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Abstract

For every L∞-algebra g there is a notion of g-bundles with connection, according to [5]. Here I discuss
how to describe

• associated g-bundles;

• their spaces of sections;

• and the corresponding covariant derivatives

in this context.
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1 Introduction

Representations of n-groups are usually thought of as n-functors from the n-group into the n-category
of representing objects. In the program [1] one sees that possibly a more fundamental perspective on
representations is in terms of the corresponding action groupoids sitting over the given group.

This is the perspective I will adopt here and find to be fruitful.
The definition of L∞-modules which I proposed in [6] can be seen to actually comply with this per-

spective. Here I further develop this by showing that this perspective also helps to understand associated
L∞-connections, their sections and covariant derivatives.

This is the picture to be developed here:

Sections A background field on a smooth space X is a morphism ∇ : Πn+1(X) → T fitting into a
diagram

Πvert
n+1(Y )

g //
� _

��

BG(n)� _

��
Πn+1(Y )

∇loc //

����

BEG(n)

��
Πn+1(X) ∇ // T

'

u} sssssssssssssssssss

sssssssssssssssssss

of smooth (n+ 1)-funtors, or alternatively a morphism

Ω•(X) inv(g)∇oo

of DGCAs, fitting into a diagram

Ω•
vert(Y ) oo Avert

OOOO
CE(g)

OOOO

Ω•(Y ) oo ∇loc

OO

� ?

W(g)
OO

� ?
Ω•(X) oo ∇ inv(g)

A representation of the structure group is given by a sequence

F(n−1) → Ĝ→ G(n) ,

whose fiber has categorical degree at least one less that the structure n-group, alternatively a sequence
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CE(f)← CE(ĝ)← CE(g) .

For instance, for g an ordinary Lie algebra we get the ordinary notion of a vector bundle associated by
a representation ρ of g on V by using

V ∗ ← CEρ(ĝ, V )← CE(g) .

But crucially, we also get such sequences from weak cokernels ( ' homotopy quotients)

Ĝ→ (Bn−1U(1)→ Ĝ)→ BnU(1) .

We say that a section of ∇ with respect to such a sequence is simply a lift of ∇ through such a sequence
sequence:

BEĜ(n)

%%KKKKKKKKK

Πn+1(Y )

σ
99

∇loc // BEG(n)

and extended accordingly to the full diagram.
We show in examples how this does indeed capture the ordiary notion of sections. For instance it is easy

to see that

CEρ(g)
σ

yy
Ω•(Y )vert CE(g)

Avertoo

ddIIIIIIIII

encodes an ordinary section on the ordinary associated g-bundle encoded by Avert.
Comparison with the two rightmost columns of figure 12 in [5] shows that “twisted n-bundles” are the

same things as sections of bnu(1) (n+)-bundles. This is the result we found earlier, using the description of
representations in terms of representation n-functors.

Σ-model QFTs Our goal is to find the representations of cobordisms categories which are induced from
a given background field. In physics terms, this means that we are interested in the quantization of
Σ-models.

The Σ-model associated with background field ∇ should associate to a given manifold Σ a collection of
sections of the result obtained by transgressing ∇ to the space of maps from Σ into X.

As described elsewhere, the process ordinarily addressed as transgression is nothing but applying the
inner hom

hom(Πn+1(Σ),−)

to the entire diagram giving the background field.
It remains to be understood how then taking sections yields a representation of cobordism categories.
I am not completely sure yet about all details, but it should probably work along the following lines:
I think of our cobordisms as spans

Σ

Σ1

>>}}}}}}}
Σ2

``AAAAAAA
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and require these to behave analogously to a simplicial space, in that in addition to the co-face maps,
there are co-degeneracy maps, at least after we take path-groupoids:

Π(Σ)

Π(Σ1)
{{

;;vvvvvvvvv
Π(Σ2)
##

ccHHHHHHHHH

For instance the fundamental groupoid of the pair-of-pants, '

•
c2

��@
@@

@@
@@

•

c1

??������� c3 // •

has the obvious injections of the circle BZ and projection onto it (the latter each regarding one of the cycles
ci as degenerate).

Given such a span and co-span, we can apply Hom(−−,Πn+1(X)) to it to obtain a (co)span

Hom(Π(Σ),Πn+1(X))

Hom(Π(Σ1),Πn+1(X))
tt

44iiiiiiiiiiiiiiiii
Hom(Π(Σ2),Πn+1(X))

**

jjUUUUUUUUUUUUUUUUU

of configuration spaces. Similarly for the rest of the diagram defining the background field.
Then forming sections as above yields a span of section n-groupoids

sect(tgΣ∇)

wwooooooooooo

''OOOOOOOOOOO

sect(tgΣ1
∇) sect(tgΣ2

∇)

by using the maps going back and forth between Σ and Σi:

hom(Π(Σ),Π(X)) // hom(Π(Σ),T)

pullback
along

injection
��

hom(Π(Σi),Π(X))

pushforward
along

surjection

OO

defined
as the
above

composite

// hom(Π(Σi),T)

It looks tempting to read such spans of section n-groupoids in the context of Baez-Dolan-Trimble
groupoidification as the combinatorial version of the linear maps that one expects to see.

2 Representations

2.1 Action groupoids

For a group G, with BG denoting the corresponding 1-object groupoid, a representation of G on objects in
the category S is a functor

ρ : BG→ S
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( •
g // • ) 7→ ( V

ρ(g) // V )

For instance setting S = Vect produces linear represenations. For any such representation we obtain the
corresponding action groupoid

V//ρG

which is the weak quotient of V by the action of G. This comes canonically with a faithful (injective on each
Hom-space) functor back to BG

V//ρG // BG ;

and in fact every groupoid C with a faithful functor to BG

C // BG

is the action groupoid of some representatiton of G.
The underlying object V that G is acting on sits inside this action groupoid

V
� � // C

and the inclusion is surjective on morphsims.
In fact, this way we obtain a sequence of groupoids

V
� � // C // BG , (1)

where V is regarded as a groupoid with only identity morphisms.
This perspective on action groupoids will be useful in the following.

2.1.1 Examples

The archetypical example is the action of G on itself by right (or left) multiplication: the regular represen-
tation of G. The corresponding action groupoid is G//G = INN(G) = Codisc(G), the groupoid with one
object per element of G and precisely one morphism between any pair of objects.

In this case our sequence
G

� � // G//G // BG

is actually the groupoid version of the universal G-bundle, in that

G
� � //

_

|·|
��

G//G //
_
|·|

��

BG_
|·|

��
G

� � // EG // BG

,

where | · | denotes forming nerves and the geometric realizations. See [4].

2.2 Action Lie ∞-algebroids

Let A be some commutative associative algebra, to be thought of as the algebra of functions on some space
V , as above.

Modeled on 1, we now define the action of an L∞-algebra on a cochain complex of A-modules in non-
negative degree,

V ∗ = ( V ∗
0

oo dV
V ∗

1
oo dV · · · ) .

Given any (finite dimensional) L∞-algebra g, we write g⊗A for the free A-module generated by it.
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Definition 1 (L∞-representation) For g any L∞-algebra and V a chain complex of A-modules as above,
we say that an action ρ of g on V is an extension of the graded-commutative algebra

∧•A(V ∗ ⊕ (g∗ ⊗A))

to a differential graded commutative algebra

CEρ(g, V ) := (∧•A(V ∗ ⊕ (g∗ ⊗A)), dρ)

together with a DGCA morphisms
CEρ(g, V ) CE(g)? _oo

and a morphism of complexes
V ∗ CEρ(g, V )oooo

such that in the category of complexes

V ∗ CEρ(g, V )oooo CE(g)? _oo

0

dd .

Definition 2 (adjoint L∞-representation) Let i be the DGCA on R⊕R[1] with the product being tensor
product over R and the differential being trivial. For g any L∞-algebra, we denote by

CEad(g, g) := maps(CE(g), i)

the Chevalley-Eilenberg algebra of the adjoint action of g on itself

Proposition 1 This is indeed a representation, in that we do have a sequence

g∗[−1] CEad(g, g)oooo CE(g)? _oo

0

ff
.

Here g∗[−1] on the left is the cochain complex underlying CE(g) after restriction to generators (and recall
that in our conventions g is concentrated in degrees 1 ≤ d ≤ ∞):

g∗[−1]0
pg◦dCE(g) // g∗[−1]1

pg◦dCE(g) // · · · ,

where pg : ∧•g∗ → g∗ is the canonical projection onto the first wedge power.
Proof. Over any test domain U , a given morphism CE(g)→ i⊗ Ω•(U) comes from a homomorphism ω

and a corresponding derivation λ in the familiar way, such that for each a ∈ CE(g) we have

a � //_

dCE(g)

��

ω(a) + t⊗ λ(x)
_

dU

��
dCE(g)a

� // dω(a)+t⊗dλ(a))
=ω(dCE(g))+t⊗λ(dCE(g)a)

,

where {t} denotes the canonical basis of R[1]. So the GCA underlying CEad(g, g) is ∧•(g∗[−1] ⊕ g∗) and
restricted to ∧•g∗ the differential is that of CE(g). Hence we have a canonical inclusion

CEad(g, g) CE(g)? _oo .
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Moreover, if a ∈ g∗ is a generator then so is λ(a) and the restriction of λ(dCEa) on generators is the image
under λ of dCEa restricted to generators. Therefore we do have canonically a morphism of complexes

g∗[−1] CEad(g, g)oooo

and clearly the composite vanishes. �

2.2.1 Examples

Ordinary Lie modules. For g an ordinary (finite dimensional) Lie algebra and V ∗ an ordinary Lie module,
we let CEρ(g, V ) be the ordinary Chevalley-Eilenberg algebra.

In this case A is just the ground field and the differential dρ acts as

dρ|V ∗ : v 7→ ρ(·)(v) ∈ g∗ ⊗ V ∗

dρ|g∗ = [,̇·]∗ .

Proposition 2 For g an ordinary Lie algebra, CEad(g, g) coincides with the Chevalley-Eilenberg algebra of
the ordinary adjoint representation of g on itself.

The Weil algebra of an ordinary Chevalley-Eilenberg algebra. Notice that for ordinary Lie algebra
modules we have the Weil algebra (the mapping cone of the identity on CEρ(g, V ))

Wρ(g, V ) = (∧•(V ∗ ⊕ g∗ ⊕ V ∗[1]⊕ g∗[1]))

whose differential is given by
dW|V ∗ : v 7→ ρ(·)(v) + σv

dW|g∗ : a 7→ [·, ·]∗(a) + σa

etc.

Examples for higher adjoint representation.

Proposition 3 For g a semisiple Lie 1-algebra and µ the canonical 3-cocycle, the adjoint representation of
the String Lie 2-algebra gµ looks as follows:

CEad(gµ, gµ) = ((g∗[−1]⊕ R[1])⊕ (g∗ ⊕ R[2]), dCEad(gµ))

with the differential acting on the shifted copy as

dad|g∗[−1] = dCEad(g)

and
dad|R[1] : a 7→ σµ ,

where σ is the canonical isomorphism g∗ → g∗[−1] extended as a derivation.

Recall again that in our conventions g is in degree 1 ≤ d ≤ ∞.
The nature of CEad(gµ) becomes most vivid when we consider sections of adjoint String 2-bundles in

3.2.1.

7



2.3 Loop groupoids and loop Lie algebroids

In [9] Simon Willerton observes that for G a finite group and BG the one-object groupoid induced by it, the
groupoid of functors,

ΛBG := HomCat(BZ,BG) ,

called the loop groupoid of G, is, in some sense, to G like the loop group of a Lie group is to that Lie group.
But notice that ΛBG is in fact also the action groupoid

G
� � // ΛBG // // BG

of the adjoint action of G on itself.
We can see more clearly what is going on by considering the analogous functorial construction for Lie

groups. So let G be Lie and let Π1(S1) be the fundamental Lie groupoid of the circle. Then, according to
[8], the groupoid of smooth functors

ΛBG := Funct∞(Π1(S1),BG)

has as objects smooth g-valued 1-forms A ∈ Ω1(S1, g), and as morphisms

A
f // A′

smooth G-valued functions f ∈ Ω0(G), such that A′ = AdfA+ fdf−1.
Since compositon of morphisms is given by pointwise multiplication in G, there is a canonical faithful

functor
ΛBG // // B(ΩG)

from the loop groupoid to the one-object groupoid coming from the loop group of G.
The kernel of this is the discrete category over the smooth space of g-valued 1-forms on the circle

Ω1(S1, g) � � // ΛBG // // B(ΩG) .

Hence ΛBG is the action groupoid of ΩG acting on g-valued forms on S1.
It will be useful for us to repeat this discussion at the level of L∞-algebras:

Definition 3 (loop Lie algebroid) For g any Lie ∞-algebra we write

CE(Λg) := maps(CE(g),Ω•(S1))

and address this is the Chevally-Eilenberg algebra of the loop Lie ∞-algebroid of g.

2.3.1 Examples

Loop Lie algebras of ordinary Lie algebras.

Proposition 4 For g an ordinary Lie algebra we have

Ω0(S1, g) CE(Λg)oooo CE(Ωg)? _oo .

Hence Λg is the action Lie algebroid of an action of the loop Lie algebra Ωg on g-valued functions on S1.
Proof. We compute forms on the space of maps as usual by considering DGCA morphisms

CE(g)→ Ω•(S1)⊗ Ω•(U)
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over each test domain U

ta
� //

_

dCE(g)

��

λaθ + ωa
_

dS1+dU

��

− 1
2C

a
bct

b ∧ tc � // (dU λa)∧θ+dU ωa+θ∧ ∂
∂σ ωa

=− 1
2 Ca

bcωb∧ωc+θCa
bcωb∧λc

and then using elements in CE(g) and currents on Ω•(S1) to extract the generators

λa(σ) ∈ Ω0(maps(CE(g),Ω•(S1))

ωa(σ) ∈ Ω1(maps(CE(g),Ω•(S1))

for all a running over a chosen basis {ta} of g and for all σ ∈ S1, and relations

dωa(σ) = −1
2
Ca

bcω
b(σ) ∧ ωc(σ)

∂

∂σ
ωa(σ) = dλa(σ) + Ca

bcω
b(σ) ∧ λc(σ) .

The first of these equations is the Chevalley-Eilenberg algebra of Ωg, the second one is the action of Ωg on
Ω0(S1, g). �

Loop Lie algebras of String Lie 2-algebras: Kac-Moody central extensions. Recall that the Kac-
Moody central extension of the loop Lie algebra g coming from a degree 2 invariant polynomial P on g is
the central extension coming from the 2-cocycle on Ωg given by

tgS1µ : f ⊗ g 7→
∫

S1
Pab(

∂

∂σ
fa(σ))gb(σ) dσ

Proposition 5 The loop Lie algebroid of the String Lie 2-algebra gµ is the action Lie 2-algebroid of the
Kac-Moody central extension Ω̂g

something CE(Λgµ)oooo CE(Ω̂g)? _oo .

Proof.
I am getting a little too tired. Here are some fomulas one runs into while doing the computation, following

the same principle for computing maps(A,B) as always.

ta
� //

_

dCE(g)

��

λaθ + ωa
_

dS1+dU

��

− 1
2C

a
bct

b ∧ tc � // (dU λa)∧θ+dU ωa+θ∧ ∂
∂σ ωa

=− 1
2 Ca

bcωb∧ωc+θCa
bcωb∧λc

dωa(σ) = −1
2
Ca

bcω
b(σ) ∧ ωc(σ)
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∂

∂σ
ωa(σ) = dλa(σ) + Ca

bcω
b(σ) ∧ λc(σ)

b
� //

_

dCE(g)

��

θ ∧ ρ+ κ_

dS1+dU

��

−Cabct
a ∧ tb ∧ tc � // −θ∧dU ρ+θ∧ ∂

∂σ κ+dU κ

−Cabcωa∧ωb∧ωc+−3θ∧Cabcλa∧ωb∧ωc

dρ(σ) =
∂

∂σ
κ(σ)− 3Cabcλ

a(σ) ∧ ωb(σ) ∧ ωc(σ)

dκ(σ) = −Cabcω
a(σ) ∧ ωb(σ) ∧ ωc(σ)

d

∫
S1
ρ(σ) dσ = −3

∫
S1
Cabcλ

a(σ) ∧ ωb(σ) ∧ ωc(σ) dσ

d

∫
S1
Pabλ

a(σ) ∧ ωb(σ) dσ =
∫

S1
(
∂

∂σ
ωa(σ)) ∧ ωb(σ) dσ︸ ︷︷ ︸

=tgS1µ

+
1
2

∫
S1
Cabcλ

a(σ) ∧ ωb(σ) ∧ ωc(σ) dσ

�

3 Associated L∞-connections

For g any (finite dimensional) L∞-algebra and X some smooth space, recall that a g-connection descent
object (a g-bundle with connection) is a diagram

Ω•
vert(Y ) CE(g)

Avertoo

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

Ω•(X)
� ?

OO

inv(g)
{Ki}oo

� ?

OO

.

The topmost horizontal morphism specifies the underlying g-bundle. The middle one specifies the g-
connection on that. The bottom horizontal morphism picks up the corresponding characteristic classes.
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3.1 Associated L∞-bundles and sections

Definition 4 Given a g-descent object

Ω•
vert(Y ) CE(g)

Avertoo

as above and a g-representation ρ on V as in definition 1, the ρ-associated descent object with chosen section
σ is a completion of

CEρ(g, V )

Ω•
vert(Y ) CE(g)

Avert

oo
� ?

OO

to
CEρ(g, V )

(σ,A′
vert)

uulllllllllllll

Ω•
vert(Y ) CE(g)

Avert

oo
� ?

OO
.

Here σ denotes the component on the chosen morphism on V ∗, while A′vert denotes the component on g∗.

3.1.1 Examples.

The situation in the integral picture. In order to appreciate this definition, it may be helpful to
consider the analogous situation in the world of groupoids.

So let G be an ordinary group, and ρ a representation of that on a space V .
Fix some base space X and consider a surjective submersion π : Y → X. Then a G-bundle descent object

with respect to Y is a functor
g : Y [2] → BG

π2(y)

##GGGGGGGG

π1(y)

;;wwwwwwww
// π3(y)

7→

•
π∗
23g(y)

��@
@@

@@
@@

•

π∗
12g(y)

??�������

π∗
13g(y)

// •

for all y ∈ Y [3], whereas a V//ρG descent object (local data for a principal groupoid bundle) is a functor

gρ : Y [2] → V//ρG

π2(y)

##GGGGGGGG

π1(y)

;;wwwwwwww
// π3(y)

7→

π∗2σ(y)
ρ(π∗

23g(y))

$$JJJJJJJJJ

π∗1σ(y)

ρ(π∗
12g(y))

::ttttttttt

ρ(π∗
13g(y))

// π∗3σ(y)

.

The new datum here is a map
σ : Y → V

which, by the above cocycle condition, is required to glue properly with respect to the given transition
function g. Hence it is indeed a section of the bundle which is ρ-associated to that for which g is the local
data.

Our Lie ∞-algebraic formulation is just the differential version of this phenomenon.
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Sections of ordinary G-bundles. For g the ordinary Lie algebra of the simply connected Lie group G
and V ∗ an ordinary Lie module, for Y = P a principal G-bundle and and for

Ω•
vert(Y ) CE(g)

Avertoo

the corresponding g-connection descent object, one finds that the section σ is a V ∗-valued function

σ : P → V

on P such that
(dσ +A(σ))vert = 0 .

This says indeed that σ is a section of P ×ρ V .

3.2 Covariant derivatives

Extending a ρ-associated g-descent to a connection descent object computes the covariant derivative ∇Aσ
of the chosen section σ with respect to the g-connection A

CEρ(g, V )

(σ,Avert)
qqq

q

xxqqq
q

Ω•
vert(Y ) CE(g)Avertoo

3 S

eeKKKKKKKKKK

Wρ(g, V )

(σ,∇Aσ,A,FA)
qqq

q

xxqqq
q

OOOO

Ω•(Y )

OOOO

W(g)(A,FA)oo

OOOO

3 S

eeKKKKKKKKKK

as the component of
Wρ(g, V )

(σ,∇Aσ,A,FA)
sss

s

yysss
s

Ω•(Y )

on V ∗[1].

3.2.1 Examples.

Ordinary covariant derivatives. In our example of an ordinary g-connection A, we find that

∇Aσ = dσ +A(σ) ,

as one expects.

Adjoint String 2-bundles. For gµ the String Lie 2-algebra, let Ω•(Y ) W(gµ)
((A,B),(FA,FB))oo be a String

connection coming from a g-avlued 1-form A and a 2-form B with 3-form curvature

FB = 3〈A ∧ FA〉 .

(Recall that, while this is not quite the Chern-Simons 3-form, the latter is the curvature when we pass along
the isomorphism W(gµ) ' cs(g)).
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Lifting this through the adjoint representation of the String Lie 2-algebra on itself

Wad(gµ)

((σ0,σ1),(∇σ0,∇σ1),(A,B,FA,FB))

{{wwwwwwwwwwwwwwwwww

Ω•(Y ) W(gµ)
((A,B),(FA,FB))oo

?�

OO

shows that a section of that adjoint String 2-bundle is

• a g-valued 0-form σ0 ∈ Ω•(Y, g);

• a 1-form σ1 ∈ Ω1(Y )

whose covariant derivatives are
∇σ0 = dσ0 +A ∧ (σ0) ,

∇σ1 = dσ1 + 3µ(A ∧A ∧ σ0) .

So if {ta} is a chosen basis of g, then

∇σ1 = dσ1 + 3σc
0µabcA

a ∧Ab .

4 The transgression/suspension of (4k + 1)-Brane structures to
loop spaces

It is well known that String structures on a space X can be conceived

• either in terms of a 3-bundle on X classified by a four class on X obstructing the lift of a 1-bundle on
X to a 2-bundle;

• or in terms of a 2-bundle on LX classified by a 3-class on LX obstructing the lift of a 1-bundle on X
to another 1-bundle.

In the second case, one is dealing with the transgression/suspension of the first case to loop space.
The relation between the two points of views is carefully described in [?]. Essentially, the result is that

rationally both obstructions are equivalent.

Remark. Unfortunately, there is no universal agreement on the convention of the direction of the operation
called transgression. Both possible conventions are used in the iterature relevant for our purpose here. For
instance [?] say transgression for what [?] calls the inverse of transgression (which, in turn, should be called
suspension).

We will now demonstrate in the context of L∞-algebra connections how Lie algebra (n + 1)-cocycles
related to p-brane structures on X transgress/suspend to loop Lie algebra n-cocycles on loop space.

So let g be an ordinary Lie algebra, µ an (n+1)-cocycle on it in transgression with an invariant polynomial
P , where the transgression is mediated by the transgression element cs as described in ??.
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Recall from ?? that the corresponding universal obstruction structure is the bnu(1)-connection

CE(g) CE(bnu(1))
µoo

W(g)

OOOO

W(bnu(1))
(cs,P )oo

OOOO

inv(g)
� ?

OO

inv(bnu(1)) = CE(bn+1u(1))
{P}oo

� ?

OO

to be thought of as the universal higher Chern-Simons (n + 1)-bundle with connection on the classifying
space of the simply connected Lie group integrating g.

We transgress/suspend this to loops by applying the functor maps(−,Ω•(S1)) to it, which can be thought
of as computing for all DGC algebras the DGC algebra of differential forms on the space of maps from the
circle into the space that the original DGCA was the algebra of differential forms of:

maps(CE(g),Ω•(S1)) maps(CE(bnu(1)),Ω•(S1))
tgS1µoo

maps(W(g),Ω•(S1))

OOOO

maps(W(bnu(1)),Ω•(S1))
tgS1 (cs,P )oo

OOOO

maps(inv(g),Ω•(S1))
� ?

OO

maps(CE(bn+1u(1)),Ω•(S1))
{tgS1P}oo

� ?

OO .

We want to think of the result as a bn−1u(1)-bundle. This we can achieve by pulling back along the inclusion

CE(bn−1u(1)) ↪→ maps(CE(bnu(1)),Ω•(S1))

which comes from the integration current
∫

S1 on Ω•(S1) according to proposition ??.
(This restriction to the integration current can be understood from looking at the basic forms of the loop

bundle descent object, which induces integration without integration essentially in the sense of [3]. But this
we shall not further go into here.)

We now show that the transgressed cocycles tgS1µ are the familiar cocycle on loop algebras, as appearing
for instance in Lemma 1 of [?]. For simplicity of exposition, we shall consider explicitly just the case where
µ = 〈·, [·, ·]〉 is the canonical 3-cocycle on a Lie algebra with bilinear invariant form 〈·, ·〉.

Proposition 6 The transgressed cocycle in this case is the 2-cocycle of the Kac-Moody central extension of
the loop Lie algebra Ωg

tgS1µ : (f, g) 7→
∫

S1
〈f(σ), g′(σ)〉dσ .

14



Proof. We compute maps(CE(g),Ω•(S1)) as before from proposition ??: for {ta} a basis of g and U any
test domain, a DGCA homomorphism

φ : CE(g)→ Ω•(S1)⊗ Ω•(U)

sends

ta
� φ //

_

dCE(g)

��

ca +Aaθ_

dS1+dU

��

− 1
2C

a
bct

b ∧ tc � φ // θ∧( ∂
∂σ ca)+dU ca+dU Aa∧θ

=− 1
2 Ca

bccb∧cc−Ca
bccb∧Ab∧θ

.

Here θ = dσ ∈ Ω1(S1) is the canonical 1-form on S1 and ∂
∂σ the canonical vector field; moreover

ca ∈ Ω0(S1)⊗ Ω1(U) and Aaθ ∈ Ω1(S1)⊗ Ω0(U).
By contracting with δ-currents on S1 we get 1-forms ca(σ), ∂

∂σ c
a(σ) and 0-forms Aa(σ) for all σ ∈ S1 on

maps(CE(g),Ω•(S1)) satisfying

dmaps(··· )c
a(σ) +

1
2
Ca

bcc
b(σ) ∧ cc(σ) = 0 (2)

and
dmaps(··· )A

a(σ)− Ca
bcA

b(σ) ∧ cc(σ) =
∂

∂σ
ca(σ) . (3)

So Aa(σ) (a “field”) is the function on (necessarily flat) g-valued 1-forms on S1 which sends each such
1-form for its ta-component along θ at σ, while ca(σ) (a “ghost”) is the 1-form which sends each tangent
vector field to the space of flat g-valued forms to the gauge transformation in ta direction which it induces
on the given 1-form at σ ∈ S1.

Notice that the transgression of our 3-cocycle

µ = µabct
a ∧ tb ∧ tc = Cabct

a ∧ tb ∧ tc ∈ H3(CE(g))

is
tgS1µ =

∫
S1
CabcA

a(σ)cb(σ) ∧ cc(σ) dσ ∈ Ω2(Ω1
flat(S

1, g) .

We can rewrite this using the identity

dmaps(··· )

(∫
S1
PabA

a(σ)cb(σ)dσ
)

=
∫

S1
Pab (∂σc

a(σ)) ∧ cb(σ) +
1
2

∫
S1
CabcA

a(σ)cb(σ) ∧ cc(σ) , (4)

which follows from 5 and 6, as

tgS1µ =
∫

S1
Pab (∂σc

a(σ)) ∧ cb(σ) + dmaps(··· )(· · · ) .

Then notice that

• equation 5 is the Chevalley-Eilenberg algebra of the loop algebra Ωg;

• the term
∫

S1 Pab(∂σc
a(σ)) ∧ cb(σ) is the familiar 2-cocycle on the loop algebra obtained from trans-

gression of the 3-cocycle µ = µabct
a ∧ tb ∧ tc = Cabct

a ∧ tb ∧ tc .
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5 States of Chern-Simons theory

In [5] a Lie ∞-algebraic model of the Chern-Simons 2-gerbe (line 3-bundle) with connection over BG was
given in terms of the generalized g-connection descent object

CE(g) CE(b2u(1))
µoo

W(g)

OOOO

W(b2u(1))
(cs,P )oo

OOOO

inv(g)
� ?

OO

inv(b2u(1)) = CE(b3u(1))
{P}oo

� ?

OO ;

Here we describe how to use this to comput the “spaces” of states which Chern-Simons theory assigns to
2-dimensional surfaces and to 1-dimensional circles.

5.1 States over a circle

Let parameter space be the circle
par = S1 ,

and then proceed as follows:

• start with the universal Chern-Simons b2u(1)-3-bundle with connection over the classifying space of a
simply connected group G, which in the context of [5] is given by the b2u(1)-connection descent object

CE(g) CE(b2u(1))
µoo

W(g)

OOOO

W(b2u(1))
(cs,P )oo

OOOO

inv(g)
� ?

OO

inv(b2u(1)) = CE(b3u(1))
{P}oo

� ?

OO ;

• transgress that from target space inv(g) to configuration space Ω•(inv(g),Ω•(S1)) by applying the
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functor maps(−−,Ω•(S1)) to everything, this way obtaining the transgressed object

maps(CE(g),Ω•(S1)) maps(CE(b2u(1)),Ω•(S1))
tgS1µoo

maps(W(g),Ω•(S1))

OOOO

maps(W(b2u(1)),Ω•(S1))
tgS1 (cs,P )oo

OOOO

maps(inv(g),Ω•(S1))
� ?

OO

maps(CE(b3u(1)),Ω•(S1))
{tgS1P}oo

� ?

OO ;

• we pick a representation, form the associated bundle and compute the space of its sections.

Unwrapping this. Recall from [5] what maps(CE(g),Ω•(S1)) looks like: for {ta} a basis of g, a plot of
this space over the test domain U , i.e. a morphism

φ : CE(g)→ Ω•(S1)⊗ Ω•(U)

sends

ta
� φ //

_

dCE(g)

��

ca +Aaθ_

dS1+dU

��

− 1
2C

a
bct

b ∧ tc � φ // θ∧( ∂
∂σ ca)+dU ca+dU Aa∧θ

=− 1
2 Ca

bccb∧cc−Ca
bccb∧Ab∧θ

.

Here θ = dσ ∈ Ω1(S1) is the canonical 1-form on S1 and ∂
∂σ the canonical vector field; moreover

ca ∈ Ω0(S1)⊗ Ω1(U) and Aaθ ∈ Ω1(S1)⊗ Ω0(U).
By contracting with δ-currents on S1 we get 1-forms ca(σ), ∂

∂σ c
a(σ) and 0-forms Aa(σ) for all σ ∈ S1 on

maps(CE(g),Ω•(S1)) satisfying

dmaps(··· )c
a(σ) +

1
2
Ca

bcc
b(σ) ∧ cc(σ) = 0 (5)

and
dmaps(··· )A

a(σ)− Ca
bcA

b(σ) ∧ cc(σ) =
∂

∂σ
ca(σ) . (6)

So Aa(σ) (a “field”) is the function on (necessarily flat) g-valued 1-forms on S1 which sends each such
1-form for its ta-component along θ at σ, while ca(σ) (a “ghost”) is the 1-form which sends each tangent
vector field to the space of flat g-valued forms to the gauge transformation in ta direction which it induces
on the given 1-form at σ ∈ S1.

Notice that the transgression of our 3-cocycle

µ = µabct
a ∧ tb ∧ tc = Cabct

a ∧ tb ∧ tc ∈ H3(CE(g))

is
tgS1µ =

∫
S1
CabcA

a(σ)cb(σ) ∧ cc(σ) dσ ∈ Ω2(Ω1
flat(S

1, g) .
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We can rewrite this using the identity

dmaps(··· )

(∫
S1
PabA

a(σ)cb(σ)dσ
)

=
∫

S1
Pab (∂σc

a(σ)) ∧ cb(σ) +
1
2

∫
S1
CabcA

a(σ)cb(σ) ∧ cc(σ) , (7)

which follows from 5 and 6, as

tgS1µ =
∫

S1
Pab (∂σc

a(σ)) ∧ cb(σ) + dmaps(··· )(· · · ) .

Then notice that

• equation 5 is the Chevalley-Eilenberg algebra of the loop algebra Ωg;

• the term
∫

S1 Pab(∂σc
a(σ)) ∧ cb(σ) is the familiar 2-cocycle on the loop algebra obtained from trans-

gression of the 3-cocycle µ = µabct
a ∧ tb ∧ tc = Cabct

a ∧ tb ∧ tc .

So we find that sections of the Chern-Simons 3-bundle transgressed to a 2-bundle over the circle come
from bundles of representations of the centrally extended loop algebra Ω̂g over the space of g-holonomies
over the circle:

let (V, ρ̂) be a representation of the centrally extended loop Lie algebra Ω̂g and

CE(Ω̂g, V )tgS1µ

the corresponding Chevalley-Eilenberg algebra obtained from forming its String-like extension with the
transgressed cocycle, hence

CE(Ω̂g, V )tgS1µ =
(
∧•(V ⊕ Ω̂g∗ ⊕ R[1]), dCE(Ω̂g,V )tg

S1µ

)
with

dCE(Ω̂g,V )tg
S1µ
|R[1] : b 7→ tgS1µ ,

for {b} the canonical basis of R[1].
Notice thatCE(Ω̂g, V )tgS1µ is a puffed-up version of the CE algebra of a non-extended loop representation.
Then the corresponding sections of our transgressed Chern-Simons 3-bundle are morphisms

CE(Ω̂g, V )tgS1µ

ssgggggggggggggggggggg

maps(CE(g),Ω•(S1)) maps(CE(b2u(1)),Ω•(S1))
tgS1µoo

� ?

OO

which hence define bundle of loop group representations over the space of g-connections on the circle.

5.2 States over a 2-dimensional surface

For a given parameter space
par = Σ ,

a manifold of dimension 2 (the “membrane”), this means, according to [5] that

• we start with the universal Chern-Simons b2u(1)-3-bundle with connection over the classifying space
of a simply connected group G, which in the context of [5] is given by the b2u(1)-connection descent
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object

CE(g) CE(b2u(1))
µoo

W(g)

OOOO

W(b2u(1))
(cs,P )oo

OOOO

inv(g)
� ?

OO

inv(b2u(1)) = CE(b3u(1))
{P}oo

� ?

OO ;

• we transgress that from target space inv(g) to configuration space Ω•(inv(g),Ω•(Σ)) by applying the
functor maps(−−,Ω•(Σ)) to everything, this way obtaining the transgressed object

maps(CE(g),Ω•(Σ)) maps(CE(b2u(1)),Ω•(Σ))
tgΣµoo

mapsW(g),Ω•(Σ))

OOOO

maps(W(b2u(1)),Ω•(Σ))
tgΣ(cs,P )oo

OOOO

maps(inv(g),Ω•(Σ))
� ?

OO

maps(CE(b3u(1)),Ω•(Σ))
{tgΣP}oo

� ?

OO ;

• we pick a representation, form the associated bundle and compute the space of its sections.

Using the considerations in [7] we restrict attention on the space maps(CE(b2u(1)),Ω•(Σ)) of all 3-forms
on Σ (of course there is not a single nontrivial 3-form on the 2-dimensional Σ, so this space has a single
point, but it still has nontrivial 1-forms on it) to those 1-forms which come from the current on Ω2(Σ) which
integrates any 2-form over Σ, we get a morphism

CEρ(u(1),C)

maps(CE(g),Ω•(Σ)) CE(u(1))
tgΣµ

oo
4 T

ggOOOOOOOOOOO

and the space of sections σ that we are after is then the space of completions of this diagram

CEρ(u(1),C)
(σ,tgΣµ)

uullllllllllllll

maps(CE(g),Ω•(Σ)) CE(u(1))
tgΣµ

oo
4 T

ggOOOOOOOOOOO

.
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Such a σ is hence a function on the space of flat g-valued 1-forms on Σ, with the property that

dσ + (tgΣµ)σ = 0 ,

where d is the differential on the space of flat g-valued 1-form on Σ, and where tgΣµ is the 1-form on that

space which comes from the transgression of CE(g) CE(b2u(1))
µoo .

This requires some unwrapping.

Unwrapping this. Recall from [5] what maps(CE(g),Ω•(Σ)) looks like, computed for the simple case that
we take Σ = R2: for {ta} a basis of g, a plot of this space over the test domain U , i.e. a morphism

φ : CE(g)→ Ω•(Σ)⊗ Ω•(U)

sends

ta
� φ //

_

dCE(g)

��

ca +Aa
µdx

µ

_

dΣ+dU

��

− 1
2C

a
bct

b ∧ tc � φ// =( ∂
∂xµ ca)∧dxµ+dU ca+((dΣ+dU Aa

µ))∧dxµ

− 1
2 Ca

bccb∧cc−Ca
bccb∧Ab

µ∧dxµ− 1
2 Ca

bcAa
µ∧Ab

ν∧dxµ∧dxν

.

So that we get 1-forms ca(x) and 0-forms Aa
µ(x) and ∂[µλ

a
ν] on maps(CE(g),Ω•(Σ)) for all µ ∈ {1, 2} and

x ∈ Σ satisfying

dmaps(··· )c
a(x) +

1
2
Ca

bcc
b(x) ∧ cc(x) = 0

and
∂[µA

a
ν](x) +

1
2
Ca

bcA
b
[µ(x)Ac

ν](x) = 0

and
dmaps(··· )A

a
µ(x) + Ca

bcA
b
µ(x) ∧ cc(x) + ∂µc

a(x) = 0 . (8)

So Aa
µ(x) (a “field”) is the function on flat g-valued 1-forms on Σ which sends each such 1-form for its

ta-component along dxµ at x, while ca(x) (a “ghost”) is the 1-form which sends each tangent vector field to
the space of flat g-valued forms to the gauge transformation in ta direction which it induces on the given
1-form at x ∈ Σ.

We have in particular the transgression of the 3-form which specified the Chern-Simons 3-bundle as a
descent object, which is

tgΣµ = (
∫

Σ

µabcA
a
µ(x) ∧Ab

ν(x)dxµ ∧ dxν ∧ cc(x)) ∈ Ω1(Ω1
flat(Σ, g)) ,

where we keep the notation with {xµ} the canonical coordinates on Σ assumed to be R2, just because
otherwise this will become rather intransparent. The point is that the 1-form tgΣµ is obtained by pulling
back the degree 3 element µ to the space of flat g-valued 1-forms on Σ and then doing the fiber integral over
Σ.

So a section of the transgressed Chern-Simons bundle is a function

σ = ψ(Aa
µ(x))

of the fields {Aa
µ(x)|x ∈ Σ, a ∈ {1, · · · ,dimg}, µ ∈ {1, 2}} such that

dψ(Aa
µ(x)) + (

∫
Σ

µabcA
a
µ(x) ∧Ab

ν(x)dxµ ∧ dxν ∧ ca(x))ψ(Aa
µ(x)) = 0 .
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To get a sense for what this equation says it may be helpful, (not for people who cannot but think like
pure mathematicians, though) to write this in the fashion common in physics, where it says(

(
∂

∂Aa
µ(x)

ψ)Ca
bcA

b
µ(x) + µabcA

a
µ(x) ∧Ab

ν(x)
)
ψcc(x) = 0

for all x ∈ Σ.
Now recalling that our cocycle µ is actually given by µabc = Cabc := PadC

d
bc with {Pab} the components

of the invariant polynomial P (the Killing form), we can turn that into

Cabc

(
Ab

µ(x)
∂

∂Aaµ(x)
+Aa

µ(x) ∧Ab
ν(x)

)
ψ = 0

for all x ∈ Σ and c ∈ {1, · · · ,dim(g)}.
Using 8 we can rewrite this equivalently as(

∂[µA
a
ν] + Ca

bcA
b
µ(x)

∂

∂Acµ(x)

)
ψ = 0 .

This is beginning to look not unlike equations like (2.3) in [2]. But in order to reproduce that exactly,
I need to introduce a complex structure into the game first. I haven’t yet fully figured out how that arises
naturally from the present point of view.
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