Chern-Simons and string $_G$ Lie-3-algebras

Schreiber*

December 14, 2006

Abstract

We show that the Chern-Simons Lie-3-algebra cs(g), for any Lie algebra g, sits inside the Lie-3-algebra of inner derivations of the strict Lie 2-algebra ($\hat{\Omega}_k g \to Pg$):

$$cs(g) \subset inn(string_g)$$
.

1 Introduction

For any Lie algebra g and fixed Killing form $k\langle\cdot,\cdot\rangle$ (for $\langle\cdot,\cdot\rangle$ some fixed normalization of the Killing form and $k\in\mathbb{R}$ the **level**) there is a semistrict Lie-3-algebra $\mathrm{cs}(g)$ such that 3-connections

$$d$$
tra : Lie($\mathcal{P}_1(X)$) \to cs(g)

(i.e. algebroid morphisms from the pair algebroid of X to the 3-algebroid $\mathrm{cs}(g)$) are given by a g-valued 1-form A, its curvature 2-form and its Chern-Simons 3-form

$$CS(A) = \langle A \wedge dA \rangle + \frac{1}{3} \langle A \wedge [A \wedge A] \rangle$$

on X.

Another Lie 3-algebra canonically associated to $(g, k\langle \cdot, \cdot \rangle)$ is obtained as follows: The semistrict Baez-Crans Lie 2-algebra g_k is equivalent to the strict Lie 2-algebra

$$\operatorname{string}_g := (\hat{\Omega}_k g \to Pg).$$

For any strict Lie 2-algebra $(r \xrightarrow{\delta} s)$, the Lie-3-algebra $\operatorname{inn}(r \xrightarrow{\delta} s)$ of its inner derivations is characterized by the fact that 3-connections

$$d$$
tra : Lie($\mathcal{P}_1(X)$) \to inn($r \to s$)

are given by an s-valued 1-form A, an r-valued 2-form B such that with

$$\beta := F_A + \delta(B)$$

^{*}E-mail: urs.schreiber at math.uni-hamburg.de

and

$$H = d_A B$$

we have

$$d_A\beta = \delta(H)$$

and

$$d_A H + \beta \wedge B = 0$$
.

Had we in addition required that $\beta=0$, then this would characterize $(r\to s)$ itself. For $r=\hat{\Omega}_k g$ and s=Pg we write

$$\operatorname{string}_g := (\hat{\Omega}_k g \to Pg).$$

It is known that

$$\operatorname{string}_g \simeq g_k \,.$$

Here we are after a generalization of this equivalence when passing from string_q to inn(string_q).

We fall short of actually proving an equivalence. Instead we construct a morphism

$$cs(g) \rightarrow inn(string_g)$$

and a morphism

$$\operatorname{inn}(\operatorname{string}_q) \to \operatorname{cs}(g)$$

such that

$$cs(g) \to inn(string_g) \to cs(g)$$

is the identity on cs(g).

We will work throughout in terms of the Koszul dual description of semistrict Lie-n-algebras. Ever Lie-n-algebra is encoded in a free differential graded algebra, and morphisms of Lie-n-algebras are given by maps between FDAs that are at the same time chain maps and algebra homomorphisms.

2 The details

Definition 1 (the Lie 3-algebra $inn(\hat{\Omega}_k g \to Pg)$)

The FDA of the Lie-3-algebra of $\operatorname{inn}(\hat{\Omega}_k g \to Pg)$ is spanned in degree 1 by the basis $\{t^a(\sigma)\}$ spanning $(Pg)^*$, in degree 2 by $\{q^a(\sigma)\}$ also spanning a $(Pg)^*$ as well as by $\{(s,s^a)\}$, spanning $(\hat{\Omega}_k g)^*$. In degree 3 we have a basis $\{(h,h^a(\sigma))\}$ spanning again a $(\hat{\Omega}_k g)^*$.

The graded differential d is defined on this basis by the following equations.

$$dt^{a}(\sigma) + \frac{1}{2}C^{a}{}_{bc}t^{b}(\sigma)t^{c}(\sigma) + s^{a}(\sigma) + q^{a}(\sigma) = 0$$

$$ds^{a}(\sigma) + C^{a}_{bc}t^{b}(\sigma)s^{c}(\sigma) - h^{a}(\sigma) = 0$$

$$ds + 2k \int_0^{2\pi} k_{ab} t^a(\sigma) \frac{d}{d\sigma} s^b(\sigma) d\sigma - h = 0$$

$$dq^a(\sigma) + C^a{}_{bc} t^b(\sigma) q^c(\sigma) + h^a(\sigma) = 0$$

$$dh^a(\sigma) + C^a{}_{bc} t^b(\sigma) h^c(\sigma) + C^a{}_{bc} q^b(\sigma) s^c(\sigma) = 0.$$

$$dh + 2k \int_0^{2\pi} k_{ab} t^a(\sigma) \frac{d}{d\sigma} h^b(\sigma) d\sigma + 2k \int_0^{2\pi} k_{ab} q^a(\sigma) \frac{d}{d\sigma} s^b(\sigma) d\sigma = 0.$$

Here $C^a{}_{bc}$ are the structure constants of g in the chosen basis and k_{ab} are the components of $\langle \cdot, \cdot \rangle$ in that basis.

Remark. I take loops to be parameterized by $[0, 2\pi]$. So in particular $h^a(2\pi) = 0$ and $s^a(2\pi) = 0$ (but $t^a(2\pi)$ and $q^a(2\pi)$ are nonvanishing).

Definition 2 (the Lie 3-algebra cs(g))

The FDA of cs(g) is spanned in degree 1 by a basis $\{t^a\}$ of g^* and in degree 2 by a basis $\{r^a\}$, also spanning g^* , as well as by an element $\{b\}$ spanning \mathbb{R}^* . Another element $\{c\}$ is in degree 3 and spans another \mathbb{R}^* .

The differential d in this basis is defined by the following equations.

$$dt^a + \frac{1}{2}C^a{}_{bc}t^bt^c + r^a = 0$$
$$dr^a + C^a{}_{bc}t^br^c = 0$$
$$db - k\left(\frac{1}{6}C_{abc}t^at^bt^c + k_{ab}t^ar^b\right) - c = 0$$
$$dc - k(k_{ab}r^ar^b) = 0.$$

Definition 3 (the morphism $cs(g) \rightarrow inn(\hat{\Omega}_k g \rightarrow Pg))$)

For any smooth function

$$f:[0,2\pi]\to\mathbb{R}$$

such that $f(2\pi) = 1$ define an FDA algebra homomorphism $cs(g) \to inn(\hat{\Omega}_k g \to Pg)$) on our basis elements as follows.

$$t^{a}(\sigma) \mapsto f(\sigma)t^{a}$$

$$q^{a}(\sigma) \mapsto f(\sigma)r^{a}$$

$$s^{a}(\sigma) \mapsto (f - f^{2})(\sigma)\frac{1}{2}C^{a}{}_{bc}t^{b}t^{c}$$

$$s \mapsto b$$

$$h^{a}(\sigma) \mapsto (f - f^{2})(\sigma)C^{a}{}_{bc}t^{b}r^{c}$$

$$h \mapsto k(k_{ab}t^{a}r^{b}) + c$$

Remark. Notice that the condition $f(2\pi) = 1$ ensures that for instance $(f - f^2)(\sigma)C^a{}_{bc}t^br^c$ indeed vanishes for $\sigma = 2\pi$.

Proposition 1 The above morphism is indeed a chain map.

Proof. We check on all basis elements that the morphism commutes with the differential.

$$dt^{a}(\sigma) = -\frac{1}{2}C^{a}{}_{bc}t^{b}(\sigma)t^{c}(\sigma) - s^{a}(\sigma) - q^{a}(\sigma)$$

$$\mapsto -f^{2}(\sigma)\frac{1}{2}C^{a}{}_{bc}t^{b}t^{c} - (f - f^{2})(\sigma)\frac{1}{2}C^{a}{}_{bc}t^{b}t^{c} - f(\sigma)r^{a}$$

$$dt^{a}(\sigma) \mapsto f(\sigma)dt^{a}$$

$$= -f(\sigma)\frac{1}{2}C^{a}{}_{bc}t^{b}t^{c} - f(\sigma)r^{a}$$

$$ds^{a}(\sigma) = -\frac{1}{2}C^{a}{}_{bc}t^{b}(\sigma)s^{c}(\sigma) + h^{a}(\sigma)$$

$$\mapsto f(f - f^{2})(\sigma)\frac{1}{2}C^{a}{}_{bc}t^{b}C^{c}{}_{de}t^{d}t^{e} + (f - f^{2})(\sigma)C^{a}{}_{bc}t^{b}r^{c}$$

$$ds^{a}(\sigma) \mapsto (f - f^{2})(\sigma)d\frac{1}{2}C^{a}{}_{bc}t^{b}t^{c}$$
$$= (f - f^{2})(\sigma)C^{a}{}_{bc}t^{b}r^{c}$$

$$ds = -2k \int_0^{2\pi} k_{ab} t^a(\sigma) \frac{d}{d\sigma} s^b(\sigma) d\sigma + h$$

$$\mapsto -k \int_0^{2\pi} f(\sigma) \frac{d}{d\sigma} (f - f^2) d\sigma k_{ab} t^a C^b{}_{de} t^d t^e + k(k_{ab} t^a r^b) + c$$

$$= k \frac{1}{6} C_{abc} t^a t^b t^c + k(k_{ab} t^a r^b) + c$$

$$\begin{array}{rcl} ds & \mapsto & db \\ & = & k \left(\frac{1}{6} C_{abc} t^a t^b t^c + k_{ab} t^a r^b \right) + c \end{array}$$

$$\begin{array}{lcl} dq^a(\sigma) & = & -C^a{}_{bc}t^b(\sigma)q^c(\sigma) - h^a(\sigma) \\ & \mapsto & -f^2(\sigma)C^a{}_{bc}t^br^c - (f - f^2)(\sigma)C^a{}_{bc}t^br^c \end{array}$$

$$\begin{array}{ccc} dq^a(\sigma) & \mapsto & f(\sigma)dr^a \\ & = & -f(\sigma)C^a{}_{bc}t^br^c \end{array}$$

$$\begin{array}{lll} dh^{a}(\sigma) & = & -C^{a}{}_{bc}t^{b}(\sigma)h^{c}(\sigma) - C^{a}{}_{bc}q^{b}(\sigma)s^{c}(\sigma) \\ & \mapsto & -f(f-f^{2})(\sigma)C^{a}{}_{bc}t^{b}C^{c}{}_{de}t^{b}r^{c} - f(f-f^{2})(\sigma)\frac{1}{2}C^{a}{}_{bc}r^{b}C^{c}{}_{de}t^{d}t^{e}(\sigma) \\ & = & -f(f-f^{2})(\sigma)dC^{a}{}_{bc}t^{b}r^{c} = 0 \\ & & dh^{a}(\sigma) & \mapsto & (f-f^{2})(\sigma)dC^{a}{}_{bc}t^{b}r^{c} \\ & = & 0 \end{array}$$

$$dh = -2k \int_{0}^{2\pi} k_{ab}t^{a}(\sigma) \frac{d}{d\sigma} h^{b}(\sigma) d\sigma - 2k \int_{0}^{2\pi} k_{ab}q^{a}(\sigma) \frac{d}{d\sigma} s^{b}(\sigma) d\sigma$$

$$\mapsto -2k \int_{0}^{2\pi} f(\sigma) \frac{d}{d\sigma} (f - f^{2})(\sigma) d\sigma k_{ab}t^{a} C^{b}{}_{de}t^{d} r^{e} - k \int_{0}^{2\pi} f(\sigma) \frac{d}{d\sigma} (f - f^{2})(\sigma) d\sigma k_{ab}r^{a} C^{b}{}_{de}t^{b} t^{c}$$

$$= k \frac{1}{3} C_{abc} t^{a} t^{b} r^{c} + k \frac{1}{6} C_{abc} r^{a} t^{b} t^{c}$$

$$= k \frac{1}{2} C_{abc} t^{a} t^{b} r^{c}$$

$$dh \mapsto d k(k_{ab}t^{a}r^{b}) + dc$$

$$= -\frac{k}{2}k_{ab}C^{a}{}_{de}t^{d}t^{e}r^{b} - k(k_{ab}r^{a}r^{b}) + k(k_{ab}t^{a}C^{b}{}_{de}t^{d}r^{e}) + k(k_{ab}r^{a}r^{b})$$

$$= \frac{k}{2}k_{ab}C^{a}{}_{de}t^{d}t^{e}r^{b}$$

Definition 4 (the morphism $inn(\hat{\Omega}_k g \to Pg)) \to cs(g)$)

Define an FDA algebra homomorphism $\operatorname{inn}(\hat{\Omega}_k g \to Pg)) \to \operatorname{cs}(g)$ on our basis by the following assignments.

$$t^{a} \mapsto t^{a}(2\pi)$$

$$r^{a} \mapsto q^{a}(2\pi)$$

$$b \mapsto s + k\frac{1}{2} \int k_{ab}t^{a}(\sigma) \frac{d}{d\sigma} t^{b}(\sigma) d\sigma - k\frac{1}{2} \int k_{ab}t^{b}(\sigma) \frac{d}{d\sigma} t^{a}(\sigma) d\sigma$$

$$c \mapsto h - 2k \int_{0}^{2\pi} k_{ab}q^{a}(\sigma) \frac{d}{d\sigma} t^{b}(\sigma) d\sigma$$

Proposition 2 The above morphism is indeed a chain map.

Proof. We check on all basis elements that the morphism commutes with the differential.

$$\begin{array}{rcl} dt^{a} & = & -\frac{1}{2}C^{a}{}_{bc}t^{b}t^{c} - r^{a} \\ & \mapsto & -\frac{1}{2}C^{a}{}_{bc}t^{b}(2\pi)t^{c}(2\pi) - q^{a}(2\pi) \\ \\ dt^{a} & \mapsto & dt^{a}(2\pi) \\ & = & -\frac{1}{2}C^{a}{}_{bc}t^{b}(2\pi)t^{c}(2\pi) - q^{a}(2\pi) \\ \\ dr^{a} & = & -C^{a}{}_{bc}t^{b}r^{c} \\ & \mapsto & -C^{a}{}_{bc}t^{b}(2\pi)q^{c}(2\pi) \\ \\ dr^{a} & \mapsto & dq^{a}(2\pi) \\ & = & -C^{a}{}_{bc}t^{b}(2\pi)q^{c}(2\pi) \end{array}$$

$$db = k \left(\frac{1}{6} C_{abc} t^a t^b t^c + k_{ab} t^a r^b \right) + c$$

$$\mapsto k \left(\frac{1}{6} C_{abc} t^a (2\pi) t^b (2\pi) t^c (2\pi) + k_{ab} t^a (2\pi) q^b (2\pi) \right) + h - 2k \int_0^{2\pi} k_{ab} q^a(\sigma) \frac{d}{d\sigma} t^b(\sigma) d\sigma$$

$$db \mapsto ds + d \frac{1}{2} k \int k_{ab} t^a(\sigma) \frac{d}{d\sigma} t^b(\sigma) d\sigma - d \frac{1}{2} k \int k_{ab} \left(\frac{d}{d\sigma} t^a(\sigma) \right) t^b(\sigma) d\sigma$$

$$= -2k \int_0^{2\pi} k_{ab} t^a(\sigma) \frac{d}{d\sigma} s^b(\sigma) d\sigma + h$$

$$+ k \frac{1}{6} C_{abc} t^a (2\pi) t^b (2\pi) t^c (2\pi) + 2k \int_0^{2\pi} k_{ab} t^a(\sigma) \frac{d}{d\sigma} s^b(\sigma) d\sigma - 2k \int_0^{2\pi} k_{ab} q^a(\sigma) \frac{d}{d\sigma} t^b(\sigma) d\sigma$$

$$+ k k_{ab} t^a (2\pi) q^b (2\pi)$$

$$= h + k \frac{1}{6} C_{abc} t^a (2\pi) t^b (2\pi) t^c (2\pi) - 2k \int_0^{2\pi} k_{ab} q^a(\sigma) \frac{d}{d\sigma} t^b(\sigma) d\sigma$$

$$+ k k_{ab} t^a (2\pi) q^b (2\pi)$$

$$dc = k (k_{ab}r^a r^b)$$

$$\mapsto k (k_{ab}q^a (2\pi)q^b (2\pi))$$

$$dc \mapsto dh - 2k d \int_{0}^{2\pi} k_{ab}q^{a}(\sigma) \frac{d}{d\sigma} t^{b}(\sigma) d\sigma$$

$$= -2k \int_{0}^{2\pi} k_{ab}t^{a}(\sigma) \frac{d}{d\sigma} h^{b}(\sigma) d\sigma - 2k \int_{0}^{2\pi} k_{ab}q^{a}(\sigma) \frac{d}{d\sigma} s^{b}(\sigma) d\sigma$$

$$+2k \int_{0}^{2\pi} k_{ab}C^{a}{}_{de}t^{d}(\sigma)q^{e}(\sigma) \frac{d}{d\sigma}t^{b}(\sigma) d\sigma + 2k \int_{0}^{2\pi} k_{ab}h^{a}(\sigma) \frac{d}{d\sigma}t^{b}(\sigma) d\sigma$$

$$k \int_{0}^{2\pi} k_{ab}q^{a}(\sigma) \frac{d}{d\sigma}C^{b}{}_{de}t^{d}(\sigma)t^{e}(\sigma) d\sigma$$

$$+2k \int_{0}^{2\pi} k_{ab}q^{a}(\sigma) \frac{d}{d\sigma}q^{b}(\sigma) d\sigma + 2k \int_{0}^{2\pi} k_{ab}q^{a}(\sigma) \frac{d}{d\sigma}s^{b}(\sigma) d\sigma$$

$$= k \left(k_{ab}q^{a}(2\pi)q^{b}(2\pi)\right)$$

Proposition 3 The composition

$$cs(g) \to inn(string_g) \to cs(g)$$

is strictly the identity morphism on cs(g).

Proof. This is immediate.