Curvature

Schreiber*

August 24, 2006

Abstract

We define a notion of n-curvature suitable for the general concept of n-transport.

Recall that an n-transport

$$
\operatorname{tra}: \mathcal{P}_{n} \rightarrow T
$$

is just an n-functor, where we think of the domain as an n-category describing n-paths of some sort.

If T is an n-category, tra is an ordinary n-functor. If T is an m-category with $m>n$, then tra may accordingly be pseudo, in that it respects composition of n-paths only up to higher coherent equivalence.

We define a notion of n-curvature precisely for those n-transport functors whose codomain is an $(n+1)$-category with at most a single $(n+1)$-morphism between any pair of n-morphisms.

Definition 1 Let T be an $(n+1)$-category with the property that it has at most one ($n+1$)-morphism between any pair of n-morphisms. Then n-transport functors

$$
\operatorname{tra}: \mathcal{P}_{n} \rightarrow T
$$

are in bijection with $(n+1)$-transport functors

$$
\operatorname{curv}_{\operatorname{tra}}: \mathcal{P}_{n+1} \rightarrow T
$$

We say curv $_{\text {tra }}$ is the n-curvature of tra.
In fact, this bijection should extend to an equivalence of the respective functor categories

$$
\operatorname{Hom}\left(\mathcal{P}_{n}, T\right) \simeq \operatorname{Hom}\left(\mathcal{P}_{n+1}, T\right)
$$

Recall that there is a notion of trivialization and transition of n-transport. This is defined in terms of diagrams in $\operatorname{Hom}\left(\mathcal{P}_{n}, T\right)$. Hence the above equivalence allows us to translate the concept of curvature also to transition data.

[^0]Definition 2 For any n-category T, we denote by \tilde{T} the $(n+1)$-category obtained from T by declaring there to be a unique $(n+1)$-morphism for every ordered pair of parallel n-morphisms.

Hence every transport tra : $\mathcal{P}_{n} \rightarrow T$ has associated to it a curvature curv $_{\text {tra }}$: $\mathcal{P}_{n+1} \rightarrow \tilde{T}$. The relevance of definition 1 lies in the fact that there are $(n+1)$ categories with unique $(n+1)$-morphisms that do not arise this way.

Definition 3 An n-transport tra: $\mathcal{P}_{n} \rightarrow \tilde{T}$ is called flat if curv $_{\text {tra }}$ sends all ($n+1$)-morphisms to identities.

Proposition 1 For every n-transport tra with curvature, curv ${ }_{\text {tra }}$ is a flat $(n+$ 1)-transport.

Proof. We have

$$
\operatorname{curv}_{\text {curv }_{\text {tra }}}: \mathcal{P}_{n+2} \rightarrow \tilde{\tilde{T}}
$$

Notice that $\tilde{\tilde{T}}=\tilde{T}$. All its $(n+2)$-morphisms are identities.
This is a generalization of the statement known as the Bianchi identity.
For working with curvature, it is convenient to introduce the following notation.

Definition 4 Let \mathcal{P}_{n+1} be a strict $(n+1)$-groupoid. Let

be any p-morphism for $p>1$, with source $(p-1)$-morphism f and $\operatorname{target}(p-1)$ morphism f^{\prime}. The boundary of G is the $(p-1)$-morphism

$$
\partial G \equiv f^{-1} \circ f^{\prime}
$$

Notice that

$$
\partial \partial G=\mathrm{Id}
$$

With this notation, we have, for G an $(n+1)$-morphism,

Prop. 1 can now be restated as saying that for all $(n+2)$-morphisms V we have

$$
\operatorname{curv}_{\operatorname{curv}_{\text {tra }}}(V)=\operatorname{curv}_{\operatorname{tra}}(\partial V)=\operatorname{tra}(\partial \partial V)=\operatorname{tra}(\mathrm{Id})=\mathrm{Id}
$$

Example 1 (curvature of $\Sigma(G)$-1-transport)

Let G be a Lie group and let X be a manifold. Let $\mathcal{P}_{2}(X)$ be the 2 -groupoid of 2-paths in X. Let $T=\Sigma(G)$.

Smooth 1-transport tra : $\mathcal{P}_{1}(X) \rightarrow \Sigma(G)$ is in bijection with $\operatorname{Lie}(G)$-valued 1-forms A.

The 2-category \tilde{T} equals $\Sigma(\operatorname{Inn}(G))$, the suspension of the 2-group of inner automorphisms of G, coming from the crossed module $G \xrightarrow{\text { Id }} G$.

The curvature of tra is

Smooth 2-transport $\mathcal{P}_{2}(X) \rightarrow \Sigma(\operatorname{Inn}(G))$ is in bijection with Lie (G)-valued 2 -forms $F_{A}=\mathbf{d} A+A \wedge A$.

That flatness of curv ${ }_{\text {tra }}$ implies the ordinary Bianchi identity $d_{A} F_{A}=0$ is a direct consequence of the next example.

Example 2 (curvature of $\Sigma(H \rightarrow G)$-2-transport)
Let $G_{2}=(H \xrightarrow{t} G)$ be a Lie crossed module, regarded as a strict Lie 2-group. Let $\mathcal{P}_{3}(X)$ be 3-paths in X and set $T=\Sigma(H \rightarrow G)$.

Smooth 2-transport tra : $\mathcal{P}_{2} \rightarrow T$ is in bijection with pairs (A, B) in $\Omega^{1}(X, \operatorname{Lie}(G)) \times \Omega^{2}(X, \operatorname{Lie}(H))$ such that $F_{A}+t(B)=0$.

Let V be cube, a 3 -morphism in $\mathcal{P}_{3}^{\text {cub }}(X)$ spanned by straight paths γ_{1}, γ_{2} and γ_{3} :

We want to compute $\operatorname{curv}_{\operatorname{tra}}(V)$:

and expand to first order in the length of the three paths. In terms of the universal enveloping algebra of $\operatorname{Lie}(H)$ we use $\operatorname{tra}_{A, B}(S)=1+B(S)+\cdots$ as and read off the required re-whiskering from the above diagram. Writing $B\left(\gamma_{1}, \gamma_{2}\right)=\left|\gamma_{1}\right|\left|\gamma_{2}\right| B_{i j}$, etc, the term of order $\left|\gamma_{1}\right|\left|\gamma_{2}\right|\left|\gamma_{3}\right|$ on the left is

$$
\partial_{k} B_{i j}+A_{k}\left(B_{i j}\right)+\partial_{i} B_{j k}+A_{i}\left(B_{j k}\right)
$$

while on the right it is

$$
\partial_{j} B_{i k}+A_{j}\left(B_{i k}\right)
$$

The difference of both is the lowest order term of $\operatorname{tra}(\partial V)$, namely

$$
\operatorname{tra}_{A, B}(\partial V)=d_{A} B\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)+\mathcal{O}\left|\gamma_{n}\right|^{2}
$$

We say that

$$
H=d_{A} B
$$

is the curvature $\mathbf{3}$-form of (A, B).
The last claim of example 1 now follows by noticing that $\operatorname{curv}_{\operatorname{tra}_{A}}=\operatorname{tra}_{A, F_{A}}$.
Similarly, the Bianchi identity of $\operatorname{curv}_{\operatorname{tra}_{A, B}}$ would be a consequence of a general formula for curvature of 3 -transport. This is discussed elsewhere.

[^0]: *E-mail: urs.schreiber at math.uni-hamburg.de

