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Abstract

We highlight some aspects of the curvature 2-functor associated to an
parallel transport 1-functor coming from a principal bundle with connec-
tion.
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1 Introduction

Parallel transport in a smooth principal G-bundle P → X with connection is a
functor

tra : P1(X) → GTor

from paths in the base to fiber isomorphisms, which is locally smoothly trivial-
izable.

Elsewhere we had noticed that to every such transport functor is associated
a curvature 2-functor

curv(tra) : P2(X) → T ′ ,

where T ′ is some 2-category that is codiscrete at top level.
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For many purposes it is useful to regard tra : P1(X) → GTor as part of a
morphism of short exact sequences, going from the path sequence of X to the
integrated Atiyah sequence of P .

Ω1(X) � � //

��

P1(X) // //

tra

��

Π1(X)

=

��
AdP

� � // P ×G P // // Π1(X)
.

Here we have another look at the curvature 2-transport from this point of
view.

I thank Jim Stasheff for helpful comments on this text.

2 Path sequence and integrated Atiyah sequence

2.1 The path groupoid sequence

Given a manifold X, we have the following versions of groupoids of paths in X.

• The path groupoid P1(X). Its morphisms are thin homotopy classes of
paths.

• The fundamental groupoid Π1(X). Its morphisms are homotopy classes
of paths.

• The loop groupoid Ω1(X). Its morphisms are thin homotopy classes of
closed loops in X.

These fit into a short exact sequence of groupoids.

Ω1(X) � � // P1(X) // // Π1(X) .

This we call the path sequence or path groupoid sequence of X.

Remark. We call two composable morphisms of groupoids a short exact se-
quence if the first is mono, the second epi and the preimage of identity mor-
phisms under the second equals the image of the first.

Assumption. We shall assume for the moment for simplicity that X is simply
connected. This means that

Π1(X) = X ×X = Codisc(X)

is the codiscrete groupoid over X (that is: the pair groupoid – precisely one
morphism for every ordered pair of objects).

This assumption makes the following discussion more transparent. For X
not simply connected there is a straightforward way to generalize all our con-
structions.
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2.2 The integrated Atiyah sequence

Given a principal G-bundle P → X over X, we obtain two groupoids associated
with that.

• The gauge groupoid P ×G P . Its morphisms are isomorphisms of fibers of
P , compatible with the G-action on P .

• The adjoint groupoid AdP . This is the bundle of groups P ×G G, where
G acts on itself by conjugation.

These, too fit into a short exact sequence (remembering that we are assuming
X to be simply connected):

AdP
� � // P ×G P // // Π1(X) .

This is the integrated Atiyah sequence. Applying the functor

Lie : LieGroupoids → LieAlgebroids

to this yields the familiar Atiyah sequence of Lie algebroids over X

0 → adP → TP/G → TX → 0 .

2.3 Connections as morphisms from the path sequence to
the Atiyah sequence

A connection on P gives rise to a parallel transport functor

tra : P1(X) → P ×G P .

Observation 1 (David Roberts) The parallel transport functor for a princi-
pal bundle P → X with connection provides a morphism from the path sequence
of X to the integrated Atiyah sequence of P .

Ω1(X) � � //

��

P1(X) // //

tra

��

Π1(X)

=

��
AdP

� � // P ×G P // // Π1(X)
.

2.4 Adjoint transport

Definition 1 For K any skeletal groupoid (all morphisms have same source
and target), let

AUT(K)

be the 2-groupoid whose

• objects are the 1-object sub groupoids of K
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• morphisms are invertible functors between these

• 2-morphisms are natural isomorphisms between these functors.

Definition 2 For G any groupoid and K
� � // G the disjoint union of its

1-object subgroupoids, let
INNG(K)

be the strict 2-groupoid whose

• objects are the 1-object sub-groupoids of G

• morphisms are those of G, regarded as functors between 1-object sub-
groupoids given by conjugation

• 2-morphisms

a

f

��

g

@@ br
��

are triangles
a

r //

f ��>
>>

>>
>>

> a

g
����

��
��

��

b

.

Their vertical composition is the obvious one, their horizontal composition is that
obtained by regarding r as the component of a natural transformation between
conjugation by f and by g.

The following properties of INNG(K) are obvious but important.

• We have a canonical inclusion

G ↪→ INNG(K) .

• For K
� � // G // // B a sequence of groupoids with B codiscrete and

K skeletal, we have a canonical strict 2-functor

INNG(K) → AUT(K) .

Notice that this is in general neither epi nor mono.

Its failure to be mono is the crucial aspect of the above definition: two
morphisms f and g of G are regarded as different morphisms of INNG(K)
even if their conjugation action on K is the same.

This property is responsible for the next one.
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• The 2-groupoid INNG(K) is codiscrete at top level. (Each Hom-category
is codiscrete.)

Mor(INNG(K)) = Mor(G)×s,t Mor(G) .

In the following section we shall often express this fact by writing, with
slight abuse of notation

INNG(K) = G×s,t G .

This will help make the large diagrams to follow more readable.

Hence INNG(K) is equivalent to the discrete 2-groupoid on the connected
components of G. In particular, when G is connected INN(G) is equivalent
to the trivial 2-groupoid.

Definition 3 Let SeqGrpd be the category whose objects are short exact se-
quences of groupoids

K
� � // G // // B

with K skeletal and B codiscrete. Morphisms are the obvious morphisms of such
sequences. The above defines a functor

INN : SeqGrpd → Grpd

given by
K

� � //

��

G // //

F

��

Ad
��

��
��

��
��

�

����
��
�

B

��
K ′ �

� // G′ // //

Ad
��

��
��

����
��

��
��

��

B′

INNG(K)

INN(F )

��
INNG′(K ′)

In the case that we are interested in, for

tra : P1(X) → P ×G P

our transport functor, we get a functor

Ad(tra) : P1(X) → INNP×GP (AdP )
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as
Ω1(X) � � //

��

P1(X) // //

tra

��

Ad
}}

}}
}}

}}
}}

}}
}}

~~}}}
}}

Π1(X)

=

��
AdP

� � // P ×G P // //

Ad
}}

}}
}}

~~}}
}}

}}
}}

}}
}}

}

Π1(X)

INNP1(X)(Ω1(X))

INN(tra)

��
INNP×GP (AdP )

.

Notice that this is an honest 1-functor in that the codomain is a (strict!)
2-category, but the functor just sees its 1-categorical part. Or, in other words,
the functor is a strict 2-functor whose domain happens to be a 1-category.

This is crucial for the definition of curvature to follow: curvature of transport
is an honest 2-functor with values in INNP×GP (AdP ).

3 Curvature 2-Functors

The Atiyah sequence admits a splitting

AdP
� � // P ×G P // // Π1(X)

σ

��

precisely when the bundle P is flat. We may understand the existence of this
splitting as the statement that the parallel transport functor

tra : P1(X) → P ×G P

factors through the fundamental groupoid

P1(X) //

tra

��

Π1(X)

σ

��
P ×G P

= // P ×G P

.

As we have explained elsewhere, if the connection is not flat, we find that
the obstruction for the descent of tra from P1(X) to Π1(X) manifests itself in
terms of the curvature 2-functor

curv : Π2(X) → T .

We now recall the construction of curv and relate it to observation 1.
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3.1 Curvature 2-functor as an obstruction

Remark. For convenience, the following diagrams feature labels indicating
categories and 2-categories. But they are supposed to be read as diagrams
involving the corresponding morphism spaces.

First notice the pullback of the Atiya sequence along itself

AdP

��
P ×G P

��

(P ×G P )[2]

uullllllllllllll

>>~~~~~~~~~~~~~~~~

AdP // P ×G P // Π1(X)

By our above discussion, we may equivalently read this as

AdP

��
P ×G P

��

INNP×GP (AdP )

uujjjjjjjjjjjjjjj

<<zzzzzzzzzzzzzzzzzz

AdP // P ×G P // Π1(X)
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Now enter the path sequence into this picture

Ω1(X)

��

// AdP

��
P1(X) tra //

��

P ×G P

��

Ω1(X)

��

// P1(X) //

tra

��

Π1(X)

INNP×GP (AdP )

tthhhhhhhhhhhhhhhhhhhh

>>~~~~~~~~~~~~~~~~~~~

AdP // P ×G P // Π1(X)

and similarly pull it back along itself

Ω1(X)

��

// AdP

��
Π2(X)

��

// P1(X) tra //

��

P ×G P

��

Ω1(X)

��

// P1(X) //

tra

��

Π1(X)

INNP×GP (AdP )

tthhhhhhhhhhhhhhhhhhhh

>>~~~~~~~~~~~~~~~~~~~

AdP // P ×G P // Π1(X)

Here Π2(X) now denotes one version of the fundamental 2-groupoid of X:
objects are the points of X, morphisms are thin homotopy classes of paths in X
and 2-morphisms are ordinary homotopy classes of surfaces cobounding these
paths.

Notice that for this fundamental 2-groupoid to really be the pullback in the
above diagram we need to assume that X is not only 1-connected but also 2-
connected. As before, there is a more or less straightforward way to generalize
everything to the case where no such assumption on X is made, but for simplicity
I will not consider that generalization right now.
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While the splitting

Ω1(X)

��

// AdP

��
P1(X) tra //

��

P ×G P

��

Ω1(X)

��

// P1(X) //

tra

��

Π1(X)

σ

�� �C
�C
�C
�C
�C
�C
�C
�C
�C
�C
�C

σ

333s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s

INNP×GP (AdP )

tthhhhhhhhhhhhhhhhhhhh

>>~~~~~~~~~~~~~~~~~~~

AdP // P ×G P // Π1(X)

does not exist unless tra is flat, by the universal property of the pullback we
always canonically have a morphism

curv : Π2(X) → INNP×GP (AdP ) .

Ω1(X)

��

// AdP

��
Π2(X)

��

//

curv

��

P1(X) tra //

��

P ×G P

��

Ω1(X)

��

// P1(X) //

tra

��

Π1(X)

INNP×GP (AdP )

tthhhhhhhhhhhhhhhhhhhh

>>~~~~~~~~~~~~~~~~~~~

AdP // P ×G P // Π1(X)

.
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This is such that if the splitting does exist

Ω1(X)

��

// AdP

��
Π2(X)

��

//

curv

��

P1(X) tra //

��

P ×G P

��

Ω1(X)

��

// P1(X) //

tra

��

Π1(X)

σ

����
��

��
��

��
��

��
��

�

σ

33ggggggggggggggggggggggggggg

INNP×GP (AdP )

tthhhhhhhhhhhhhhhhhhhh

>>~~~~~~~~~~~~~~~~~~~

AdP // P ×G P // Π1(X)

then by the universal property curv becomes trivial in that it factors through
Π1(X) (i.e. sends every 2-morphism to an identity):

Ω1(X)

��

// AdP

��
Π2(X)

��

//

%%JJJJJJJJJ
P1(X) tra //

��

P ×G P

��

Ω1(X)

��

// P1(X) //

tra

��

Π1(X)

σ

����
��

��
��

��
��

��
��

�

σ

33ggggggggggggggggggggggggggg
curv

��
INNP×GP (AdP )

tthhhhhhhhhhhhhhhhhhhh

>>~~~~~~~~~~~~~~~~~~~

AdP // P ×G P // Π1(X)

Conversely, if curv is trivial in this sense then the splitting σ exists and tra is
flat.
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