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Abstract

A “Σ-model” can be thought of as a quantum field theory (QFT) which is determined by pulling back
n-bundles with connection (aka (n−1)-gerbes with connection, aka nonabelian differential cocycles) along
all possible maps (the “fields”) from a “parameter space” to the given base space.

If formulated suitably, such Σ-models include gauge theories such as notably (higher) Chern-Simons
theory. If the resulting QFT is considered as an “extended” QFT, it should itself be a nonabelian
differential cocycle on parameter space whose parallel transport along pieces of parameter space encodes
the QFT propagation and correlators.

We are after a conception of nonabelian differential cocycles and their quantization which
captures this.

Our main motivation is the quantization of differential Chern-Simons cocycles to extended Chern-
Simons QFT and its boundary conformal QFT, reproducing the cocycle structure implicit in [23].

• Classical

– We conceive nonabelian differential cohomology in terms of cohomology with coefficients in
ω-category-valued presheaves [48] of parallel transport ω-functors from ω-paths to a given
structure ω-group [6, 44, 45, 46], discuss curvature and characteristic forms.

– We describe Lie ∞-algeraic Cartan-Ehresmann connections [41] and integrate these, following
[27, 29], to nonabelian differential cocycles whenever certain connectedness and integrality
conditions are met.

– For each transgressive L∞-algebra cocycle there are Chern-Simons Lie ∞-connections arising
as obstructions to lifts of L∞-connections through String-like extensions of L∞-algebras. Inte-
grating these to differential cocycles yields general Chern-Simons n-bundles with connection,
reproducing in particular the known cocycles for Pontryagin classes [17, 18].

• Quantum

– Our aim is to quantize such differential cocycles.

– We observe that for simple cases such as finite group and finite 2-group Chern-Simons the-
ory (the Dijkgraaf-Witten and the Yetter model) the usual path integral is a decategorified
categorical colimit over the given transport functor.

– We interpret the holographic relation between Chern-Simons theory and its boundary con-
formal field theory as essentially being the hom-adjunction in ωCat applied to a morphism
between the two chiral copies of the Chern-Simons transport. This allows to conceive the
Reshetikhin-Turaev description of the Chern-Simons 3d TFT together with the corresponding
Frobenius-algebraic description of the boundary conformal QFT [23] in terms of BC-valued
differential cocycles, for C the corresponding modular tensor category.
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1 Prelude
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1.1 Σ-models

Quantum field theories on a space Σ which are obtained from performing a “path integral” over a space of
maps γ from Σ into a target space X are known as Σ-models. The path integral is usually against a certain
measure known as the kinetic action. The integrand itself, called the non-kinetic or gauge coupling action, is
usually the holonomy of a (higher) bundle with connection on X over γ. This bundle is called the background
field.

parameter
space

fields
∈ config. space

// target
space

background
field

// phases

Σ

γ1

##
γ2

))γ3 ..
;; X

∇ // T

Table 1: Σ-models

Another class of quantum field theories are gauge theories: these are obtained from a “path” integral
over a space of fiber bundles with connection on Σ. If the notion of “space” and of “maps between spaces”
is chosen suitably, then gauge theories are in fact special cases of Σ-models (this was maybe first observed
in [10]): the target space is the classifying space for the given kind of bundles. One finds that for (higher)
Chern-Simons theories, the action functional is again the holonomy of a higher bundle with connection on
these classifying spaces.

parameter
space

bundles with
connection

// classifying
space

Chern-Simons functional

etc.
// phases

Σ

γ1

$$
γ2 **
γ3 ..

::“BG”
∇ // T

Table 2: Gauge theories

The various concepts and notions of Σ-models which we shall be concerned with are summarized in table
??

It is sensible to distinguish fundamental from non-fundamental physical systems. Among fundamental
physical systems we count

• charged n-particles (charged (n− 1)-branes):

– the ordinary particle propagating in spacetime, coupled to a vector bundle with connection;

– the string propagating in spacetime, coupled to the Kalb-Ramond 2-bundle with connection;
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X target space

Σ parameter space

T
category of fibers /
space of phase

X
∇ // T

background field /
gauge n-bundle with connection

hom(Σ, X)
space of fields /
configuration space /
moduli space

hom(Σ, X)
hom(Σ,−)(∇) // hom(Σ, T )

background field transgressed
to configuration space

hom(X,T )
∫
hom(Σ,X) ev∗(−)

// hom(Σ, T ) path integral

Σ

∫
hom(Σ),X

ev∗(∇)
// T quantum propagator

Table 3: Notions in Σ-models. All objects and morphisms here live in suitable category of “spaces”.
We will find it useful, convenient and sufficient to model spaces in terms of fundamental path ω-groupoids
Πω(X) internal to the topos of sheaves on Euclidean spaces. We shall, at times, suppress the notation
distinction between the sheaf X and its fundamental ω-groupoid Πω(X). For instance, later on we depict
our background field mostly as an ω-functor ∇ : Πω(X)→ Πω(S(CE(g))).
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– the membrane propagating in spacetime, coupled to a Chern-Simons 3-bundle with connection;

• (higher) gauge theories:

– Chern-Simons theories.

In other words: the fundamental physical systems of interest are Σ-models whose action functional is the
holonomy of a higher bundle with connection on target space. Our aim is to give a systematic formalization
of this concept.

And we notice that at the heart of this concept is the notion which is known equivalently as either of the
following:

• higher gerbes with connection;

• higher bundles with connection;

• higher differential cocycles

all of which possibly non-abelian.

differential cocycle
on parameter space

differential cocycle
on target space

�quantizationoo

(Σ

∫
[Σ,X]

ev∗∇

→ T ) (X ∇→ T )
�?oo

Table 4: Quantization of differential cocycles: low-dimensional examples indicate that quantization of
Σ-models is a procedure which sends differential cocycles on target space to differential cocycles on parameter
space. We are after a conception of nonabelian differential cocycles and of the integration procedure indicated
symbolically on the left which formalizes these examples.

Moreover, we shall now make an observation which suggests that quantization of Σ-models should be
a natural operation which sends differential cocycles on target space to differential cocycles on parameter
space. We mention two examples, the first rather trivial and familiar, the second rather non-trivial and in
fact a main motivation for our discussion.

1.2 Examples for quantization sending differential cocycles to differential cocy-
cles

fundamental
object

background
field

(n− 1)-brane (n− 1)-gerbe

n-particle n-bundle

Table 5: The two schools of counting higher dimensional structures. Here n is in N = {0, 1, 2, · · · }.

5



1.2.1 The charged particle

It is a familiar fact that the mathematical structure modelling the physics of a classical charged particle
propagating on a space X is given by a fiber bundle with connection (P,∇) on X.

Even though it is not usually put this way, we may notice that the quantization of this setup yields
another fiber bundle with connection: namely a bundle on the real line whose typical fiber is the space of
sections Γ(P ) and whose connection is the Hamiltonian ∇2.

Following Freed, we observe that the quantization arises entirely from forming certain sums:

• The connection ∇2 comes from the path integral.

• The space of states Γ(X) is the categorical sum (the coproduct) over the fiber-assigning functor x 7→ Px.

1.2.2 The charged 2-particle

The best description of the dynamics of the string, known as 2-dimensional conformal field theory, that exists
is the description [23] of rational 2d CFT in terms of triangulations of worldsheets Σ colored by Frobenius
algebra objects in modular tensor categories C.

• the black line in the center plane is a transition line
labelled by a Forbenius algebra A;

• U and V are the two chiral labels of a bulk field in-
sertion;

• the yellow coupon is a homomorphism of induced A-A
bimodules;

• the red line, encoding the boundary condition at the
boundary of the disk (the “D-brane”) is labelled by
an A-module.

Figure 1: The 2d CFT disk correlator as a string diagram in C as described in [23].

This captures in particular the Σ-model known as Wess-Zumino-Witten theory, in which a string prop-
agates on a compact Lie group G and is charged under a line 2-bundle with connection ∇ – a nonabelian
differential 2-cocycle ∇ – on that Lie group.

Using the theory of higher descent described in ?? we can regard this decoration prescription as being
the local data of the surface holonomy of a BC descent object on Σ which arises from local trivialization
with respect to the inclusions

BC � � // Bimod(C) // 2Vect(C) .

Therefore the FFRS formulation of rational 2d CFT may be regarded as realizing the 2-dimensional quantum
field theory as a nonabelian differential cocycle.

We want to understand how this 2-cocycle systematically arises from the background field∇ encoding a 2-
bundle with connection such that we may write it in terms of an ω-categorical “path integral”

∫
hom(Σ,G)

ev∗∇ .

1.3 The program: formalization of Σ-models

In order to formalize the above examples and Σ-models in general, we want to find

• a suitable notion of space and morphisms between spaces (part 2);
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U

V

X

Y

Figure 2: The disk correlator as the holonomy of a differential 2-cocycle. On the left, schematically
as a pasting diagram of cylinders in BBimod(C) which we may interpret as a pasting diagram of 2-morphism

in TwBimod(C) by projecting the cylinders onto their equatorial plane. On the right as the locally (BC i
↪→

TwBimod(C))-trivialized holonomy of a TwBim(C)-valued 2-functor. The thin black lines indicate the 2-
morphisms in TwBimod(C). The coloring indicates the Poincaré-dual string diagram in C, which reproduces
the string diagram shown in figure 1.

• a suitable notion of nonabelian differential cocycles (part 4) encoded by morphisms of spaces

X
∇ // T ;

• a suitable way to obtain the bottom morphism in the diagram

hom(Σ, X)× Σ
p2

}}{{{{{{{{
ev

!!DDDDDDDD

Σ

∫
hom(Σ,X)

ev∗∇

::J M
S Y _ e k

q tX
∇ // T

oo ///o/o/o

hom(Σ, X)

���������
Id

##GGGGGGGGG

pt

∫
hom(Σ,X)

hom(Σ,∇)

66Q S U W Y [ ] _ a c e g i k
hom(Σ, X)

hom(Σ,∇) // hom(Σ, T )

, (1)

where the two versions are related under the hom-adjunction.
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We will show that hom(Σ,∇) is the differential cocycle on the “space of paths” to be addressed as the
transgression of ∇ to hom(Σ, X).

We shall also argue that, when all morphisms are modeled as ω-functors between ω-categories and a
major subtlety about the correct definition of ∇ is taken into account, described in ??, the dashed morphism∫
hom(Σ,X)

hom(Σ,∇) should be nothing but the categorical integral going by precisely the same symbol: the

coend or colimit of the functor hom(Σ,∇) over the domain hom(Σ, X).
This is motivated by the following two examples.

1.4 Quantization and categorical coends

The best understood Σ-models that we are interested in are Chern-Simons theory for finite groups and finite
2-groups. These are known as the Dijkgraaf-Witten and the Yetter model, respectively.

We review these theories briefly and describe how the data provided by them fits into the pattern of
diagram 1.

There is one additional piece of data which people specify when considering these theories: a measure dµ
on the configuration space of fields hom(Σ, X) against which the path integral (which is just a finite sum in
these simple cases) is being evaluated. These measures have been found “by hand” by requiring invariance
of the resulting sum under certain choices, and compatibility of this sum with gluing of parameter spaces.

We observe that these measures actually are the canonical measures on the given configuration space
groupoids when regarded as the decategorification of a categorical coend or colimit [33].

This suggests that the dashed morphism in diagram 1 indeed arises from categorical coends, if the
background field ∇ is increased in categorical dimension by one compared to its naive dimension.

Such a shift in dimension is also what we shall find in ?? to be necessary for the description of
nonabelian differential cocycles.

1.4.1 The Leinster measure on n-categories

We are used to integrating functions with values in numbers. But natural numbers are really cardinalities
of finite sets (0-categories). Moreover, rational number are cardinalities of finite groupoids [2] and in fact of
finite categories in general.

Leinster measure on 1-categories. If A is a finite category, a functor

F : A→ Set

may therefore be regarded as a categorified function, whose value at a ∈ A is the cardinality |F (a)| of the
set F (a).

Any function on Obj(A) is a sum of delta-functions which take the value 0 everywhere except at one
point. If A is the discrete category over its finite set of objects (i.e. if it has no nontrivial morphisms) then
the delta-functions correspond precisely to the representable functors on A.

Let us assume, therefore, that, generally, the functors F which we consider are sums of representable
functors. Then [35] relates the colimit over these functors to an integral, a weighted sum, of the corresponding
function over Obj(A) with respect to a certain measure, or weighting, which is given entirely by the morphism
structure of the category A:

a function
dµ : Obj(A)→ Q

is called a weighting for A if for all a ∈ Obj(A) we have∫
A

|A(a,−)| dµ :=
∑

b∈Obj(A)

|A(a, b)| dµ(b) = 1 (2)
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For instance, if A is a connected finite groupoid there is n ∈ N such that there are n morphisms emanating
from each object, and the constant function

dµ : a 7→ 1
n

is a weighting on A.
The cardiality of the colimit over the sum of representables F is (proposition 3.1 of [35])∣∣∣∣∣

∫ a∈A
F (a)

∣∣∣∣∣ =
∣∣∣lim
→
F
∣∣∣ =

∫
A

|F (−)| dµ =
∑

a∈Obj(a)

|F (a)| dµ(a) . (3)

The integral sign on the very left denotes the categorical coend. For our ordinary functor F this is trivially
equal to the colimit, but we include it to emphasize the remarkable notational coherence obtained this way:

the cardinality of the catorical integral over A is the ordinary integral of the cardinalities over Obj(A)
with respect to a certain measure dµ.

For example if A is a finite groupoid and F a sum of representables, then∣∣∣∣∣
∫ a∈A

F (a)

∣∣∣∣∣ =
∑
a∈A
|F (a)| 1

⊕b|A(a, b)|
=

∑
[a]∈A∼

|F (a)| 1
|Aut(a)|

,

where the last sum is over isomorphism classes of objects in A.
What is remarkable about this from the point of view of applications to quantum theory is the appearance

of the singled-out measure dµ: much of the subtlety of quantum theory is due to the fact that for each
quantum system one usually knows the configuration space and a function on it which one wishes to integrate,
but one has problems with finding the proper measure to use in this integral. Below we will show that for
simple cases of quantum field theories the measures which were found “by hand” actually are nothing but
the Leinster measures dµ, as above, on the given configuration groupoids.

Crucial use of these Leinster mesaures in a context closely related to quantum theory has also been made
in [55].

One can use the Leinster measure also to assign a “size”, a cardinality to a finite category A. Given a
weighting dµ on A the cardinality or Euher characteristic of A (definition 2.2 of [35]) is

|A| :=
∫
A

dµ .

This is well defined if a weighting exists also on Aop, which is in particular the case for all groupoids.
For instance a groupoid A with n0 objects and n1 morphisms emanating from each object has weighting

dµ : a 7→ 1
n1

and cardinality
|A| = (n0)1(n1)−1 . (4)

Leinster measure on 2-categories. The defining condition 2 on a weighting on a catgeory A manifestly
makes sense for V-enriched categories when there is a cardinality operation on the objects of V:

| · | : (V,⊕)→ (Q,+) .

In particular, this allows to define cardinalities for strict n-categories inductively by regarding these as
(V = (n− 1)Cat)-enriched categories.

Consider, for example, a finite strict 2-groupoid A which we can assume to be connected (otherwise we
apply the following argument to each connected component) with

• n0 objects

• n1 1-morphisms starting at each object
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• n2 2-morphisms starting at each 1-morphism.

There are then n1/n0 1-morphisms between any two objects a, b and therefore the Hom-groupoids A(a, b)
have n1/n0 objects and n2 morphisms emanating from each of these. Therefore by equation 4 the cardinality
of each Hom-groupoid A(a, b) is

|A(a, b)| = (n0)−1(n1)1(n2)−1 .

A weighting on A in this situation is given by the constant function

dµ : a 7→ (n1)−1(n2)1 . (5)

This formula is shown in 1.4.3 to reproduce the path integral measure for the finite 2-group Chern-Simons
theory called the Yetter model.

The cardinality of this 2-groupoid A is

|A| :=
∫
a∈Obj(A)

dµ = (n0)1(n1)−1(n2)1 .

1.4.2 Finite group Chern-Simons: Dijkgraaf-Witten

A useful comprehensive account of Dijkgraaf-Witten quantum field theory, originally due to [21], is in [26].
A nice review is in [9]. We slightly reformulate it in more category-theoretic terms as follows.

Pick a finite group G and write

BG :=
{
• g // • |g ∈ G

}
for the corresponding one-object groupoid. This category is the target space for Dijkgraaf-Witten theory.

The (naive, see below) background field is a 3-bundle with connection on this target space given by a
pseudofunctor

BG
∇ // B3U(1) ,

which is precisely a U(1)-valued group 3-cocycle on G.
Given a manifold Σ, let Π1(Σ) be its fundamental groupoid. Dijkgraaf-Witten theory is the Σ-model

encoded by the diagram

hom(Π1(Σ),BG)×Π1(Σ)
p2

wwppppppppppp
ev

&&MMMMMMMMMMM

Π1(Σ) BG
∇// B3U(1)

.

Here the configuration space or space of fields is the groupoid hom(Π1(Σ),BG).
To make this technically more easily tractable without losing any information, we may choose a point in

each connected component of Σ and let Π1(Σ) be instead the full subgroupoid of the fundamental groupoid
on these chosen points. That makes the parameter space groupoid Π1(Σ) and hence also the configuration
space groupoid hom(Π1(Σ),BG) a finite groupoid.

Consider the transgression of the background field ∇ to configuration space, which diagram 1 claims is
just its image under hom(Π1(Σ),−):

hom(Π1(Σ),BG)
hom(Π1(Σ),∇)// hom(Π1(Σ),B3U(1)) .

Let’s assume for simplicity that parameter space is the 3-sphere, Σ = S3. Then as we pass to equivalence
classes we get

hom(Π1(Σ),B3U(1))∼ ' U(1) .
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This makes the image of the transgressed background field under taking equivalence classes into a U(1)-
valued functions on equivalence classes of field configurations. This function we address as the holonomy of
the background field around Σ, or as the integrated action on Σ and write it as

holΣ(∇) = exp(2πiSΣ(∇)) : hom(Π1(Σ),B3U(1))∼ → U(1) .

According to the standard prescription [26] (see [9] for a nice review) the path integral in Dijkgraaf-Witten
theory is supposed to be the sum

Z∇(Σ) :=
∫

[P ]∈hom(Π1(Σ),BG)∼

holΣ(P ∗∇) dµ[P ]

• over all isomorphism classes [P ] in hom(Π1(Σ),BG);

• of the “holonomy” of Π1(Σ) P // BG
∇ // B3U(1) regarded as an element

exp(2πiSΣ(P )) := holΣ(P ∗∇) ∈ U(1) ;

• against the measure

dµ : [P ] 7→ 1
|Aut(P )|

.

In the usual discussion, this measure dµ[P ] is introduced “by hand”, justifying itself by the fact that it
induces invariance of the resulting sum under the choices made and compatibility of the sum under gluing
of parameter spaces.

We may notice, however, that this measure happens to have a deep categorical meaning: it is the Leinster
measure [35] on hom(Π1(Σ),BG). The path integral of Dijkgraaf-Witten theory for trivial background field
∇

Z(Σ) :=
∫

[P ]∈hom(Π1(Σ),BG)∼

dµ[P ]

is the Baez-Dolan groupoid cardinality [2] or equivalently Leinster’s Euler characteristic of the configuration
space groupoid hom(Π1(Σ),BG).

∣∣∣∣∣P∈hom(Π1(Σ),BG)∫
F (P )

∣∣∣∣∣ cardinality of
categorical coend

of F over hom(Π1(Σ),BG)

=
∣∣∣lim
→
F
∣∣∣ cardinality of

categorical colimit
of F over hom(Π1(Σ),BG)

=
∑

[P ]∈hom(Π1(Σ),BG)∼

|F (P )| 1
|Aut(P )|

avarage with respect to the Leinster measure
of the observable

|F (−)| : hom(Π1(Σ),BG)→ R

=
∫

[P ]∈hom(Π1(Σ),BG)∼

|F (P )| dµ[P ]

Dijkgraaf-Witten expectation value
of the observable

|F (−)| : hom(Π1(Σ),BG)→ R

It may be worthwhile to observe that the canonical categorical Leinster measure achieves precisely what
in more sophisticated quantum field theories the BRST-BV-formalism [28] is supposed to achieve:

• restrict the path integral to gauge orbits in configuration space;

• divide out the automorphisms of every given configuration.

11



1.4.3 Finite 2-group Chern-Simons: Yetter model

As discussed in [41], Chern-Simons theories can be considered for any transgressive cocycle on any Lie n-
algebra. For n = 1 and a semisimple Lie algebra g, the ordinary Chern-Simons theory is that coming from
the canonical 3-cycles on g. For n = 2 and g a strict Lie 2-algebra coming from a differential crossed module,
one obtains a higher version of Chern-Simons theory.

Again there is accordingly a finite group version of this, where target space is taken to come from a strict
2-group [4]

G(2) = (H t→ G
α→ Aut(H))

coming from some crossed module of finite groups, indicated on the right.
The one-object 2-groupoid BG(2) G as its space of 1-morphisms and H as its space of 2-morphisms

starting at the identity 1-morphism:

BG(2) =


•

g

��

g′:=t(h)g

CC•(g,h)

��

∣∣∣∣∣∣∣∣∣∣∣∣
g ∈ G, h ∈ H


.

Horizontal composition is the product in the semidirect product group Gnα H, vertical composition is just
the product in H. The two conditions on α and t in a crossed module are precisely equivalent to this
composition law yielding a 2-groupoid.

This QFT with target BG(2) is known as the Yetter model [53, 54]. Nontrivial background fields on BG2

were first considered in [36], which also provides the proof that the path integral measure to be dsicussed
below has the right properties.

For Σ some manifold we take now Π2(Σ) to be a strict 2-groupoid obtained from picking any triangulation
of Σ and letting Π2(Σ) be generated from the v0 many vertices, the v1 many edges and the v2 many faces,
modulo the requirement that all tetrahedra which can be formed 2-commute.

Then the Σ-model diagram for the Yetter model is

hom(Π2(Σ),BG(2))×Π2(Σ)
p2

wwooooooooooo
ev

''OOOOOOOOOOO

Π2(Σ) BG(2)
∇ // BnU(1)

.

We can form again the transgressed background field

hom(Π2(Σ),BG(2))
hom(Π2(Σ),∇)// hom(Π2(Σ),BnU(1))

and ask for its “path integration”.
To understand the configuration space 2-groupoid

hom(Π2(Σ),BG(2))

notice that morphisms η

Π2(Σ)

φ

!!

φ′

==
BG(2)η

��

12



between two “fields”, namely two BG(2)-valued functors, being a pseudonatural transformation, are in
bijection to Gv0 ×Hv1 since their component map is a 1-functor

η : Mor1(Π2(X))→ (BG(2))I

given by

η : ( x
γ // y ) 7→

•
φ(γ) //

η(x)

��

•
η(y)

��
•

φ′(γ)

// •
η(γ)rz mmmmmmmmmm

mmmmmmmmmm

and that the label of the bottom morphism on the right is fixed, by the rules for strict 2-groups which we
mentioned above, when the rest of the labels are given. The pseudo-naturality condition for η then fixes F ′

in terms of F and the component map of η.
Analogously, one sees that morphisms between morphisms of fields (gauge of gauge transformations)

η λ +3 η′

are in bijection to Hv0 : they are given by modifications of pseudonatural transformations whose component
map

λ : Obj(Π2(Σ))→ (BG(2))D

is fixed by an element in H:

λ : x 7→
•

η(x)

xx
η′(x)

&& •
λ(x)
ks

and again the target η′ here is fixed once η and the component map of λ are given.
Therefore the 2-groupoid of fields hom(Π2(Σ),BG(2)) has

• |G|v0 |H|v1 1-morphisms emanating at each object;

• |H|v0 2-morphisms emanating at each 1-morphism.

By formula 5 the categorical measure on the configuration 2-groupoid is therefore the constant function

dµ : P 7→ |G|−v0 |H|v0−v1 .

And indeed, this is the measure used in the literature for the Yetter model, which has been introduced and
justified as the measure which makes the path integral independent of the chosen triangulation [36].

1.5 Higher Chern-Simons differential cocycles

The Dijkgraaf-Witten and Yetter model discussed above are finite group versions of the two first of an infinite
class of Σ-models: higher Chern-Simons theory.

Just as a Lie group has a Lie algebra, higher Lie groupd have Lie ∞-algebras, known as L∞-algebras.
As in ordinary Lie theory, we can define cocycles, invariant polynomials and transgression elements for any
L∞-algebra.

We find [41]:

• For each Lie∞-algebra cocycle µ of degree (n+1) which is in transgression with an invariant polynomial
P on the L∞-algebra g we obtain an extension gµ of g by bn−1u(1)

0 // bn−1u(1) // gµ // g // 0

called a string-like extension.

13



• For every L∞-algebra g there is a notion of L∞-algebra valued connection generalizing the notion of
Cartan-Ehresmann connections.

• For every string-like extension as above there is a Chern-Simons L∞-algebra csP (g) with the special
property that differential forms with values in it come from a g-connection and the corresponding
Chern-Simons form.

• The obstruction to lifting a g-connection through a string-like extension to gµ is a bnu(1) connection,
called the Chern-Simons connection, whose characteristic class is that corresponding to the invariant
polynomial P of the original g-connection.

If certain connectedness and intragrality conditions are met, L∞-connections may be intgerated to non-
abelian differential cocycles.

Locally this is an ω-functor from ω-paths to some structure ω-group

∇loc : Πω(Y )→ BG

if it is flat, or to
∇loc : Πω(Y )→ BEG

if it is non-flat such that certain gluing conditions are satisfied which make this functor descent to a globally
defined parallel transport functor

∇ : Πω(X)→ T .

For G an ω-group which admits a sequence BG→ BEG→ BBG, which we will discuss, we write

• H(X,BG) for the ω-category of G-bundles on X;

• HΠ(X,BG) for the ω-category of flat G-bundles with connection on X;

• Ω•(X,BBG) for the ω-category of G-characteristic forms;

• H̄(X,BG) for the ω-category of non-flat G-bundles with connection.

2 Space and quantity

We want to talk about differential cohomology and therefore need a good notion of smooth spaces, general
enough to admit smooth differential forms and at the same have nice structural properties as in particular
the existence of inner homs, which guarantees that the space of maps between two smooth spaces is again a
smooth space. We also want smooth classifying spaces for smooth higher bundles with connection.

We find it convenient and useful to consider smooth spaces to be sheaves on the site S whose

• objects are the integers Obj(S) = N;

• morphisms are smooth maps between Euclidean spaces

S(n,m) = Homsmooth manifolds(Rn,Rm) .

Let that category of sheaves be denoted by C. This is a topos.
All of the following directly generalizes to the supercase if this category of Euclidean spaces Rn, n ∈ N

is replaced by that of super Euclidean spaces Rn|m, n,m ∈ N.
As Lawvere teaches [34], once a site S is fixed, the notions of space and quantity and the duality between

them is captured by the adjunction called Isbell conjugation
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U -shaped
1-morphism overlap

V -shaped
1-morphism

� � f∈X(U) _?� � g∈X(V )/o/o/o/o/o/o/o/o/o/o _?/o/o/o/o/o/o/o/o/o/o

� � f◦g∈X(U∪V ) _?

Figure 3: Spaces and ∞-groupoids. A sheaf X on open subsets of Rn behaves not entirely unlike a
presheaf on ∆ (a simplicial set) satisfying the Kan condition: for each object U ⊂ Rk there is a collection
X(U) of “U -shaped k-morphisms” and the sheaf condition says that whenever these overlap with V -shaped
k-morphisms, there is a (unique) composite (U ∪ V )-shaped k-morphism. We see that this is more than a
faint analogy when discussing integration of L∞-algebras in 2.3.

2.1 Duality of space and quantity

Of particular importance are ambimorphic sheaves [52]: sheaves which carry also a compatible structure as
objects of another category.

Examples of ambimorphic presheaves of relevance for us are

• algebra-valued sheaves

– C(−,−) : Sop → C∞Algebras – this canonical ambimorphic presheaf send each test domain to a
monoidal Set-valued functor on S. Such functors are known as C∞-algebras [37];

– C(−,R) = C∞(−) – the presheaf of ordinary function algebras;
– Ω•(−) : Cop → DGCAs — the presheaf of differential forms, which carries itself the structure of

a differental N-graded commutative algebra;

• ω-category valued co-presheaves (compare [13, 44, 45])

– Pn(−) : C → ωCat – the n-groupoid whose k ≤ n-morphisms are thin homotopy classes of
globukar k-paths;

– Πn(−) : C → ωCat – the n-groupoid whose k < n-morphisms are thin homotopy classes of
globukar k-paths; and whose n-morphisms are full homotopy classes of such paths;

– Πω(−) : C → ωCat — for the ω-groupoid whose k-morphisms are thin homotopy classes of
globular k-paths.

The ambimorphicity of the path ω-groupoid valued sheaves is the fact that these may be regarded
as ω-stacks on Cop. But as stacks they are rather special in that they are rectified : they respect
composition in C strictly.

From each ambimorphic (co-)presheaf A which is also an object of a category D we obtain a (co- or
contravariant) adjunction by homming into it

C
C(−,A) //

oo
D(A,−)

D

space A-quantity

.

For the important case of A = Ω• we write

Ω• : C
C(−,Ω•(−)) //

oo
HomDGCA(Ω•(−),−)

DGCA : S .
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This duality will translate for us between the world of Lie ω-groups and their infinitesimal approximations,
Lie ∞-algebras (L∞-algebras).

2.2 Lie ∞-algebras

A finite dimensional L∞-algebra is a N+-graded vector space g∗ together with a graded differential

dg : ∧•g∗ → ∧•g∗

which is of degree +1 and squares to 0.
The corresponding differential graded commutative algebra

CE(g) := (∧•g∗, dCE(g))

we call the Chevalley-Eilenberg algebra of g.
The DGCA mapping cone on the identity of this is the Weil algebra

W(g) := (∧•g∗ ⊕ g∗[1], dW(g) =
(
dCE(g) 0

[1] [1] ◦ dCE(g) ◦ [-1]

)
)

2.3 Integration of Lie ∞-algebras

From any L∞-algebra g we obtain an ω-group

BG := Πω(S(CE(g))) .

This we address as the strict, fully simply connected ∞-group integrating g.
(Doing the same while not dividing out thin homotopy of k-paths and then passing to ω-nerves leads to

the integration setup considered in [27, 29]).
Applying this procedure to an ordinary Lie algebra yields the simply connected Lie group integrating

it. Analogously, the ω-groups obtained this way are higher simply connected. Other ω-groups are obtained
from quotienting out discrete ω-groups.

For instance the ω-group integrating bnu(1) is

BnR = Πω(S(CE(bnu(1)))) .

To obtain BnU(1) one forms the homotopy quotient of

BnU(1) ' Cone(BnZ→ BnR) .

Examples. Let g be an ordinary Lie algebra and Π1(X) the strict fundamental 1-groupoid of a space X
(morphisms are homotopy classes of paths). Let G be the simply connected Lie group integrating g. Then

Π1(S(CE(g))) = BG ,

where the right hand side denotes the strict one object 1-groupoid obtained from G.
Now let g be an ordinary Lie algebra with a bilinear invariant form on it and let µ be the associated

canonical Lie algebra 3-cocycle. The corresponding String Lie 2-algebra is gµ. Let Π2(X) be the strict
fundamental 2-groupoid of a space X: morphisms are thin homotopy classes of paths and 2-morphisms are
homotopy classes of paths [?].

Then, I am claiming, the 2-group Gµ defined by

BG2 := Π2(S(CE(gµ)))

is essentially the strict version of the String Lie 2-group presented in [7], only that the horizontal composition
of paths is not pointwise multiplication, but concatenation. This is, I am claiming, the strict 2-group secretly
underlying the discussion in [17, ?].

Forming instead Πwk
∞ (S(CE(g))) leads to the integration discussed in [29].
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3 Descent

The general notion of cohomology, as formalized ∞-categorically by Ross Street [48], makes sense for coeffi-
cient objects which are ∞-category valued presheaves. For the special case that the coefficient object is just
an ∞-category, the corresponding cocycles characterize higher fiber bundles. This is usually addressed as
nonabelian cohomology [11, 51]. If instead the coefficient object is refined to presheaves of ∞-functors from
∞-paths to the given∞-category, then one obtains the cocycles discussed in [6, 44, 45, 46] which characterize
higher bundles with connection and hence live in what deserves to be addressed as nonabelian differential
cohomology [31].

We concentrate here on ω-categorical models (strict globular ∞-categories [14, 20, 15, 16]) and discuss
nonabelian differential cohomology with values in ω-groups obtained from integrating L(ie)-∞ algebras [27,
29].

total space
fibration

P

p

��
X

pullback by
universal property

f∗P

��

// P

p

��
Y

f // X

weak respect
for composition

of pullback

fiber-assigning
functor

GTor

X

OO pullback by
precomposition

GTor

Y
f // X

OO strict respect
for composition

Table 6: The rectification of ∞-stacks of ∞-bundles in terms of fiber-assigning functors. The
crucial method which allows us to work entirely within ω-category valued sheaves without having to deal
with “∞-prestacks” is that we conceive all n-bundles (P,∇) with connection not as fibrations of their total
spaces p : P → X but entirely in terms of their fiber-assigning and parallel transport-assigning functors. The
equivalence of fiber-assigning functors with the total space perspective of bundles is established in [44, 46].

3.1 Introduction

A principal G-bundle is given, with respect to a good cover by open sets of its base space, by a trivial G-
bundle on each open subset, together with an isomorphism of trivial G-bundles on each double intersection,
and an equation between these on each triple intersection. This is the archetypical example of what is called
descent data, forming a cocycle in nonabelian cohomology. It can be vastly generalized by replacing
the group G appearing here by some ∞-category. For each cocycle obtained this way there should be a
corresponding ∞-bundle whose local trivialization it describes [57].

The crucial basic idea of [6, 44, 45, 46] is to describe ∞-bundles with connection by cocycles which have

• a (“transport”) functor from paths to G on each patch;

• an equivalence between such functors on double overlaps

• and so on.

The cocycles thus obtained deserve to be addressed as cocycles in differential nonabelian cohomology.
Forming the collection of ω-functors from paths in a patch to some codomain provides a functor from

“spaces” to ω-categories: an ω-category valued presheaf.
In [48] Ross Street descibes a very general formalization for cohomology taking values in ω-category

valued presheaves. We recall the basic ideas (subject to some slight modifications, a discussion of which is
in ??) and describe how the differential cocoycles of [6, 44, 45, 46] fit into that.
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Of particular interest are differential cocycles which can be expressed differentially in terms of L(ie)
∞-algebras. Building on the discussion of [41] we give in 3.5 a definition (def. ??) of non-flat non-abelian
differential cocycles and their characteristic classes.

There are two major approaches to general (nonabelian) ∞-cohomology:

• Ross Street in [48] explicitly writes down ∞-descent conditions for ∞-category valued presheaves.

• In the approach reviewed in [51, 32] instead simplicial set valued presheaves are used, and the descent
condition is realized more implicitly, by passing to homotopy categories.

3.2 Descent and cohomology

Fix a topos C, whose objects we think of as

• the spaces whose cohomologies we want to understand;

or equivalently

• the spaces on which we want to understand the notion of higher fiber bundles and connections.

We work with ω-categories (strict globular∞-categories) internal to C and write ωCat for the (ωCat,⊗Gray)-
category of all ω-categories internal to C (see [20] and section 9 of [48]).

The theory we are interested in is the theory of structures P ∈ Bund(X) on X ∈ C for

Bund : Cop // ωCat

some functorial assignment of structures to each object X in C, which have the property that when pulled
back along a suitable regular surjection

π : Y // //X

in C they become equivalent to a structure

Ptriv ∈ TrivBund(Y) ⊂ Bund(Y )

from a chosen smaller collection i : TrivBund � � // Bund :

∃ : π∗P t

'
//Ptriv .

The equivalence t here is called the local trivialization of P relative to π and i. We speak of π-local
i-trivializations.

The existence of this local trivialization implies that the existence of the structure P down on X is
mirrored by the existence of Ptriv up on Y together with various relations between the pullbacks of Ptriv

along the simplicial object
Y • := Ner(π) : ∆op // C

Y • =
(
· · ·Y ×X Y ×X Y

π12 //
π23 //
π13 // Y ×X Y

π0 //
π1 // Y

)
.

The first of these relations says that there is an equivalence

π∗1Ptriv '
g //π∗2Ptriv

between the two possible pullbacks of Ptriv to Y ×X Y . The second relation says that there is an equivalence

π∗2Ptriv

π∗23g

%%JJJJJJJJJ

π∗1Ptriv
π∗13g

//

π∗12g
99ttttttttt

π∗2Ptriv

f'
��
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between the three possible pullbacks of this equivalence to Y ×X ×Y ×X Y . The third relation says that
there is an equivalence between the four possible pullbacks of this equivalence of equivalences. And so on.

These relations are variously known as the transition data or gluing data or descent data, since given a
Ptriv ∈ TrivBund(Y ), they ensure that Ptriv may be “glued” along the fibers of Y such that result “descends”
to a P ∈ Bund(X) down on X. Therefore descent is the converse to local trivialization:

trivial
structure

on Y

� descent //
oo

local trivialization
�

structure
on X

.

The collections (Ptriv,g,f,···) consisting of a Ptriv with its gluing data or descent data can hence usefully
be regarded as a forming a kind of higher categorical coequalizer of the cosimplicial ω-category

E : ∆
Ner(π)op

//Cop TrivBund //ωCat

E• =
(
· · ·TrivBund(Y ×X Y ×X Y )

oo π∗01oo π∗12oo π∗23

TrivBund(Y ×X Y )
oo π∗0
oo π∗1

TrivBund(Y )
)
.

This coequalizer-like ω-category, whose objects are suitable collections (Ptriv,g,f,···) is the descent cat-
egory Desc(E)

Desc : ωCat∆ //ωCat .

Its general definition for ω-categories was given in [48] (p. 32), based on [49]. A sketch of a more general
definition for weak ∞-categories is given towards the end of [48].

3.2.1 ωCat-valued presheaves

The above considerations show that the objects of interest here are (pre)sheaves on C with values in ω-
categories, corresponding to the presheaves with values in simplicial sets considered in the approach reviewed
in [32, 51].

There is a standard construction to enrich ωCatC
op

over ωCat:
for X,Y ∈ ωCatC

op
write

˜hom(X,Y ) : ωCat→ Set

R 7→ ωCat(R×X,Y ) .

If this is representable, we identify the representing ω-category hom(X,Y ) ∈ ωCat with the ωCat-valued
hom-object:

˜hom(X,Y ) ' SetωCatop
(−,hom(X,Y )) .

So if C is such that this representing object exists, ωCatC
op

is ωCat-enriched and it makes sense to ask
if our descent ω-category Desc(E) is actually co-representable in that there is ΠY

0 (X) ∈ ωCat such that

Desc(E) ' ωCatC
op

(ΠY
0 (X),TrivBund) ,

where we are implicitly using the canonical embedding ωCat ↪→ ωCatC
op

. This ΠY
0 (X) is the codescent

object
ΠY

0 (X) := Codesc(Ner(π))

and the notation suggests that we shall later have use more generally for ω-catgories denoted ΠY
n (X) and

ΠY
ω (X): their k-morphisms are k-paths in Y combined with jumps in the fibers of Y [44, 46].

Notice that the map Desc from simplicial ω-categories to ω-categories is analogous (possibly even equiv-
alent) to the codiagonal map from bisimplicial sets to simplicial sets.

We usually have that TrivBund is representable

TrivBund(−) ' ωCatC
op

(−,A)
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for some A ∈ ωCatC
op

, where we are implicitly using the embedding C ↪→ ωCatC
op

which sends each object
U to the ωCat-valued presheaf which sends each object V to the discrete ω-category over C(V,U).

In that case we say that

Definition 1 (ωCatC
op

-valued cohomology) For X ∈ C and A ∈ ωCatC
op

, the ω-category

H(X,A) := colimπ

(
Desc

(
∆

Ner(π)op

// Cop
ωCatCop

(−,A) // ωCat

))

is the cocycle ω-category of X with coefficients in A:

• objects are the A-valued cocycles on X;

• (1-)morphisms are the coboundaries between these cocycles;

• (k > 1)-morphisms are the coboundaries of coboundaries;

• equivalence classes of objects are the A-valued cohomology classes of X.

The functor
H(−,A) : Cop → ωCat

is the cohomology theory for coefficients A.

This is the general definition of cohomology that essentially appears in section 4 of [48].

3.2.2 ωCat-valued cohomology

The special case of cohomology with values in an ω-category – whose general idea goes back to [39] and is
often addressed, somewhat loosely, as nonabelian cohomology – is obtained using the inclusion

Π∗0 : ωCat�
� //ωCatC

op

A
� // ωCat(Π0(−), A) ,

where, in turn, Π0 : C ↪→ ωCat sends each object U to the discrete ω-category over it (which has U as its
object of objects and no nontrivial morphisms.)

Hence

Definition 2 (ωCat-valued cohomology) For A ∈ ωCat, the cohomology theory with coefficients in A is

H(−, A) := H(−,Π∗0(A)) .

Using the Yoneda-like argument on p. 12 of [48], which says that

ωCatC
op

(U,Π∗0(A)) ' Π∗0(A)(U) := ωCat(Π0(U), A) ,

this becomes the theory considered on p. 3 of [48].

3.2.3 ωCat-valued differential cohomology

Recall that, with definition 2, we obtained ωCat-valued cohomology from the general ωCatC
op

-valued coho-
mology by pulling back along an inclusion

Π∗0 : ωCat � � // ωCatC
op
.
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But there are other such inclusions, which are no less natural. In particular, if the objects X of C are spaces
that admit a notion of path ω-groupoid Π(X),

Π : C � � // ωCat

then we can pull back along the corresponding

Π∗ : ωCat � � // ωCatC
op

A
� // ωCat(Π(−), A) .

Definition 3 (ωCat-valued differential cohomology) For a given notion of path ω-groupoid Π : C ↪→
ωCat and a coefficient object A ∈ ωCat we address

HΠ(−, A) := H(−,Π∗(A))

as Π-differential cohomology with values in A.

For Π = P2 and G a strict 2-group such cocycles in HP2(−,BG) were first considered in [6, 46].

3.2.4 Examples

Cohomology classes for ω-bundles

Definition 4 (ω-groups) Given any one-object ω-groupoid Gr we say that the Hom-thing G := Gr(•, •) is
an ω-group and write

Gr := BG

to indicate the property of Gr of having one single object.

Remark. The notation here is such that under taking realizations of nerves we have

|BG| ' B|G| ,

compare [3, 8]. We hence call BG the classifying ω-groupoid for the ω-group G.
Whichever way a principal G-bundle on X is defined [57], it must be such that its local trivializations

are objects in H(X,BG) and, indeed, that the ω-category GBund(X) they form is equivalent to H(X,BG)

GBund(−) ' H(−,BG) .

For n = 2 this is discussed in [57].
This is often thought of as saying that

G-bundles are a geometric model for H(−,BG) .

One expects to revover the topologist’s notion of classifying maps in the case that objects of C are
topological spaces by using the corepresentation of H(−,BG) using the codescent object as

H(−,BG) ' ωCat(ΠY
0 (X),BG)

for π : (Y = tiUi)→ X a good cover of X. Upon applying the nerve functor one expects

|ωCat(ΠY
0 (X),BG)| ' [|ΠY

0 (X)|, |BG|] ' [X,B|G|] .

For strict 2-groups G this was shown to be true in [8] if G is “well pointed”. A more general argument for
topological 2-categories is given in [3] though it is, while plausible, not obvious that the “concordances” used
in [3] reproduce exactly the transformations that are the morphisms in H(−,BG).

21



Singular cohomology

Fact 1 A direct consequence of a standard fact about Čech cohomology is that the ω-category BnZ exhibits
ordinary singular cohomology as ωCat-valued cohomology

Hn+1
singular(−,Z) = H(−,BnU(1))∼ = H(−,Bn+1Z)∼

.

K-Theory

Fact 2 A standard fact about K-theory says that

K0(−) ' H(−, (BU)Z)∼ .

Cohomology classes for ω-bundles with connection While our definition allows more general setups,
usually one will want to interpret differential cohomology in the context of smooth spaces.

If this is so, one useful concrete choice for our ambient category is to take C to be the category of sheaves
on the site S with

• Obj(S) = N;

• S(n,m) = {f : Rn → Rm|f smooth} .

Theorem 1 Let G be an ordinary Lie group and let

Π := P1 : C → ωCat

be the path 1-groupoid whose morphisms are thin-homotopy classes of paths. Then Π-differential cohomology
with values in BG classifies principal G-bundles with connection

HΠ(−,BG) = GBund∇(−) .

This is the result of [44].

Theorem 2 Let G be a strict Lie 2-group and let

Π := P2 : C → ωCat

be the path 2-groupoid whose k-morphisms are thin-homotopy classes of k-paths. Then Π-differential coho-
mology with values in BG classifies fake-flat principal G-2-bundles with connection

HΠ(−,BG) = GBund∇(−) .

This is the result of [45] and [46].
In particular, for G = AUT(H), HΠ(−,BAUT(H)) classifies the fake-flat connections on H-gerbes

studied in [12].

3.3 Codescent

Definition 5 (codescent) Given a simplicial object E : ∆op → C , we say that

Codesc(E) ∈ ωCatC
op

is, if it exists, the codescent ωCatC
op

-object of E if it co-represents descent on E in the sense that

Desc

(
∆

Eop
// Cop

ωCatCop
(−,A)// ωCat

)
' ωCatC

op
(Codesc(E),A)

naturally for all coefficient objects A ∈ ωCatC
op

.
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If we let A just run over the image of ωCat ↪→ ωCatC
op

we obtain the codescent object as an ω-category:

Definition 6 Given a simplicial object E : ∆op → C , we say that

Codesc(E) ∈ ωCat

is, if it exists, the codescent ω-category of E if it co-represents descent on E in the sense that

Desc
(

∆
Eop
// Cop

ωCat(Π0(−),A)// ωCat
)
' ωCat(Codesc(E), A)

naturally for all coefficient object A ∈ ωCat.

For E = Y • = Ner(π : Y → X), we have that Codesc(E) = Ππ
0 (X) is nothing but the Čech groupoid of

Y . In fact, as mentioned on p. 3 of [48], every category is the codescent object of its nerve.
We observe that, again, the above definition makes explicit use of an injection

Π : C → ωCat .

Hence we adapt the notion of codescent to the setup of differential cohomology as in 3.2.3:

Definition 7 (differential codescent) Given a simplicial object E : ∆op → C, and an embedding

Π : C ↪→ ωCat ,

we say that
CodescΠ(E) ∈ ωCat

is, if it exists, the codescent object of E if it co-represents descent on E in the sense that

Desc
(

∆
Eop
// Cop

ωCat(Π(−),A)// ωCat
)
' ωCat(CodescΠ(E), A)

naturally for all coefficient object A ∈ ωCat.

Theorem 3 For Π := P1 the path 1-groupoid, we have

CodescΠ(Y •) = Pπ1 (X) ,

where on the right we have the “path pushout” from [44].

Theorem 4 For Π := P2 the path 2-groupoid, we have

CodescΠ(Y •) = Pπ2 (X) ,

where on the right we have the “bigon pushout” from [46].

3.3.1 Descent categories from codescent

We can use the codescent objects to express the corresponding descent ω-categories in a useful way:
as described on p. 5 of [48] every category is the codescent object of its own nerve. That means

in particular that the codescent object of the nerve of an epimorphism π : Y // // X is just the Čech
groupoid Codesc(Ner(π)) = Xπ.
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3.3.2 Examples

Descent category for differential 1-cocycles We consider π : Y // // X a regular epimorphism and
work out the descent category for differential 1-descent

Desc
(

∆
Ner(π)op

// Cop
Cat(P1(−),BG) // Cat

)
= Desc

(
∆

Ner(π)op

// Cop
CatCop

(−,Cat(P1(−),BG) // Cat

)
as

= CatC
op

(Cat(Π0(−), Xπ),Cat(P1(−),BG))

Notice that for each test domain U the objects of Cat(Π0(U), Xπ) are maps U → Y in C, while the
morphisms are maps U → Y [2].

The objects of CatC
op

(Cat(Π0(−), Xπ),Cat(P1(−),BG)) are over each test domain U functors

Cat(Π0(U), Xπ)→ Cat(P1(U),BG)

natural in U . Such functors can be obtained from picking an object

triv ∈ Cat(P1(Y ),BG)

with an ismorphism
g : π∗1triv→ π∗2triv

such that
π∗2triv

π∗23g

$$IIIIIIIII

π∗1triv

π∗12g
::uuuuuuuuu

π∗13g
// π∗3triv

and then sending f : U → Y to f∗triv f̂ : U → Y [2] to f̂∗g.
By the usual presheaf gymnastics, all such functors should arise this way.
A natural transformation between two such functors is obtained from picking an isomorphism

h : triv→ triv′

making

π∗1triv
g //

π∗1h

��

π∗2triv

π∗2h

��
π∗1triv′

g′
// π∗2triv′

commute, and then sending each object f : U → Y to the morphism f∗h.
By the usual presheaf gymnastics, all such functors should arise this way.
The descent category found this way is the one given in [44].

Descent category for differential 2-cocycles Analogously.
The descent category found this way is the one given in [46], the cocycles of which were also described

in [6].
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3.4 Local trivialization

If
Bund : Cop → ωCat

encodes structures on objects of C of certain kind and

i : TrivBund � � // Bund

is a certain subcollection of these structures which we want to regard as being “trivial”, and if

π : Y // // Y

is a regular epimorphism in C, then we say

Definition 8 The pseudopullback Triv(i, π)

Triv(i, π) //

��

TrivBund(Y )� _

i

��
Bund(X) π∗ // Bund(Y )

'

t| pppppppppppppppppppp

pppppppppppppppppppp

is the ω-category of π-locally i-trivializable elements of Bund(X), equipped with a chosen π-local i-trivialization.
By forgetting the chosen local trivialization we obtain a factorization

Triv(i, π) // // Trans(i, π) � � // Bund(X)

where Trans(i, π) is the ω-category of elements of Bund(X) which do admit some π-local i-trivialization.

This is essentially the definition on p. 22 of [48], but with the notation following [44, 46] (so our Triv(i, π)
is Q(t; e) in [48] and our Trans(i, π) is Loc(t; e)).

In [44, 46] we adopt a more concrete (less general) point of view on what counts as i-trivial: there we
require that

Bund := ωCat(Πn(−), T )

for T some ω-category of fibers and

TrivBund := ωCat(Πn(−),Gr)

for Gr some ω-category of typical fibers and that the injection

i : TrivBund � � // Bund

is postcomposition with a specified injection

i : Gr � � // T .

In that case an element F ∈ Bund(X) is π-locally i-triviall precisely if it fits into a square

Πn(Y )
π∗ //

triv

��

Πn(X)

tra

��
Gr

i // T

t

'

v~ uuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuu
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In [44, 46] we also see the need to strengthen the conditions on what counts as locally trivial: not only
need the local trivialization t exist, it also may have to be itself locally trivial in some sense. We encode this
by putting conditions on the descent data induced by t:

Observation 1 (extraction of descent data) There is canonically a morphism

Ex : Triv(i, π)→ Hπ(X,Bund) .

See [44, 46].

Definition 9 (π-local i-trivialization) Given

• T ∈ ωCat: thought of as an ω-category of fibers;

• Gr ∈ ωGrpd: thought of as an ω-groupoid of typical fibers

• an inclusion
i : Gr � � // T ;

• Π : C → ωCat; a notion of path ω-groupoid;

• a factorization
ωCat(Π(−),Gr) � � a //

i∗

66TrivBundΠ
Gr

� � // ωCat(Π(−), T )

in ωCatC
op

with the map a surjective on objects and faithful, we say that

tra ∈ ωCat(Π(x), T )

is π-locally i-trivializable if there is an equivalence t

Π(Y )
π∗ //

triv

��

Π(X)

tra

��
Gr

i // T

t

'

w� vvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvv

such that the extracted cocylce has coefficients in TrivBundΠ
Gr

Ex(t) ∈ Hπ(X,TrivBundΠ
Gr) .

3.4.1 Local semi-trivialization: bundle gerbes

What is addressed as a “bundle gerbe” in the literature is really a cocycle. Bundle gerbes differ from cocycles
with values in BG only in that the factorization appearing in definition 9 has a middle piece whose collection
of morphisms is strictly larger than that of the left piece.

Theorem 5 Line bundle gerbes [38] with connection (“and curving”) are equal (meaning: canonically iso-
morphic) to cocycles with values in the subobject

TrivBund ⊂ ωCat(P2(−),BVect)

on all objects which factor through
i : BBU(1) ↪→ BVect

with morphisms those whose component maps are locally (BU(1) ↪→ Vect)-trivializable.

Details and proof in [46].
Analogous statements hold for other flavors of bundle gerbes, like higher bundle gerbes and nonabelian

bundles gerbes[1].
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3.5 Characteristic forms

3.5.1 L∞-algebra valued differential forms

Definition 10 For G an ω-group, we address

Ω•(−,BG) := ωCat(Πω(−),BG) : Cop → ωCat

as flat G-valued differential forms.

For G a strict 2-group and Πω replaced with P2 this was studied in [45], see also [6]:

Theorem 6 Objects of the 2-category
2Cat(P2(Y ),BG)

for G coming from a Lie crossed module (t : H → G) are pairs (A,B) ∈ Ω1(Y,Lie(G)) × Ω2(Y,Lie(H))
satisfying FA + t∗ ◦B = 0.

This can be understood in terms of L∞-algebra valued forms:
L∞-algebras are to ordinary Lie algebras as ∞-groupoids are to ordinary groups. We can integrate L∞-

algebras to ω-groupoids internal to smooth spaces and use these as coefficients for nonabelian differential
cohomology.

Definition 11 A finite-dimensional L∞-algebra is a finite dimensional N+-graded vector space g together
with a degree +1 differential on the graded symmetric tensor algebra over g∗

dg : ∧•g∗ → ∧•g∗

such that d2 = 0. The resulting differential graded commutative algebra

CE(g) = (∧•g∗, dg)

is called the Chevalley-Eilenberg algebra of g.

There is a notion of mapping cone for L∞-algebras and we write

W(g) := CE(inn(g)) := CE(Cone(g Id→ g)) .

We have a canonical sequence

CE(g) oo W(g) oo inv(g) = W(g)basic . (6)

For more details on this and the following see [41].
There is a contravariant adjunction between smooth spaces and differential graded commutative algebras,

induced by the ambimorphic deRham object Ω•(−) ∈ C which is a smooth space with the structure of a
DGCA on it:

C
Ω•(−) //

oo
S

DGCA .

Definition 12 (L∞-algebra valued forms) Given an L∞-algebra g and a smooth space Y , we address

Ω•(Y, g) := C(Y, S(W(g))) ∈ C

as the space of g-valued forms, and

Ω•flat(Y, g) := C(Y, S(CE(g))) ∈ C

as the space of flat g-valued forms.
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This definition relates to the definition of G-valued differential forms when integrating L∞-algebras to
ω-groupoids. As noticed in [27] (see also [29] and [42]) this integration procedure is essentially nothing but
the old construction in rational homotopy theory [50]: the ∞-group in question is that of k-paths/singular
k-simplices in the space S(CE(g)). Here we adopt this idea to the context of ω-categories internal to C:

Definition 13 (Integration of L∞-algebras) For g any L∞-algebra, we define the ω-groupoid BG inte-
grating it, as well as ω-groupoids denoted BEG and BBG as the image under Π ◦ S of the sequence 6:

BG // BEG // BBG

:= Πω ◦ S( CE(g) oo W(g) oo inv(g) )

I believe that it should be true that morphisms of path ω-groupoids all come from push-forward along
maps of the underlying spaces:

ωCat(Π(X),Π(Y )) ' C(X,Y ) .
If true, this would imply that for ω-groups G obtained from integration of L∞-algebras g by integration as
above we have

Ω•(Y,BG) = Ω•(Y, g) .

4 Nonabelian differential cohomology

Given the motivation provided by the context of Σ-models as described in 1.3, we want to conceive higher
bundles with connection in terms of their parallel transport ω-functors

∇ : Πω(X) // T .

The value of these functors over objects, points x ∈ X, is the fiber Px of the bundle P in question. The
value over 1-paths γ : x→ y is the parallel transport along this path. The value on higher path is the higher
dimensional analog of parallel transport.

Py

$$JJJJJJ

��
T Px //

99tttttt
y

$$JJJJJJJJ

��

Pz

Πω(X)
∇
OO

x //

::tttttttt_

OO

z
_

OO

Among all functors Πω(X)→ T those which qualify as parallel transport in higher fiber bundles need to
be characterized.

For G an ω-group we say that such an ω-functor is a parallel transport functor with local structure BG
if it is locally i-trivial

∃( π : Y // // X ) :

Πω(Y )
π∗ //

∇loc

��

Πω(X)

∇

��
BG

i // ωCat

'
t

v~ uuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuu

for a given representation

i : BG
i // T

and if the local trivialization t induces ωCat(Πω(−),BG)-descent on Ner(π).
Conceiving higher bundles with connection this way in terms of their fiber-assigning and parallel transport

functors in particular makes them form sheaves instead of higher n-stacks. This is technically convenient
and useful. For example it allows us use of the descent theory for cosimplicial ω-categories of [48].
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4.1 Flat and non-flat nonabelian differential cocycles

For each n-group G we get ω-groupoid valued presheaves (sheaves, actually)

• ωCat(Π0(−),BG) – trivial G-bundles

• ωCat(Πn(−),BG) – trivial G-bundles with fake-flat connection

• ωCat(Πω(−),BG) – trivial G-bundles with flat connection .

We say that

•
H(−,BG) := H(−, ωCat(Π0(−),BG))

is nonabelian cohomology with values in G;

•
HPn(−,BG) := H(−, ωCat(Pn(−),BG))

is fake-flat nonabelian cohomology with values in G;

•
HΠ(−,BG) := H(−, ωCat(Πω(−),BG))

is flat nonabelian cohomology with values in G.

The non-obvious part is the definition of non-flat and non-fake flat differential cohomology.
For some ω-groups G we can form

BG � � // BEG // BBG ,

large classes of explicit examples will be constructed in terms of integrated L∞-algebras below.
In such a case we define

• nonabelian differential cohomology with values in G

to be the joint pullback

H̄(−,BG)

uujjjjjjjjjjjjjjj

�� **UUUUUUUUUUUUUUUUU

H(−,BG)

##GGGGGGGGG HΠ(−,BEG)

zzttttttttt

%%KKKKKKKKKK
Ω•flat(−,BBG)

yyrrrrrrrrrr

H(−,BEG) HΠ(−,BBG)

G-bundle
with connection
and curvature

wwooooooooooooooooo

��
((RRRRRRRRRRRRRRRRR

G-bundle

��>>>>>>>>>>>>>>

G-valued
connection

and curvature

||yyyyyyyyyyyy

$$HHHHHHHHH

characteristic
forms

||xxxxxxxxxx

characteristic
classes
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The various morphisms here are best understood in terms of the codescent objects ΠY (X) and ΠY
0 (X):

the above pullback says that the cocycles in H̄(−,BG) are the cocycles

ΠY (X) // BEG

in HΠ(−,BEG) which fit into a square

ΠY
0 (X)� _

i

��

// BG

��

G-cocycle

ΠY (X) //

π

����

BEG� _

��

connection and curvature

Π(X) // BBG characteristic forms

. (7)

The bottom morphism represents BBG-valued forms. Precomposition of that with the lower left vertical
arrow π is the map

Ω•(−,BBG)→ HΠ(−,BBG) .

Postcomposition with the lower right vertical morphism is the map

HΠ(−,BEG)→ HΠ(−,BBG) .

Precomposition with the upper left vertical morphism i is the map

HΠ(−,BEG)→ H(−,BEG) .

Finally, postcomposition with the upper right vertical morphism is the map

H(−,BG)→ H(−,BEG) .

4.2 Representations, sections and holography

4.2.1 For Lie ω-groups

A representation of a 1-group G is a morphism

ρ : BG→ Set .

Pulling back the universal Set-bundle
TptSet→ Set

along this representation yields the action groupoid

V // V//G // BG . (8)

Under the hom-adjunction

Hom(Y • ⊗ I, T ) ' Hom(Y •,hom(I, T ))
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V//G //

��

TptSet

��
Y • g //

##FFFFFFFFF

σc

##

σux
x

<<x
x

BG ρ // Set

pt

::tttttttttt

σt

GO
����

����

Figure 4: Sections of cocycles. Given a G-valued cocycle g : Y • → BG and a representation ρ : BG→ Set
we are asking for the set of sections Γ(ρ[g]) of the corresponding ρ-associated G-bundle. Such a section
is, equivalently, any one of the three morphisms carrying the symbol σ: The transformation σt from the
terminal cocycle into our given cocycle is given in components by the functor σc which in turn, by the
universal property, is given by the morphism σu.

morphism between transport functors

BG
ρ

!!DDDDDDDD

φ

��

Y •

g
<<yyyyyyyy

h ""EEEEEEEE T

BG′
ρ′

=={{{{{{{{

Correspond to morphism
φ : Y • // T I

which are themselves transport functors. This is essentially holography.
Such morphisms correspond to bi-section

V//G×G′ //

��

T I

��
Y •

g×h
//

σ

::t
t

t
t

t
B(G×G′)

ρ×ρ′ // T

.

The twisted n-bundles appearing in String theory, corresponding to the Green-Schwarz and the Freed-Witten
anomaly cancellation are of this origin.

4.2.2 For L∞-algebras

Following the structure of action groupoids of ω-group representations 8, we define a representation of an
L∞-algebra g on an ∞-vector space in terms of a cochain complex V as an extension of g by V :

∧•V ∗ CE(g, V )oooo CE(g)? _oo .

Every L∞-algebra g has an adjoint representation on itself: let σ−1 : g∗ → g∗[−1] be the canonical
isomorphism extended as a degree -1 derivation to all of ∧•(g∗ ⊕ g∗[−1]). Then define

CE(g, g) := (∧•(g∗ ⊕ g∗[−1]), dad)
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with
dada := dCE(g)a

and
dadσ

−1a = −σ−1dCE(g)a

for all a ∈ g. This is nilpotent due to

d2
adσ
−1a = −dadσ

−1dCE(g)a = −[dad, σ
−1]dCE(g)a = 0 .

For every  L∞-representation ρ of g on V with the special property that

dV ∗ ⊂ V ∗ ⊗ ∧•(g∗ ⊕ V ∗)

there is a dual representation ρ∗ of g on V ∗.
We can generalize the definition of L∞-algebras and their representations from monoids in cochain com-

plexes of vector spaces to monoids of cochain complexes of modules over any commutative algebra. These
arise automatically when we take the L∞-connections discussed in 4.3 and transgress them to mapping
spaces.

The BRST complex of an L∞ algebra g acting on a submanifold confS of configuration space conf is
then seen to be the representation of g on the resolution of confS in conf.

4.3 Differential cocycles from Cartan-Ehresmann L∞-connections

In [41] the Lie ∞-algebraic analog of diagram 7 was considered, termed a higher Cartan-Ehresmann- or
L∞-connection.

Ω•vert(Y ) CE(g)
Avertoo

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

Ω•(X)

OOOO

inv(g)
{Pi(FA)}oo

OOOO

Applying
Πω ◦ S : DGCAs→ ωCat

to the entire diagram turns it into a diagram in ωCat. Assume that either the fibers of Y are n-connected (for
G an n-group) or that we can pull back to a Y whose fibers are. Then it may happen that we can smoothly
choose 1-paths between all pairs of points in the fibers, 2-paths between triangles of such 1-paths, and so
on. Using the fact that Avert is flat, the restriction to those chosen paths yields a differential G-cocycle.
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5 Differential Chern-Simons n-cocycles

5.1 L∞-algebra cohomology and String-like extensions

5.2 Chern-Simons cocycles from obstructions to String-like lifts

6 Differential cocycles and local nets of algebras

Nets of operator algebras are functors from subcategories of open subsets of pseudo-Riemannian spaces to a
poset of subalgebras of some ambient algebra, usually that of bounded operators on some Hilbert space.

Using the pseudo-Riemannian structure, one singles out those pairs of subsets which are spacelike sepa-
rated. A net of operators is called local if the subalgebras assigned to spacelike separated subsets commute
with each other.

Nets of local operator algebras have been introduced in order to formalize the concept of the algebra of
observables in quantum field theory.

Out of the study of these structures a large subfield of mathematical physics has developed, which is
equivalently addressed as algebraic quantum field theory, or as axiomatic quantum field theory or as local
quantum field theory, but usually abbreviated as AQFT.

To my mind, all three of these terms as such would equally well describe also what is probably the
main alternative parallel development, as endeavours towards giving quantum field theory a good axiomatic
framework: the study of representations of cobordism categories.

While this approach did apparently not receive a canonical name so far, I am used to referring to it as
functorial quantum field theory. Here I shall abbreviate that as FQFT.

An obvious question is: What is the precise relation between AQFT and FQFT?
I am not aware of any explicit attempt to answer this.
To a large extent, developments in AQFT and FQFT have been, in the past, rather disconnected.
The most successful – strikingly successful – application of AQFT has actually been to chiral 2-dimensional

conformal field theory. Here AQFT has provided a rich collection of results, notably important classification
results. (On the other hand it is still unclear, as far as I am aware, how to realize the main motivating
example, 4-dimensional gauge theory of Yang-Mills type, in the language of AQFT.)

The most well known application of FQFT is to topological quantum field theory (TQFT): the theory of
representations of categories of cobordisms up to diffeomorphism. This goes so far that some people have
expressed the believe that FQFT = TQFT instead of FQFT ⊃ TQFT. While this is actually not the case –
since whenever we have a category of cobordisms with extra structure (conformal, Riemannian) the notion
of FQFT on it makes sense – it is true that the tractability of FQFT away from the topological realm drops
sharply.

But progress is visible. The closest possible point of contact between AQFT and FQFT obtained so far
is possible the description of full 2-dimensional conformal field theory in terms of a topological QFT internal
to the representation category of a chiral net, as given by Fuchs, Runkel and Schweigert (FRS).

I have indicated elsewhere how at least parts of the topological aspect of the FRS description arises from
a “local trivialization” of an (n = 3) extended FQFT transport 3-functor. The discussion to follow can
be regarded as providing also the connection between this n-functor and the chiral nets. But many details
remain to be better understood.

In any case, it is clear that both AQFT and FQFT are relevant for understanding what quantum field
theory really is. Since there is just one reality, there should be a way to relate them systematically.

Here I shall try to present evidence which suggests that the situation is as indicated by the following
slogan:

AQFT is to FQFT like the Heisenberg picture of quantum mechanics is to the Schrödinger
picture. Forming endomorphism algebras provides a systematic map from FQFT to AQFT.

For this to work, it is important to understand FQFT as what is sometimes called extended functorial
QFT : originally FQFT was conceived as being about functors from cobordisms categories to some category
of vector spaces. But later it was realized that, more generally, one wants to model extended cobordsisms,
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which live in higher categories. Hence an extended n-dimensional functorial quantum field theory is an
n-functor.

6.1 The situation for 1-dimensional QFT

To put the following construction into perspective, it is useful to indicate what the transition from FQFT
to AQFT that we are after looks like for the simple case where we are dealing with 1-dimensional quantum
field theory, also known as quantum mechanics.

Therefore let X = R be the real line, thought of as the worldline of a particle. Let P1(X) be the category
of paths in X. Here this is simply the category whose objects are the points of X and which has a unique
morphism from x to y whenever x ≤ y. In other words, P1(X) is R regarded as a poset.

The FQFT description of a specific realization of such a 1-dimensional QFT is a functor

Z : P1(X)→ Vect .

Here we take Vect to be the category whose objects are vector space and whose emorphisms are linear
isomorphisms.

Depending on the precise details, this functor is usually demanded to factor through vector spaces with
suitable extra structure. Topological vector spaces and Hilbert spaces are common choices.

The value of Z over any point x ∈ X is called the space of states at (worldline) time x. The value of Z
over any morphism x→ y is called the time propagator or time evolution operator from x to y.

Given such a functor, we can form for each point x ∈ X the endomorphism algebra of the vector space,
by sending

x 7→ End(Z(x)) .

In the case that there is extra structure on our vector spaces we would demand suitable endomorphisms.
In the case of Hilbert spaces one usually demands all endomorphisms to be bounded operators.

The endomorphism algebras thus obtained is known often as the algebra of observables. In the present
case, we would be tempted to associate this algebra at time x with the entire future of x.

So let S(X) be the category whose objects are open sets Ox := {x′ ∈ X|x′ > x} and whose morphisms
are inclusions Ox ⊂ Oy of open subsets.

Of course, due to the simplicity of the present setup, S(X) is canonically isomorphic to the opposite of
P1(X) itself, hence is itself just the opposite catgeory of R regarded as a poset. But for the discussions to
follow it is useful to think of S(X) as a category of open subsets of X.

The crucial point now is that sending spaces of states to their algebras of endomorphisms sends the
functor

Z : P1(X)→ Vect

to a functor
AZ : S(X)→ Algebras .

The functor AZ sends open subsets in S(X) to the algebras of endomorphisms of the spaces of states
sitting over their boundary, and it sends inclusions of open subsets to the inclusion of the algebras which is
induced from using conjugation with the propagator that is assigned to the path connecting the respective
boundaries. More precisely

A : (Oy ⊂ Ox) 7→ ( End(Z(y)) � � AdZ(x→y) // End(Z(x)) ) .

Of course this means that all inclusions of algebras here are actually isomorphisms. This is again due to
the simplicity of the one-dimensional example.

It is this simple situation which we want to generalize from 1- to 2-dimensional QFT.
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6.2 Nets of local monoids

We start by considering a simple version of the relevant axioms. Various refinements and generalizations are
possible.

Let X = R2 and let g be the standard Minkowski metric on X.
By a causal subset of X I shall mean as usual an open subset which is the interior of a rectangle all whose

sides are lightlike.

• •

OOt

x
//

����� ??????

??????
�����

Figure 5: A “causal subset” of 2-dimensional Minkwoski space is the interior of a rectangle all whose sides
are lightlike. Such subsets are entirely fixed in particular by their left and right corners.

Definition 14 We denote by S(X) the category whose objects are open causal subsets V ⊂ X of X and
whose morphisms are inclusions V ⊂ V ′.

• •O

OOt

x
//

����� ??????

??????
�����

• •
•

•

O2

O1

OOt

x
//

����� ??????

??????
�����

������� ?????????

?????????
�������

an object O in S(R2) a morphism O1 → O2 in S(R2)

Figure 6: The category S(R2) of causal subsets of 2-dimensional Minkowski space. Objects are causal
subsets, morphisms are inclusions of these.

Nets of local operators algebras are usually formulated in the context of von Neumann algebras. Before
getting into the peculiarities of these special kinds of algebras, I would like to clarify just the underlying
structure. Therefore I shall now talk about mere nets of local monoids.

Definition 15 Two objects O1, O2 in S(X) are called spacelike separated if all pairs of points (x1, x2) ∈
O1 ×O2 are spacelike separated.

Definition 16 A net of monoids on 2-dimensional Minkwoski space is a functor

A : S(R2)→ Monoids .

This is a net of local monoids when

∀O1 ⊂ O3 spacelike to O2 ⊂ O3 : [im(A(O1 ⊂ O3)), im(A(O2 ⊂ O3))] = 0 .

Here the expression on the right says that all pairs (a1, a2) in the image of A(O1) × A(O2) under the
embedding A(− ⊂ O3) commute, a1a2 = a2a1.
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• • • •

OOt

x
//

����� ??????

??????
�����

����� ?????

????? �����

Figure 7: Two spacelike separated causal subsets of R2.

6.3 Extended 2-dimensional FQFT

Instead of regarding causal subsets as a category under inclusion of subsets, we can think of them as living
in a 2-category under composition (gluing).

Definition 17 Let P2(R2) be the 2-category whose objects are the points of R2, whose morphisms are piece-
wise lightlike paths in R2 and whose 2-morphisms are generated from the causal bigons

x y

OOt

x
//

���� ��?????

??????
??����

��
****

****

under gluing along pieces of joint boundary. Composition is by gluing.

x y

OOt

x
//

����
??? ���� ��????

???
�� ????

??�����
	� �

���
����

Figure 8: A typical 2-morphism in P2(R2)

An extended 2-dimensional FQFT is a 2-functor

Z : P2(R2)→ C

from P2(X) to some suitable 2-category C of 2-vector spaces, as for instance those whose objects are von Neu-
mann algebras, whose morphisms are bimodules over these with composition being fusion of von Neumann
bimodules, and whose 2-morphisms are bimodule homomorphisms.

Here I do not want to get into the technical details of the codomain 2-category of an extended 2-
dimensional FQFT. Instead, all I want is to point out how for any choice of such codomain, we obtain a map
from 2-dimensional extended FQFTs to nets of local monoids on R2. The only necessary requirement needed
is that the 2-morphisms all be invertible and that horizontal composition by the images of the 1-morphisms
under Z is injective.

So let, from now on, C be any 2-category with all 2-morphisms being isomorphisms.

36



6.4 The main point: AQFT from extended FQFT

We define the map from FQFTs to AQFTs and demonstrate that it indeed sends 2-functors to local nets of
monoids.

Definition 18 Given any extended 2-dimensional FQFT, i.e. a 2-functor

Z : P2(R2)→ C

we define a local net of monoids
AZ : S(R2)→ Monoids

by defining it on objects as

AZ :

 x y

���� ?????

??????
����

 7→ EndC

Z
 x y

??????
??����


and on morphisms as follows.

For any inclusion Ox′,y′ ⊂ Ox,y

1

JJJJJJJJJJJJJJJJJJ

x

8888888888

tttttttttttttttttt
2

=== y

x′

����

==== y′

3

DDDDDDDDDD 4

���
5

����������

6

zzzzzzzzz

we form the pasting diagram
1

$$JJJJJJJJJJJJJJJJJJ

x

��8888888888

::tttttttttttttttttt
2
��=== y

x′

@@����

��==== y′

��===

3

!!DDDDDDDDDD

@@����
4

@@���

f

��

5

CC����������

6

==zzzzzzzzz
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in P2(X). Let f ′ be the 2-morphism obtained by whiskering the indicated 2-morphism f with the 1-
morphisms (x, 3) and (5, y).

f ′ :=

x

��8888888888 y

x′

��==== y′

��===

3

!!DDDDDDDDDD

@@����
4

@@���

f

��

5

CC���������

6

==zzzzzzzzz

For any a ∈ EndCZ(x′, 4, y′), let a′ be the corresponding re-whiskering by Z(x, 3, x′) and Z(y′, 5, y).
Then we obtain in injection

EndC(Z(x′, 8, y′)) � � // EndC(Z(x, 3, 9, 5, y))

by setting
a 7→ AdZ(f)′(a′) .

Remark. Notice that this prescription is essentially just the one we described already for the 1-dimensional
case: to open subsets we assign the endomorphism algebra of the space of states assigned to one part of
their boundary. To an inclusion of open subsets we then assign the inclusion of such algebras obtained by
parallel transporting the algebra of the inner set into the algebra of the outer set using conjugation with
the propagators that the 2-functor assigns to 2-morphisms in P2(R2). The difference to the 1-dimensional
case here is that this conjugation operation involves some (the obvious) rewhiskering. We will see that it is
essentially this rewhiskering which leads to the locality of the net of monoids obtained this way.

Now we come to our main point.

Proposition 1 The above construction does indeed yield a net of local monoids.

Proof. We need to demonstrate two things

• that the above assignment is functorial;

• that the above assignment satisfies the locality axiom.

Both properties turn out to be a direct consequence of 2-functoriality of Z and the exchange law in 2-
categories.

To see functoriality, consider a chain of inclusions

Ox′′,y′′ ⊂ Ox′,y′ ⊂ Ox,y

38



in S(R2) and the corresponding pasting diagram

x

��444444444444444 1
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11
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in P2(R2).
The direct inclusion

EndC(Z(x′′, 6, y′′)) ↪→ EndC(Z(x, 3, 8, 11, 10, 4, y))

sends a ∈ EndC(Z(x′′, 6, y′′)) to the endomorphism

Z(x, 3, 8, 11, 10, 4, y)

Z(fc◦f ′)−1

��
Z(x, 3, 8, 5, x′′, 6, y′′, 7, 10, 4, y)

a

��
Z(x, 3, 8, 5, x′′, 6, y′′, 7, 10, 4, y)

Z(fc◦f ′)
��

Z(x, 3, 8, 11, 10, 4, y)

.

All necessary re-whiskering is notationally suppressed here. No confusion can arise.
On the other hand, the composite inclusion

EndC(Z(x′′, 6, y′′)) ↪→ EndC(Z(x′, 5, 9, 7, y′)) ↪→ EndC(Z(x, 3, 8, 11, 10, 4, y))
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sends a to
Z(x, 3, 8, 11, 10, 4, y)

Z(fl·fc·fr)−1

��
Z(x, 3, x′, 5, 9, 7, y′, 4, y)

Z(f ′)−1

��
Z(x, 3, x′, 5, x′′, 6, y′′, 7, y′, 4, y)

a

��
Z(x, 3, x′, 5, x′′, 6, y′′, 7, y′, 4, y)

Z(f ′)

��
Z(x, 3, x′, 5, 9, 7, y′, 4, y)

Z(fl·fc·fr)

����
Z(x, 3, 8, 11, 10, 4, y)

.

But by using the exchange law in this pasting diagram, one sees that the contributions by fl and fr drop
out and both expressions are indeed equal.

To see locality, let O2,4 and O(2′, 4′) be two spacelike separated causal subsets inside O(3,5′). The relevant
pasting diagram in P2(R2) is

7

��<<<< 7′

��????

2

AA����

��<<<< 4
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??����

��???? 4′

��????

3

  AAAAAAAAAAA
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��
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>>}}}}}
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��
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==|||||||||||

!!CCCCCCCCCCC 9′

==zzzzzzzzzzz

10

<<yyyyyyyyyyy
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An endomorphism a of Z(2, 8, 4) induces an endomorphism

Z(3, 9, 10, 9′, 5′)

Z(f0)−1

��
Z(3, 9, 5, 9′, 5′)

Z(f1)−1

��
Z(3, 2, 8, 4, 5, 9′, 5′)

a

��
Z(3, 2, 8, 4, 5, 9′, 5′)

Z(d1)

��
Z(3, 9, 5, 9′, 5′)

Z(f0)

��
Z(3, 9, 10, 9′, 5′)

of Z(3, 9, 10, 9′, 5′). All necessary re-whiskering is notationally suppressed.
An endomorphism a′ of Z(2′, 8′, 4′) induces an endomorphism

Z(3, 9, 10, 9′, 5′)

Z(f0)−1

��
Z(3, 9, 5, 9′, 5′)

Z(f2)−1

��
Z(3, 9, 5, 2′, 8′, 4′, 5′)

a′

��
Z(3, 9, 5, 2′, 8′, 4′, 5′)

Z(f2)

��
Z(3, 9, 5, 9′, 5′)

Z(f0)

��
Z(3, 9, 10, 9′, 5′)

of Z(3, 9, 10, 9′, 5′). By using the exchange law, one finds that both these endomorphisms of Z(3, 9, 10, 9′, 5′)
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commute. Their composition in both bossible directions yields the endomorphism

Z(3, 9, 10, 9′, 5′)

Z(f0)−1

��
Z(3, 9, 5, 9′, 5′)

Z(f1·f2)−1

��
Z(3, 2, 8, 4, 5, 2′, 8′, 4′, 5′)

a·a′

��
Z(3, 2, 8, 4, 5, 2′, 8′, 4′, 5′)

Z(f1·f2)

��
Z(3, 9, 5, 9′, 5′)

Z(f0)

��
Z(3, 9, 10, 9′, 5′)

,

where f1 · f2 and a · a′ denotes the obvious horizontal composition.
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tome 47 (1977), p. 269-331
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names
algebraic QFT
axiomatic QFT

local QFT
functorial QFT

abbreviations AQFT FQFT
assign

algebras (of observables) (time evolution) operators
idea to patches, compatible with

inclusion composition (gluing)
axioms due to Haag, Kastler Atiyah, Segal

aspect of QFT
Heisenberg

picture
Schrödinger

picture

formal structure cosheaf
transport
n-functor

cartoon of
domain structure

• •
•

•

OOt

x
//

����� ??????

??????
�����

������� ?????????

?????????
�������

x y

x′x′ y′

y

OOt

x
//

��� ��????
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??����

��
****

****

���
��?????

????
??���

��
****

****

relation

cc

form endomorphism algebras

7

x y

���� ?????

??????
����_

AZ

��
Z

�oo

End
(
Z

(
x y

??????
??����

))
main existing

general theorems
spin-statistics theorem,

PCT theorem
results about
topological invariants

main existing
nontrivial examples

chiral 2-d CFT topological QFTs

Table 7: The two approaches to the axiomatization of quantum field theory together with their interpretation
and relation as discussed here. I demonstrate below how the map Z 7→ AZ indeed produces a local net AZ
from an n-functor Z.
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