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Abstract

The general notion of cohomology, as formalized ∞-categorically by
Ross Street, makes sense for coefficient objects which are∞-category val-
ued presheaves. For the special case that the coefficient object is just
an ∞-category, the corresponding cocycles characterize higher fiber bun-
dles. This is usually addressed as nonabelian cohomology [6, 32]. If in-
stead the coefficient object is refined to presheaves of ∞-functors from
∞-paths to the given∞-category, then one obtains the cocycles discussed
in [4, 26, 27, 28] which characterize higher bundles with connection and
hence live in what deserves to be addressed as nonabelian differential co-
homology [18].

We concentrate here on ω-categorical models (strict globular∞-categories
[9, 13, 10, 11]) and discuss nonabelian differential cohomology with values
in ω-groups obtained from integrating L(ie)-∞ algebras [16, 17].
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1 Introduction

A principal G-bundle is given, with respect to a good cover by open sets of
its base space, by a trivial G-bundle on each open subset, together with an
isomorphism of trivial G-bundles on each double intersection, and an equation
between these on each triple intersection. This is the archetypical example of
what is called descent data, forming a cocycle in nonabelian cohomology.
It can be vastly generalized by replacing the group G appearing here by some
∞-category. For each cocycle obtained this way there should be a corresponding
∞-bundle whose local trivialization it describes [34].

The crucial basic idea of [4, 26, 27, 28] is to describe ∞-bundles with con-
nection by cocycles which have

• a (“transport”) functor from paths to G on each patch;

• an equivalence between such functors on double overlaps

• and so on.

The cocycles thus obtained deserve to be addressed as cocycles in differential
nonabelian cohomology.

Forming the collection of ω-functors from paths in a patch to some codomain
provides a functor from “spaces” to ω-categories: an ω-category valued presheaf.

In [29] Ross Street descibes a very general formalization for cohomology
taking values in ω-category valued presheaves. We recall the basic ideas (subject
to some slight modifications, a discussion of which is in 8) and describe how the
differential cocoycles of [4, 26, 27, 28] fit into that.
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Of particular interest are differential cocycles which can be expressed differ-
entially in terms of L(ie) ∞-algebras. Building on the discussion of [23] we give
in 5 a definition (def. 14) of non-flat non-abelian differential cocycles and their
characteristic classes.

There are two major approaches to general (nonabelian) ∞-cohomology:

• Ross Street in [29] explicitly writes down ∞-descent conditions for ∞-
category valued presheaves.

• In the approach reviewed in [32, 19] instead simplicial set valued presheaves
are used, and the descent condition is realized more implicitly, by passing
to homotopy categories.

2 Descent and cohomology

Fix a topos C, whose objects we think of as

• the spaces whose cohomologies we want to understand;

or equivalently

• the spaces on which we want to understand the notion of higher fiber
bundles and connections.

We work with ω-categories (strict globular∞-categories) internal to C and write
ωCat for the (ωCat,⊗Gray)-category of all ω-categories internal to C (see [13]
and section 9 of [29]).

The theory we are interested in is the theory of structures P ∈ Bund(X) on
X ∈ C for

Bund : Cop // ωCat

some functorial assignment of structures to each object X in C, which have the
property that when pulled back along a suitable regular surjection

π : Y // //X

in C they become equivalent to a structure

Ptriv ∈ TrivBund(Y) ⊂ Bund(Y )

from a chosen smaller collection i : TrivBund � � // Bund :

∃ : π∗P
t

'
//Ptriv .

The equivalence t here is called the local trivialization of P relative to π and
i. We speak of π-local i-trivializations.
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The existence of this local trivialization implies that the existence of the
structure P down on X is mirrored by the existence of Ptriv up on Y together
with various relations between the pullbacks of Ptriv along the simplicial object

Y • := Ner(π) : ∆op // C

Y • =
(
· · ·Y ×X Y ×X Y

π12 //
π23 //
π13 // Y ×X Y

π0 //
π1 // Y

)
.

The first of these relations says that there is an equivalence

π∗1Ptriv '
g //π∗2Ptriv

between the two possible pullbacks of Ptriv to Y ×X Y . The second relation says
that there is an equivalence

π∗2Ptriv

π∗
23g

%%JJJJJJJJJ

π∗1Ptriv
π∗
13g

//

π∗
12g

99ttttttttt
π∗2Ptriv

f'
��

between the three possible pullbacks of this equivalence to Y ×X ×Y ×X Y .
The third relation says that there is an equivalence between the four possible
pullbacks of this equivalence of equivalences. And so on.

These relations are variously known as the transition data or gluing data or
descent data, since given a Ptriv ∈ TrivBund(Y ), they ensure that Ptriv may
be “glued” along the fibers of Y such that result “descends” to a P ∈ Bund(X)
down on X. Therefore descent is the converse to local trivialization:

trivial
structure

on Y

� descent //
oo

local trivialization
�

structure
on X

.

The collections (Ptriv,g,f,···) consisting of a Ptriv with its gluing data or de-
scent data can hence usefully be regarded as a forming a kind of higher cate-
gorical coequalizer of the cosimplicial ω-category

E : ∆
Ner(π)op //Cop TrivBund //ωCat

E• =
(
· · ·TrivBund(Y ×X Y ×X Y )

oo π∗
01oo π∗
12oo π∗
23

TrivBund(Y ×X Y )
oo π∗

0
oo π∗

1
TrivBund(Y )

)
.

This coequalizer-like ω-category, whose objects are suitable collections (Ptriv,g,f,···)
is the descent category Desc(E)

Desc : ωCat∆ //ωCat .

Its general definition for ω-categories was given in [29] (p. 32), based on [30]. A
sketch of a more general definition for weak ∞-categories is given towards the
end of [29].
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2.1 ωCat-valued presheaves

The above considerations show that the objects of interest here are (pre)sheaves
on C with values in ω-categories, corresponding to the presheaves with values
in simplicial sets considered in the approach reviewed in [19, 32].

There is a standard construction to enrich ωCatCop
over ωCat:

for X, Y ∈ ωCatCop
write

˜hom(X, Y ) : ωCat → Set

R 7→ ωCat(R×X, Y ) .

If this is representable, we identify the representing ω-category hom(X, Y ) ∈
ωCat with the ωCat-valued hom-object:

˜hom(X, Y ) ' SetωCatop(−,hom(X, Y )) .

So if C is such that this representing object exists, ωCatCop
is ωCat-enriched

and it makes sense to ask if our descent ω-category Desc(E) is actually co-
representable in that there is ΠY

0 (X) ∈ ωCat such that

Desc(E) ' ωCatCop
(ΠY

0 (X),TrivBund) ,

where we are implicitly using the canonical embedding ωCat ↪→ ωCatCop
. This

ΠY
0 (X) is the codescent object

ΠY
0 (X) := Codesc(Ner(π))

and the notation suggests that we shall later have use more generally for ω-
catgories denoted ΠY

n (X) and ΠY
ω (X): their k-morphisms are k-paths in Y

combined with jumps in the fibers of Y [26, 28].
Notice that the map Desc from simplicial ω-categories to ω-categories is

analogous (possibly even equivalent) to the codiagonal map from bisimplicial
sets to simplicial sets.

We usually have that TrivBund is representable

TrivBund(−) ' ωCatCop
(−,A)

for some A ∈ ωCatCop
, where we are implicitly using the embedding C ↪→

ωCatCop
which sends each object U to the ωCat-valued presheaf which sends

each object V to the discrete ω-category over C(V,U).
In that case we say that

Definition 1 (ωCatCop
-valued cohomology) For X ∈ C and A ∈ ωCatCop

,
the ω-category

H(X,A) := colimπ

(
Desc

(
∆

Ner(π)op // Cop
ωCatCop

(−,A) // ωCat

))
is the cocycle ω-category of X with coefficients in A:
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• objects are the A-valued cocycles on X;

• (1-)morphisms are the coboundaries between these cocycles;

• (k > 1)-morphisms are the coboundaries of coboundaries;

• equivalence classes of objects are the A-valued cohomology classes of
X.

The functor
H(−,A) : Cop → ωCat

is the cohomology theory for coefficients A.

This is the general definition of cohomology that essentially appears in sec-
tion 4 of [29].

2.2 ωCat-valued cohomology

The special case of cohomology with values in an ω-category – whose general
idea goes back to [21] and is often addressed, somewhat loosely, as nonabelian
cohomology – is obtained using the inclusion

Π∗
0 : ωCat�

� //ωCatCop

A
� // ωCat(Π0(−), A) ,

where, in turn, Π0 : C ↪→ ωCat sends each object U to the discrete ω-category
over it (which has U as its object of objects and no nontrivial morphisms.)

Hence

Definition 2 (ωCat-valued cohomology) For A ∈ ωCat, the cohomology
theory with coefficients in A is

H(−, A) := H(−,Π∗
0(A)) .

Using the Yoneda-like argument on p. 12 of [29], which says that

ωCatCop
(U,Π∗

0(A)) ' Π∗
0(A)(U) := ωCat(Π0(U), A) ,

this becomes the theory considered on p. 3 of [29].

2.2.1 Cohomology classes for ω-bundles

Definition 3 (ω-groups) Given any one-object ω-groupoid Gr we say that the
Hom-thing G := Gr(•, •) is an ω-group and write

Gr := BG

to indicate the property of Gr of having one single object.
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Remark. The notation here is such that under taking realizations of nerves
we have

|BG| ' B|G| ,

compare [2, 5]. We hence call BG the classifying ω-groupoid for the ω-group
G.

Whichever way a principal G-bundle on X is defined [34], it must be
such that its local trivializations are objects in H(X,BG) and, indeed, that the
ω-category GBund(X) they form is equivalent to H(X,BG)

GBund(−) ' H(−,BG) .

For n = 2 this is discussed in [34].
This is often thought of as saying that

G-bundles are a geometric model for H(−,BG) .

One expects to revover the topologist’s notion of classifying maps in the
case that objects of C are topological spaces by using the corepresentation of
H(−,BG) using the codescent object as

H(−,BG) ' ωCat(ΠY
0 (X),BG)

for π : (Y = tiUi) → X a good cover of X. Upon applying the nerve functor
one expects

|ωCat(ΠY
0 (X),BG)| ' [|ΠY

0 (X)|, |BG|] ' [X, B|G|] .

For strict 2-groups G this was shown to be true in [5] if G is “well pointed”.
A more general argument for topological 2-categories is given in [2] though it
is, while plausible, not obvious that the “concordances” used in [2] reproduce
exactly the transformations that are the morphisms in H(−,BG).

2.2.2 Singular cohomology

Fact 1 A direct consequence of a standard fact about Čech cohomology is that
the ω-category BnZ exhibits ordinary singular cohomology as ωCat-valued co-
homology

Hn+1
singular(−, Z) = H(−,BnU(1))∼ = H(−,Bn+1Z)∼

.

2.2.3 K-Theory

Fact 2 A standard fact about K-theory says that

K0(−) ' H(−, (BU)Z)∼ .
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2.3 ωCat-valued differential cohomology

Recall that, with definition 2, we obtained ωCat-valued cohomology from the
general ωCatCop

-valued cohomology by pulling back along an inclusion

Π∗
0 : ωCat � � // ωCatCop

.

But there are other such inclusions, which are no less natural. In particular, if
the objects X of C are spaces that admit a notion of path ω-groupoid Π(X),

Π : C
� � // ωCat

then we can pull back along the corresponding

Π∗ : ωCat � � // ωCatCop

A
� // ωCat(Π(−), A) .

Definition 4 (ωCat-valued differential cohomology) For a given notion of
path ω-groupoid Π : C ↪→ ωCat and a coefficient object A ∈ ωCat we address

HΠ(−, A) := H(−,Π∗(A))

as Π-differential cohomology with values in A.

For Π = P2 and G a strict 2-group such cocycles in HP2(−,BG) were first
considered in [4, 28].

2.3.1 Cohomology classes for ω-bundles with connection

While our definition allows more general setups, usually one will want to inter-
pret differential cohomology in the context of smooth spaces.

If this is so, one useful concrete choice for our ambient category is to take C
to be the category of sheaves on the site S with

• Obj(S) = N;

• S(n, m) = {f : Rn → Rm|f smooth} .

Theorem 1 Let G be an ordinary Lie group and let

Π := P1 : C → ωCat

be the path 1-groupoid whose morphisms are thin-homotopy classes of paths.
Then Π-differential cohomology with values in BG classifies principal G-bundles
with connection

HΠ(−,BG) = GBund∇(−) .

This is the result of [26].
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Theorem 2 Let G be a strict Lie 2-group and let

Π := P2 : C → ωCat

be the path 2-groupoid whose k-morphisms are thin-homotopy classes of k-paths.
Then Π-differential cohomology with values in BG classifies fake-flat principal
G-2-bundles with connection

HΠ(−,BG) = GBund∇(−) .

This is the result of [27] and [28].
In particular, for G = AUT(H), HΠ(−,BAUT(H)) classifies the fake-flat

connections on H-gerbes studied in [7].

3 Codescent

Definition 5 (codescent) Given a simplicial object E : ∆op → C , we say
that

Codesc(E) ∈ ωCatCop

is, if it exists, the codescent ωCatCop
-object of E if it co-represents descent on

E in the sense that

Desc

(
∆

Eop
// Cop

ωCatCop
(−,A)// ωCat

)
' ωCatCop

(Codesc(E),A)

naturally for all coefficient objects A ∈ ωCatCop
.

If we let A just run over the image of ωCat ↪→ ωCatCop
we obtain the

codescent object as an ω-category:

Definition 6 Given a simplicial object E : ∆op → C , we say that

Codesc(E) ∈ ωCat

is, if it exists, the codescent ω-category of E if it co-represents descent on E in
the sense that

Desc
(

∆
Eop

// Cop
ωCat(Π0(−),A)// ωCat

)
' ωCat(Codesc(E), A)

naturally for all coefficient object A ∈ ωCat.

For E = Y • = Ner(π : Y → X), we have that Codesc(E) = Ππ
0 (X) is

nothing but the Čech groupoid of Y . In fact, as mentioned on p. 3 of [29], every
category is the codescent object of its nerve.

We observe that, again, the above definition makes explicit use of an injection

Π : C → ωCat .

Hence we adapt the notion of codescent to the setup of differential cohomology
as in 2.3:

9



Definition 7 (differential codescent) Given a simplicial object E : ∆op →
C, and an embedding

Π : C ↪→ ωCat ,

we say that
CodescΠ(E) ∈ ωCat

is, if it exists, the codescent object of E if it co-represents descent on E in the
sense that

Desc
(

∆
Eop

// Cop
ωCat(Π(−),A)// ωCat

)
' ωCat(CodescΠ(E), A)

naturally for all coefficient object A ∈ ωCat.

Theorem 3 For Π := P1 the path 1-groupoid, we have

CodescΠ(Y •) = Pπ
1 (X) ,

where on the right we have the “path pushout” from [26].

Theorem 4 For Π := P2 the path 2-groupoid, we have

CodescΠ(Y •) = Pπ
2 (X) ,

where on the right we have the “bigon pushout” from [28].

3.1 Descent categories from codescent

We can use the codescent objects to express the corresponding descent ω-
categories in a useful way:

as described on p. 5 of [29] every category is the codescent object of its own
nerve. That means in particular that the codescent object of the nerve of an
epimorphism π : Y // // X is just the Čech groupoid Codesc(Ner(π)) = Xπ.

3.1.1 Descent category for differential 1-cocycles

We consider π : Y // // X a regular epimorphism and work out the descent
category for differential 1-descent

Desc
(

∆
Ner(π)op // Cop

Cat(P1(−),BG) // Cat
)

= Desc

(
∆

Ner(π)op // Cop
CatCop

(−,Cat(P1(−),BG) // Cat

)
as

= CatCop
(Cat(Π0(−), Xπ),Cat(P1(−),BG))

Notice that for each test domain U the objects of Cat(Π0(U), Xπ) are maps
U → Y in C, while the morphisms are maps U → Y [2].
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The objects of CatCop
(Cat(Π0(−), Xπ),Cat(P1(−),BG)) are over each test

domain U functors

Cat(Π0(U), Xπ) → Cat(P1(U),BG)

natural in U . Such functors can be obtained from picking an object

triv ∈ Cat(P1(Y ),BG)

with an ismorphism
g : π∗1triv → π∗2triv

such that
π∗2triv

π∗
23g

$$IIIIIIIII

π∗1triv

π∗
12g

::uuuuuuuuu

π∗
13g

// π∗3triv

and then sending f : U → Y to f∗triv f̂ : U → Y [2] to f̂∗g.
By the usual presheaf gymnastics, all such functors should arise this way.

(** This must be true, but I need to check the precise argument**)
A natural transformation between two such functors is obtained from picking

an isomorphism
h : triv → triv′

making

π∗1triv
g //

π∗
1h

��

π∗2triv

π∗
2h

��
π∗1triv′

g′
// π∗2triv′

commute, and then sending each object f : U → Y to the morphism f∗h.
By the usual presheaf gymnastics, all such functors should arise this way.

(** This must be true, but I need to check the precise argument **)
The descent category found this way is the one given in [26].

3.1.2 Descent category for differential 2-cocycles

Analogously.
The descent category found this way is the one given in [28], the cocycles of

which were also described in [4].
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4 Local trivialization

If
Bund : Cop → ωCat

encodes structures on objects of C of certain kind and

i : TrivBund � � // Bund

is a certain subcollection of these structures which we want to regard as being
“trivial”, and if

π : Y // // Y

is a regular epimorphism in C, then we say

Definition 8 The pseudopullback Triv(i, π)

Triv(i, π) //

��

TrivBund(Y )� _

i

��
Bund(X) π∗

// Bund(Y )

'

t| pppppppppppppppppppp

pppppppppppppppppppp

is the ω-category of π-locally i-trivializable elements of Bund(X), equipped with
a chosen π-local i-trivialization.

By forgetting the chosen local trivialization we obtain a factorization

Triv(i, π) // // Trans(i, π) � � // Bund(X)

where Trans(i, π) is the ω-category of elements of Bund(X) which do admit
some π-local i-trivialization.

This is essentially the definition on p. 22 of [29], but with the notation fol-
lowing [26, 28] (so our Triv(i, π) is Q(t; e) in [29] and our Trans(i, π) is Loc(t; e)).

In [26, 28] we adopt a more concrete (less general) point of view on what
counts as i-trivial: there we require that

Bund := ωCat(Πn(−), T )

for T some ω-category of fibers and

TrivBund := ωCat(Πn(−),Gr)

for Gr some ω-category of typical fibers and that the injection

i : TrivBund � � // Bund
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is postcomposition with a specified injection

i : Gr � � // T .

In that case an element F ∈ Bund(X) is π-locally i-triviall precisely if it fits
into a square

Πn(Y )
π∗ //

triv

��

Πn(X)

tra

��
Gr

i // T

t

'

v~ uuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuu

In [26, 28] we also see the need to strengthen the conditions on what counts
as locally trivial: not only need the local trivialization t exist, it also may have
to be itself locally trivial in some sense. We encode this by putting conditions
on the descent data induced by t:

Observation 1 (extraction of descent data) There is canonically a mor-
phism

Ex : Triv(i, π) → Hπ(X, Bund) .

See [26, 28].

Definition 9 (π-local i-trivialization) Given

• T ∈ ωCat: thought of as an ω-category of fibers;

• Gr ∈ ωGrpd: thought of as an ω-groupoid of typical fibers

• an inclusion
i : Gr � � // T ;

• Π : C → ωCat; a notion of path ω-groupoid;

• a factorization

ωCat(Π(−),Gr) � � a //

i∗

66TrivBundΠ
Gr

� � // ωCat(Π(−), T )

in ωCatCop
with the map a surjective on objects and faithful, we say that

tra ∈ ωCat(Π(x), T )
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is π-locally i-trivializable if there is an equivalence t

Π(Y )
π∗ //

triv

��

Π(X)

tra

��
Gr

i // T

t

'

w� vvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvv

such that the extracted cocylce has coefficients in TrivBundΠ
Gr

Ex(t) ∈ Hπ(X, TrivBundΠ
Gr) .

4.1 Local semi-trivialization: bundle gerbes

What is addressed as a “bundle gerbe” in the literature is really a cocycle. Bun-
dle gerbes differ from cocycles with values in BG only in that the factorization
appearing in definition 9 has a middle piece whose collection of morphisms is
strictly larger than that of the left piece.

Theorem 5 Line bundle gerbes [20] with connection (“and curving”) are equal
(meaning: canonically isomorphic) to cocycles with values in the subobject

TrivBund ⊂ ωCat(P2(−),BVect)

on all objects which factor through

i : BBU(1) ↪→ BVect

with morphisms those whose component maps are locally (BU(1) ↪→ Vect)-
trivializable.

Details and proof in [28].
Analogous statements hold for other flavors of bundle gerbes, like higher

bundle gerbes and nonabelian bundles gerbes[1].

5 Characteristic forms

5.1 L∞-algebra valued differential forms

Definition 10 For G an ω-group, we address

Ω•(−,BG) := ωCat(Πω(−),BG) : Cop → ωCat

as flat G-valued differential forms.

For G a strict 2-group and Πω replaced with P2 this was studied in [27], see
also [4]:
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Theorem 6 Objects of the 2-category

2Cat(P2(Y ),BG)

for G coming from a Lie crossed module (t : H → G) are pairs (A,B) ∈
Ω1(Y,Lie(G))× Ω2(Y,Lie(H)) satisfying FA + t∗ ◦B = 0.

This can be understood in terms of L∞-algebra valued forms:
L∞-algebras are to ordinary Lie algebras as ∞-groupoids are to ordinary

groups. We can integrate L∞-algebras to ω-groupoids internal to smooth spaces
and use these as coefficients for nonabelian differential cohomology.

Definition 11 A finite-dimensional L∞-algebra is a finite dimensional N+-
graded vector space g together with a degree +1 differential on the graded sym-
metric tensor algebra over g∗

dg : ∧•g∗ → ∧•g∗

such that d2 = 0. The resulting differential graded commutative algebra

CE(g) = (∧•g∗, dg)

is called the Chevalley-Eilenberg algebra of g.

There is a notion of mapping cone for L∞-algebras and we write

W(g) := CE(inn(g)) := CE(Cone(g Id→ g)) .

We have a canonical sequence

CE(g) oo W(g) oo inv(g) = W(g)basic . (1)

For more details on this and the following see [23].
There is a contravariant adjunction between smooth spaces and differen-

tial graded commutative algebras, induced by the ambimorphic deRham object
Ω•(−) ∈ C which is a smooth space with the structure of a DGCA on it:

C
Ω•(−) //

oo
S

DGCA .

Definition 12 (L∞-algebra valued forms) Given an L∞-algebra g and a
smooth space Y , we address

Ω•(Y, g) := C(Y, S(W(g))) ∈ C

as the space of g-valued forms, and

Ω•flat(Y, g) := C(Y, S(CE(g))) ∈ C

as the space of flat g-valued forms.
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This definition relates to the definition of G-valued differential forms when
integrating L∞-algebras to ω-groupoids. As noticed in [16] (see also [17] and
[24]) this integration procedure is essentially nothing but the old construc-
tion in rational homotopy theory [31]: the ∞-group in question is that of k-
paths/singular k-simplices in the space S(CE(g)). Here we adopt this idea to
the context of ω-categories internal to C:

Definition 13 (Integration of L∞-algebras) For g any L∞-algebra, we de-
fine the ω-groupoid BG integrating it, as well as ω-groupoids denoted BEG and
BBG as the image under Π ◦ S of the sequence 1:

BG // BEG // BBG

:= Πω ◦ S( CE(g) oo W(g) oo inv(g) )

I believe that it should be true that morphisms of path ω-groupoids all come
from push-forward along maps of the underlying spaces:

ωCat(Π(X),Π(Y )) ' C(X, Y ) .

If true, this would imply that for ω-groups G obtained from integration of L∞-
algebras g by integration as above we have

Ω•(Y,BG) = Ω•(Y, g) .

5.2 Non-flat differential cocycles

Given an ω-group G and setting Π := Πω the ω-path groupoid, the differen-
tial cohomology HΠ(−,BG) classifies flat G-bundles with connection. It turns
out that cocycles for non-flat G-bundles with connection are instead objects in
HΠ(−,BEG) . Here BEG := INN0(G) = Cone(BG

Id→ BG) as in [22]. These
BEG-cocycles are the curvature (n + 1)-bundles of given n-bundles. But not
every cocycle in there corresponds to such a curvature (n+1)-bundle. We need
to identify a sub-ω-category

H̄(−,BG) ⊂ HΠ(−,BEG)

exhibiting the non-flat differential cohomology with values in G.
This can be done if we have an ω-functor

p : BEG // BBG .

Definition 14 (Non-flat differential cocycles and characteristic forms)
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We define H̄(−,BG) ∈ ωCat as the pullback

H̄(−,BG)

uujjjjjjjjjjjjjjj

�� **UUUUUUUUUUUUUUUUU

H(−,BG)

##GG
GG

GG
GG

G HΠ(−,BEG)

zzttttttttt

%%KKKKKKKKKK
Ω•flat(−,BBG)

yyrrrrrrrrrr

H(−,BEG) HΠ(−,BBG)

G-bundle
with connection
and curvature

wwooooooooooooooooo

��
((RRRRRRRRRRRRRRRRR

G-bundle

��>
>>

>>
>>

>>
>>

>>
>

G-valued
connection

and curvature

||yy
yy

yy
yy

yy
yy

$$HHHHHHHHH

characteristic
forms

||xxxxxxxxxx

characteristic
classes

The various morphisms here are best understood in terms of the codescent
objects ΠY (X) and ΠY

0 (X):
the above pullback says that the cocycles in H̄(−,BG) are the cocycles

ΠY (X) // BEG

in HΠ(−,BEG) which fit into a square

ΠY
0 (X)� _

i

��

// BG

��

G-cocycle

ΠY (X) //

π

����

BEG� _

��

connection and curvature

Π(X) // BBG characteristic forms

. (2)
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The bottom morphism represents BBG-valued forms. Precomposition of that
with the lower left vertical arrow π is the map

Ω•(−,BBG) → HΠ(−,BBG) .

Postcomposition with the lower right vertical morphism is the map

HΠ(−,BEG) → HΠ(−,BBG) .

Precomposition with the upper left vertical morphism i is the map

HΠ(−,BEG) → H(−,BEG) .

Finally, postcomposition with the upper right vertical morphism is the map

H(−,BG) → H(−,BEG) .

5.3 Line n-bundles with connection

The ω-groups obtained from the integration procedure definition 13 produces
the analog of simply connected Lie groups. To get more general ω-groups one
needs to quotient these.

The easiest example is BnU(1), which is the ω-groupoid trivial everywhere
except in degree n, where it has U(1)-worth of n-morphisms.

For all n ∈ N the sequence

BnU(1) � � // BEBnU(1) // // BBnU(1)

of strict abelian ω-groups, which reads in terms of crossed modules for n = 1

(1 → U(1)) � � // (U(1) → U(1)) // // (U(1) → 1)

and analogously for higher n.
Our pullback diagram

H̄(−,BnU(1)) //

��

Ω•closed(−, bn+1u(1))

��
HΠ(−,BEBn−1U(1)) // HΠ(−,Bn+1U(1))

says that a line n-bundle has a curvature (n + 1)-form which can be regarded
as the connection (n + 1)-form on a flat trivial line (n + 1)-bundle.
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Notice that the commutativity of 2

ΠY (X) //

����

BEBn−1U(1)

����
Π(X) // BBnU(1)

here says that the ω-functor

ΠY (X) → BEBn−1U(1)

assigns trivial values in the shifted copy of BnU(1) to all k-morphisms in the ker-
nel of ΠY (X) // // Π(X) . But this says precisely that on vertical morphisms
this BEG-cocycle factors through a BG-cocycle:

ΠY
vert(X) //

� _

��

BnU(1)� _

��

G-cocycle

ΠY (X) //

����

BEBn−1U(1)

����

connection and curvature

Π(X) // BBnU(1) curvature

Theorem 7 Our differential cohomology with values in BnU(1) is isomorphic
to the ordinary differential refinement H̄n+1(−, Z) of integral singular cohomol-
ogy:

H̄(−,BnU(1))∼ = H̄n+1(−, Z) .

For n = 1 and n = 2 this is proven in [26, 28].
Notice that H̄n+1(−, Z) is equivalently modelled by Deligne coholomolgy,

Cheeger-Siomns differential characters and abelian (n− 1)-gerbes with connec-
tion (“and curving”). See [18].

6 Equivariant cohomology

It is noteworthy that a cohomology theory in the present sense

H(−,A) : Cop → ωCat
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is itself an ωCat-valued presheaf and hence does qualify itself as a coeffient
object for cohomology.

Definition 15 (equivariant cohomology) Let A ∈ ωCatCop
be a coefficient

object and and let E ∈ C∆op
be a simplical object in C, then E-equivariant

cohomology with coefficients in E is

Desc(E,A) .

Equivariant bundles on a space X with an action by a group G are obtained
by taking E = Ner(X//G), where X//G denotes the action groupoid. Similarly
for higher bundles.

Regarding line 2-bundles (abelian gerbes) not just as BU(1) = (U(1) → 1)-
bundles, but more properly as AUT (U(1)) = (U(1) → Z2)-bundles one finds
that their equivariant structure includes the “Jandl structures” discussed in [25].

6.1 Structures on BG

Of particular interest is the simplicial space Ner(BG) for G a Lie group. The
Chern-Simons B3U(1)-bundle (2-gerbe) with connection on BG is given by an
equivariant cocycle as in definition 14:

H̄(Ner(BG),B2U(1))

sshhhhhhhhhhhhhhhhhhhhh

�� ++WWWWWWWWWWWWWWWWWWWWW

Desc(Ner(BG),B2U(1))

%%KKKKKKKKKK
Desc(Ner(BG),Π3(−,BEBU(1))

wwnnnnnnnnnnnn

''OOOOOOOOOOO
Desc(Ner(BG),Ω•flat(−,B3U(1))

wwppppppppppp

Desc(Ner(BG),BEBU(1)) Desc(Ner(BG),B3U(1))

On the far left we have the multiplicative gerbes on G [12]. On the far
right the characteristic 4-form on BG. The middle item with its coefficients
in BEBU(1) says that the connection on the multiplicative gerbe need not be
equivariant on the nose, as discussed in [33].

7 Quantization of cocycles

Suppose C is the topos of sheaves on some site S. Given an ωCat-valued sheaf
Bund on C it induces in particular a 0Cat = Set-valued sheaf on S. This we
can think of as the classifiyng space for the structures in Bund in that

C(X, Bund) ' Bund(X) .

Given such a morphism

X
∇ // Bund(−)
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and given any other object Σ, the quantization of ∇ over Σ is, it it exists, the
pull-push of ∇ through the correspondence

hom(Σ, X)⊗ Σ
ev

xxqqqqqqqqqqq
p2

))SSSSSSSSSSSSSSSS

X Σ

∇
R
hom(Σ,X) ev∗(−)

//
∫
hom(Σ,X)

ev∗(∇)

.

Here
∫
hom(Σ,X)

is supposed to denote the ω-functor adjoint to the pullback

ω-functor along p2, where we are making use of the ωCat-enrichment of ωCatCop

from 2.1.

hom(hom(Σ, X)⊗ Σ,Bund(−))

R
hom(Σ,X) //

oo
p∗2

hom(Σ,Bund(−))

• ev∗ followed by the Hom-adjunction is transgression.

•
∫
hom(Σ,X)

ev∗(−) is taking sections.

Compare [14, 15].

7.1 Transgression

Given a differential form ω ∈ Ω•(X) on a space X and another space Σ, the
transgression of ω to the mapping space C(Σ, X) is the image under

Ω•(C(Σ, X))× Σ
R
Σ

vvlllllllllllll

Ω•(C(Σ, X)) Ω•(X)

ev∗
ggOOOOOOOOOOOO

.

In [27], following [4], it was shown that differential forms are equivalent to
functors from paths

2Cat(Π2(X),BG) ' Ω•(X, g)

and that under this equivalence transgression is nothing but the inner hom:

2Cat(Π2(X),BG) ' //

2Cat(P1(S
1),−)

��

Ω•(X, g)

R
S1 ev∗(−)

��
1Cat(Π2(LX),ΛBG) ' // Ω•(X, Λg)

.
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Hence for P ∈ Trans(i, π) a locally trivializable structure on X, we say that
its transgression to C(Σ, X) is

C(Π(Σ, )P ) .

7.2 Sections

V//G //

��

TptSet

��
Y • g //

##FF
FF

FF
FF

F

σc

##

σux
x

<<x
x

BG ρ // Set

pt

::tttttttttt

σt

GO
����
����

Figure 1: Sections of cocycles. Given a G-valued cocycle g : Y • → BG and a
representation ρ : BG → Set we are asking for the set of sections Γ(ρ[g]) of the
corresponding ρ-associated G-bundle. Such a section is, equivalently, any one
of the three morphisms carrying the symbol σ: The transformation σt from the
terminal cocycle into our given cocycle is given in components by the functor
σc which in turn, by the universal property, is given by the morphism σu.

An action of an n-group BG on an (n− 1)-category V is usually thought of
as a morphism

ρ : BG → (n− 1)Cat

At least for n = 1 it is well understood that taking the weak colimit of this
under the canonical embedding

j : (n− 1)Cat ↪→ nCat

yields the action n-groupoid

V//G := colimBG(j∗ρ) .

By the universal property of the colimit, this comes equipped with canonical
morphisms

V
� � // V//G

ρ̃ // BG ,

where, at least for n = 1, the right functor is faithful.
Given such a situation, we obtain a morphism

H(−, V//G)
ρ̃∗ // H(−,BG)
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of cohomology theories. The fibers of this morphism over a given BG-cocycle
P are the collections of sections of the ρ-associated coycle corresponding to
P .

Γρ(P ) := ρ̃−1
∗ (P ) .

For G an ordinary group and ρ an ordinary representation, this reproduces
the ordinary notion of sections of associated G-bundles.

8 Technical remarks

8.1 The fundamental ω-path ω-groupoid

Fundamental ω-groupoids of homotopy classes of globular paths are considered
in [8]. Our Πω is a slight modification of that, where only thin-homotopy is
divided out. For n = 2 this is described in detail in [27]. The general definition
is analogous.

I need to better understand if I am right with my expectation (see 5) that

ωCat(Π(X),Π(Y )) ' C(X, Y ) .

8.2 ωCat-valued presheaves

While the discussion here follows [29] we have slightly modified it.
In [29] the morphisms Cop → Cat are allowed to be pseudo, i.e. to respect

composition only weakly. This is familiar and necessary for examples such as
on p. 23 of [29], where each space is sent to a category of bundles over it.

Here, however, we followed [26, 28] in that we perceive a bundle entirely
in terms of its fiber-assigning functor. That makes pullback of bundles strict.
Hence for us coefficient objects for cohomology are indeed 1-functors

Cop → ωCat .

Our examples show that this is sufficient to capture all the desired nonabelian
(differential) cohomology. While it excludes discussion of non-rectified n-stacks,
it also shows that it is not necessary to consider these.

8.3 The main descent/local trivialization theorem

Theorem 6 in [29] corresponds to the main theorems in [26] and [28] which char-
acterize global structures coming from descent as those admitting local trivial-
ization.

It remains to be understood how this relates and how it generalizes to ωCat.
Notice that the definition of local trivialization in section 6 of [29] is essentially
the one we gave, only that it makes explicit use of a ”classifying space” for
trivial structures (denoted T there), which so far we haven’t seen the need to
mention. This is closely related to the remarks in 8.2 and hence needs to be
better understood.
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Biroupoid 2-Torsors (PhD thesis), Christoph Wockel, A global perspective
to gerbes and their gauge stacks [arXiv:0803.3692]. Notice that in [26,
28] the point is made that higher bundles are conveniently thought of
not as fibrations P → X but as their fiber-assigning functors X → nCat.
In particular, this achieves a useful rectification of the n-stack of these
bundles to a sheaf, a fact we are making use of above.

26


