py).
An R-flow on Cob is compatible with the configuration space symmetries if

exp(v)(t)

conf conf .

2.

Cob W Cob

In that case, the R-flow exp(v) defines, for any ¢t € R, a translation operator
exp(v)(t) : sect — sect

on the space of states, which sends any section e to

1y

\U,e
/—\ /Id
exp(v)(t) ™"

conf ﬂe [par, phas] —  conf conf Cob ﬂ Cob —2> [par, phas] .
\/ \\/
tra, exp(v)(t)
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