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Abstract

We highlight some aspects of the curvature 2-functor associated to an
parallel transport 1-functor coming from a principal bundle with connec-

tion.
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1 Introduction

Parallel transport in a smooth principal G-bundle P — X with connection is a
functor
tra: P1(X) — GTor

from paths in the base to fiber isomorphisms, which is locally smoothly trivial-
izable.
Elsewhere we had noticed that to every such transport functor is associated
a curvature 2-functor
curv(tra) : Po(X) — 1",

where T" is some 2-category that is codiscrete at top level.



For many purposes it is useful to regard tra : P;(X) — GTor as part of a
morphism of short exact sequences, going from the path sequence of X to the
integrated Atiyah sequence of P.
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AdP“—— P xg P —=1I;(X)

Here we have another look at the curvature 2-transport from this point of
view.
I thank Jim Stasheff for helpful comments on this text.

2 Path sequence and integrated Atiyah sequence

2.1 The path groupoid sequence

Given a manifold X, we have the following versions of groupoids of paths in X.

e The path groupoid P;(X). Its morphisms are thin homotopy classes of
paths.

e The fundamental groupoid II;(X). Its morphisms are homotopy classes
of paths.

e The loop groupoid Q;(X). Its morphisms are thin homotopy classes of
closed loops in X.

These fit into a short exact sequence of groupoids.
Ql(X)(—> 'Pl(X) — Hl(X) .

This we call the path sequence or path groupoid sequence of X.

Remark. We call two composable morphisms of groupoids a short exact se-
quence if the first is mono, the second epi and the preimage of identity mor-
phisms under the second equals the image of the first.

Assumption. We shall assume for the moment for simplicity that X is simply
connected. This means that

I (X) = X x X = Codisc(X)

is the codiscrete groupoid over X (that is: the pair groupoid — precisely one
morphism for every ordered pair of objects).

This assumption makes the following discussion more transparent. For X
not simply connected there is a straightforward way to generalize all our con-
structions.



2.2 The integrated Atiyah sequence

Given a principal G-bundle P — X over X, we obtain two groupoids associated
with that.

e The gauge groupoid P X P. Its morphisms are isomorphisms of fibers of
P, compatible with the G-action on P.

e The adjoint groupoid AdP. This is the bundle of groups P x g G, where
G acts on itself by conjugation.

These, too fit into a short exact sequence (remembering that we are assuming
X to be simply connected):

AdP“——= P xg P —>11;(X) .
This is the integrated Atiyah sequence. Applying the functor
Lie : LieGroupoids — LieAlgebroids
to this yields the familiar Atiyah sequence of Lie algebroids over X
0—adP—-TP/G—-TX —0.

2.3 Connections as morphisms from the path sequence to
the Atiyah sequence

A connection on P gives rise to a parallel transport functor
tra:P1(X) — P xgP.

Observation 1 (David Roberts) The parallel transport functor for a princi-
pal bundle P — X with connection provides a morphism from the path sequence
of X to the integrated Atiyah sequence of P.
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AdPS“—— P xg P ——I1;(X)

2.4 Adjoint transport

Definition 1 For K any skeletal groupoid (all morphisms have same source

and target), let
AUT(K)

be the 2-groupotd whose

e objects are the 1-object sub groupoids of K



e morphisms are invertible functors between these

e 2-morphisms are natural isomorphisms between these functors.

Definition 2 For G any groupoid and K“—— G the disjoint union of its
1-object subgroupoids, let
INNg(K)

be the strict 2-groupoid whose
e objects are the 1-object sub-groupoids of G

e morphisms are those of G, regarded as functors between 1-object sub-
groupoids given by conjugation

e 2-morphisms

f

ai H]r b
g
T

a—>a .
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Their vertical composition is the obvious one, their horizontal composition is that

obtained by regarding v as the component of a natural transformation between
conjugation by f and by g.

are triangles

The following properties of INNg(K) are obvious but important.
e We have a canonical inclusion

G — INNg(K).

e For KC—= G —— B a sequence of groupoids with B codiscrete and
K skeletal, we have a canonical strict 2-functor

INNg(K) — AUT(K).

Notice that this is in general neither epi nor mono.

Its failure to be mono is the crucial aspect of the above definition: two
morphisms f and g of G are regarded as different morphisms of INNg (K)
even if their conjugation action on K is the same.

This property is responsible for the next one.



e The 2-groupoid INNg(K) is codiscrete at top level. (Each Hom-category
is codiscrete.)

Mor(INNg(K)) = Mor(G) X, Mor(G) .

In the following section we shall often express this fact by writing, with
slight abuse of notation

INNG(K) =G x4: G.

This will help make the large diagrams to follow more readable.

Hence INNg(K) is equivalent to the discrete 2-groupoid on the connected
components of G. In particular, when G is connected INN(G) is equivalent
to the trivial 2-groupoid.

Definition 3 Let SeqGrpd be the category whose objects are short exact se-
quences of groupoids

K(—>G*»-B

with K skeletal and B codiscrete. Morphisms are the obvious morphisms of such
sequences. The above defines a functor

INN : SeqGrpd — Grpd

given by
K¢ G B

K'© ci:’F l
v
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INNg (K

INN(F)\L
INNg (K)
In the case that we are interested in, for
tra: P1(X) — P xg P
our transport functor, we get a functor

Ad(tra) : P1(X) — INNpy . p(AdP)



as

INNp, (x) (€1(X))
INN(tra)l
INNpy.p(AdP)

Notice that this is an honest 1-functor in that the codomain is a (strict!)
2-category, but the functor just sees its 1-categorical part. Or, in other words,
the functor is a strict 2-functor whose domain happens to be a 1-category.

This is crucial for the definition of curvature to follow: curvature of transport
is an honest 2-functor with values in INNpy . p(AdP).

3 Curvature 2-Functors

The Atiyah sequence admits a splitting

o
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AdP“—— P xg P —>1I;(X)

precisely when the bundle P is flat. We may understand the existence of this
splitting as the statement that the parallel transport functor

tra : Pl(X) — P Xa P
factors through the fundamental groupoid

Pr(X) ——1II;(X)

PXGP;PXGP

As we have explained elsewhere, if the connection is not flat, we find that
the obstruction for the descent of tra from P;(X) to II;(X) manifests itself in
terms of the curvature 2-functor

curv : Ix(X) —» T.

‘We now recall the construction of curv and relate it to observation 1.



3.1 Curvature 2-functor as an obstruction

Remark. For convenience, the following diagrams feature labels indicating
categories and 2-categories. But they are supposed to be read as diagrams
involving the corresponding morphism spaces.

First notice the pullback of the Atiya sequence along itself

AdP
P Xa P
(P x¢g P)P
AdP ——= P xg P I (X)

By our above discussion, we may equivalently read this as

AdP
P Xa P
INNpy, p(AdP)
AdP——> P xg P IT; (X)



Now enter the path sequence into this picture

21(X) AdP
Py (lX) — PxgP
Q4 (X) ——= P1(X) HL) /
ra INNpy.p(AdP)

/

AdP4>P XGP Hl(X)
and similarly pull it back along itself
0 (X) AdP
(X)) — P (X) fra PxgP
Q1 (X) P1(X) Iy (X) /
tra INNPXGP(AdP)

AdP —— P xgP

Here II5(X) now denotes one version of the fundamental 2-groupoid of X:
objects are the points of X, morphisms are thin homotopy classes of paths in X
and 2-morphisms are ordinary homotopy classes of surfaces cobounding these

paths.

Notice that for this fundamental 2-groupoid to really be the pullback in the
above diagram we need to assume that X is not only 1-connected but also 2-
connected. As before, there is a more or less straightforward way to generalize
everything to the case where no such assumption on X is made, but for simplicity

I will not consider that generalization right now.

I (X)



While the splitting

0 (X) AdP
!
Pr(X) — PxgP
.»fﬁ/addd#,]
0 (X) P1(X) IL (X)
ra INNpy, p(AdP)
/

AdP——=P xgP 11, (X)

does not exist unless tra is flat, by the universal property of the pullback we
always canonically have a morphism

curv : HQ(X) — INNPXGP(AdP) .

M (X) AdP
|
(X)) — Py (X) i PxgP
0 (X) P1(X) IL (X) ourv
ra INNpy . p(AdP)
AdP—— P xgP I (X)

Ne



This is such that if the splitting does exist

Q1(X) AdpP
(X)) — P1(X) fra PxgP
Ql(X) Py (X) 11, (X) curv
N\
tra o INNPXGP(AdP)
AdP —> P xg P I (X)

then by the universal property curv becomes trivial in that it factors through
IT; (X) (i-e. sends every 2-morphism to an identity):

21(X) AdP
(X)) —— P (X) / PxgP
21(X) P1(X) H1(X)N
N\
tra o INNPXGP(AdP)
AdP ——= P xg P IT, (X)

Conversely, if curv is trivial in this sense then the splitting o exists and tra is
flat.



