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Motivation

Brief statement of the main motivation

Local Motivation

We want to get a handle on the theory and classification of
n-bundles with n-functorial connections, in particular

String 2-bundles

Chern-Simons 3-bundles.

Global Motivation

We want to understand how the FRS description of 2-dimensional
rational CFT generalizes to non-rational CFT and to SCFT. We
have a bunch of hints that FRS is the

local trivialization data

of a certain push-forward (“quantization”)

of a transformation of parallel transport 3-functors

describing a connection on a 3-bundle.
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Motivation

Brief statement of the main motivation

There is much more to say about motivation.
A couple of more details are given in the following.
To skip further motivation

continue with the plan of the further discussion

or go directly to the detailed discussion at
Lie n-algebra cohomology

or jump to the Conclusion .
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Motivation

Extended n-functorial quantum field theory

A Quantum Field Theory is a Functor

Atiyah and Segal have famously axiomatized d-dimensional
QFTs

as functors
Z : nCobS → Vect

Z :

(
∂inΣ

(Σ,g) // ∂outΣ

)
7→

(
Hin

U(Σ,g) // Hout

)
.
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Motivation

Extended n-functorial quantum field theory

Cartoon of a 1-functorial QFT
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Motivation

Extended n-functorial quantum field theory

A Quantum Field Theory is an n-Functor

But later it was noticed that this is too imprecise if we want to be
able to talk about

crucial requirements on QFT description

locality

boundary conditions.

Instead:

refined picture

An n-dimensional QFT should be an n-functor.
[Freed, Hopkins, Stolz, Teichner]

(remark on n-categories)
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Extended n-functorial quantum field theory
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Hl

Hr

∂inΣ //

'' ss

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Motivation

Extended n-functorial quantum field theory

Cartoon of a 3-functorial QFT

Hl

Hr

∂inΣ //

'' ss

��

���
�
�
�
�
�
�
�
�

}}
��
�

�!
U(Σ)

�
�
�
�

��

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Motivation

Extended n-functorial quantum field theory

Cartoon of a 3-functorial QFT

Hl

Hr

Hl

Hr

∂inΣ //

'' ss

∂outΣ__ //__

l
y




N
;

+

'' ss��

���
�
�
�
�
�
�
�
�

}}
��
�

�!
U(Σ)

�
�
�
�

��

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Motivation

The “charged n-Particle”

n-Particles and (n − 1)-Branes

It follows that the action of the n-particle. . .

n-Particle

n = 1: the point particle

n = 2: the string

n = 3: the membrane

n-particle ' (n − 1)-brane
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n = 1: the electromagnetic field
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Motivation

The “charged n-Particle”

Parallel n-Transport

It follows that the action of the n-particle
charged under an n-bundle with connection

is itself an n-functor
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Motivation

The “charged n-Particle”

Parallel 3-Transport

It follows that the action of the 3-particle
charged under a 3-bundle with connection
is itself a 3-functor

tra3:
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Parallel n-transport

Parallel n-Transport

A parallel n-transport is (locally) an n-functor from the path
n-groupoid to the structure n-group .

tran : Pn(X )→ ΣG(n)

(n + 1)-Curvature

Its (n + 1)-curvature is (locally) an (n + 1)-functor from the
fundamental (n + 1)-groupoid to the inner automorphism
(n + 1)-group of G(n) .

dtran := curv(n+1) : Πn+1(X )→ Σ(INNG(n))
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Strict 2-groups
and

crossed modules of groups
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Strict 2-Groups and crossed modules of groups

It is an old result that strict 2-groups are isomorphic to crossed
modules of ordinary groups. The isomorphism is in fact almost
canonical: only two minor choices are involved.
When differentiating 2-functors with values in strict Lie 2-groups,
we make extensive use of this equivalence, the precise realization of
which is spelled out below.
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Strict 2-Groups and crossed modules of groups

Definition

A crossed module of groups is a diagram

H
t // G

α // Aut(H)

in Grp (meaning all objects are groups and all arrows are group
homomorphisms) such that

H

t ��>
>>

>>
>>

>
Ad // Aut(H)

G

α

;;wwwwwwwww

and
G × H

Id×t //

α

��

G × G

Ad
��

H
t // G

.
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Strict 2-Groups and crossed modules of groups

Definition

A strict 2-group G(2) is any of the following equivalent entities

a group object in Cat;
a category object in Grp;

a strict 2-groupoid with a single object.
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Strict 2-Groups and crossed modules of groups

As for groups, we shall write G(2) when we think of G(2) as a
monoidal category, and ΣG(2) when we think of it as a 1-object
2-groupoid.

Proposition

Crossed modules of groups and strict 2-groups are isomorphic.

We now spell out this identification in detail. It is unique only up
to a few conventional choices.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

The same is in principle already true for the identification of
1-groups with categories, which is unique only up to reversal of all
arrows.
To start with, we take all principal actions to be from the right.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

So for G any group, GTor denotes the category of right-principal
G -spaces. This implies that if we want the canonical inclusion

iG : ΣG → GTor

to be covariant, we need to take composition in ΣG to work like

g2 ◦ g1 = g2g1 ,

where on the left the composition is that of morphisms in ΣG ,
while on the right it is the product in G .
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

Notice that this implies that diagrammatically we have

• g1 // • g2 // • = • g2g1 // • .

If G comes to us as a group of maps, we accordingly take the
group product to be given by g2g1 := g2 ◦ g1.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

When we then pass to strict 2-groups G(2) coming from crossed
modules (t : H → G ) of groups, and want to label 2-morphisms in
ΣG(2) with elements in H and G , we have one more convention to
fix.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

Let G(2) be a (strict) 2-group which we may alternatively think of
a crossed module t : H → G . To recover G(2) from the crossed
module t : H → G we set

Ob(G(2)) = G

Mor(G(2)) = G n H .

Here on the right we have the semidirect product group obtained
from G and H using the action of G on H by way of α.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

A 2-morphism in ΣG(2) will be denoted by

•

g

��

g ′

AA •h
��

for g , g ′ ∈ G and h ∈ H, where g ′ will turn out to be fixed by
(g , h) ∈ G n H. The semi-direct product structure on G n H, the
source, target and composition homomorphisms are defined as
follows.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

We shall agree that

•

g

��

g ′

AA •h
��

:= •

Id

��

t(h)

AA •
g // •h

��
.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

From the requirement that t : H → G be a homomorphism, it
follows that

•

Id

��

t(h)

AA •

Id

��

t(h′)

AA •h
��

h′
��

= •

Id

��

t(h′h)

AA •h′h
��

.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

Together with the convention above this means that the
source-target matching condition then reads

g ′ = g t(h) .
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

The exchange law then implies that

•

Id

��
t(h) //

FF•
h��

h′��

= •

Id

��

t(hh′)

AA •hh′
��

.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

Since in the crossed module we have t(α(g)(h)) = gt(h)g−1 we
find that inner automorphisms in the 2-group have to be labeled
like this:

• g−1
// •

Id

��

t(h)

AA •
g // •h

��
= •

Id

��

t(α(g)(h))

AA •α(g)(h)
��

.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

This then finally implies the rule for general horizontal
compositions

•

g1

��

g ′1

BB•

g2

��

g ′2

BB•h1��
h2��

= •

g2g1

��

g ′2g
′
1

BB•α
g−1
1

(h2)h1

��
.
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Strict 2-Groups and crossed modules of groups

Tangent Categories

Inner automorphism (n + 1)-Groups

Every n-group G(n) has an (n + 1)-group AUT(G(n)) of
automorphisms.

This sits inside an exact sequence
1→ Z (G(n))→ INN(G(n))→ AUT(G(n))→ OUT(G(n))→ 1

and INN0 plays the role of the universal G(n)-bundle
G(n) → INN0(G(n))→ ΣG(n)

We will re-encounter these crucial facts in their Lie n-algebra
incarnation shortly.
[U.S., David Roberts]
(on tangent categories) (on inner automorphisms)
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Strict 2-Groups and crossed modules of groups

Some structure n-Groups

Important structure (1-)Groups

electrically charged 1-particle: G(1) = U(1)
spinning 1-particle: G(1) = Spin(n)

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: G(2) = ΣU(1)
spinning 2-particle: G(2) = Stringk(Spin(n))

Important Structure 3-Groups

Chern-Simons charged 3-particle: G(3) = ?

Tough question. Let’s pass to the differential picture.
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On String- and Chern-Simons n-Transport

Motivation

Connections with values in Lie n-algebras

Finding the Chern-Simons Lie 3-algebra

Problem

Identify that class of 3-transport – given by its structure 3-group –
which evaluates to the Chern-Simons functional on 3-dimensional
morphisms.

Strategy

Differentiate. Pass from Lie n-groups to Lie n-algebras.

Find that Lie 3-algebra csk(g) with the property that
connections taking values in it, Vect→ csk(g), correspond
to triples (A,B,C ) of forms such that C = CSk(A) + dB.
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On String- and Chern-Simons n-Transport

Motivation

Connections with values in Lie n-algebras

Differentiation of parallel
n-transport

Parallel n-transport is a morphism of Lie n-groupoids.
Differentiating it yields a morphism of Lie n-algebroids.
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Motivation

Connections with values in Lie n-algebras

From parallel n-transport to Lie n-algebra valued
connections

Lie
n-groupoids

diff. //

Lie n-algebras
(' n-term

L∞-algebras)
'

differential
algebras

(qDGCAs)

Σ(INN(G(n)))

Πn+1(X )

F

OO
inn(g(n))

Vect(X )

f

OO
(
∧•(sg∗n ⊕ ssg∗(n)), d)

f ∗

��
(Ω•(X ), d)

Parallel n-transport is a morphism of Lie (n + 1)-groupoids.
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Motivation

Connections with values in Lie n-algebras

From parallel n-transport to Lie n-algebra valued
connections

Lie
n-groupoids

diff. //

Lie n-algebras
(' n-term

L∞-algebras)
'

differential
algebras

(qDGCAs)

Σ(INN(G(n)))

Πn+1(X )

F

OO
inn(g(n))

Vect(X )

f

OO
(
∧•(sg∗n ⊕ ssg∗(n)), d)

f ∗

��
(Ω•(X ), d)

These are best handled in terms of their dual maps,
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Motivation

Connections with values in Lie n-algebras

From parallel n-transport to Lie n-algebra valued
connections

Lie
n-groupoids

diff. //

Lie n-algebras
(' n-term

L∞-algebras)
'

differential
algebras

(qDGCAs)

Σ(INN(G(n)))

Πn+1(X )

F

OO
inn(g(n))

Vect(X )

f

OO
(
∧•(sg∗n ⊕ ssg∗(n)), d)

f ∗

��
(Ω•(X ), d)

which are morphisms of quasi-free differential-graded algebras.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Plan

1 Motivation

2 Plan

1 Goal and strategy
2 Categorification, local trivialization, differentiation
3

The bridge between Lie n-groupoids and differential graded algebra
4 String n-Transport
5 Chern-Simons n-Transport

3 Parallel n-transport

4 n-Curvature

5 Lie n-algebra cohomology

6 Bundles with Lie n-algebra connection

7 String- and Chern-Simons n-Transport

8 Conclusion

9 Questions

10 n-Categorical background

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Plan

Goal and strategy

Our

Main goal

is to understand n-bundles with connection for given structure Lie
n-algebra g(n) = Lie(G(n)) in terms of their differential parallel
transport.

using the

Formulation

in terms of (co)differential (co)algebra to facilitate explicit
computations

while following the

Structural Guidance

obtained by a theory of n-bundles with connection in terms of
morphisms of n-groupoids and parallel transport n-functors.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Plan

Goal and strategy

Our

Main goal

is to understand n-bundles with connection for given structure Lie
n-algebra g(n) = Lie(G(n)) in terms of their differential parallel
transport.

using the

Formulation

in terms of (co)differential (co)algebra to facilitate explicit
computations

while following the

Structural Guidance

obtained by a theory of n-bundles with connection in terms of
morphisms of n-groupoids and parallel transport n-functors.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Plan

Goal and strategy

Our

Main goal

is to understand n-bundles with connection for given structure Lie
n-algebra g(n) = Lie(G(n)) in terms of their differential parallel
transport.

using the

Formulation

in terms of (co)differential (co)algebra to facilitate explicit
computations

while following the

Structural Guidance

obtained by a theory of n-bundles with connection in terms of
morphisms of n-groupoids and parallel transport n-functors.

Urs Schreiber On String- and Chern-Simons n-Transport
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Plan

Categorification, local trivialization, differentiation

The classical Transport Cube:
The notions of classical parallel n-transport are conveniently
thought of as arising from three orthogonal procedures from
ordinary parallel transport in an ordinary bundle:

categorification

local trivialization

differentiation
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Plan

Categorification, local trivialization, differentiation

parallel
1-transport

parallel
2-transport

Atiyah-sequence
splitting

2-Atiyah
splitting

descent
data

2-descent
data/ bundle

gerbe

differential
cocycle

differential
2-cocycle

categorification
��
��

�����

����
��
��
��
��
�

���
�
�
�

����
��
��
��
��
�

differen-
tiation

//

//

//________

//

��

���
�
�
�
�
�
�

��

local
trivialization

��
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differen-
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//

//________

//
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�
�
�
�
�
�

��

local
trivialization

��

Ordinary
parallel
transport in a
bundle with
connection is a
functor from
paths to fiber
morphisms.

P1(X )

tra

��
GTor

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Plan

Categorification, local trivialization, differentiation

parallel
1-transport

parallel
2-transport

Atiyah-sequence
splitting

2-Atiyah
splitting

descent
data

2-descent
data/ bundle

gerbe

differential
cocycle

differential
2-cocycle

categorification
��
��

�����

����
��
��
��
��
�

���
�
�
�

����
��
��
��
��
�

differen-
tiation

//

//

//________

//
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���
�
�
�
�
�
�

��

local
trivialization

��

By locally
trivializing the
functor over a
cover Y → X ,
i.e. by choosing
an isomorphism

P1(Y )
π //

triv

��

P1(X )

tra

��
ΣG // GTor

'
|� ��

��
��

�

��
��

��
�
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differen-
tiation

//

//

//________

//
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���
�
�
�
�
�
�

��

local
trivialization

��

we obtain
descent data
for the transport
functor

π∗1 triv
π∗12g

$$I
IIIIIIII

π∗13g

��

π∗2 triv

π∗23g
uuu

zzuuu

π∗3 triv
which may
be thought of
as an
anafunctor
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local
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by
differentiating
the objects and
morphisms in
this descent data
we pass from
Lie groupoids and
their morphisms
to Lie algebroids
and their
morphisms

Π1(Y )

tra

��
ΣG

diff7→

TY

A

��
g
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local
trivialization

��

locally we thus
obtain what
is known as
- transition data for

a connection
- Ehresmann

connection
- differential cocycle

gijgik = gik

Aj = gij(d + Ai )g
−1
ij
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while globally
this corresponds
to a (weak)
splitting of the
Atiyah algebroid
sequence

Γ(ad(P))

��

der(Γ(ad(P))

Γ(TP/G )

��
Γ(TX )

∇,F∇

II (D. Stevenson)

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Plan

Categorification, local trivialization, differentiation

parallel
1-transport

parallel
2-transport

Atiyah-sequence
splitting

2-Atiyah
splitting

descent
data

2-descent
data/ bundle

gerbe

differential
cocycle

differential
2-cocycle

categorification
��
��

�����

����
��
��
��
��
�

���
�
�
�

����
��
��
��
��
�

differen-
tiation

//

//

//________

//

��

���
�
�
�
�
�
�

��

local
trivialization

��

This entire
setup admits a
straightforward
categorification
by replacing
transport
(1-)functors
by n-functors.
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This way
we obtain

parallel 2-transport
2-functors

that encode parallel
transport along

surfaces in
2-bundles

with connection.
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2-descent data

π∗1 triv
π∗12g

$$I
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π∗13g
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π∗2 triv

π∗23g
uuu

zzuuu

π∗3 triv

'
ks

obtained from
local
trivialization
now comes in two
different stages:
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the “full‘”
local trivialization
whose
differentiation
leads to a
differential
2-cocycle
fikl fijk = fijlgij(fjkl)
Bj = gij(Bi ) + dAaij
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parallel
1-transport

parallel
2-transport

Atiyah-sequence
splitting

2-Atiyah
splitting

descent
data

2-descent
data/ bundle

gerbe

differential
cocycle

differential
2-cocycle

categorification
��
��

�����

����
��
��
��
��
�

���
�
�
�

����
��
��
��
��
�

differen-
tiation

//

//

//________

//

��

���
�
�
�
�
�
�

��

local
trivialization

��

and an
“intermediate”
one: a
bundle gerbe.

(L,∇, µ)

��
Y [2]

//
// Y

π

��
X

which is a
pseudofunctor
g : Y [2] → Σ1dVect
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�

differen-
tiation

//

//

//________

//

��

���
�
�
�
�
�
�

��

local
trivialization

��

Finally we could
categorify the
Atiyah splitting
to obtain a
splitting of the
Atiyah
Lie 2-algebroid
sequence.
([Stevenson,
in preparation])
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The bridge between Lie n-groupoids and differential graded algebra

The bridge between
Lie n-algebra

and
differential graded algebra

By Koszul duality, semistrict Lie n-algebras are “the same” as
differential graded-commutative algebras freely generated in
positive degree smaller than n.
In principle this relation has been known for a long time to experts,
going back to Quillen’s 1968 paper on rational homotopy theory.
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A bridge of concepts

Lie n-groupoids

differentiation
++

GG

codifferential
coalgebra

(L∞-algebra)

00

Lie n-algebroids

integration

kk

xx
repackagingqqq

88qqqq

the realm of
n-categories

differential
algebra

(qDGCA)

��

dualization

OO
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A bridge of concepts

Lie n-groupoids

differentiation
++

GG

codifferential
coalgebra

(L∞-algebra)

00

Lie n-algebroids

integration

kk

xx
repackagingqqq

88qqqq

linear
n-categories

differential
algebra

(qDGCA)

��

dualization

OO
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A bridge of concepts

Lie n-groupoids

differentiation
++

GG

codifferential
coalgebra

(L∞-algebra)

00

Lie n-algebroids

integration

kk

xx
repackagingqqq

88qqqq

categorified
Lie theorem
(unfinished)

differential
algebra

(qDGCA)

��

dualization

OO
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A bridge of concepts

Lie n-groupoids

differentiation
++

GG

codifferential
coalgebra

(L∞-algebra)

00

Lie n-algebroids

integration

kk

xx
repackagingqqq

88qqqq

realm of
homotopical algebra

differential
algebra

(qDGCA)

��

dualization

OO
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A bridge of concepts

Lie n-groupoids

differentiation
++

GG

codifferential
coalgebra

(L∞-algebra)

00

Lie n-algebroids

integration

kk

xx
repackagingqqq

88qqqq

general abstract
operad nonsense

differential
algebra

(qDGCA)

��

dualization

OO
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A bridge of concepts

Lie n-groupoids

differentiation
++

GG

codifferential
coalgebra

(L∞-algebra)

00

Lie n-algebroids

integration

kk

xx
repackagingqqq

88qqqq

most physicists
live here

differential
algebra

(qDGCA)

��

dualization

OO
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A bridge of concepts

Lie n-groupoids

differentiation
++

GG

codifferential
coalgebra

(L∞-algebra)

00

Lie n-algebroids

integration

kk

xx
repackagingqqq

88qqqq

simple passage
to dual vector space

differential
algebra

(qDGCA)

��

dualization

OO
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A bridge of concepts

Lie n-groupoids

differentiation
++

GG

codifferential
coalgebra

(L∞-algebra)

we shall pass
back and forth
along this bridge

00

Lie n-algebroids

integration

kk

xx
repackagingqqq

88qqqq

differential
algebra

(qDGCA)

��

dualization

OO
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The bridge between Lie n-groupoids and differential graded algebra

Bridging schools of thought

How to use the bridge

Lie n-groupoids
the bridge↔ differential algebra

conceptual
understanding

What is going on?

computational
accessibility

How does it work?

diagrammatics
arrow theory

implementation
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String n-Transport

String n-transport
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String n-Transport

n-Groups from central extensions

Interesting examples of structure n-groups for parallel n-transport
come from central extensions

1→ Σn−1U(1)→ Ĝ → G → 1

of an ardinary group G by a copy of (n − 1)-fold shifted U(1).
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String n-Transport

n-Groups from central extensions

The best-known example for this is the String 2-group

Stringk(G )

assignable to a compact, simple, simply connected Lie group G for
every level k ∈ H3(G ,Z):

1→ ΣU(1)→ Stringk(G )→ G → 1
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String n-Transport

Integrating the String Lie 2-algebra

|Stringk(G)| ' |Gµ|

Stringµ(G ) = (Ω̂kG → PG )
_

OO

Gµ
_

OO

stringµ(g) = (Ω̂kg→ Pg)
_

OO

_

int.

OO

gµ'
oo

_

integrate [Henriques]

OO

integrate [BCSS]

OO

Using a general procedure for integrating semistrict Lie n-algebras,
the Baez-Crans type Lie 2-algebra gµ for µ = 〈·, [·, ·]〉 may be
integrated directly to a weak Lie 2-group Gµ.
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String n-Transport

Integrating the String Lie 2-algebra

|Stringk(G)| ' |Gµ|

Stringµ(G ) = (Ω̂kG → PG )
_

OO

Gµ
_

OO

stringµ(g) = (Ω̂kg→ Pg)
_

OO

_

int.

OO

gµ'
oo

_

integrate [Henriques]

OO

integrate [BCSS]

OO

This was described by Henriques, following [Getzler].
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String n-Transport

Integrating the String Lie 2-algebra

|Stringk(G)| ' |Gµ|

Stringµ(G ) = (Ω̂kG → PG )
_

OO

Gµ
_

OO

stringµ(g) = (Ω̂kg→ Pg)
_

OO

_

int.

OO

gµ'
oo

_

integrate [Henriques]

OO

integrate [BCSS]

OO

Alternatively, one can notice that the small but semistrict Lie
2-algebra gµ is equivalent to a large but strict Lie 2-algebra
(Ω̂kg→ Pg).
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String n-Transport

Integrating the String Lie 2-algebra

|Stringk(G)| ' |Gµ|

Stringµ(G ) = (Ω̂kG → PG )
_

OO

Gµ
_

OO

stringµ(g) = (Ω̂kg→ Pg)
_

OO

_

int.

OO

gµ'
oo

_

integrate [Henriques]

OO

integrate [BCSS]

OO

This accordingly integrates to a strict Lie 2-group (Ω̂kG → PG ).
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Integrating the String Lie 2-algebra

|Stringk(G)| ' |Gµ|

Stringµ(G ) = (Ω̂kG → PG )
_

OO

Gµ
_

OO

stringµ(g) = (Ω̂kg→ Pg)
_

OO

_

int.

OO

gµ'
oo

_

integrate [Henriques]

OO

integrate [BCSS]

OO

This was described in [BaezCransSchreiberStevenson].
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String n-Transport

Integrating the String Lie 2-algebra

|Stringk(G)| ' |Gµ|

Stringµ(G ) = (Ω̂kG → PG )
_

OO

Gµ
_

OO

stringµ(g) = (Ω̂kg→ Pg)
_

OO

_

int.

OO

gµ'
oo

_

integrate [Henriques]

OO

integrate [BCSS]

OO

In either case, the geometric realization is a model for the
topological String (1-)group.
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String n-Transport

2-transport with local structure the strict String 2-group

Therefore

String-2-transport is parallel 2-transport with local structure given
by ΣStringk(G ).

The strict version of the String Lie 2-groups is useful for working
out what this means in detail:

Local cocycle data for princial Stringk(G )-2-transport is just
a

Stringk(G )

nonabelian 2-cocycle (Breen-Messing data for (Ω̂kG → PG )).
Associated string 2-transport is induced from the
canonical 2-representation essentially like for any other strict
Lie 2-group.
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String n-Transport

n-group from higher central extensions

But this is just the first in an infinite series of of higher central
extensions, built from elements in Lie algebra cohomology
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String n-Transport

Definition and Proposition

From elements of inn(g)∗-cohomology we obtain Lie n-algebras:
Lie algebra cocycle µ Baez-Crans Lie n-algebra gµ
invariant polynomial k Chern Lie n-algebra chk(g)
transgression element cs Chern-Simons Lie n-algebra csk(g)

For every transgression element cs these fit into a weakly exact
sequences

Σn−1u(1) // gµk
//

��

g

csk(g) ' inn(gµ)

��
chk(g)

.
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Chern-Simons n-Transport

Chern-Simons n-transport
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Chern-Simons n-Transport

Chern-Simons (n + 1)-transport is the obstruction to lifting a
G -transport through a higher central extension

1→ Σn−1U(1)→ Ĝ → G → 1 .
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Motivation
Plan
Parallel n-transport

The general construction

The basic idea
History and comparison with Cheeger-Simons diff. characters
Locally trivializable n-transport
Smooth n-functors from n-paths to Lie n-groups
Smooth n-functors and differential forms

Examples

Principal 1-transport
Vector bundles
Nonabelian differential cocycles
Deligne cohomology
Bundle gerbes
Line bundles on loop space from bundle gerbes
Nonabelian bundle gerbes
Rank one 2-vector bundles

n-Curvature
Lie n-algebra cohomology
Bundles with Lie n-algebra connection
String- and Chern-Simons n-Transport
Conclusion
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The basic idea

The basic idea of parallel
n-transport

Parallel transport is the consistent assignment of transformations
of fibers to paths.
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The basic idea

The basic idea of parallel n-transport

The principle of least resistance under categorification

There are many different definitions of the concept connection on
a possibly nontrivial bundle.
Each definition behaves differently under categorification (=
generalization to higher order structures).
We regard a definition as the more “fundamental” the more
straightforwardly it categorifies.

Slogan

We understand the true nature of a concept the deeper, the more
straightforwardly the definition we use to conceive it lends itself to
categorification.
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The basic idea

The basic idea of parallel n-transport

There is one definition of bundles with connection that stands out
among all others with respect to the ease with which it lends itself
to categorification:

general Fact

A bundle with connection is a parallel transport functor.
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The basic idea

Parallel transport is a functor

The parallel transport induced by a connection on a principal
bundle P → X

P

X

•b
•b′

•gb

•gb′

•x •x ′

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

is a functorial map from paths to fiber morphisms.
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The basic idea

Definition

The smooth path 1-groupoid P1(X ) is that whose morphisms
γ : x → y are thin homotopy classes of paths in X .

x

γ

BBx
′

X

T V W X Z \ _ b d f g h j�
�
�
�
�

�
�

"

$
&
'
(
*T V W X Z \ _ b d f g h j�

�
�
�
�

�

�

"

$
&
'

(
*
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The basic idea

Definition

A thin homotopy is a smooth homotopy whose differential has
nonmaximal rank everywhere.

A thin homotopy between paths is a surface that degenerates to an
at most 1-dimensional structure.
Invariance of parallel transport under thin homotopy means

invariance under orientartion-preserving reparameterizations

inversion under orientation-reversing reparameterizations.

In the physics literature this is sometimes addressed as
zig-zag-symmetry.
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The basic idea

The basic idea of parallel n-transport

Hence a connection ∇ on a trivial G -bundle gives rise to a smooth
parallel transport functor

tra∇ : P1(X )→ ΣG ,

where

ΣG :=

{
• g // • |g ∈ G

}
is the one-object Lie groupoid corresponding to the Lie group G .
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The basic idea

The basic idea of parallel n-transport

A connection ∇ on a possibly non-trivial G -bundle gives rise to a
parallel transport functor

tra∇ : P1(X )→ GTor ,

which locally looks like a functor P1(X )→ ΣG .
Here GTor is the category whose objects are principal G -spaces
isomorphic to G , and whose morphisms are maps between them
preserving the G -action.
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The basic idea

The basic idea of parallel n-transport

Proposition [S.-Waldorf]

The category of those functors

tra : P1(X )→ GTor

that admit a smooth local i-trivialization in that they fit into a
diagram P1(Y )

π // //

triv

��

P1(X )

tra

��
ΣG

i
// GTor

'
t

y� {{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

is equivalent to that of principal G -bundles with connection on G .
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The basic idea

This way we have described bundles with connection purely
“arrow-theoretically” in terms of their parallel transport functors.
This, then, doesn’t resist categorification anymore.

Proceed with the discussion of parallel n-transport.

First have a look at some of the history
and the relation to Cheeger-Simons differential characters.
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History and comarison with Cheeger-Simons diff. characters

History

The point of view that characterizes bundles with connection in
terms of their parallel transport has a long history, but was only
recently [Baez-S.,S.-Waldorf] made fully explicit.
Building on older ideas, [Barrett:1991] and [CaetanoPicken:1994]
noticed that (possibly nontrivial) G -bundles with connection on
connected base spaces can be reconstructed, up to isomorphism,
from their holonomy map from based loops to the structure group.
Inspired by John Baez, in [S.-Waldorf,2007] the generalization of
this statement to parallel transport functors from paths to fiber
morphisms was given.
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History and comarison with Cheeger-Simons diff. characters

History

The description of bundles with connection in terms of their
holonomy maps around loops was generalized in
[Mackaay-Picken,2002] to homomorphisms that label surfaces by
an abelian Lie group. This describes abelian gerbes (abelian
2-bundles) with connection on simply connected spaces.
And this point of view is evidently closely related to that
underlying Cheeger-Simons differential characters.
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History and comarison with Cheeger-Simons diff. characters

History

In [Baez,2002] the idea appears of refining the assignment of
elements of U(1) to surfaces to a 2-functor from surfaces to a
2-group.
The full description of of this idea in terms of descent/gluing data
for 2-group-valued parallel transport 2-functors, and the
observation that such data describes fake-flat nonabelian gerbes
with connection, is given in [Baez.-S.,2004].
The development of this idea to a full theory of n-transport, as
indicated in the following, is, as yet, largely unpublished, alas. But
see [S.-Waldorf, in preparation].
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History and comarison with Cheeger-Simons diff. characters

Cheeger-Simons differential characters

To some extent, parallel n-transport can be regarded as a
generalization of degree n Cheeger-Simons differential characters
from the n-group Σn−1U(1) to an arbitrary structure n-group.

Definition

Let ZnX be the group of smooth n-cycles in the manifold X . A
degree n differential character on X is a group homomorphism

t : ZnX → U(1)

such that there is a closed (n + 1)-form Fn+1 satisfying

t(∂V ) = exp(i

∫
V

Fn+1)

for all smooth (n + 1)-chains V .
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History and comarison with Cheeger-Simons diff. characters

Cheeger-Simons differential characters

Evidently, a degree n Cheegers-Simons differential character is a
rule for assigning n-dimensional holonomy in U(1) to closed
n-dimensional volumes.
It is known that such degree n differential characters (the
conventions for counting their degrees may vary) are equivalent to
Deligne cohomology, which in turn is equivalent to abelian
(n + 1)-gerbes with connection.
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History and comarison with Cheeger-Simons diff. characters

Cheeger-Simons differential characters

There have been attempts to phrase differential characters in more
functorial language. For instance [Turner, 2004].
We find that generalizing these holonomy assignments from
abelian to nonabelian (n-)groups requires to generalize

from closed volumes to volumes with boundary (from
holonomy to parallel transport);

from assigning data to n-dimensional volumes to assigning
data to (0 ≤ d ≤ n)-dimensional volumes.

This means that maps from n-cycles to U(1) need to be replaced
by n-functors from n-paths to some n-group.
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History and comarison with Cheeger-Simons diff. characters

Associated transport

Notice, though, that our parallel n-transport, is, a priori, defined
only on n-paths that have the topology of n-dimensional balls.
We can understand this requirement already for n = 1: in order for
a nonabelian bundle with connection to yield a holonomy
assignment defined on closed paths, we need the additional
information of a linear representation and a notion of trace.
Similarly, parallel n-transport together with a linear
n-representation yields associated n-vector transport. Categorified
notions of traces then allow to obtain n-dimensional holonomy over
arbitrary n-dimensional volumes.
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Locally trivializable n-transport

Locally trivializable n-transport
We call an nfunctor locally i-trivializablle, if when pulled back to a
cover of its domain, it becomes equivalent to a n-functor that
factors through i .
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Locally trivializable n-transport

Let’s first introduce some useful

Terminology

Write Pn(X ) for a Lie n-groupoid that plays the role of
n-paths in X .

Write T for a given Lie n-groupoid that a parallel n- transport
might take values in.

Write G(n) for a given Lie n-group which plays the role of the
structure Lie n-group of the n-transport.
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Locally trivializable n-transport

Definition

Let π : Pn(Y ) // // Pn(X ) be an epimorphism and

i : ΣG(n)
� � // T a monomorphism. Then an n-functor

tra : Pn(X )→ T is called a π-locally i-trivial n-transport functor if
there exists a square

Pn(Y )
π // //

triv

��

Pn(X )

tra

��
ΣG(n)

i
// T

'
t

y� {{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

such that the induced transition g := π∗2t
−1 ◦ π∗1t is in components

itself a locally trivializabel (n − 1)-transport.
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Locally trivializable n-transport

Descent data

Descent data
A descent datum for a locally i-trivializable transport n-functor is
an i-trivial transport n-functor on a cover, together with an
n-simplex of “gluing data”.
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Locally trivializable n-transport

The definition of locally trivializable n-transport connects two
important points of view:

The global perspective. The functor tra : Pn(X )→ T is the
global object corresponding to an n-bundle with connection.
We will discuss theorems that assert that if tra has a smooth
local trivialization, then this is unique up to equivalence. This
means that tra contains all the relevant information.

The local perspective. From any local trivialization
t : π∗tra→ triv one obtains straightforwardly the descent
data (also: transition data or gluing data) which describes tra
in terms of the descent of a ”trivial” n-functor on Y down to
X .
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Locally trivializable n-transport

Descent data

Given a local trivialization t , we obtain a transition on Y [2] as

g := π∗2t ◦ π∗1t−1 : π∗1triv→ π∗2triv ,

i.e.

Pn(Y )
triv //

π
III

I

$$II
II

ΣG(n)

i
CCC

C

!!C
CCC

C

PY [2]

π1

;;vvvvvvvvv

π2 ##H
HH

HH
HH

HH
Pn(X ) tra // T

Pn(Y )
triv

//

πuuuu

::uuuu

ΣG(n)

i{{{{

=={{{{{

t−1

 (H
HHHHHHHHHH

HHHHHHHHHHH

t

v~ vvvvvvvvvvv

vvvvvvvvvvv
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Locally trivializable n-transport

Descent data

Each such transition gives rise to a descent object [Street], which
is an (n + 1)-simplex labeled by transitions pulled back to Y [n+1].
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Descent data

Here is the filled triangle describing the descent of 2-transport:

π∗1triv π∗3triv

π∗2triv

p∗13g
//

f
��

p∗12g

DD




















p∗23g

��4
44

44
44

44
44

44
44

44
44

:=

π∗1triv π∗3triv

π∗2triv

π∗tra

π∗1 t−1

sss

99sss
π∗3 t

KKK

%%KKK

π∗13g
//

JJJJ tttt
π∗12g

DD




















π∗23g

��4
44

44
44

44
44

44
44

44
44

π∗2 t

CC

π∗2 t−1

��
��
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Descent data

Definition

There is a more or less obvious n-category Desci
n(π) of π-local

i-descent data.

We shall come to statements which identitfy these descent objects
for transport functors as (nonabelian) differential cocycles of
various kinds:
Deligne cocycles, line bundle gerbes with connection, nonabelian
bundle gerbes with connection, Breen-Messing data for nonabelian
gerbes with connection, and the like.
The crucial ingredient for these statements is the characterization
of n-transport with values in an n-group in terms of differential
form data.
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Smooth n-functors from n-paths
to Lie n-groups

A smooth n-functor is a morphism in n-categories internal to a
suitable category of smooth spaces.
Manifolds are an insufficient model for smooth spaces, since maps
between manifolds don’t usually form a manifold themselves.
There are several options to generalize away from manifolds.
Sheaves on manifolds is one of them. A slightly smaller category is
the most convenient for our purposes: Chen-smooth spaces.
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Definition

A Chen-smooth structure SX on a set X is a sheaf on manifolds
quasi-representable by X .

This means that it is a sheaf on manifolds such that

SX (U) ⊂ HomSet(U,X )

.
The elements of SX (U) are called plots from U to X .
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n-path spaces of Chen-smooth spaces are naturally
Chen-smooth spaces themselves.

Quotient spaces of Chen-smooth spaces are naturally
Chen-smooth spaces themselves.

Definition

For X a Chen-smooth space,the smooth structure on its n-path
space PnX = [I n,X ] is such that φ : U → PX is a plot of PnX if
and only if the composite

U × I n φ×Id // PnX × I n ev // X

is a plot of X .
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n-Functors and differential forms

Smooth n-functors and
differential forms

A smooth n-functor is entirely determined by its differentials at
identity morphisms. Hence it encodes differential form data on the
space of objects.
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Smooth n-functors and differential forms

Since an n-transport locally looks like a smooth functor

tra : Pn(X )→ ΣG(n)

x

γ1

��

γ2

BB yΣ

��

7→ •

tra(γ1)

��

tra(γ2)

CC•tra(Σ)

��

with values in a Lie n-group G(n), it is useful to first characterize
such n-functors in terms of differential form data and generalized
“path-ordered exponentials”.
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1-Functors and differential 1-forms

Proposition

For G a Lie group with Lie algebra g, smooth 1-functors

P1(X )→ ΣG

are in bijection with 1-forms A ∈ Ω1(X , g). The bijection is
induced by the ”path ordered exponential”

(x
γ //y ) 7→ (•

P exp(
R

γ A)
//•)
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1-Functors and differential 1-forms

While the technically cleanest way to conceive this is in terms of
solutions of differential equations, the best conceptual way to think
of this is by conceiving the path ordered exponential as the limit
obtained by applying the functor to ever smaller subdivisions of the
given path:
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1-Functors and differential 1-forms

x y
γ //

tra7→

• •
P exp(

R
γ A)

//
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1-Functors and differential 1-forms

x z1 y
γ1 // γ2 //

tra7→

• z1 •
P exp(

R
γ1

A)
//

P exp(
R

γ2
A)

//
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1-Functors and differential 1-forms

x z1 z2 y
γ1 // γ2 // γ3 //

tra7→

• z1 z2 •
P exp(

R
γ1

A)
//

P exp(
R

γ2
A)

//
P exp(

R
γ3

A)
//
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1-Functors and differential 1-forms

x z1 z2 z2 y
γ1 // γ2 // γ3 // γ4 //

tra7→'

• • • • •1+A(γ1) // 1+A(γ2) // 1+A(γ3) // 1+A(γ4) //
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2-Functors and differential 2-forms

Now let G(2) be a strict 2-group coming from the crossed module

H
t→ G

α→ Aut(H).

Propositon

Strict 2-functors
P2(X )→ ΣG(2)

are in bijection with differential forms

(A,B) ∈ Ω1(X , g)× Ω2(X , h)

satisfying the fake flatness condition

FA + t∗ ◦ B = 0 .
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2-Functors and differential 2-forms

The bijection is induced by a generalization of the concept of
”path ordered exponential” to ”surface ordered exponential”.

x

γ1

��

γ2

BB yΣ

��

7→ •

P exp(
R

γ1
A)

��

P exp(
R

γ2
A)

CC•PA exp(
R
Σ B)

��

This is again best understood as the result of applying the
2-functor to ever finer subdivisions of a surface and using the
composition in the 2-group to compile the little contributions to
the full surface transport.
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2-Functors and differential 2-forms

x y1

y2 z

γ1 //

γ2

��

γ3

��
γ4 //

Σ

{� ��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

tra7→

• •

• •

P exp(
R

γ1
A) //

P exp(
R

γ2
A)

��

P exp(
R

γ3
A)

�� P exp(
R

γ4
A) //

PA exp(
R
Σ B)
��

��
��

��
��

��
��

�

��
��

��
��

��
��

��
�

{� ��
��

��
��

��
��

��

��
��

��
��

��
��

��
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2-Functors and differential 2-forms

x y1 y2

y4

y5 y6

y3

z

y

γ1 // γ2 //

γ3

��

γ4

��

γ5

��

γ6

��
γ7 // γ8 //

��

��

// //

Σ2

{� ��
��

��
��

��
��

��

��
��

��
��

��
��

��

Σ3

{� ��
��

��
��

��
��

��

��
��

��
��

��
��

��

Σ1

{� ��
��

��
��

��
��

��

��
��

��
��

��
��

��

Σ4

{� ��
��

��
��

��
��

��

��
��

��
��

��
��

�� tra7→

• • •

•

• •

•

•

•

1+A(γ1) // 1+A(γ2) //

P exp(
R

γ3
A)

��

1+A(γ4)

��

P exp(
R

γ5
A)

��

1+A(γ6)

��
1+A(γ7) // 1+A(γ8) //

��

��

// //

1+B(Σ2)
��

��
��

�

��
��

��
�

{� ��
��

��

��
��

��

1+B(Σ3)
��

��
��

�

��
��

��
�

{� ��
��

��

��
��

��

1+B(Σ1)
��

��
��

�

��
��

��
�

{� ��
��

��

��
��

��

1+B(Σ4)
��

��
��

�

��
��

��
�

{� ��
��

��

��
��

��
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2-Functors and differential 2-forms

For the special case that G(2) = INN(G ) = G//G is the strict

2-group coming from the crossed module G
Id→ G

Ad→ Aut(G ), the
fake flatness condition implies that

B = −FA

and the existence of the 2-morphism

•

P exp(
R

γ1
A)

��

P exp(
R

γ2
A)

CC•PA exp(−
R
Σ FA)

��

exhibits what is known as the nonabelian Stokes theorem.
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Principal 1-transport
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Principal 1-bundles with connection

Recall our claim concerning globally defined principal 1-transport:

Proposition

Let G be a Lie group and i : ΣG ↪→ T a monomorphic
equivalence. Then locally i-trivializabel transport functors

tra : P1(X )→ GTor

are equivalent to G -bundles with connection.

This follows from using the relation between 1-forms and smooth
1-functors and inserting it into the corresponding descent object. . .
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Principal 1-bundles with connection

local connection 1-form
A ∈ Ω1(U, g)

smooth transport functor
triv : P1(U)→ Σ(G )

transition function

g ∈ Ω0(U [2],G )

natural isomorphism
g : p∗1triv→ p∗2triv

Ai = gijAjg
−1
ij + gijdg−1

ij

•
gij (x)

//

trai (γ)
��

•
traj (γ)

��
•

gij (y)
// •

gijgjk = gik

p∗2triv
p∗23g

$$I
IIIIIIII

p∗1triv p∗13g
//

p∗12g
::uuuuuuuuu

p∗3triv
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Vector bundles
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Vector bundles

The notion of functorial parallel transport in vector bundles was
historically an important guiding light and motivation for the
functorial conception of quantum field theory.
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Vector bundles

A complex (say) vector bundle with connection is simply a
transport functor

tra : P1(X )→ VectC

with local i-structure, for

i : ∪nΣU(n)→ VectC

the canonical representation.
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Sections of vector bundles

Let 1 : P1(X )→ VectC be the trivial such transport. Then

Γ := Hom(1, tra)

is the space of flat sections of the given vector bundle.
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Vector bundles

Covariant derivative

Let curv : Π2(X )→ Grpd be the curvature 2-functor of the given
vector bundle connection. Then

Γ := Hom(1, curv)

is the space of (not-necessarily flat) sections of the given vector
bundle. The morphism part of the component map of these
transformations encode the covariant derivative of these sections.
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Vector bundles

This procedure has a straightforward generalization to n = 2.
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Parallel 2-Transport
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Parallel 2-transport

Definition

P2(X ) is the (strict) 2-groupoid whose 2-morphisms S : γ → γ′are
thin homotopy classes of cobounding surfaces.

x

γ

��

γ′

BBx
′S

��

X

T V W X Z \ _ b d f g h j�
�
�
�
�

�
�

"

$
&
'
(
*T V W X Z \ _ b d f g h j�

�
�
�
�

�

�

"

$
&
'

(
*
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Principal 2-bundles with connection

Descent data is now a 3-simplex

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗13g���������

??����������#p∗123f

???
???

��
p∗134f

=

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗24g
??

??
??

??
?

��?
??

??
??

??

{�
p∗234f ����

����

��
p∗124f
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Parallel 2-transport

U(1) bundle gerbes with connection

Proposition

The descent catgeory for ΣU(1) 2-transport is canonically
isomorphic to U(1)-bundle gerbes with connection (“and curving”).

Remark

Notice that this is asserting more than a mere equivalence. Having
a canonical isomorphism here means that by starting with the
concept of ΣU(1)-2-transport and turning the descent data crank,
the very definition of a bundle gerbe with connection drops out,
item by item.
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Parallel 2-transport

In order to proceed, and to understand the meaning and relevance
of fake flatness, we first need a better understanding of higher
curvature.
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Nonabelian differential cocycles
Nonabelian differential cocycles are descent data for locally
(i = IdG(n)

)-trivializable n-transport.
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Nonabelian differential cocycles

Definition

Given a strict 2-functor

triv : P2(X )→ ΣG(2)

we obtain a 1-form and a 2-form

(A,B)triv ∈ Ω1(X ,Lie(G ))× Ω2(X ,Lie(H))

as follows.
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Nonabelian differential cocycles

The 1-form is that obtained by restricting triv to 1-morphisms,
where it becomes a smooth functor

triv1 : P1(X )→ ΣG .
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Nonabelian differential cocycles

The value of the 2-form on a pair of vectors v1, v2 ∈ TxX is
defined by choosing any smooth map

Σ : R2 → X

with the property that

vi = Σ∗(
∂

∂xi
|(0,0))

and then setting

B(x)(v1, v2) :=
∂

∂x1

∂

∂x2

∣∣∣∣
(0,0)

Σ∗triv2


(0, 0) //

��

(x1, 0)

��
(0, x2) // (x1, x2)

{� ��
��

��

��
��

��

 .
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Nonabelian differential cocycles

Proposition

The 2-form B defined this way is well defined and smooth.
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Nonabelian differential cocycles

Proposition (vanishing of (“fake”) 2-form curvature)

The forms (A,B)triv obtained from a smooth functor triv this way
satisfy the relation

FA + t∗ ◦ B = 0 .
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Nonabelian differential cocycles

Proof. Differentiate the source and target matching condition

t(h)g = g ′

for

•

•

g

��

g ′
//

h{� ��
��

�
��

��
�

= Σ∗triv


(0, 0)

(x1, x2)
��

//

{� ��
��

�
��

��
�


�
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Nonabelian differential cocycles

Definition (integrating differential forms to a 2-functor)

For every pair of forms (A,B) with FA + t∗ ◦ B = 0 as above, we
define a strict 2-functor

triv(A,B) : P2(X )→ ΣG(2)

as follows:
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Nonabelian differential cocycles

First, on 1-morphisms triv(A,B) restricts to the 1-functor

trivA : P1(X )→ ΣG .
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Nonabelian differential cocycles

On 2-morphisms

x

γ

��

γ′

@@ yΣ
��

coming from a smooth map

Σ : [0, 1]2 → X

the element h ∈ H assigned to the surface

•

g

��

g ′

AA •h
��

:= triv

 x

γ

��

γ′

@@ yΣ
��
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Nonabelian differential cocycles

is defined to be the path-ordered integral

Pexp

(∫ 1

0

(∫ 1

0
α−1

triv( (0, t) // (s, t) )
Σ∗B(

∂

∂s
,
∂

∂t
) ds

)
dt

)
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Nonabelian differential cocycles

Proposition

Extracting the differential forms (A,B)triv from a smooth
2-functor triv and then reconstructing a smooth 2-functor
triv(A,B)triv as above

triv	

$$IIIIIIIIII triv(A,B)triv

(A,B)triv

0

88ppppppppppp

is the identity operation.
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Nonabelian differential cocycles

Next we obtain the data for gauge transformations by
differentiating the component map of a pseudonatural
transformation

g : triv(A,B) → triv(A′,B′) .

This is a functor with values in squares

g : ( x
γ // y ) 7→

• triv(γ) //

g(x)

��

•

g(y)

��
•

tra(γ′)
// •

g(γ)

|� ��
��

��
��

��
��

��

��
��

��
��

��
��

��

.
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Nonabelian differential cocycles

Notice the following important fact, which pervades all of higher
transport theory.

Fact

A morphism between two n-functors is itself an (n − 1)-functor.

More precisely: its component map is. This yields the general

Fact

Transitions of n-transport is itself an (n − 1)-transport

This may be familiar from bundle gerbes: these have transition
bundles.
More on higher functors here.
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Nonabelian differential cocycles

The component map of our transformation has to satisfy a
(pseudo)naturality condition: for every surface

y

γ

##

γ′

;; y
′Σ

��

we have

• trivγ′ //

triv(γ)

��

g(y)

��

•

g(y ′)

��
• triv′(γ′) // •

g(γ′)

z� ~~
~~

~~
~~

~~
~~

~~

~~
~~

~~
~~

~~
~~

~~

triv(Σ)
��

=

• triv(γ) //

g(y)

��

•

g(y ′)

��
• triv′(γ) //

triv′(γ′)

EE•

g(γ)

z� ~~
~~

~~
~~

~~
~~

~~

~~
~~

~~
~~

~~
~~

~~

triv′(Σ)
��
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Proposition

Smooth isomorphism

g : triv(A,B) → triv(A′,B′)

of 2-functors are in bijective correspondence with pairs

(g , a) ∈ Ω0(Y ,G )× Ω1(Y ,Lie(H))

satisfying
A′ + t∗ ◦ a = AdgA + g∗θ

and
B ′ = αg (B + Fa) ,

where
Fa = da + a ∧ a + A(a) .
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Nonabelian differential cocycles

Proposition

Smooth 2-isomorphisms

triv(A1,B1) triv(A3,B3)

triv(A2,B2)

g12

BB����������

g23

��:
::

::
::

::
:

g13

//

f��

are in bijection with
f ∈ Ω0(Y ,H)

satisfying
g23 g12 t(f ) = g13

and
a12 + g−1

12 (a23) + fA1(f
−1) = +Adf g13 + f ∗θ̄
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Nonabelian differential cocycles

An undertanding of n-curvature generalizes this as follows:

Proposition

When we generalize from local 2-functors with values in ΣG(2) to
local 3-functors with values in ΣINN0(G(2)) the fake-flatness
condition is lifted and the differential 2-coycle we obtain is the one
given by Breen and Messing.
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Deligne cohomology

Deligne cohomology
nth Deligne cohomology is (equivalence classes) of descent data
for locally (i = IdΣn−1U(1))-trivializable n-transport.
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Deligne cohomology

Deligne cohomology is obtained as a special case from nonabelian
differential cocycles by restricting the structure n-group to

G(n) = Σn−1U(1) .
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Bundle gerbes

Bundle gerbes
Lie bundle gerbes with connection are precisely descent data for

(Σ2U(1)
i
↪→ Σ1dVect)-trivializable 2-transport: the curving 2-form

is the local 2-functor, while the transition bundle is the
pseudonatural gluing transformation.
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Bundle gerbes

We now explain

Proposition

Line bundle gerbes (Hitchin, Chatterjee, Murray) with connection
are canonically isomorphic to descent data objects for
(Σ2U(1)) ↪→ Σ1dVect)-trivializable 2-transport.
Principal bundle gerbes are similarly obtained from
(Σ2U(1)) ↪→ ΣU(1)Tor) 2-transport.
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Bundle gerbes

Definition [Murray, generalizing Hitchin]

A line bundle gerbe over X is

a surjective submersion π : Y → X

a line bundle L→ Y [2]

a line bundle isomorphism µ : π∗12L⊗ π∗23L→ π∗13L which is
associative in the obvious sense.
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Bundle gerbes

Remark

When we assume Y = tiUi to be a good cover by open
contractible sets the above definition restricts to that originally
given by Nigel Hitchin.
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Definition

A connective structure on a bundle gerbe (also known as
connection and curving on a bundle gerbe) is

a connection ∇ on L

a 2-form ω ∈ Ω2(Y ) on Y

such that on
π∗2ω − π∗1ω = F∇ .
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Bundle gerbes

Idea of the canonical isomorphism with transport descent

The regular epimorphism π : Y → X is the same in both
cases.

The 2-form ω is the local trival 2-functor
triv : Π2(Y )→ Σ2U(1).

The line bundle L→ Y [2] with connection ∇ is the component
transport 1-functor of the transition g : π∗1triv→ π∗2triv.

The condition π∗2ω − π∗1ω = F∇ is pseudo-naturality of g .
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The pseudonatural transformation g : π∗1triv→ π∗2triv reads, in
components, for:

y

γ

##

γ′

;; y
′Σ

��

any surface in Y [2]:

• C //

C

��

Ly

��

•

Ly′

��
• C // •

g∇(γ′)

z� ~~
~~

~~
~~

~~
~~

~~

~~
~~

~~
~~

~~
~~

~~

triv(π1(Σ))
��

=

• C //

Ly

��

•

Ly′

��
• C //

C

EE•

g∇(γ)

z� ~~
~~

~~
~~

~~
~~

~~

~~
~~

~~
~~

~~
~~

~~

triv(π2(Σ))
��

⇔ π∗2ω−π∗1ω = F∇

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Parallel n-transport

Bundle gerbes

Line bundle gerbes as categorified transition functions

The ana-2-functor obtained from this descent data is, when we
forget the connection

Y [2]

��

g // Σ1dVect

X

.

Recall that an ordinary transition function for a G -bundle is an
ana-1-functor

Y [2]

��

g // ΣG

X

.
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Bundle gerbes

The canonical isomorphism between descent data for
(Σ2U(1)) ↪→)-2-transport and bundle gerbes with connection
extends to the entire 2-category of bundle gerbes:

Proposition

“Stable isomorphisms” of bundle gerbes (with connection) are
canonically identitfied with morphisms of
(Σ2U(1)) ↪→)-2-transport.
“Gerbe modules” for bundle gerbes are canonically identified with
sections of the corresponding 2-transport after embedding
1dVect ↪→ ΣVect.
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Bundle gerbes

Definition [Murray]

A “stable morphism” E : (Y , L, µ)→ (Y , L′, µ′) of bundle gerbes
is a line bundle E → Y and a morphism

e : L⊗ π∗1E → π∗2E ⊗ L′

which is compatible with the connection and with µ in the obvious
way.
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Bundle gerbes

A “stable morphism” f : (Y , L, µ)→ (Y , L′, µ′) of bundle gerbes is
precisely a transformation of the ana-2-functors encoding the
descent data of the corresponding 2-transport:

Y [2]

g

!!

g ′

==Σ1dVect(E ,e)

��

.
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Bundle gerbes

Definition [Murray]

A “gerbe module” E is a vector bundle E → Y and a morphism

e : L⊗ π∗1E → π∗2E

which is compatible with the connection and with µ in the obvious
way.
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Bundle gerbes

A “gerbe module” is precisely a transformation from the trivial
ana-2-functor to the ana-2-functors encoding the descent data of
the corresponding 2-transport, after pushing forward along the
inclusion Σ1dVect ↪→ ΣVect

Y [2]

g

!!

0

77Σ1dVect � � // ΣVect(E ,e)

��
88

88
88

88
8

88
88

88
88

8

.
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Bundle gerbes

Interpretation in terms of line 2-bundles

We can understand this entire discussion as being about line
2-bundles, which are associated to ΣU(1)-2-transport by the
canonical 2-representation

ρ : Σ2U(1)→ ΣBim→ 2Vect .
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Line bundle gerbes are transition data for line 2-bundles whose
fibers are 2-vector spaces equivalent to

ModC ' ModK(H) ,

where K (H) denotes the algebra of finite-rank operators on a
Hilbert space.
The corresponding total spaces are a well known equivalent
description for bundle gerbes: bundles of compact operators
associated canonically to PU(H)-bundles.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Parallel n-transport

Line bundles on loop space from 2-bundles on base space

Line bundle on loop space from
2-transport on base space

It is well known that a line bundle gerbe on X gives rise to a line
bundle on loops in X . The curving of the gerbe translates into the
connection of the bundle.
This transgression corresponds in terms of 2-transport functors
simply to the application of

Hom(ΣZ, ·)

to the 2-transport and its local trivialization
More on transgression is here.
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Line bundles on loop space from 2-bundles on base space

Paths on loop space

Definition

For P2(X ) a 2-path 2-groupoid on X , the corresponding 1-path
groupoid on loops in X is

P1(LX ) := π1(Hom(ΣZ,P2(X ))) .

Here the fact that we take π1 (i.e. that we divide out
2-isomorphisms) means that we ignore the basepoint trajectories of
the loops.
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Observation

If the surjective submersion π : Y → X has connected fibers (i.e.
is a smooth connected bundle on each connected component of X )
then

Hom(ΣZ,P2(Y ))
Hom(ΣZ),π∗ // Hom(ΣZ,P2(X ))

is epi.

In other words: every loop in X comes from a loop in Y by
projection.
Notice that this is not saying that every loop in X has a lift to Y :
the projection down to X is in general not injective on the points
of the loop.
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It follows that we can apply Hom(ΣZ, ·) to everything in sight.
This sends any 2-transport

tra : P2(X )→ Σ1dVect

to a loop 2-transport

Hom(ΣZ, tra) : Hom(ΣZ,P2(X ))→ Hom(ΣZ,Σ1dVect) .

This naturally descends down to P1(LX ) by means of the pushout

Hom(ΣZ,P2(X ))
Hom(ΣZ,tra)//

��

Hom(ΣZ,Σ1dVect)

P1(LX )
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Noticing that

π1(Hom(ΣZ,Σ1dVect)) ' 1dVect

the result of this pushout is a line bundle with connection on loop
space.

traΣZ : P1(X )→ 1dVect .

Its local trivializability follows by applying Hom(ΣZ, ·) to the
entire local trivialization diagram of tra.
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The local trivialization on loop space is the image of the local
trivialization on base space under Hom(ΣZ, ·).

Hom(ΣZ,Pn(Y )))
Hom(ΣZ,π) // //

Hom(ΣZ,triv)

��

Hom(ΣZ,Pn(X ))

Hom(ΣZ,tra)

��
Hom(ΣZ,ΣΣU(1))

Hom(ΣZ,i)
// Hom(ΣZ,T )

'Hom(ΣZ,t)sssssssss

sssssssss

u} sssssssss

sssssssss
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Nonabelian bundle gerbes
The 2-category ΣU(1)Tor underlying abelian bundle gerbes may be
thought of as ΣU(1)BiTor. As such it generalizes to any group H.
Descent data for 2-transport with local

ΣHBiTor

structure is canonically isomorphic to nonabelian bundle gerbes.
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Nonabelian bundle gerbes with connection

Proposition

The descent catgeory for (ΣAUT(H)
i
↪→ ΣHBitor) 2-transport is

canonically isomorphic to fake flat nonabelian bundle gerbes with
connection.

These nonabelian bundle gerbes have been defined and studied by
[AschieriJurco].
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The delicate nature of the connection 1-form on the transition
bi-bundle becomes transparent when we realize that this is the
differential of the transition pseudonatural transformation

g : π∗1triv→ π∗2triv ,

whose component map looks like

g : ( x
γ // y ) 7→

•
Htra(γ) //

Lx

��

•

Ly

��
•

Htra(γ′)

// •

g(γ)

|� ��
��

��
��

��
��

��

��
��

��
��

��
��

��

.
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g : ( x
γ // y ) 7→

•
Hπ∗

1
triv(γ)

//

Lx

��

•

Ly

��
•

Hπ∗
2
triv(γ)

// •

g(γ)

|� ��
��

��
��

��
��

��

��
��

��
��

��
��

��

.

Here

Lx is the H-bibundle fiber over x ;

Hg is the H-bitorsor which is, as an object, H itself, with the
obvious left H-action and with the right H-action twisted by
α(g);

g(γ) acts like the twisted parallel transport on the bibundle:
instead of being a morphism Lx → Ly it is a twisted morphism
Hπ∗1 triv(γ) ⊗H Lx → LY ⊗H Hπ∗2 triv(γ).
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Nonabelian bundle gerbes

Rank one 2-vector bundles
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Nonabelian bundle gerbes

A rank one 2-vector bundle is a 2-vector bundle associated by the
canonical 2-representation of ΣU(1) on bimodules.

ρ : Σ(ΣU(1))→ Bim ⊂ 2Vect

ρ : •
Id

%%

Id

99 •c�� 7→ C

C
&&

C

88 C·c��
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For simplicity, restrict attention to finite-dimensional module for
the time being. Then a ρ-trivializable 2-transport

P2(X )→ Bim

necessarily has fibers equivalent in Bim to the ground field C. But
equivalence in Bim is Morita equivalence.
The ground field is Morita equivalent to the full endomorphisms
algebras on a (finite dimensional, by assumption) vector space.
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The Morita equivalence C ' End(V ) is induced by the weakly
invertible bimodules

C V // End(V )

and

End(V )
V ∗

// C .

Which come with isomorphisms

C

C

88
V // End(V )

V ∗
// C

'��

and

End(V )

End(V )

77
V ∗

// C V // End(V )
'��
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Proposition

The descent data for rank one 2-vector transport is canonically
ismorphic to line bundle gerbes with connection. The trivialization
itself is the corresponding gerbe module.
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In order to proceed, and to understand the meaning and relevance
of fake flatness, we first need a better understanding of higher
curvature.
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Motivation

Plan

Parallel n-transport

n-Curvature

Basic idea
Curvature and obstruction theory
n-Curvature
Non fake-flat n-transport
Associated n-vector transport

Lie n-algebra cohomology

Bundles with Lie n-algebra connection

String- and Chern-Simons n-Transport

Conclusion

Questions

n-Categorical Background
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Curvature

Π0(X )

g

��

� � // Πn(X )

traflat

zz

(tra,curv)

��
ΣG(n)

� � // ΣINN(G(n))
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Basic Idea

Idea

n-Curvature is the obstruction to flat n-transport.

n-Curvature is controlled by a special case of Obstruction theory,
namely the obstruction to lifting through

G(n)
Id // G(n) // 1

under certain constraints.
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Basic Idea

n-Curvature as (n + 1)-Transport

Fact

n-Curvature is itself an (n + 1)-Transport.

The generalized Bianchi identity

n (n + 1) (n + 2)

n-transport
n-curvature
of n-transport

(n + 1)-curvature
of n-curvature

tra curvtra curvcurvtra

arbitrary flat trivial
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Curvature and obstruction theory
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Curvature and obstruction theory

Curvature is the obstruction to lifting a trivial transport to a flat
transport.
A G(n)-n-bundle without connection on X is a transport n-functor

P : Π0(X )→ ΣG(n)

equipped with a smooth local G(n)-trivialization.
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Curvature and obstruction theory

A G(n)-n-bundle on X with flat connection is a transport n-functor

tra : Πn(X )→ ΣG(n) .
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Curvature and obstruction theory

Given a G(n)-bundle with connection, we may ask if we can extend
it to a G(n)-bundle with flat connection

Π0(X )

��

� � // Πn(X )

traflatzzuuuuuuuuu

ΣG(n)

.
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Curvature and obstruction theory

In general we cannot. The obstruction is given by a
wcoker(IdG(n)

)-transport.
To see this more clearly, we need a little bit of local data:

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Curvature

Curvature and obstruction theory

A possibly nontrivial G(n)-bundle without connection on X is a
surjective submersion F → Y → X with connected fibers, together
with a flat ΣG(n)-transport on the fibers

P : Πn(F )→ ΣG(n) .
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A flat G(n)-connection, on this, is an extension of this to a functor
on all of Y :

traflat : Πn(Y )→ ΣG(n) .
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In general, this does not exist. What always exists, though, is the
completely trivial bundle with connection

tra0 : Πn(Y )→ {•} ,

i.e. the principal bundle for the trivial structure group.
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Curvature and obstruction theory

Hence the question that we are asking when asking for curvature is:

Can we lift the connection for the trivial group through the exact
sequence

G(n)
Id→ G(n) → {•}

?
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Curvature and obstruction theory

Curvature is a very degenerate case of general obstruction theory:
we are asking for obstructions to extending the trivial structure
group.
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Curvature and obstruction theory

More precisely, we want to find a lift of tra which does restrict to
the fixed functor P : Πn(F )→ ΣG(n) on the fibers of the surjective
submersion, meaning we want to lift to

Πn(F ) � � //

��

Πn(Y )

tra
��

ΣG(n)
Id // ΣG(n)

.
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Curvature and obstruction theory

In general this will not work. But we have obstruction theory as
above to figure out what the obstructing (n + 1)-bundle with
connection will be: it will be an (n + 1)-transport with values in

wcoker(i)

obtained by first lifting the {•}-transport tra0 to an equivalent
wcoker(IdG(n)

)-transport and then checking which mistake in
wcoker(i) we make thereby:
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Πn+1(F ) � � i //

g

��

Πn+1(Y )
π // //

(tra,curv)

��

Πn+1(X )

K

��
ΣG(n)

� � // ΣINN(G(n)) // // T

nonabelian cocycle /
transition function/

descent data

differential cocycle /
integrated Ehresmann

n-connection
classifying map

'

{� ��
��

��
��

��
��

��
��

�

��
��

��
��

��
��

��
��

�

'

�	 
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(n + 1)-Curvature

Definition

To each parallel n-transport

tra : Pn(X )→ ΣG(n)

we may canonically associate a curvature (n + 1)-transport

curv : Πn+1(X )→ ΣINN(G(n)) .
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(n + 1)-Curvature

Flatness and Bianchi identity

Definition

We call an n-transport Pn(X )→ T flat when it factors through
homotopy classes of n-paths

Pn(X )
tra //

$$I
IIIIIIII T

Πn(X )

<<yyyyyyyyy

.

Equivalently, an n-transport is flat if its curvature (n + 1)-transport
is trivial at top level.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Curvature

(n + 1)-Curvature

Flatness and Bianchi identity

The following fact now is a tautology. But it is a useful tautology
when translated to differential form data in concrete examples.

Fact (generalized Bianchi identity)

The curvature (n + 1)-transport of any n-transport is itself always
a flat (n + 1)-transport.
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Non fake-flat n-transport

There is a refinement of the definition of parallel n-transport which
does incorporate non-vanishing fake-curvature.
Instead of regarding the n-transport

tra : Pn(X )→ ΣG(n)

itself, we consider its (n + 1)-curvature transport

curv : Πn+1(X )→ ΣINN(G(n)) .

This is itself a parallel (n + 1)-transport, with the special property
that its transition data factors through

ΣG(n)
� � // ΣINN(G(n))
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Non fake-flat n-transport

This property can be encoded by refining the diagram for local
trivialization
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Definition of non-fake-flat n-transport

Definition

We say that two composable strict n-functors

K
� � // G // // B

of strict n-groupoids form a short sequence, if the image of the first
is in the preimage under the second of all identity morphisms in B.
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Definition of non-fake-flat n-transport

For G(n) a strict Lie n-group and

ΣG(n)
� � // ΣINN(G(n)) // // T

a short sequence of strict Lie (n + 1)-groupoids, an
(n + 1)-curvature on a space X is an (n + 1)-functor

K : Π(n+1)(X )→ T

which fits into a diagram. . .
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Non fake-flat n-transport

Definition of non-fake-flat n-transport

Πn(F ) � � i //

g

��

Πn(Y )
π // //

(tra,curv)

��

Πn(X )

K

��
ΣG(n)

� � // ΣINN(G(n)) // // T

nonabelian cocycle /
transition function/

descent data

differential cocycle /
integrated Ehresmann

n-connection
classifying map

'

z� }}
}}

}}
}}

}}
}}

}}
}}

}

}}
}}

}}
}}

}}
}}

}}
}}

}

'

�� ��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
�
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Definition of non-fake-flat n-transport

. . . where

Π(n+1)(F ) � � // Π(n+1)(Y ) // // Π(n+1)(X )

is a short sequence and where. . .
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Definition of non-fake-flat n-transport

. . . the transformations respect the sequence property in that

Πn(F ) � � i // Πn(Y )
π // //

(tra,curv)

��

Πn(X )

K

��
ΣINN(G(n)) // // T

'

� �
��
��
��
��
��
��

��
��
��
��
��
��
�

is the identity transformation and . . .
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Definition of non-fake-flat n-transport

Πn(F ) � � i //

g

��

Πn(Y )

(tra,curv)

��
ΣG(n)

� � // ΣINN(G(n)) // // T

'

�
 
















is the identity transformation.
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Definition of non-fake-flat n-transport

Example

Let π : P → X be a principal U(1)-bundle with Ehresmann
connection 1-form A ∈ Ω1(P). Then

Π2(U(1)) � � i //

g

��

Π2(P)
π // //

(traA,curvFA
)

��

Π2(X )

exp(
R

FA)

��
ΣU(1) � � // ΣINN(U(1)) // // ΣΣU(1)

=

�� 	
		

		
		

		
		

		
	

		
		

		
		

		
		

		

=

�� �
��
��
��
��
��
��

��
��
��
��
��
��
�

is the corresponding 2-curvature 2-functor.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Curvature

Non fake-flat n-transport

There is something deeper going on here. For more hints see the
discussion in
G(n)-bundles with connection.
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Proposition

Descent data for smoothly locally trivializable INN0(AUT(H))
3-transport whose transitions factor through
AUT(H) ↪→ INN0(AUT(H)) is equivalent to the Breen-Messing
data.
The 2- and 3-curvature is now unrestricted

• •

• •

• •

•

//

//
�� ��

traA(γ3)
��

��
�

����
��

�
����

��
��

��
��

�

����
��

��
��

��
�

traA(γ1) //

��

traA,B(St)
{� ����

traA,B(S1)
v~ tttt

traA,B(S2)
px jjjj

→

•

•

• •

• •

•

traA(γ2)

��

//
��

//

traA(γ3)
��

��
�

����
��

�

����
��

��
��

��
�

����
��

��
��

��
�

tra(γ1) //

��

traA,B (Ss )
{� ����

traA,B(S4)�� 





traA,B(S3)
px jjjj
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Associated transport
Requiring that the local structure

ΣG(n) → T

of a transport functor is an n-representation of G(n)

ρ : ΣG(n) → nVect

leads to the notion of associated n-transport.
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Associated fake-flat n-transport

Passing from principal to associated n-transport is merely a matter
of replacing the principal local structure

i : ΣG(n) ↪→ G(n)Tor

by the desired n-representation

ρ : ΣG(n) → nVect ,

i.e. by demanding local trivialization of n-transport of the form

Pn(Y )
π //

triv
��

Pn(X )

tra

��
ΣG(n) ρ // nVect

'
u} sssssssssss

sssssssssss
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n-Vector spaces

Here nVect indicates an n-category of n-vector spaces. Usually one
considers

Definition: n-vector space

We address the monoid of complex numbers

C := 0Vect

as the 0-category of 0-vector spaces. Then the n-category of
n-vector spaces is recursively defined as

nVect := (n − 1)Vect−Mod .

As always, unwrapping this definition beyond low n requires first
choosing a notion of n-categories and interpreting the notion of
module over an (n + 1)-monoid suitably.
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Examples for n-Vector spaces

Example: Kapranov-Voevodsky

The category Vectn ∈ 2Vect

is the n-dimensional Kaparanov-Voevodsky 2-vector space. These
KV 2-vector spaces form a 2-category

KV2Vect ↪→ 2Vect .

Remark

This inclusion factors through the larger 2-category of algebras and
bimodules KV2Vect ↪→ Bimod→ 2Vect .

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Curvature

Associated n-Transport

n-representations of n-groups

Definition

Given an n-group G(n) and notion of n-vector space, a linear
n-representation of G(n) is an n-functor

ρ : ΣG(n) → nVect

Example

An ordinary linear representation of a (1-)group G is indeed a
functor

ρ : ΣG → Vect
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n-representations of n-groups

Example (canonical 2-representation)

For G(2) a strict 2-group coming from the crossed module

(H
t→ G

α→ Aut(H)) and for

ρH : ΣG → Vect

an ordinary representation of H- we obtain an induced
2-representation

ρ : ΣG(2) → Bimod→ 2Vect

by sending

ρ : •

g

$$

g ′

;; •h
��

7→ 〈ρH〉

〈ρH〉α(g)

''

〈ρH〉α(g)

77 〈ρH〉·ρ(h)
��
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n-representations of n-groups

Example (canonical 2-representation)

The canonical 2-representation for

G(2) = ΣU(1) = (U(1)→ 1)

is the obvious one

ρ : ΣG(2) → ΣVect→ 2Vect

which acts as

ρ : •

Id

$$

Id

;; •c
��

7→ C

C
$$

C

:: C·c
��
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n-representations of n-groups

Example (canonical 2-representation)

The canonical 2-representation for the strict version of the String
2-group [Baez-Crans-S.-Stevenson]

G(2) = Stringk(G ) = (Ω̂kG → PG )

would lead to a representation of the von Neumann algebra A
generated by a positive energy rep of the Kac-Moody group Ω̂k(G ).

ρ : •

g

$$

g ′

;; •h
��

7→ A

Aα(g)

$$

Aα(g>′)

:: A·ρ(h)
��

.
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Associated String 2-transport

This is technically subtle due to issues with von Neumann
bimodules (“Connes fusion” etc.). But seems to go through. The
associated String 2-transport induced this way has an appaerance
very similar to the definitions proposed by [StolzTeichner].
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Examples of n-vector transport

Proposition [S.-Waldorf]

The category of vector bundles with connection on X is equivalent
to that of 1-transport functors on X with local structure being the
canonical representation

ρ : tnU(n)→ Vect .
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Examples of n-vector transport

Proposition [S.-Waldorf]

The 2-category of descent data for line 2-bundles with connection
on X , coming from the standard 2-representation

ρ : ΣΣU(1)→ ΣVect ↪→ 2Vect

is canonically isomorphic to that of line bundle gerbes with
connection.

Remark

Here “canonically isomorphic” means: we don’t just have an
equivalence. Instead, feeding ρ into the machinery of n-transport
and turning the crank, the very definition of line bundle gerbes
with connection drops out.
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Non-fake-flat associated n-transport

As we pass to non fake flat n-transport, we need to shift the
n-representation of G(n) to a corresponding (n + 1)-representation
of INN(G(n))
Recall that the local structure is now encoded by a diagram

Πn(F ) � � i //

g

��

Πn(Y )
π // //

(tra,curv)

��

Πn(X )

K

��
ΣG(n)

� � // ΣINN(G(n)) // // T

'

{� ~~
~~

~~
~~

~~
~~

~~
~~

~

~~
~~

~~
~~

~~
~~

~~
~~

~

'

~� ��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
�
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Non-fake-flat associated n-transport

The n-representation ρ : ΣG(n) → S can be attached at the
bottom left corner of this diagram

Πn(F ) � � i //

g

��

Πn(Y )
π // //

(tra,curv)

��

Πn(X )

K

��
ΣG(n)

� � //

ρ

��

ΣINN(G(n)) // // T

S

'

{� ~~
~~

~~
~~

~~
~~

~~
~~

~

~~
~~

~~
~~

~~
~~

~~
~~

~

'

~� ��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
�
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Non-fake-flat associated n-transport

And then pushed-forward along the left bottom edge

Πn(F ) � � i //

g

��

Πn(Y )
π // //

(tra,curv)

��

Πn(X )

K

��
ΣG(n)

� � //

ρ

��

ΣINN(G(n))

��

// // T

S // S̃

'

{� ~~
~~

~~
~~

~~
~~

~~
~~

~

~~
~~

~~
~~

~~
~~

~~
~~

~

'

~� ��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
�
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The induced INN(G )-representation on the action
groupouid

For n = 1, let V be the space that ρ : ΣG → S represents on.
Then ρ factors as

ρ : ΣG → ΣAut(V )→ S

and we may, for simplicity, consider the strict pushout of

ΣG
� � //

ρ

��

ΣINN(G )

ΣAut(V )

in 2Cat.
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The induced INN(G )-rep on the action groupouid

Proposition

The strict pushout in 2Cat of

ΣG
� � //

ρ

��

ΣINN(G )

ΣAut(V )

is ΣG
� � //

ρ

��

ΣINN(G )

��
ΣAut(V ) // ΣAut(V //G )

,

where V //G is the action groupoid of the action of G on V .
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The action groupoid

Definition

The action groupoid V //G has as objects the elements of V , and
has a morphism for each pair (v , ρ(g)) for v ∈ V and g ∈ G :

V //G :=

{
v
ρ(g)→ ρ(g)(v) | v ∈ V , g ∈ G

}
.
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The action groupoid

The action groupoid is still equpped with a canonical G -action

V //G
ρ(g)→ V //G

by endofunctors. This is such that any two such endofunctors are
connected by a unique natural isomorphism

V //G

ρ(g)

!!

ρ(g ′)

==
V //G'

�� .

Its component map is

v 7→ ( ρ(g)(v)
ρ(g ′g−1) // ρ(g ′)(v) ) .
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The induced INN(G )-rep on the action groupouid

This makes manifest how with G represented on V ,

• g // • 7→ V
ρ(g) // V

we have INN(G ) = G//G represented on V //G :

•

g

��

g ′

CC•'

��

7→ V //G

ρ(g)

!!

ρ(g ′)

==
V //G'

��
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The induced INN(G )-rep on the action groupouid

Notice that we can interpret the functor

V //G

ρ(g)

!!
V //G

as a morphism in spans of groupoids over ΣG

V //G

Id

zzuuuuuuuuu
ρ(g)

$$I
IIIIIIII

V //G

$$J
JJJJJJJJ

V //G

zzttttttttt

ΣG

'
u} tttttttttt

tttttttttt

.
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Non-fake-flat associated 1-transport

So for n = 1 the picture of non-fake-flat associated n-transport is

Πn(F ) � � i //

g

��

Πn(Y )
π // //

(tra,curv)

��

Πn(X )

K

��
ΣG(n)

� � //

ρ

��

ΣINN(G(n))

��

// // T

ΣAut(V ) // ΣAut(V //G )

'

x� zz
zz

zz
zz

zz
zz

zz
zz

zz
z

zz
zz

zz
zz

zz
zz

zz
zz

zz
z

'
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��
��

��
��

��
��
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��

��
��

��
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Associated n-Transport
For every representation of a structure Lie n-group we obtain a
corresponding associated n-vector transport.
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Associated n-Transport

Associated n-transport is necessary and desireable for various
reasons

it admits tensor products ( needed for K-theoretical
applications)

it admits global sections (needed for quantization).
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Slogan

associated
n-transport

=
principal

G(n)-transport
+

representation
of G(n)
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What is a representation of an n-group?
Once we fix a notion of n-vector spaces, a representation of G(n) is

ρ : ΣG(n) → nVect .

The single object of ΣG(n) is sent to the representation n-space.
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Example

Let G(n) = G(1) = G be an ordinary group. Then an ordinary linear
representation is a functor

ρ : ΣG → Vect

• g // • 7→ V
ρ(g) // V .
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Proposition

Ordinary vector bundles with connection on X are equivalent to
ρ-locally trivializabel 1-transport on X , for

ρ :
⊔
n

ΣU(n)→ Vect

the defining representation.

Pn(Y )
π // //

triv

��

Pn(X )

tra

��
ΣG(n) ρ

// Vect

'
t

y� {{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{
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In order to raise the categorical dimension now, we need to figure
out what 2Vect is.
Recall the the principle of least resistance under categorification:
we want to start from a good definition of ordinary vector bundles.

Simple but useful observation in this context

VectC ' ModC .
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Hence define, for C any (abelian) monoidal category

Definition

2VectC := ModC

where ModC is the 2-category of categories equipped with a
coherently associative and unital C-action, and of functors
respecting that action.
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Just like there are different kinds of 1-vector space (real, complex,
etc.) there are even more different kinds of 2-vector spaces:

Example

For C = Disc(C) we get 2VectDisc(C) = BC2Vect, the 2-category
of Baez-Crans 2-vector spaces, which satisfy

BC2Vect ' 2Term .

These 2-vector spaces are the right home for Lie 2-algebras. But as
fibers for 2-vector bundles they apparently don’t give rise to many
interesting examples.
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Here we shall be mostly interested in the following

Example

ModVect := 2VectVect .

For handling these, it is useful to make two observations:

Such 2-vector spaces with basis corespond to ordinary
algebras.

Kapranov-Voevodsky’s 2-vector spaces are contained,
corresponding to the algebras of the form C⊕n.
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Observation

There is a canonical inclusion

Bim ↪→ 2VectVect .

A

N

��

N′

BBB
ρ

��

7→ ModA

−⊗AN

!!

−⊗AN′

==ModB−⊗Aρ

��

An algebra A .
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Observation

There is a canonical inclusion

Bim ↪→ 2VectVect .

A

N

��

N′

BBB
ρ

��

7→ ModA

−⊗AN

!!

−⊗AN′

==ModB−⊗Aρ

��

An algebra A is sent to the category of its right modules.
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Observation

There is a canonical inclusion

Bim ↪→ 2VectVect .

A

N

��

N′

BBB
ρ

��

7→ ModA

−⊗AN

!!

−⊗AN′

==ModB−⊗Aρ

��

.
Notice that ModA is itself a module over Vect:

Vect×ModA → ModA

V × R 7→ V ⊗ R .
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Observation

There is a canonical inclusion

Bim ↪→ 2VectVect .

A

N

��

N′

BBB
ρ

��

7→ ModA

−⊗AN

!!

−⊗AN′

==ModB−⊗Aρ

��

.
An A-B bimodule N ′
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Observation

There is a canonical inclusion

Bim ↪→ 2VectVect .

A

N

��

N′

BBB
ρ

��

7→ ModA

−⊗AN

!!

−⊗AN′

==ModB−⊗Aρ

��

.
An A-B bimodule N ′ is sent to the functor obtained by tensoring
with N ′ on the right.
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Observation

There is a canonical inclusion

Bim ↪→ 2VectVect .

A

N

��

N′

BBB
ρ

��

7→ ModA

−⊗AN

!!

−⊗AN′

==ModB−⊗Aρ

��

.
A bimodule homomorphism ρ
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Observation

There is a canonical inclusion

Bim ↪→ 2VectVect .

A

N

��

N′

BBB
ρ

��

7→ ModA

−⊗AN

!!

−⊗AN′

==ModB−⊗Aρ

��

.
A bimodule homomorphism ρ then induces a natural
transformation.
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Observation

We can think of Bim as being the 2-category of 2-vector space
with basis.

Since
ModA ' HomVectCat(ΣA,Vect)

just like
Cn ' HomSet(B,C) .

Here B = (v1, v2, · · · ) is a basis. Hence ΣA is like a 2-basis.
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Hence we shall write

Definition

2Vectb := Bim

to emphasize in which sense we are using the 2-category Bim.
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Kapranov-Voevodsky 2-vector spaces

Remark

Inside 2Vectb sits the 2-category of Kaparanov-Voevodsky 2-vector
spaces.

Definition

A KV 2-vector space of dimension n is the category Vectn. A
morphism of KV 2-vector spaces is a matrix in Mm,n(Vect).
Morphisms act like ordinary matrices, with product replaced by
tensor product and sum replaced by direct sum.
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Associated n-Transport

Proposition

KV 2-vector spaces form the full sub 2-category of 2Vectb on the
algebras of the form

A = C⊕n

for n ∈ N.

Hence we have a chain of inclusions

KV2Vect ↪→ 2Vectb := Bim ↪→ 2Vect .
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Now we can discuss 2-representations.

Observation and proposition

For every strict 2-group G(2) = (H → G ) and an ordinary
representation of H, we canonically obtain a representation

ρ : ΣG(2) → 2Vectb

•

g

��

g ′

CC•h

��

7→ AH

(AH ,α(g))

��

(AH ,α(g ′))

@@AH·h

��

The algebra AH generated from the representation of H
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Now we can discuss 2-representations.

Observation and proposition

For every strict 2-group G(2) = (H → G ) and an ordinary
representation of H, we canonically obtain a representation

ρ : ΣG(2) → 2Vectb

•

g

��

g ′

CC•h

��

7→ AH

(AH ,α(g))

��

(AH ,α(g ′))

@@AH·h

��

serves as a bimodule over itself
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Now we can discuss 2-representations.

Observation and proposition

For every strict 2-group G(2) = (H → G ) and an ordinary
representation of H, we canonically obtain a representation

ρ : ΣG(2) → 2Vectb

•

g

��

g ′

CC•h

��

7→ AH

(AH ,α(g))

��

(AH ,α(g ′))

@@AH·h

��

with the right action twisted by g ∈ G .
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Now we can discuss 2-representations.

Observation and proposition

For every strict 2-group G(2) = (H → G ) and an ordinary
representation of H, we canonically obtain a representation

ρ : ΣG(2) → 2Vectb

•

g

��

g ′

CC•h

��

7→ AH

(AH ,α(g))

��

(AH ,α(g ′))

@@AH·h

��

One checks that multiplying with h ∈ H provides a bimodule
homomorphism.
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Example

To be very canonical, take AH to be the group algebra of H.
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Associated n-Transport

Example

One of the simplest examples is the canonical 2-representation of
ΣU(1) for the definiing representation of U(1)

•

Id

��

Id

CC•c

��

7→ C

C

��

C

BBC·c

��
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Form this we obtain an example of associated 2-transport:
line 2-bundles.
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Associated String 2-transport

In a very similar manner to line 2-bundles, we obtain associated
2-transport for the String 2-group by making use of the fact that it
is represented by the strict 2-group

String(G ) = (Ω̂1(G )→ PG ) .

This yields a notion of String connections very close to the
definition as conceived by Stolz-Teichner.
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Transgression

Transgression
The transgression of an n-transport to a space of maps from C
into base space is the operation of applying

Hom(C , ·)

to everything in sight.
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Equivariance

Equivariance
An equivariant structure on an n-transport is the same as descent
data for the case that the projection is given by the n-group action

( Y
π // X ) = ( X × G(n)

ρ // X ) .
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Lie n-Algebras

Infinitesimal higher dimensional algebra

The concept of Lie n-algebras

A Lie algebra g is the infinitesimal version of a Lie group G :

g = Lie(G )

A group G is a one-object groupoid ΣG .

An n-group G(n) is a one-object n-groupoid ΣG(n).

A Lie n-algebra g(n) is the infinitesimal version of a one-object
Lie n-groupoid: g(n) = Lie(G(n)) .

Definition

A semistric Lie n-algebra is an n-category g(n) internal to Vect
equipped with a skew symmetric functor [·, ·] : g(n) × g(n) → g(n)

which satisfies the Jacobi identity up to coherent isomorphism.
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Lie n-Algebras

The relation between Lie n-groupoids and Lie n-algebras

Caveat: To what extent, and under which conditions, it is true that

Expected Statement: n-Lie’s third theorem

Every Lie n-algebra integrates to a Lie n-groupoid.

Every Lie n-groupoid gives rise to a semistrict Lie n-algebra.

is still being investigated. Special cases are understood.
The statement hinges on

Issues still being discussed

The precise definition of Lie n-groupoids.

The question whether and when one may assume strict skew
symmetry.
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The Bridge: categorical Lie algebra to differential algebra

The Bridge: categorical Lie algebra to differential algebra

Principle

Lie n-algebra g(n) –
higher categorical

Lie algebra

↔


graded-commutative
(co)differential

(co)algebra (
∧•sV ∗, dg(n)

)

Dictionary

Mork(L) ' (sV )1 ⊕ · · · ⊕ (sV )k
structure morphisms ↔ dg(n)

coherence ↔ (dg(n)
)2 = 0
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The Bridge: categorical Lie algebra to differential algebra

L∞ and qDGCA

More precisely

Definition and Proposition

An n-term L∞-algebra is a free graded commutative co-algebra
Sc(sV ) on graded vector space V = V0 ⊕ · · ·Vn−1, which is
equipped with a degree -1 codifferential D : Sc(sV )→ Sc(sV )
that squares to 0: D2 = 0 .

Dual statement

Dually, this is the exterior algebra ∧•(sV ∗) equipped with the
differential dω := −ω(D(·)). This we call an n-term quasi-free
graded-commutative differential algebra, or n-term qDGCAs, for
short.
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The Bridge: categorical Lie algebra to differential algebra

L∞ and qDGCA

More precisely

Definition and Proposition
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The Bridge: categorical Lie algebra to differential algebra

The standard example

Example: ordinary Lie algebra as L∞-algebra

For g an ordinary Lie (1-)algebra, the codifferential on the free
graded-commutative coalgebra Sc(sg) acts as

D(sx1 ∨ sx2) = s[x1, x2]

on all products of two generators x1, x2 ∈ g and is freely extended
as a codifferential to higher products of generators. The statement

D2(sx1 ∨ sx2 ∨ sx3) = 0

for a triples of generators is the Jacobi identity.
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The Bridge: categorical Lie algebra to differential algebra

The standard example

Example: ordinary Lie algebra as qDGCA

For g an ordinary Lie (1-)algebra, the differential on the exterior
algebra ∧•(sg∗) acts as

dgt
a = −1

2
C a

bct
b ∧ tc

for {ta} any basis of sg∗ and C a
bc the structure constants of g in

the corresponding dual basis.
Of course this is nothing but the qDGCA of left-invariant forms on
the group G g∗ := (∧•(sg∗), dg) ' Ω•

li(G ) .
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The Bridge: categorical Lie algebra to differential algebra

The Bridge in more detail

The Bridge again, more precisely

Semistrict Lie n-algebras are “the same” as n-term L∞-algebras,
which in turn are dual (for finite dimensions) to n-term qDGCAs.

Caveat: “Semistrictness”

Here “semistrict” refers to the fact that the Jacobi identity is
coherently weakened, while the skew symmetry is taken to hold
strictly.

Caveat: higher morphisms

The general statement follows from general abstract operad
nonsense. But explicit details on how higher morphisms pass over
the bridge are hard to come by.
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The Bridge: categorical Lie algebra to differential algebra

The oidified Bridge: many objects

Lie algebroid version

On the qDGCA side the rather obvious generalization yields what
should be addressed as Lie n-algebroids: in the literature the
many-object qDGCAs are also known as NQ-manifolds.

The tangent Lie algebroid

The only Lie algebroid which we need here is the tangent algebroid
Vect(X ) of a manifold X . This is the differential of the
fundamental groupoid

Vect(X ) := Lie(Π1(X )) .

This is very conveniently handled in its dual incarnation – there it
is simply the deRham complex

Vect(X )∗ = (Ω•(X ), d) .
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The inn(·)-construction

The inn(·)-construction

Definition. (Inner derivation Lie (n + 1)-algebra)

inn(g(n))
∗ ' (

∧
(sg∗(n) ⊕ ssg∗(n)),

(
d 0
Id d

)
) corresponds to the

mapping cone of the identity on g(n)

Proposition

There is a canonical injection g(n) ↪→ inn(g).

inn(g(n)) is contractible

(
∧

(sg∗ ⊕ ssg∗), dinn(g)) is the Weil algebra of g(n) = g

Remark.

Hence inn(g(1))
∗ plays the role of differential forms on the

universal G -bundle. Urs Schreiber On String- and Chern-Simons n-Transport
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The inn(·)-construction

The inn(·)-construction

The qDGCA of inn(g): the Weil algebra

inn(g)∗ ' (
∧•(sg∗ ⊕ ssg∗), d) is spanned by generators {ta} in

degree 1 and {ra} in degree 2, with differential

dta = −1

2
C a

bct
b ∧ tc − ra

dra = −C a
bct

b ∧ r c .
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Lie algebra cohomology in terms of the Weil algebra inn(g)∗

We will now

express the Lie algebra cohomology of g in terms of the
cohomology of the qDGCA underlying inn(g).

use the insight gained thereby to describe three families of Lie
n-algebras: one for each cocycle, one for each invariant
polynomial and one for each transgression element.

then show that for the canonical 3-cocycle on a semisimple
Lie algebra, connections with values in the Lie 3-algebra
obtained this way describe the Chern-Simons parallel transport
which we are after.
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Lie algebra cohomology in terms of the Weil algebra inn(g)∗

Lie algebra cohomology in terms of inn(g)

A Lie algebra n-cocycle µ is

d |∧•
(sg∗)

µ = 0 .

An invariant degree n-polynomial k is

d |∧•
(ssg∗)

k = 0 .

A transgression element cs is

cs|∧•
sg∗

= µ

dcs = k .
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Lie algebra cohomology in terms of the Weil algebra inn(g)∗

The homotopy operator

Recall that we said that inn(g(n)) is trivializable.

This means there is a homotopy

inn(g(n))

0

%%

Id=[d ,τ ]

99
inn(g(n))τ

��

We have τ explicitly (see Higher morphisms of Lie n-algebras)
and hence an effective algorithm to always solve k = dcs as

cs := τ(k) + dq .

The only nontrivial condition is hence cs|∧•
sg∗

= µ.
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Lie algebra cohomology in terms of the Weil algebra inn(g)∗

A map of the cocycle situation

cocycle Chern-Simons inv. polynomial

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))
i∗oooo (

∧•(ssg)∗)? _
p∗oo

0

0 p∗k
_
dinn(g)

OO

τ

��

k
�

p∗
oo

µ
_
dg

OO

cs�i∗oo
_
dinn(g)

OO
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String, Chern-Simons and Chern Lie n-algebras

Lie n-algebras from cocycles

In the following we discuss

Definition and Proposition

From elements of inn(g)∗-cohomology we obtain Lie n-algebras:
Lie algebra cocycle µ Baez-Crans Lie n-algebra gµ
invariant polynomial k Chern Lie n-algebra chk(g)
transgression element cs Chern-Simons Lie n-algebra csk(g)

For every transgression element cs these fit into a weakly exact
sequence gµk

→ csk(g)→ chk(g) .
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String, Chern-Simons and Chern Lie n-algebras

Baez-Crans Lie n-algebras from cocycles

Definition and proposition [Baez,Crans]

For every Lie algebra (n + 1)-cocycle µ of the Lie algebra g there
is a skeletal Lie n-algebra

gµ .

Construction.

Set gµ ' (
∧•(sg∗ ⊕ snR∗), d) such that the differential is given by

dta = −1

2
C a

bct
b ∧ tc

db = −µ
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C a

bct
b ∧ tc
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String, Chern-Simons and Chern Lie n-algebras

Chern Lie n-algebras from invariant polynomials

Definition and proposition

For every degree (n + 1) Lie algebra invariant polynomial k of the
Lie algebra g there is a Lie (2n + 1)-algebra

chk(g) .

Construction.

Set chk(g) ' (
∧•(sg∗ ⊕ ssg∗ ⊕ s(2n+1)R∗), d) such that we have

dta = −1

2
C a

bct
b ∧ tc − ra

dra = −C a
bct

b ∧ tc

dc = k
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Lie n-algebra cohomology

String, Chern-Simons and Chern Lie n-algebras

Chern Lie n-algebras from invariant polynomials

Definition and proposition

For every degree (n + 1) Lie algebra invariant polynomial k of the
Lie algebra g there is a Lie (2n + 1)-algebra

chk(g) .

Construction.

Set chk(g) ' (
∧•(sg∗ ⊕ ssg∗ ⊕ s(2n+1)R∗), d) such that we have

dta = −1

2
C a

bct
b ∧ tc − ra

dra = −C a
bct

b ∧ tc

dc = k
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Lie n-algebra cohomology

String, Chern-Simons and Chern Lie n-algebras

Chern-Simons Lie n-algebras from transgression elements

Definition and proposition

For every transgression element q of degree (2n + 1) there is a Lie
(2n + 1)-algebra

csk(g) .

Construction.

Set csk(g) ' (
∧•(sg∗ ⊕ ssg∗ ⊕⊕s2nR∗ ⊕ s(2n+1)R∗), d) such that

dta = −1

2
C a

bct
b ∧ tc − ra

dra = −C a
bct

b ∧ tc

db = −cs + c

dc = k

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Lie n-algebra cohomology

String, Chern-Simons and Chern Lie n-algebras

Chern-Simons Lie n-algebras from transgression elements

Definition and proposition

For every transgression element q of degree (2n + 1) there is a Lie
(2n + 1)-algebra

csk(g) .

Construction.

Set csk(g) ' (
∧•(sg∗ ⊕ ssg∗ ⊕⊕s2nR∗ ⊕ s(2n+1)R∗), d) such that

dta = −1

2
C a

bct
b ∧ tc − ra

dra = −C a
bct

b ∧ tc

db = −cs + c

dc = k
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Lie n-algebra cohomology

String, Chern-Simons and Chern Lie n-algebras

Chern-Simons Lie n-algebras from transgression elements

Definition and proposition

For every transgression element q of degree (2n + 1) there is a Lie
(2n + 1)-algebra

csk(g) .

Construction.

Set csk(g) ' (
∧•(sg∗ ⊕ ssg∗ ⊕⊕s2nR∗ ⊕ s(2n+1)R∗), d) such that

dta = −1

2
C a

bct
b ∧ tc − ra

dra = −C a
bct

b ∧ tc

db = −cs + c

dc = k
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Lie n-algebra cohomology

String, Chern-Simons and Chern Lie n-algebras

Theorem

Whenever they exist, these Lie (2n + 1)-algebras form a (weakly)
short exact sequence:

0→ gµk
→ csk(g)→ chk(g)→ 0 .

Theorem

Moreover, we have an isomorphism

csk(g) ' inn(gµk
) .
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Lie n-algebra cohomology

String, Chern-Simons and Chern Lie n-algebras

Theorem

Whenever they exist, these Lie (2n + 1)-algebras form a (weakly)
short exact sequence:

0→ gµk
→ csk(g)→ chk(g)→ 0 .

Theorem

Moreover, we have an isomorphism

csk(g) ' inn(gµk
) .
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Lie n-algebra cohomology

Lie n-algebra cohomology

The way we obtained Lie algebra cohomology from inn(g)∗ has a
straightforward generalization with inn(g)∗ replaced by inn(g(n))

∗,
for g(n) any Lie n-algebra.
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Lie n-algebra cohomology

Lie n-algebra cohomology

Lie n-algebra cohomology from inn(g(n))
∗

A Lie g(n)-cocycle µ is

dgµµ = 0 .

A g(n) invariant polynomial k is

dinn(g(n))|∧•
(ssg∗

(n)
)
k = 0 .

A transgression element cs is

cs|∧•
sg∗

(n)

= µ

dinn(g(n))cs = k .
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Lie n-algebra cohomology

Lie n-algebra cohomology

Generalized String, Chern-Simons and Chern Lie n-algebras

Remark

The entire construction of String, Chern-Simons and Chern Lie
n-algebras from ordinary Lie algebra cohomology accordinly has a
straightforward analog for Lie n-algebra cohomology.

(g(n))µ, csk(g(n)), chk(g(n))

For the present discussion, however, we only need g(n) invariant
polynomials. And we need to make manifest the qDGCA which
they span.
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Lie n-algebra cohomology

Lie n-cohomology of gµ

Cohomology of the String Lie 2-algebra

Recall that the differential graded commutative algebra (“of left
invariant differential forms”) corresponding by Koszul duality to
the String Lie 2-algebra stringk(g) = gµ is

(
∧•(sg∗ ⊕ ssR∗), d)

where the differential d is the ordinary Chevalley-Eilenberg
differential on sg∗ and acts on the canonical degree 2 generator b
as

db = µ .
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Lie n-algebra cohomology

Lie n-cohomology of gµ

Cohomology of the String Lie 2-algebra

We may think of the 3-cocycle µ as the curvature 3-form of the
canonical gerbe on G . It is hence suggestive to simply rename

µ := H

such that
db = H .

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Lie n-algebra cohomology

Lie n-cohomology of gµ

Cohomology of the String Lie 2-algebra

It follows that the general degree n cochain on stringk(g) is(∑
k

ωk

)
exp(b)|n ,

where ωk ∈ ∧k(sg∗) and where (·)|n denotes restricting an
inhomogeneous cochain to its homogeneous part in degree n.
This means that any n-cochain may be regarded as a
(n + 2)-cochain.
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Lie n-algebra cohomology

Lie n-cohomology of gµ

Cohomology of the String Lie 2-algebra

Moreover, the differential acts on such a cochain as

d

(∑
k

ωk

)
exp(b)|n =

(
(d + H∧)

∑
k

ωk

)
exp(b)|n+1 .
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Lie n-algebra cohomology

Lie n-cohomology of gµ

Cohomology of the String Lie 2-algebra

Therefore we find a Z2-graded complex{(∑
k

ωk

)
exp(b)|dim(g)−1

}
d→

{(∑
k

ωk

)
exp(b)|dim(g)

}

which we may canonically identify with the complex of the twisted
differential

dH := d + H∧

acting on inhomogenous elements in ∧•(sg∗).
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Lie n-algebra cohomology

Lie n-cohomology of gµ

Almost a proposition

It seems that the cohomology of this complex is the ordinary Lie
algebra cohomology of g with the generator µ “killed”.
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Lie n-algebra cohomology

Lie n-cohomology of gµ

Cohomology of the String-like Lie n-algebras

Analogous considerations apply to all string-like Lie n-algebras gµ
coming from odd-degree cocycles µ.
Denote by f the degree n generator of the Koszul dual

(
∧•(sg∗ ⊕ snR∗), d)

which satisfies
df = µ .

We may suggestively rename µ as

df = Hn+1 .

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Lie n-algebra cohomology

Lie n-cohomology of gµ

Cohomology of the String-like Lie n-algebras

We now get a Zn-graded complex

{(∑
k

ωk

)
exp(f )|dim(g)−n

}
d→ · · · d→

{(∑
k

ωk

)
exp(f )|dim(g)

}

which is canonically isomorphic to the complex of inhomogenous
differential forms on G with the twisted differential

DHn+1 := d + Hn+1 ∧ .
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Lie n-algebra cohomology

The algebra bg∗(n) of invariant polynomials

Coboundaries for invariant polynomials

The qDGCA of g(n) invariant polynomials will turn out to play the
role of differential forms on the classifying space of g(n)-bundles.
Therefore we will denote it bg∗(n).
Before defining this, we need to define coboundaries of g(n)

invariant polynomials.
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Lie n-algebra cohomology

The algebra bg∗(n) of invariant polynomials

Coboundaries for invariant polynomials

Definition

An g(n) invariant polynomial k ∈
∧•(ssg∗(n)) is a coboundary of

invariant polynomials if it has a potential L such that

k = dinn(g(n))L ,

which vanishes “on the fibers” in that

L|∧•
sg∗

(n)

= 0 .
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Lie n-algebra cohomology

The algebra bg∗(n) of invariant polynomials

Coboundaries for invariant polynomials

Remark

Recall that, due to the existence of the trivializing homotopy
τ : 0→ Idinn(g)(n) , every dinn(g(n)) closed element k is

dinn(g(n))-exact k = d(τk) .

When µ ' (τk)|∧•
(sg∗

(n)
)

is closed, then cs ' τk is a

transgression element.

When L ' (τk) vanishes on
∧•(sg∗(n)) it is a coboundary of

invariant polynomials.

Hence “coboundaries of invariant polynomials” are invariant
polynomials that suspend to zero.
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Lie n-algebra cohomology

The algebra bg∗(n) of invariant polynomials

The algebra of g(n) invariant polynomials

Almost a proposition

The strict kernel

g∗(n) inn(g(n))
∗i∗oo ker(i∗)oo

is bg∗(n) := [inv(g(n))] ,

which is the qDGCA freely generated from the nontrivial
generators of the invariant polynomials of g(n), equipped with
the trivial differential.

The degree of bg(n) is that of the highest degree invariant
polynomial.
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Lie n-algebra cohomology

The algebra bg∗(n) of invariant polynomials

The algebra of g(n) invariant polynomials

Almost a proposition

The strict kernel

g∗(n) inn(g(n))
∗i∗oo bg∗(n)
oo

is bg∗(n) := [inv(g(n))] ,

which is the qDGCA freely generated from the nontrivial
generators of the invariant polynomials of g(n), equipped with
the trivial differential.

The degree of bg(n) is that of the highest degree invariant
polynomial.
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Lie n-algebra cohomology

The algebra bg∗(n) of invariant polynomials

The algebra of g(n) invariant polynomials

Example and Remark

The notation is derived from the important special abelian case
where g(n) := Lie(Σn−1U(1)). In that case

bLie(Σn−1U(1)) = Lie(ΣnU(1)) ,

mimicking the fact that the classifying “space” of the n-group
Σ(n−1)U(1) is the (n + 1)-group ΣnU(1).
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Lie n-algebra cohomology

The algebra bg∗(n) of invariant polynomials

The algebra of g(n) invariant polynomials

Remark

A morphism
Ω•(X ) bg∗(n)

{Ki}oo

is precisely the choice of closed r -forms Ki on X , one for each
degree r generator ki of bg∗(n).
There is a canonical morphism

chki
(g(n))

∗ bg∗(n)
oo

for each ki , and composing this with a connection

Ω•(X ) inn(g(n))
∗(A,FA)oo chk(g(n))

∗oo bg∗(n))
oo

ki (FA)

ii

picks out the Chern form of A with respect to ki .
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Lie n-algebra cohomology

The algebra bg∗(n) of invariant polynomials

The algebra of g(n) invariant polynomials

Remark

For Lie 1-algebras g(n) = g, the morphism

Ω•(X ) bg∗
{Ki}oo

is essentially the Chern-Weil homomorphism, once we impose the
conditions described in Definition of g(n)-bundles .
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Lie n-algebra cohomology

Invariant polynomials of String and Chern-Simons Lie n-algebras

With these definitions in hand, we can now set out and try to
explicitly compute bg∗(n) for concrete examples.
This will allow us then to make statements about the characteristic
classes of g(n)-bundles.
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Lie n-algebra cohomology

Invariant polynomials of String and Chern-Simons Lie n-algebras

Invariant polynomials of the String Lie 2-algebra

Proposition

Let g be a Lie algebra with transgressive invariant polynomial k.
Then the algebra of invariant polynomials of the corresponding
String (Baez-Crans type) Lie 2-algebra gµk

is that of g modulo k:

bg∗µk
' bg∗/[k] .

Sketch of proof

In inn(gµk
),k becomes a coboundary of invariant polynomials:

k = dinn(gµk
)cs

= dinn(gµk
)((cs− µ) + µ)

= dinn(gµk
)((cs− µ) + c)
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Lie n-algebra cohomology

Invariant polynomials of String and Chern-Simons Lie n-algebras

Invariant polynomials of the String Lie 2-algebra

Proposition

Let g be a Lie algebra with transgressive invariant polynomial k.
Then the algebra of invariant polynomials of the corresponding
String (Baez-Crans type) Lie 2-algebra gµk

is that of g modulo k:

bg∗µk
' bg∗/[k] .

Sketch of proof

In inn(gµk
),k becomes a coboundary of invariant polynomials:

k = dinn(gµk
)cs

= dinn(gµk
)((cs− µ) + µ)

= dinn(gµk
)((cs− µ) + c)
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Lie n-algebra cohomology

Invariant polynomials of String and Chern-Simons Lie n-algebras

Invariant polynomials of the String Lie 2-algebra

Interpretation

In Bundles with Lie n-algebra connection we find that morphisms

Ω•(X ) bg∗(n)
{Ki}oo

yield the characteristic classes of g(n)-bundles. The above
statement then amounts to saying that the characteristic classes of
String bundles (gµk

-bundles) are those of g-bundles modulo the
element k.
Conversely, a g-bundle cannot be lifted to a gµk

-bundle unless its
characteristic class corresponding to k vanishes.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Bundles with Lie n-algebra connection

1 Motivation

2 Plan

3 Parallel n-transport

4 n-Curvature

5 Lie n-algebra cohomology

6 Bundles with Lie n-algebra connection

1 g(n)-Connection and curvature

2 Examples of connection n-forms
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4 Characteristic classes of n-Bundles
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8 Conclusion

9 Questions
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n-Bundles with Lie n-algebra connection

g(n)-Connection and curvature

Connection and Curvature

Definition

For X some manifold and g(n) a Lie n-algebra, a g(n)-connection
on the trivial g(n)-bundle over X is a morphism

Ω•(X ) inn(g(n))
∗(A,FA)oo .

Morphisms of connections are higher qDGCA morphisms

Ω•(X ) inn(g(n))
∗

(A,FA)

{{

(A′,FA′ )

cc
��

which vanish when pulled back along inn(g(n))
∗ ← bg∗(n).

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Bundles with Lie n-algebra connection

g(n)-Connection and curvature

Connection and Curvature

Example

For g(n) = g(1) = g an ordinary Lie algebra, connections

Ω•(X ) inn(g(n))
∗(A,FA)oo

are in bijection with g-valued 1-forms on X , and morphisms of
them are linearized gauge transformations of these.

We have the following situation

g∗(n)

(A,FA=0)

��

inn(g(n))
∗oo

(A,FA)

��
Ω•(X ) Ω•(X )
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n-Bundles with Lie n-algebra connection

g(n)-Connection and curvature

Connection and Curvature

Remark

Recall that inn(g(n)) is trivializable. This makes the full
Hom(inn(g(n))

∗,Ω•(X )) also trivializable. But by restricting higher
morphisms to those whose pullback along inn(g(n))

∗ ← bg∗(n)
vanishes the crucial information is retained.

Definition

A morphism 0
(e,∇) // (A,FA)

is a section e (of the trivial
g(n)-bundle) together
with its covariant derivative
∇e with respect to the
connection A.

Ω•(X ) inn(g(n))
∗

0

{{

(A,FA)

cc
(e,∇e)

��
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n-Bundles with Lie n-algebra connection

g(n)-Connection and curvature

Connection and Curvature

Definition

The r -form

Ω•(X ) inn(g(n))
∗(A,FA)oo chk(g(n))oo bg∗(n)

oo

k(FA)

ii

for k a degree r invariant polynomial on g(n) is the Chern-form of
the connection A with respect to k.
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

Observation

A connection
Ω•(X ) inn(g(n))

(A,FA)oo

on a trivial g(n)-bundle is determined by an n-tuple of differential
forms

A ∈ Ω1(X ,V1)× Ω2(X ,V2)× · · · × Ωn(X ,Vn) ,

where Vk is the degree k part of the graded vector space
underlying g(n).
The corresponding curvatures forms

FA ∈ Ω2(X ,V1)× Ω3(X ,V2)× · · · × Ωn+1(X ,Vn)

are uniquely fixed.
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

The following lists some examples of g(n)-connections and the
nature of the differential form data corresponding to it.
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

Ordinary connection 1-forms

Ordinary connection 1-forms

n=1

g

Vect(X )

(A)
FA=0

OO

for A ∈ Ω1(X , g).

Morphisms into g(1) come from flat connection 1-forms.
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

Ordinary connection 1-forms

Ordinary connection 1-forms

n=1 n=2

g � � // inn(g)

Vect(X )

(A)

FA=0

OO

Vect(X )

(A)

OO

for A ∈ Ω1(X , g).

Morphisms into inn(g(1)) come from arbitrary connection 1-forms.
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

General Chern-Simons-like connections

Theorem

For every degree (2n + 1) Lie algebra transgressive element,
(2n + 1)-connections with values in csk(g) are in bijection with
g-Chern-Simons forms.

This means...
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

General Chern-Simons-like connections

Theorem

For every degree (2n + 1) Lie algebra transgressive element,
(2n + 1)-connections with values in csk(g) are in bijection with
g-Chern-Simons forms.

This means...
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

General Chern-Simons-like connections

1

g

Vect(X )

(A)

FA=0

OO
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

General Chern-Simons-like connections

Baez-Crans

1 2n

g gµk
oooo

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+CSk (A)=0

OO
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

General Chern-Simons-like connections

Baez-Crans Chern-Simons

1 2n 2n + 1

g gµk
oooo � � // csk(g)

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+CSk (A)=0

OO

Vect(X )

(A,B,C)

C=dB+CSk (A)

OO
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

General Chern-Simons-like connections

Baez-Crans Chern-Simons Chern

1 2n 2n + 1 2n + 1

g gµk
oooo � � // csk(g) // // chk(g)

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+CSk (A)=0

OO

Vect(X )

(A,B,C)

C=dB+CSk (A)

OO

Vect(X )

(A,C)

dC=k((FA)n+1)

OO
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

The standard Chern-Simons 3-connection

Finally: the case we wanted to understand

Let now g be semisimple and let

µ = 〈·, [·, ·]〉

be the canonical 3-cocycle.

Theorem (Baez, Crans, S, Stevenson)

The corresponding Baez-Crans Lie 2-algebra gµ is equivalent to
that of the corresponding String 2-group

gµ ' Lie(Stringk(G )) .
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

The standard Chern-Simons 3-connection

Finally: the case we wanted to understand

Let now g be semisimple and let

µ = 〈·, [·, ·]〉

be the canonical 3-cocycle.

Theorem (Baez, Crans, S, Stevenson)

The corresponding Baez-Crans Lie 2-algebra gµ is equivalent to
that of the corresponding String 2-group

gµ ' Lie(Stringk(G )) .
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

The standard Chern-Simons 3-connection

g

g

Vect(X )

(A)

FA=0

OO
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

The standard Chern-Simons 3-connection

g stringk(g)oooo

∼

g gkoooo

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)
FA=0

dB+kCS(A)=0

OO
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

The standard Chern-Simons 3-connection

g stringk(g)oooo � � //

∼

inn(stringk(g))

g gkoooo � � // csk(g)

∼

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+kCS(A)=0

OO

Vect(X )

(A,B,C)

C=dB+kCS(A)

OO
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

The standard Chern-Simons 3-connection

g stringk(g)oooo � � //

∼

inn(stringk(g))

g gµoooo � � // csk(g)

∼

// // chk(g)

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+CSk (A)=0

OO

Vect(X )

(A,B,C)

C=dB+CSµ(A)

OO

Vect(X )

(A,C)

dC=〈FA∧FA〉

OO
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n-Bundles with Lie n-algebra connection

Examples of connection n-forms

General Chern-Simons-like connections

Remark.

The relevance of this statement is that this means that under the
integration morphism

Lie n-algebroids
integration // Lie n-groupoids

a morphism
Ω•(X ) chk(g)

(C=CSk (A)+dB)oo

should turn into a 4-functor

Π4(X )
traC // G(4)

which on 3-dimensional volumes V acts as the Chern-Simons
functional

V 7→ exp(i

∫
V

CS(A)) .
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g(n)-Bundles with connection

Bundles with g(n)-connection

We shall now give the central definition of a global
g(n)-connection. This is the differential version of the definition of
non fake-flat parallel G(n)-transport.
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g(n)-Bundles with connection

g(n)-Connections on nontrivial bundles

Recall:

Remark

For g(n) any Lie n-algebra, the sequence

g∗(n) inn(g(n)))
∗i∗uoo bg∗(n)

p∗uoo

plays the role of differential forms on the universal g(n)-n-bundle.

For more background on this, see

Universal G(n)-bundles in terms of n-groupoids

G(n)-bundles with connection

in n-C ategorical background.
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g(n)-Bundles with connection

Bundles with g(n)-connection

Definition
A bundle p : P → X
with g(n)-connection is
a morphism (A,FA)
and a morphism i∗

such that i∗A→ i∗u ;
and a morphism p∗

and a choice
of r -forms {Ki}
such that p∗Ki ' ki (FA).

Ω•
li(|G(n)|) g∗(n)

oo

Ω•(P)

i∗

OO

inn(g(n))
∗

i∗u

OO

(A,FA)oo

Ω•(X )

p∗

OO

bg∗(n)
{Ki}oo

p∗u

OO

=

v~ uuuuuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuuuuu

'

x� yy
yy

yy
yy

yy
yy

yy
yy

yy

yy
yy

yy
yy

yy
yy

yy
yy

yy
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g(n)-Bundles with connection

Bundles with g(n)-connection

Definition
A bundle p : P → X
with g(n)-connection is
a morphism (A,FA)
and a morphism i∗

such that i∗A→ i∗u ;
and a morphism p∗

and a choice
of r -forms {Ki}
such that p∗Ki ' ki (FA).

Ω•
li(|G(n)|) g∗(n)

oo

Ω•(P)

i∗

OO

inn(g(n))
∗

i∗u

OO

(A,FA)oo

Ω•(X )

p∗

OO

bg∗(n)
{Ki}oo

p∗u

OO

=

v~ uuuuuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuuuuu

'

x� yy
yy

yy
yy

yy
yy

yy
yy

yy

yy
yy

yy
yy

yy
yy

yy
yy

yy
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g(n)-Bundles with connection

Bundles with g(n)-connection

Definition
A bundle p : P → X
with g(n)-connection is
a morphism (A,FA)
and a morphism i∗

such that i∗A→ i∗u ;
and a morphism p∗

and a choice
of r -forms {Ki}
such that p∗Ki ' ki (FA).

Ω•
li(|G(n)|) g∗(n)

oo

Ω•(P)

i∗

OO

inn(g(n))
∗

i∗u

OO

(A,FA)oo

Ω•(X )

p∗

OO

bg∗(n)
{Ki}oo

p∗u

OO

=

v~ uuuuuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuuuuu
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x� yy
yy

yy
yy

yy
yy
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g(n)-Bundles with connection

Bundles with g(n)-connection

Definition
A bundle p : P → X
with g(n)-connection is
a morphism (A,FA)
and a morphism i∗

such that i∗A→ i∗u ;
and a morphism p∗

and a choice
of r -forms {Ki}
such that p∗Ki ' ki (FA).

Ω•
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Ω•(P)

i∗
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inn(g(n))
∗

i∗u

OO

(A,FA)oo
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p∗
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p∗u

OO

=
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g(n)-Bundles with connection

Bundles with g(n)-connection

Definition
A bundle p : P → X
with g(n)-connection is
a morphism (A,FA)
and a morphism i∗

such that i∗A→ i∗u ;
and a morphism p∗

and a choice
of r -forms {Ki}
such that p∗Ki ' ki (FA).

Ω•
li(|G(n)|) g∗(n)

oo

Ω•(P)

i∗

OO
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∗

i∗u

OO

(A,FA)oo

Ω•(X )

p∗

OO
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OO

=
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g(n)-Bundles with connection

Bundles with g(n)-connection

Definition
A bundle p : P → X
with g(n)-connection is
a morphism (A,FA)
and a morphism i∗

such that i∗A→ i∗u ;
and a morphism p∗

and a choice
of r -forms {Ki}
such that p∗Ki ' ki (FA).

Ω•
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g(n)-Bundles with connection

Bundles with g(n)-connection

Definition
A bundle p : P → X
with g(n)-connection is
a morphism (A,FA)
and a morphism i∗

such that i∗A→ i∗u ;
and a morphism p∗

and a choice
of r -forms {Ki}
such that p∗Ki ' ki (FA).

Ω•
li(|G(n)|) g∗(n)
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Ω•(P)
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i∗u
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=
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g(n)-Bundles with connection

Bundles with g(n)-connection

More precisely. . .
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g(n)-Bundles with connection

Bundles with g(n)-connection

Let g(n) be a Lie n-algebra. A g(n)-n-bundle with connection over a
manifold X is a diagram

Ω•(F ) g∗(n)
oo

Ω•(Y )

i∗

OO

inn(g(n))
∗(A,FA)oo

OO

Ω•(X )

π∗

OO
0

CC

bg∗(n){Ki=ki (FA)}
oo

OO
0

[[

'
rz nnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnn

'
rz nnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnn

where we have. . .
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g(n)-Bundles with connection

Bundles with g(n)-connection

Y
π→ X is a surjective submersion whose kernel F = ker(π)

exists, F
i→ Y

π→ X ;

a characteristic map

Ω•(X ) bg∗(n)
{Ki}oo

a n-Cartan-Ehresmann connection

Ω•(Y ) inn(g(n))
∗(A,FA)oo

and where. . .
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g(n)-Bundles with connection

Bundles with g(n)-connection

. . . the homotopies are required to respect the sequence property in
that

Ω•(F ) g∗(n)
oo

Ω•(Y )

i∗

OO

inn(g(n))
∗(A,FA)oo

OO

bg∗(n)

OO
0

[[

'
rz nnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnn

and. . .

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Bundles with Lie n-algebra connection

g(n)-Bundles with connection

Bundles with g(n)-connection

Ω•(F )

Ω•(Y )

i∗

OO

inn(g(n))
∗(A,FA)oo

Ω•(X )

π∗

OO0

CC

bg∗(n){Ki=ki (FA)}
oo

OO

'
rz nnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnn

are required to vanish.
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g(n)-Bundles with connection

Bundles with g(n)-connection

Here

Ω•(F ) g∗(n)
oo

Ω•(Y )

i∗

OO

inn(g(n))
∗(A,FA)oo

OO

'
rz nnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnn

is the first Ehresmann condition: this says that the connection
n-forms pulled back to the fiber have to look like “the canonical
left-invariant n-forms”.
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g(n)-Bundles with connection

Bundles with g(n)-connection

And

Ω•(Y ) inn(g(n))
∗(A,FA)oo

Ω•(X )

π∗

OO

bg∗(n){Ki=ki (FA)}
oo

OO

'
rz nnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnn

is the second Ehresmann condition: this says that the connection
data has to transform equivariantly (since it requests that k(FA)
descends to the base and is hence invariant under vertical
transformations along the fibers.)
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g(n)-Bundles with connection

Bundles with g(n)-connection

Definition

The morphism

Ω•(X ) bg∗(n){Ki=ki (FA)}
oo

here is the Chern-Weil homomorphism of the given n-bundle: its
image are the characteristic classes of the n-bundle with
g(n)-connection.
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g(n)-Bundles with connection

This leads us to have a closer look at the characteristic classes of
n-bundles with g(n)-connection.
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Characteristic classes of n-bundles

We have seen that the morphism

Ω•(X ) bg∗(n){Ki=ki (FA)}
oo

in the diagram

Ω•(F ) g∗(n)
oo

Ω•(Y )

i∗

OO

inn(g(n))
∗(A,FA)oo

OO

Ω•(X )

π∗

OO
0

AA

bg∗(n){Ki=ki (FA)}
oo

OO
0

\\

'
qy kkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkk

'
qy kkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkk

describes the characteristic classes of the n-bundle with
g(n)-connection.
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Characteristic classes of n-bundles

Reminder on characteristic classes

inv(g) //

Chern-Weil homomorphism

44Ω•(X ) // H•(X ,R)

k
� // k(FA) � // [k(fA)]

invariant
polynomial

characteristic
form

characteristic
class

The Chern-Weil homomorphism sends, for each G -bundle
P → X , any degree n invariant polynomial on g = Lie(G ) to the
deRham class of the differential form k(FA) = k(FA ∧ · · · ∧ FA)
obtained by inserting the curvature 2-form of any connection on P
into k.
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Characteristic classes of n-bundles

Remark.

Beware, though, that we are at the moment making statements
only about deRham classes. As we can see from the n = 1-case,
where the diagram encodes an ordinary Ehresmann connection, the
diagram should also encode the integral classes. This needs to
better understood.
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Characteristic classes of n-bundles

We can understand from this point of view how the condition
arises, that
invariant polynomials which suspend to zero do not contribute. . .
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Characteristic classes of n-bundles

The existence of the transformation

Ω•(Y ) inn(g(n))
∗(A,FA)oo

Ω•(X )

π∗

OO

bg∗(n){Ki=ki (FA)}
oo

OO

'
rz nnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnn

says that k(FA) and π∗K may differ by an exact term dω on Y . . .

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Bundles with Lie n-algebra connection

Characteristic classes of n-bundles

Bundles with g(n)-connection

. . . where however ω has to vanish on the fibers, since

Ω•(F )

Ω•(Y )

i∗

OO

inn(g(n))
∗(A,FA)oo

Ω•(X )

π∗

OO0

CC

bg∗(n){Ki=ki (FA)}
oo

OO

'
rz nnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnn

has to vanish.
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Characteristic classes of n-bundles

But this says that invariant polynomials that suspend to zero can
always be absorbed by this transformation.
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Characteristic classes of n-bundles

Lie algebra g ⊂ gl(n, C) g ⊂ gl(n, C) g ⊂ gl(n, R)

invariant
polynomial

chk ck pk/2

definition

ch(X )
= tr(exp(itX ))

=
P

k
tkchk (X , · · · , X )

c(X )
= det(t + iX )

=
P

k
tn−kck (X , · · · , X )

det(t − X )

=
P

k
tn−kpk/2(X , · · · , X )

characteristic
class

Chern character Chern class Pontryagin class

Characteristic classes for matrix Lie algebras obtained from the trace and the determinant.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Examples of g(n)-bundles

1 Motivation

2 Plan

3 Parallel n-transport

4 n-Curvature

5 Lie n-algebra cohomology

6 Bundles with Lie n-algebra connection

1 Ordinary bundles
2 Line 2-bundles (abelian gerbes)
3 String 2-bundles
4 Chern-Simons 3-bundles

7 String- and Chern-Simons n-Transport

8 Conclusion

9 Questions

10 n-Categorical background
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Ordinary bundles

Ordinary bundles

Example

For an ordinary Lie algebra g(n) = g this reproduces the definition
of a Cartan-Ehresmann connection:
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Ordinary bundles

Ordinary bundles

Example

For an ordinary Lie algebra g(n) = g this reproduces the definition
of a Cartan-Ehresmann connection:

The morphism
Ω•(P) inn(g)∗

(A,FA)oo

is a g-valued 1-form A on the total space P of the bundle.
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Examples of g(n)-bundles

Ordinary bundles

Ordinary bundles

Example

For an ordinary Lie algebra g(n) = g this reproduces the definition
of a Cartan-Ehresmann connection:

The square Ω•
li(G ) g∗

'oo

Ω•(P)

i∗

OO

inn(g)∗
(A,FA)oo

OO

says that A restricted to the fiber is the canonical 1-form on G .
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Ordinary bundles

Ordinary bundles

Example

For an ordinary Lie algebra g(n) = g this reproduces the definition
of a Cartan-Ehresmann connection:

The square
Ω•(P) inn(g)∗

(A,FA)oo

Ω•(X )

p∗

OO

bg∗
{Ki=ki (FA)}oo

OO

'

y� {{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

says that the Chern forms ki (FA) on the total space have to
descend to the characteristic classes on the base space. A
sufficient condition for this is the g-equivariance of A.
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Line 2-bundles (abelian gerbes)

Example

For g(2) = Lie(ΣU(1)) the morphism

Ω•(X ) bg∗(2)
Koo

defines a closed 3-form on X .
The condition Ω•

li(|G(2)|) g∗(2)
'oo

says that the fibers have

H•(|G(2)|) = H2(|G(2)|) ' R .

They look like PU(H).
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String 2-bundles

String 2-bundles

Example

For g simple and g(2) = g〈·,[·,·]〉 the String Lie 2-algebra, the
morphism

Ω•(X ) bg∗(2)
{Ki=ki (FA)}oo

assigns, due to the nature of the
invariant polynomials of the String Lie 2-algebra, the

characteristic classes of a g-bundle with [〈FA ∧ FA〉] vanishing.
The condition Ω•

li(|G(2)|) g∗(2)
'oo

says that the fibers are like G but with

H3(|G(2)|) ' 0 .

This says they look like the String group.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Examples of g(n)-bundles

String 2-bundles

String 2-bundles

Example

For g simple and g(2) = g〈·,[·,·]〉 the String Lie 2-algebra, the
morphism

Ω•(X ) bg∗(2)
{Ki=ki (FA)}oo

assigns, due to the nature of the
invariant polynomials of the String Lie 2-algebra, the

characteristic classes of a g-bundle with [〈FA ∧ FA〉] vanishing.
The condition Ω•

li(|G(2)|) g∗(2)
'oo

says that the fibers are like G but with

H3(|G(2)|) ' 0 .

This says they look like the String group.
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Chern-Simons 3-bundles

Example

For g simple and g(2) = ch〈·,·〉(g) the Chern Lie 3-algebra
corresponding to the Killing form, the morphism

Ω•(X ) bg∗(2)
{Ki=ki (FA)}oo

assigns the Pontryagin class of a g-bundle.
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String- and Chern-Simons n-Transport

1 Motivation

2 Plan

3 Parallel n-transport

4 Lie n-algebra cohomology

5 Bundles with Lie n-algebra connection

6 String- and Chern-Simons n-Transport

1 Basic idea
2 The String-2-group and its 2-transport
3 Obstruction theory
4 String-like central extensions
5 Obstructing n-bundles: integral picture
6 Obstructing n-bundles: differential picture

7 Conclusion

8 Questions

9 n-Categorical background
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String- and Chern-Simons n-Transport

Basic idea

The basic idea of String- and
Chern-Simons n-transport
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String- and Chern-Simons n-Transport

Basic idea

A Chern-Simons (n + 1)-transport is the obstruction to lifting a
G -1-transport through a String-like extension

Σn−1U(1)→ Ĝ → G .
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The String-2-group and its 2-transport

The String-2-group and its
2-transport
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The String-2-group and its 2-transport

Killingback and Witten noticed that
1 super particles couple to Spin(n)-bundles with connection

like

2 super strings couple to String(n)-bundles with (?)
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String- and Chern-Simons n-Transport

The String-2-group and its 2-transport

Using the Atiyah-Segal observation that
1 quantum (super) particles are functors 1CobS → HilbS

like

2 quantum (super) strings are functors 2CobS → HilbS

this should translate into a precise statement (about
representations of cobordisms categories).

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

String- and Chern-Simons n-Transport

The String-2-group and its 2-transport

Back then few people thought of categorification. But Stolz and
Teichner later made two remarks.
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The String-2-group and its 2-transport

First Remark.

First, following Dan Freed, Segal’s original viewpoint should be
refined to
1 quantum (super) particles are functors 1CobS → HilbS

like

2 quantum (super) strings are 2-functors Cobext
S → 2HilbS

This is nowadays known as extended quantum field theory.
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The String-2-group and its 2-transport

Second Remark

Moreover, it should be true that

1
Spin(n)
bundles

with
connection

are related to K-cohomology

like

2
String(n)
bundles

with
connection

are related to elliptic cohomology
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The String-2-group and its 2-transport

All in all, this is supposed to be considerable reason to be
interested in String(n)-bundles with connection.
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The String-2-group and its 2-transport

What is String(n), anyway?
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The String-2-group and its 2-transport

There is the classical definition of String(n), and there is a
“revisionist” one. The latter is maybe intuitively more accessible.
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The String-2-group and its 2-transport

Revisionist definition: String(n) as stringy Spin(n).

In the old days, superstrings (in their RNS incarnation) were
sometimes called spinning strings. Indeed, a superstring is much
like a continuous line of spinors.
This suggests that the corresponding gauge group is the loop group

ΩSpin(n)

or maybe its Kac-Moody central extension

Ω̂kSpin(n)

or maybe the path group

PSpin(n) .

Or maybe all of these.
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The String-2-group and its 2-transport

In fact, there are canonical group homomorphisms

Ω̂kSpin(n)
t // PSpin(n)

α // Aut(Ω̂kSpin(n)) .
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The String-2-group and its 2-transport

These satisfy two compatibility conditions which say that the
groups here conspire to form a (strict Fréchet-Lie) 2-group

G(2) .

A 2-group is a category which behaves like a group.
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The String-2-group and its 2-transport

Every toplogical 2-group like this may be turned into a big ordinary
topological group by taking its nerve. For G(2), this nerve is
[Henriques,BCSS]

|G(2)| ' String(n) .
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The String-2-group and its 2-transport

Classical definition

This is all that is needed about String(n) in the following. But for
completeness, here is the classical definition.
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The String-2-group and its 2-transport

Definition

The string group StringG of a simple, simply connected, compact
topological group G is (a model for) the 3-connected topological
group with the same homotopy groups as G , except

π3(StringG ) = 0 ,

which, furthermore, fits into the exact sequence

1 // (BU(1) ' K (Z, 2)) // StringG
// G // 1

of topological groups.
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The String-2-group and its 2-transport

The string group proper is obtained by setting G = Spin(n).

String(n) := StringSpin(n) .
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The String-2-group and its 2-transport

The way to see that such a group is a plausible candidate for
something generalizing the Spin-group, which, recall, fits into the
exact sequence

1→ Z2 → Spin(n)→ SO(n)→ 1 ,

is to note that the first few homotopy groups πk of O(n) are

k = 0 1 2 3 4 5 6 7

πk(O(n)) = Z2 Z2 0 Z2 0 0 0 Z .
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The String-2-group and its 2-transport

Starting with O(n), we can successively “kill” the lowest
nonvanishing homotopy groups, thus obtaining first SO(n) (the
connected component), then Spin(n) (the universal cover) and
finally String(n) (the 3-connected cover). Notice that with π3

vanishing, String(n) cannot be a compact Lie group – but it can
be a Lie 2-group.
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The String-2-group and its 2-transport

Usually (see [?]), the definition of StringG includes also a

condition on the boundary map π3(G )
∂ // π2(K (Z, 2)) . Our

definition above is really geared towards the application where
G = Spin(n), for which we find it more natural.
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The String-2-group and its 2-transport

Namely, recall that every short exact sequence of topological
groups

0→ A→ B → C → 0 ,

which happens to be a fibration, gives rise to a long exact
sequence of homotopy groups:

· · · // πn(A) // πn(B) // πn(C )
∂ // πn−1(A) // · · · .
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The String-2-group and its 2-transport

In our case this becomes

· · · // πn(K (Z, 2)) // πn(StringG ) // πn(G )
∂ // πn−1(K (Z, 2)) // · · · .

Demanding that π3(StringG ) = 0 and assuming that also
π2(StringG ) = 0 (which we noticed above is the case for
G = Spin(n)) implies that we find inside this long exact sequence
the short exact sequence

0 // (π3(G ) ' Z)
∂ // Z // 0 .
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The String-2-group and its 2-transport

But this implies that the boundary map ∂ here is an isomorphism,
hence that it acts on Z either by multiplication with k = 1 or
k = −1. (This number is really the “level” governing this
construction. If I find the time I will explain this later.)
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The String-2-group and its 2-transport

In [StolzTeichner] this logic is applied the other way around.
Instead of demanding that π3(StringG ) = 0 it is demanded that
the boundary map

π3(G )
∂ // Z

is given by multiplication with the level, namely a specified element
in H4(BG ).
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String 2-Transport

String 2-transport
Principal String 2-transport is principal 2-transport with structure
2-group Stringk(G ) : (Ω̂kG → PG ).
2-Vector String 2-transport is 2-transport associated to that by the
canonical 2-rep

ρ : Stringk(G )→ BimodvN ↪→ 2Vect .
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String 2-Transport

When considering String(n)-transport, there is a simple example to
keep in mind: rank-1 2-vector bundles, line 2-bundles

let G(2) = ΣU(1)

then |G(2)| ' PU(H)

local semi trivialization of ρ-associated ΣU(1)-2-bundles are
line bundle gerbes [S.-Waldorf]

indeed, these have same classification as PU(H)-bundles,
namely class in H3(X ,Z)

canonical 2-rep on algebras equivalent to C: finite rank
operators K (H)
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String 2-Transport

Compare:
line 2-bundle String 2-bundle

structure 2-group (U(1)→ 1) (Ω̂Spin(n)→ PSpin(n))

nerve of that PU(H) String(n)

associated 2-vector bundle finite-rank operators von-Neumann algebras
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Obstruction theory

Obstruction theory
In obstruction theory we study the failure of existences of lifts

K

��
G

��
P //

88qqqqqqq
B
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Obstruction theory

The idea of obstruction theory

In some suitable categorical context, let

P // B

be a morphism (a parallel n-transport in our context) and

K
t // G

��
B

an exact sequence (of transport codomains, in our context).
Then obstruction theory studies . . .
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Obstruction theory

The idea of obstruction theory

Then obstruction theory studies the failure of being able to
construct a lift

K // G

��
P //

??

B
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Obstruction theory

The idea of obstruction theory

The obstruction to this should be the composite denoted obst in

K
t // G

i //

��

wcoker(t) // coker(i)

P //

??

obst

>>

B
f −1

::uuuuuuuuuu
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Obstruction theory

The idea of obstruction theory

where wcoker denotes a weak cokernel construction and where f −1

is some suitable ”local inverse” to the universal f defined by

K
t // G //

��

wcoker(t)

f
zzuuu

uuu
uuu

u

B

'u} ss
sssss
s .
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Obstruction theory

Weak cokernels of group homomorphisms

The weak cokernel wcoker(t) of a morphism of groups

H
t→ G

is defined to be the cokernel of 2-groups when H and G are
regarded as discrete 2-groups.
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Obstruction theory

Weak cokernels of 2-group homomorphisms

Similarly the weak cokernel wcoker(t) of a morphism of 2-groups

H(2)
t→ G(2)

is defined to be the cokernel of 3-groups when H and G are
regarded as discrete 2-groups.
This has been studied in [CarrascoGarzónVitale:2006].
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Obstruction theory

Weak cokernels of 2-group homomorphisms

Proposition

For H(2) and G(2) strict 2-groups, and t a morphism of strict
2-groups, the weak cokernel wcoker is isomorphic to the mapping
cone

wcoker = (H(2)
t→ G(2))

of 2-groups.

See mapping cones.
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Obstruction theory

Weak cokernels of 2-group homomorphisms

Example

Let H
t→ G be a crossed module of groups. Then wcoker(t) is the

corresponding strict 2-group.

Example

Let tIdG(2)
. Then

wcoker(t) = INN0(G(2))

is the inner automorphism 3-group studied in
[RobertsSchreiber:2007].
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Obstruction theory

Weak cokernels of 2-group homomorphisms

It follows that for any given short exact sequence of strict 2-groups

K(2)
t // G(2) // B(2)

one obtains the setup

K(2)
t // G(2) //

��

(H(2)
t→ G(2))

f
yyssssssssss

B(2)

'u} rrrrr
rrrrr .
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Obstruction theory

Weak cokernels of morphisms of Lie n-algebras

Most of these constructions are computationally easier and easier
to generalize to arbitrary n when we pass from Lie n-groups to Lie
n-algebras.
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Obstruction theory

Weak cokernels of morphisms of Lie n-algebras

We can reproduce the construction analogous to the above one for
sequences of Lie n-algebras

k∗(n) g∗(n)
t∗oo b∗(n)

oo

with t∗ assumed to be particularly well behaved. (A condition
always satisfied in the examples we shall study. A generalization
away from this assumption is certainly expected to exists, but not
studied here.)
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Obstruction theory

Weak cokernels of morphisms of Lie n-algebras

Thinking of the weak cokernel of 2-groups as a mapping cone
proves to be useful for the generalization to Lie n-algebras:
we can define the mapping cone Lie (n + 1)-algebra

(k(n)
t→ g(n))

and show that it does fit into

k∗(n) g∗(n)
t∗oo (k∗(n)

t∗← g∗(n))
oo

b∗(n)

OO

f

::u
u

u
u

u

.
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Obstruction theory

Weak cokernels of morphisms of Lie n-algebras

Moreover, in this context now the map f does have a weak inverse

f −1 : (k∗(n)
t∗← g∗(n))→ b∗(n) .

This we can use to compute obstructions quite explicitly.
You may first look at the families of extensions of Lie n-algebras
that we are going to consider: String-like central extensions.
Or see how the obstructions to lifting g(n)-connections through
these extensions are computed: Obstructions to n-bundle lifts
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String-like central extensions

String-like central extensions
We now describe a class of central extensions of Lie n-algebras
whose obstruction theory is relevant in the context of
Chern-Simons theory and its generalizations.
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String-like central extensions

Recall the main statement about the Baez-Crans type Lie
n-algebras

Proposition

Let g be a Lie algebra. Then for any Lie algebra 2n + 1 cocycle µ
which is in transgression with an invariant polynomial k there is a
(weakly exact) sequence

gµ → csk(g)→ chk(g)

of Lie 2n + 1-algebras. Here gµ is a 2n-algebra which is a central
extension

Lie(Σ(n−1)U(1))→ gµ → g

of g by the shifted abelian Lie n-algebra and we have a canonical
isomorphism

csk(g) ' inn(gµ) .
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String-like central extensions

By combining these two sequences we obtain the Lie n-algebra
description of the extension of the universal g-bundle by the
universal Σ(n−1)U(1)-bundle to the universal gµ-bundle:

universal
Σn−1U(1)-bundle

universal
gµ-bundle

universal
g-bundle

Lie(Σn−1U(1)) //

��

gµ //

��

g

��
inn(Lie(Σn−1U(1))) //

��

inn(gµ) //

��

inn(g)

��
Lie(ΣnU(1)) // bgµ // bg

.
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Obstructing n-bundles: integral picture

Obstructing n-bundles:
integral picture
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Obstructing n-bundles: integral picture

Lifting line 2-bundle (lifting gerbes)

Given an ordinary central extension

U(1)→ Ĝ → G

we find from
G = (1→ G ) ' (U(1)→ Ĝ )

and

Ĝ
i
↪→ (U(1)→ Ĝ )→ coker(i) = (U(1)→ 1)

that. . .
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Obstructing n-bundles: integral picture

Lifting line 2-bundle (lifting gerbes)

. . . that the obstruction to lifting a G -cocycle

g23

��?
??

??
??g12

??�������
g13

//

to a Ĝ cocycle is obtained by first lifting to (U(1)→ Ĝ )

ĝ23

��?
??

??
??ĝ12

??�������
ĝ13

//
'c ��
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Obstructing n-bundles: integral picture

Lifting line 2-bundles (lifting gerbes)

. . . which is always possible, and then extracting the resulting
(U(1)→ 1)-cocycle

Id

��?
??

??
??

Id
??�������
Id

//
'c ��

.

Its nontriviality measure the failure of the lift.
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Obstructing n-bundles: integral picture

Lifting line 3-bundles

The same principle works for the String extension

ΣU(1)→ Stringk(G )→ G .
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Obstructing n-bundles: integral picture

Lifting line 3-bundles

We use

G = (1→ 1→ G ) ' (1→ ΩG → PG ) ' (U(1)→ Ω̂kG → PG )

and

Stringk(G ) = (Ω̂kG → PG )
i
↪→ (U(1)→ Ω̂kG → PG )→ coker(i)

with
coker(i) = (U(1)→ 1→ 1)

and then proceed as before.
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Obstructing n-bundles: integral picture

Lifting line 3-bundles

Definition

A Chern-Simons 3-bundle (Chern-Simons 2-gerbe) is a 3-bundle
obstructing the lift of a G -bundle to a Stringk(G )-2-bundle.
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Obstructing n-bundles: differential picture

Obstructing n-bundles:
differential picture
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Obstructing n-bundles: differential picture

When we have a g-transport given by

Σn−1u(1) //

��

gµ //

��

g

��

TF

;;vvvvvvvvv

��

inn(Σn−1u(1)) //

��

inn(gµ) //

��

inn(g)

��

TY

(A,FA)vvv

;;vv

��

Σnu(1) // bgµ // bg

TX

{Ki}vvv

;;vvv
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Obstructing n-bundles: differential picture

we may want to try to factor it

Σn−1u(1) //

��

gµ //

��

g

��

TF

;;vvvvvvvvv

ddI I I I I

��

inn(Σn−1u(1)) //

��

inn(gµ) //

��

inn(g)

��

TY

(A,FA)vvv

;;vv
(A′,FA′ )II

dd

��

Σnu(1) // bgµ // bg

TX

{Ki}vvv

;;vvv
ddI

I
I

I
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Obstructing n-bundles: differential picture

. . . through a gµ-transport. That is: we may try to lift the g-bundle
through the string-like extension Lie(Σ(n−1)U(1))→ gµ → g to a
gµ-bundle.
To measure the obstruction to being able to do this we
postcompose with a suitably weak cokernel of gµ → g.
The result. . .
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Obstructing n-bundles: differential picture

Σnu(1)

��

(Σn−1u(1)→ gµ)

coker(i)jj

55jjj

��

Σn−1u(1) //

��

gµ //

��

% �

i 22ffffffffffffffffffff g

��

'llllll

66lll

inn(Σnu(1))

��

TF

==||||||

bbE
E

E

��

inn(Σn−1u(1)→ gµ)

55jjjjjjjjj

��

inn(Σn−1u(1)) //

��

inn(gµ) //

��

inn(g)

'llll

66lll

��

Σn+1u(1)

TY

(A,FA)
||

==
(A′,FA′ )
bb

��

b(Σn−1u(1)→ gµ)

55jjjjjjjj

Σnu(1) // bgµ // bg

'llllll

66lll

TX

{Ki}yy

<<ccG G G
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Obstructing n-bundles: differential picture

. . . is a ΣnU(1)-connection. This we call a Chern-Simons
(n + 1)-bundle with connection.

Proposition

The (n + 1)-line bundle obstructing the lift of a g-bundle to a
gµ-n-bundle for µ an (n + 1)-cocycle in transgression with the
invariant polynomial k has the characteristic class k(FA) with FA

the curvature of any connection on the original g-bundle.
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Integral picture: parallel n-transport

n-Bundles with connection

G(n) n-bundles ((n − 1)-gerbes) with connection are

locally trivializable parallel transport n-functors

or rather their curvature (n + 1)-functors

from the fundamental (n + 1)-groupoid of the base space

to (a representation of) the structure Lie n-group G(n)

or rather (locally) to its inner automorphism (n + 1)-group
INN0(G(n)).
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Conclusion

Integral picture: parallel n-transport

Examples of n-Bundles with connection

Ordinary bundles with connection are parallel transport
1-functors

U(1) bundle gerbes with connection are descent data of
ΣU(1) 2-transport.

Line bundle gerbes with connection are descent data of
1dVect 2-transport.

Aschieri-Jurco nonabelian bundle gerbes with connection are
descent data of Bitor(H) 2-transport.

Breen-Messing nonabelian gerbe connection data is descent
data for INN0(AUT(G )) 3-curvature of 2-transport.

Stolz-Teichner String connection is like associated Stringk(G )
2-transport.
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Integral picture: parallel n-transport

Universal n-bundles in terms of n-groupoids

For every n-group G(n) there is an (n + 1)-group INN0(G()) of
inner automorphisms.

It sits in a sequence

Z (G(n))→ INN0(G(n))→ AUT(G(n))→ OUT(G(n))

Its underlying n-groupoid plays the role of the universal
G(n)-bundle G(n) → INN0(G(n))→ ΣG(n)

For n = 1 shown by Segal in the 60s:
|·|7→ (G → EG → BG )

For n = 2 discussed in [RobertsSchreiber].
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Conclusion

n-Lie theory

Passage between Lie n-groupoids and Lie n-algebroids

Lie n-algebras and Lie n-algebroids are to Lie n-groups and Lie
n-groupoids like Lie algebras are to Lie groups.

A full n-Lie theorem – concerning differentiation of Lie
n-groupoids and integration of Lie n-algebroids – is expected,
even though only partially understood so far.

Still, we can transfer structural understanding between the
two realsm.

Parallel n-transport is a morphism of Lie n-groupoids. Hence it
corresponds differentially to a morphisms of Lie n-algebroids.
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Conclusion

n-Lie theory

Passage between Lie n-algebras and differential algebra

General abstract operad nonsense implies equivalence between
Lie n-algebras and n-term L∞-algebras, or their duals: free
graded commutative algebras with a nilpotent degree +1
differential (qDGCAs).

qDGCAs are useful for concrete computations.

qDGCAs prevail in physics literature (compare in particular
AKSZ-BV). Making the explicit n-categorical structure
explicit is often useful.

For instance pairing the qDGCA description with its
understanding in terms of Lie n-algebra yields understanding
of Lie n-algebra cohomology and n-characteristic classes.
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Conclusion

n-Lie theory

Lie n-algebra cohomology

The notion of Lie-cocycle, invariant polynomial and transgression
elements can be generalized to Lie n-algebras.

Lie algebra cocycle µ Baez-Crans Lie n-algebra gµ
invariant polynomial k Chern Lie n-algebra chk(g)
transgression element cs Chern-Simons Lie n-algebra csk(g)

For every transgression element cs these fit into a weakly exact
sequence gµk

→ csk(g)→ chk(g) .
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Conclusion

n-Lie theory

Cokernels, mapping cones and inner derivations

Crucial for considerations of g(n)-connections is the strict
cokernel f(n)

� � t // g(n) // // coker(t)

of Lie n-algebra injections

and its weak analog, the mapping cone Lie (n + 1)-algebra

( f(n)
� � t // g(n) ).

( g(n)
Id // g(n) ) = inn(g(n)) is the inner derivation Lie

(n + 1)-algebra of g(n) – codomain for g(n)-connections

coker( g(n)
� � // inn(g(n)) ) = bg(n) is the Lie n′-algebra

generated from the classes of invariant g(n) polynomials – it
plays the role of the classifying space for g(n)

coker(g(n) ↪→ ( f(n)
t // g(n) )) is the structure Lie n′-algebra

for obstructions of extensions through g(n) → coker(t).
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Conclusion

Differential picture: Lie n-algebra connections

g(n)-Bundles with connection

After passing from Lie n-groupoids to Lie n-algebroids

The curvature (n + 1)-functor

curv : Πn+1(P)→ ΣINN0(G(n))

turns into a qDGCA morphism

Ω•(P) inn(g(n))
∗(A,F )oo .

The n-groupoid version of the universal G(n)-bundle

G(n) → INN(G(n))→ ΣINN(G(n))

turns into the sequence

g∗(n) inn(g(n))
∗oo bg∗(n)
oo

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Conclusion

Differential picture: Lie n-algebra connections

The n-Ehresmann conditon

And the descent condition on (A,FA) says we have a pullback of
the universal G(n)-bundle in that

Ω•
li(|G(n)|) g∗(n)

'oo

Ω•(P)

i∗

OO

inn(g(n))
∗(A,FA)oo

OO

Ω•(X )

p∗

OO

bg∗(n)

OO

{Ki=ki (FA)}oo

=

v~ uuuuuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuuuuu

'

x� yy
yy

yy
yy

yy
yy

yy
yy

yy

yy
yy

yy
yy

yy
yy

yy
yy

yy
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Conclusion

Differential picture: Lie n-algebra connections

n-Chern-Weil and characteristic classes

Here Ω•(X ) bg∗(n)
{Ki=ki (FA)}oo is the n-Chern-Weil

homomorphism, assigning the characteristic classes Ki to the
given (n + 1)-curvature FA.

For instance: the characteristic classes of gµk
-bundles (String

2-bundles) are those of the underlying g-bundles, but modulo
K = k(FA) = 〈FA ∧ FA〉

bg∗µk
' bg/[k] .
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Questions

1 Motivation

2 Plan

3 Parallel n-transport

4 Lie n-algebra cohomology

5 Bundles with Lie n-algebra connection

6 String- and Chern-Simons n-Transport

7 Conclusion

8 Questions

1 11-Dimensional supergravity

9 n-Categorical background
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Questions

11-Dimensional supergravity

Remark.

There is an obvious and straightforward generalization of all Lie
n-algebra construction from the world of vector spaces to that of
super vector spaces (i.e. to the category of Z2-graded vector
spaces equipped with the unique nontrivial symmetric braiding).

The supergravity Lie 3-algebra

D’Auria and Fré noticed that (rephrased in our language)
11-dimensional supergravity is governed by the Baez-Crans type
Lie 3-algebra sugra11 := siso(11)µ

coming from a 4-cocylce µ of the super-Poincaré Lie algebra
siso(11).
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11-Dimensional supergravity

Remark.

There is an obvious and straightforward generalization of all Lie
n-algebra construction from the world of vector spaces to that of
super vector spaces (i.e. to the category of Z2-graded vector
spaces equipped with the unique nontrivial symmetric braiding).

The supergravity Lie 3-algebra

D’Auria and Fré noticed that (rephrased in our language)
11-dimensional supergravity is governed by the Baez-Crans type
Lie 3-algebra sugra11 := siso(11)µ

coming from a 4-cocylce µ of the super-Poincaré Lie algebra
siso(11).

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Questions

11-Dimensional supergravity

Sugra configurations are sugra11-connections

A field configuration of supergravity is nothing but a
sugra11-connection

Ω•(X ) inn(sugra11)
∗(A,FA)oo ,

where A encodes

the graviton, in terms of

the vielbein
the spin connection

the gravitino

the 3-form field .

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

Questions

11-Dimensional supergravity

This suggests that 11-dimensional supergravity is a theory of
siso(11)µ-bundles with connection.
The n-Ehresmann condition would give the global description.
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n-Categorical background

1 Parallel n-transport

2 Lie n-algebra cohomology

3 Bundles with Lie n-algebra connection

4 String- and Chern-Simons n-Transport

5 Conclusion

6 Questions

7 n-Categorical background

1 Morphisms of 2-Functors
2 Morphisms of 3-Functors
3 Strict 2-groups and crossed modules of groups
4 Tangent categories
5 Inner autmorphism (n + 1)-groups
6 Mapping cones
7 Universal G(n)-bundles in terms of n-groupoids

8 G(n)-bundles with connection
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n-Categorical background

Morphisms of 2-Functors

Morphisms of 2-Functors
Strict morphisms between strict 2-functors simply preserve all
compositions strictly. Still, the morphisms between these
morphisms, called pseudonatural transformations, add a new
crucial level of complexity.
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n-Categorical background

Morphisms of 2-Functors

Definition

Let S
F1 // T and S

F2 // T be two 2-functors. A
pseudonatural transformation

S

F1

""

F2

<< T
ρ

��

is . . .
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n-Categorical background

Morphisms of 2-Functors

a map

x
γ // y 7→

F1(x)

ρ(x)

��

F1(γ) // F1(y)

ρ(y)

��
F2(x)

F2(γ)
// F2(y)

ρ(γ){� ��
��

�
��

��
�
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n-Categorical background

Morphisms of 2-Functors

which is functorial in the sense that

F1(x)

ρ(x)

��

F1(γ1) // F1(y)
F1(γ2) //

ρ(y)

��

F1(z)

ρ(z)

��
F2(x)

F2(γ1)
// F2(y)

F2(γ2)
// F2(z)

ρ(γ1){� ��
��

�
��

��
�

ρ(γ2){� ��
��

�
��

��
�

=

F1(x)

ρ(x)

��

F1(γ1◦γ2) // F1(z)

ρ(z)

��
F2(x)

F2(γ1◦γ2)
// F2(z)

ρ(γ1◦γ2){� ��
��

�
��

��
�
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n-Categorical background

Morphisms of 2-Functors

and which makes the pseudonaturality tin can 2-commute

F1(x)

ρ(x)

��

F1(γ1) // F1(y)

ρ(y)

��
F2(x)

F2(γ2)

CC
F2(γ1) // F2(y)

ρ(γ1){� ��
��

�
��

��
�

F2(S)
��

=

F1(x)

ρ(x)

��

F1(γ2) //

F1(γ1)

��
F1(y)

ρ(y)

��
F2(x) F2(γ2) // F2(y)

ρ(γ2){� ��
��

�
��

��
�

F2(S)
��
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n-Categorical background

Morphisms of 2-Functors

for all x

γ1

!!

γ2

== yS
��

∈ Mor2(S).
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n-Categorical background

Morphisms of 2-Functors

The vertical composition of pseudonatural transformations

S

F1

��

F3

CCT
ρ

��
:= S

F1

��

F3

CCF2
// T

ρ1��

ρ2��
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n-Categorical background

Morphisms of 2-Functors

is given by

F1(x)

ρ(x)

��

F1(γ) // F1(y)

ρ(y)

��
F3(x) F3(γ) // F3(y)

ρ(γ){� ��
��

�
��

��
�

:=

F1(x)

ρ1(x)

��

F1(γ) // F1(y)

ρ1(y)

��
F2(x)

ρ2(x)

��

F2(γ) // F2(y)

ρ2(y)

��

ρ1(γ){� ��
��

�
��

��
�

F3(x) F3(γ) // F3(y)

ρ2(γ){� ��
��

�
��

��
�
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n-Categorical background

Morphisms of 2-Functors

Let F1
ρ1 // F2 F1

ρ2 // F2 be two pseudonatural
transformations. A modification (of pseudonatural
transformations)

F1

ρ1

##

ρ2

;; F2A
��

is a map

Obj(S) 3 x 7→ F1(x)

ρ1(x)

%%

ρ2(x)

99
F2(x)A(x)

��
∈ Mor2(T )
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n-Categorical background

Morphisms of 2-Functors

such that

F1(x)

ρ1(x)

��

ρ2(x)

##

F1(γ) // F1(y)

ρ1(y)

��
F2(x)

F2(γ)
// F2(y)

ρ1(γ){� ��
��

�
��

��
�

A(x)
ks =

F1(x)

ρ2(x)

��

F1(γ) // F1(y)

ρ2(y)

��

ρ1(y)

{{
F2(x)

F2(γ)
// F2(y)

ρ2(γ){� ��
��

�
��

��
�

A(y)
ks

for all x
γ // y ∈ Mor1(S).
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n-Categorical background

Morphisms of 2-Functors

Definition

The horizontal and vertical composite of modifications is,
respectively, given by the horizontal and vertical composites of
their component maps.
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n-Categorical background

Morphisms of 2-Functors

Definition

Let S and T be two 2-categories. The 2-functor 2-category T S

is the 2-category

1 whose objects are functors F : S → T

2 whose 1-morphisms are pseudonatural transformations

F1
ρ // F2

3 whose 2-morphisms are modifications

F1

ρ1

##

ρ2

;; F2A
��

.
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n-Categorical background

Morphisms of 3-Functors

Morphisms of 3-functors
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n-Categorical background

Morphisms of 3-Functors

We shall regard 3-categories as special categories internal to 2Cat.
From this point of view, a 3-category has a 2-category of objects
S , each of which looks like

γ1 γ2

x

y

S //

'' ss

.

In a general category internal to 2Cat, we similarly have a
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n-Categorical background

Morphisms of 3-Functors

2-category of morphisms S1
V // S2 , that look like

γ1 γ2

x

y

γ1 γ2

x

y

S1
//

'' ss

S2
___ //___

l
y




N
;

+

'' ss��

���
�
�
�
�
�
�
�
�

F2}}

F1
��
�

�!
V

�
�
�
�

��
�
�
�
�

.

We shall restrict attention to the special case where the vertical
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n-Categorical background

Morphisms of 3-Functors

faces here are identities. Then the above shape looks like

γ1 γ2

x

y

S1

��

S2

D
M

>>
q

z

'' ss

V
��
�
�
�
�

.

Instead of saying that V is a morphism of a category internal to
2Cat, we say V is a 3-morphism. Similarly, S1, S2 are
2-morphisms, γ1, γ2 are 1-morphisms and x and y are objects.
We would have arrived at the same picture had we regarded
categories enriched over 2Cat. However, we find that thinking of
3-morphisms as morphisms of a category internal to 2Cat
facilitates handling morphisms of 3-functors, to which we now turn.
A 3-functor F : S → T between 3-categories S and T is a functor
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n-Categorical background

Morphisms of 3-Functors

internal to 2Cat, hence a map

F : γ1 γ2

x

y

S1

��

S2

D
M

>>
q

z

'' ss

V
��
�
�
�
�

7→ F (γ1) F (γ2)

F (x)

F (y)

F (S1)

��

F (S2)

D
M

>>
q

z

"" uu

F (V )
��

that respects vertical composition strictly and is 2-functorial up to
coherent 3-isomorphisms with respect to the composition
perpendicular to that.

A 1-morphism F1
η // F2 between two such 3-functors is a

natural transformation internal to 2Cat, hence a 2-functor from
the object 2-category to the morphism 2-category, hence a
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n-Categorical background

Morphisms of 3-Functors

2-functorial assignment

η :
γ1 γ2

x

y

S //

'' ss

7→

F1(γ1) F1(γ2)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F1(S) //

## uu

F2(S)__ //__

l
y




N
;

+

  uu��

���
�
�
�
�
�
�
�
�

η(γ2)}}

η(γ1)
��
�

�!
η(S)

�
�
�
�

��
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n-Categorical background

Morphisms of 3-Functors

that satisfies the naturality condition

F1(γ1) F2(γ2)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F1(S1)

��

F1(S2)

D
M

>>
q

z

## uu

F1(V )
��

F2(S2)

D
M

>>
q

z

l
y

	

N
;

+

## uu��

���
�
�
�
�
�
�
�
�

η(γ2)~~

η(γ1)
��
�

�!

η(S2)

��

=

F1(γ1) F2(γ2)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F1(S1)

��

## uu

F2(S1)

�
u I

>

F2(S2)

D
M

>>
q

z

l
y

	

N
;

+

## uu

V
��

��

���
�
�
�
�
�
�
�
�

η(γ2)~~

η(γ1)
��
�

�!
η(S1)

��

.

Accordingly, 2-morphisms and 3-morphisms of our 3-functors are
1-morphisms and 2-morphisms of these 2-functors η.
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n-Categorical background

Morphisms of 3-Functors

Hence a 2-morphism η
ρ // η′ of our 3-functors is a 1-functorial

assignment

ρ :

x

y

γ

����
��
��
��
��
��
�

7→

F1(x)

F1(y)

F1(x)

F1(y)

F2(x)

F2(y)

F2(x)

F2(y)

F1(γ)

����
��
��
��
��
��
�

F1(γ)

����
��
��
��
��
��
�

F2(γ)
�
�

���
�
�
�
�

F2(γ)
��
�

����
��
��
��
�

ρ1(x) //

ρ1(y)
//

ρ2(x) //__________

ρ2(y)
//

η1(y)

��

η1(x)

�
�
�
�
�

���
�
�
�
�

η2(y)

��

η2(x)

��ρ(γ)

�
�
�
�

��
�
�
�
�
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n-Categorical background

Morphisms of 3-Functors

such that

F1(γ1) F1(γ2)

F1(x)

F1(y)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F2(x)

F2(y)

F1(S) //

## uu

F2(S)__ //__

l
y




N
;

+

  uu��

���
�
�
�
�
�
�
�
�

η(γ2)}}

&

�
|

η(γ1)
��
�

�!
η(S)

�
�
�
�

��

ρ1(y) //

ρ1(x) //

ρ2(y) //

ρ2(x)______ //___

F1(γ2)

����
��
��
��
��
��
�

F2(γ2)

����
��
��
��
��
��

η2(y)

��

η2(x)

��
ρ(γ2)

�
�
�
�

��
�
�
�
�

=

F1(γ1) F1(γ2)

F1(x)

F1(y)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F2(x)

F2(y)

F1(S) //

## uu

F2(S)__ //__

l
y




N
;

+

  uu��

���
�
�
�
�
�
�
�
�

η′(γ2)}}

η′(γ1)
��
�

�!
η′(S)

�
�
�
�

��

ρ′1(y) //

ρ′1(x)oo

ρ′2(y) //

ρ′2(x)______ //___

F1(γ2)

����
��
��
��
��
��
�

F2(γ2)

����
��
��
��
��
��

η2(y)

��

η2(x)

��
ρ′(γ2)

�
�
�
�

��
�
�
�
�

.

We want to restrict attention to those ρ for which the horizontal
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n-Categorical background

Morphisms of 3-Functors

1-morphisms ρ1(x), ρ2(x), etc. are identities.

ρ :

x

y

γ

����
��
��
��
��
��
�

7→

F1(x)

F1(y)

F2(x)

F2(y)

F1(γ)

����
��
��
��
��
��
�

F2(γ)
�
�
�

���
�
�

η2(y)

zz

η2(x)

J
F

;
-

yy

�
�

x
t

η1(y)

$$

η1(x)

t
x

�
�

%%

-
;

F
J

ρ(γ)

��
�
�
�
�

�
�
�
�

η2(γ)
����
��
�η1(γ)



�
�
�

ρ(y)
//

ρ(x) //____

Proceeding this way, a modification λ : ρ1 → ρ2 of transformations
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n-Categorical background

Morphisms of 3-Functors

ρ gives us a 3-morphisms of 3-functors. This now is a map

λ : x 7→

F1(x)

F2(x)

η2(x)

zz

η1(x)

$$

ρ2(x)

BB

ρ1(x)

~
o

��
O

@
λ(x)
��
�
�
�
�
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n-Categorical background

Morphisms of 3-Functors

such that

F1(x)

F1(y)

F2(x)

F2(y)

F1(γ)
��

����
��
��
��
�

F2(γ)
�
�
�

���
�
�

η2(y)

zz

η2(x)

J
F

;
-

yy

�
�

x
t

η1(y)

$$

η1(x)

t
x

�
�

%%

-
;

F
Jρ2(γ) ��

�
�
�
� η2(γ)

����
��
�η1(γ)



�
�
�

ρ2(y)
//

ρ2(x)

:
B

L
_ r

BB�

ρ1(x)

~
o _

��@
λ(x)
��
�
�
�
�

=

F1(x)

F1(y)

F2(x)

F2(y)

F1(γ)
��

����
��
��
��
�

���
�
�
�
�
�

η2(y)

zz

η2(x)

J
F

;
-

yy

�
�

x
t

η1(y)

$$

η1(x)

t
x

�
�

%%

-
;

F
Jρ1(γ) ��

�
�
�
� η2(γ)

����
��
�η1(γ)



�
�
�

ρ1(x) //____

ρ2(x)

BB
ρ1(x)

~
o _

��@
λ(y)
��
�
�
�
�

.
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Strict 2-groups
and

crossed modules of groups
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Strict 2-Groups and crossed modules of groups

It is an old result that strict 2-groups are isomorphic to crossed
modules of ordinary groups. The isomorphism is in fact almost
canonical: only two minor choices are involved.
When differentiating 2-functors with values in strict Lie 2-groups,
we make extensive use of this equivalence, the precise realization of
which is spelled out below.
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Strict 2-Groups and crossed modules of groups

Definition

A crossed module of groups is a diagram

H
t // G

α // Aut(H)

in Grp (meaning all objects are groups and all arrows are group
homomorphisms) such that

H

t ��>
>>

>>
>>

>
Ad // Aut(H)

G

α

;;wwwwwwwww

and
G × H

Id×t //

α

��

G × G

Ad
��

H
t // G

.
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Strict 2-Groups and crossed modules of groups

Definition

A strict 2-group G(2) is any of the following equivalent entities

a group object in Cat;
a category object in Grp;

a strict 2-groupoid with a single object.
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Strict 2-Groups and crossed modules of groups

As for groups, we shall write G(2) when we think of G(2) as a
monoidal category, and ΣG(2) when we think of it as a 1-object
2-groupoid.

Proposition

Crossed modules of groups and strict 2-groups are isomorphic.

We now spell out this identification in detail. It is unique only up
to a few conventional choices.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

The same is in principle already true for the identification of
1-groups with categories, which is unique only up to reversal of all
arrows.
To start with, we take all principal actions to be from the right.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

So for G any group, GTor denotes the category of right-principal
G -spaces. This implies that if we want the canonical inclusion

iG : ΣG → GTor

to be covariant, we need to take composition in ΣG to work like

g2 ◦ g1 = g2g1 ,

where on the left the composition is that of morphisms in ΣG ,
while on the right it is the product in G .
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

Notice that this implies that diagrammatically we have

• g1 // • g2 // • = • g2g1 // • .

If G comes to us as a group of maps, we accordingly take the
group product to be given by g2g1 := g2 ◦ g1.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

When we then pass to strict 2-groups G(2) coming from crossed
modules (t : H → G ) of groups, and want to label 2-morphisms in
ΣG(2) with elements in H and G , we have one more convention to
fix.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

Let G(2) be a (strict) 2-group which we may alternatively think of
a crossed module t : H → G . To recover G(2) from the crossed
module t : H → G we set

Ob(G(2)) = G

Mor(G(2)) = G n H .

Here on the right we have the semidirect product group obtained
from G and H using the action of G on H by way of α.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

A 2-morphism in ΣG(2) will be denoted by

•

g

��

g ′

AA •h
��

for g , g ′ ∈ G and h ∈ H, where g ′ will turn out to be fixed by
(g , h) ∈ G n H. The semi-direct product structure on G n H, the
source, target and composition homomorphisms are defined as
follows.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

We shall agree that

•

g

��

g ′

AA •h
��

:= •

Id

��

t(h)

AA •
g // •h

��
.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

From the requirement that t : H → G be a homomorphism, it
follows that

•

Id

��

t(h)

AA •

Id

��

t(h′)

AA •h
��

h′
��

= •

Id

��

t(h′h)

AA •h′h
��

.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

Together with the convention above this means that the
source-target matching condition then reads

g ′ = g t(h) .
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

The exchange law then implies that

•

Id

��
t(h) //

FF•
h��

h′��

= •

Id

��

t(hh′)

AA •hh′
��

.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

Since in the crossed module we have t(α(g)(h)) = gt(h)g−1 we
find that inner automorphisms in the 2-group have to be labeled
like this:

• g−1
// •

Id

��

t(h)

AA •
g // •h

��
= •

Id

��

t(α(g)(h))

AA •α(g)(h)
��

.
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Strict 2-Groups and crossed modules of groups

Our chosen isomorphism of 2-groups with crossed modules

This then finally implies the rule for general horizontal
compositions

•

g1

��

g ′1

BB•

g2

��

g ′2

BB•h1��
h2��

= •

g2g1

��

g ′2g
′
1

BB•α
g−1
1

(h2)h1

��
.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

Tangent Categories

Tangent categories
Tangent categories are categories of images of the fat point
{• '→ ◦} whose left end is fixed, while the right end is allowed to
float.
Tangent categories are related to weak cokernels of identity
morphisms, to inner automorphism (n + 1)-groups, to vector fields
on Lie n-groupoids and hence to Lie n-algebroids.
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Tangent Categories

The sequences of Lie n-algebras which appeared in
Bundles with Lie n-algebra connection and which were related to
universal g(n)-bundles have their origin in a very fundamental
n-categorical construction which we address as the construction of
tangent n-categories.
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Tangent Categories

Definition

Let
2 := { • // ◦ }

be the category wtih two objects and one nontrivial morphism,
going between them.

Definition

For C any category, the tangent category TC is the strict pullback

TC //

��

C 2

����
C0

� � // C

in Cat.
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Tangent Categories

Proposition

Mor(C )→ TC → C is exact

for C a (Lie) groupoid, TC ' C0

sections Γ(TC ) of TC → C0 inherit a 2-group structure
through the inclusion Γ(TC ) ↪→ TIdEnd(C )

ΓR(TC ) := Hom(R, Γ(TC )) is the Lie algebroid of C

for C = ΣG , TC := INN(G ) is the inner automorphism
2-group of G .
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Tangent Categories

Remark.

These statements have more or less obvious generalizations to
n > 1. For n = 2 this is done in [RobertsSchreiber]
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Inner automorphism (n + 1)-Groups

Every n-group G(n) has an (n + 1)-group AUT(G(n)) of
automorphisms.

This sits inside an exact sequence
1→ Z (G(n))→ INN(G(n))→ AUT(G(n))→ OUT(G(n))→ 1

and INN0 plays the role of the universal G(n)-bundle
G(n) → INN0(G(n))→ ΣG(n)

[David Roberts, U.S.]
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Inner automorphism (n + 1)-Groups

Every n-group G(n) has an (n + 1)-group AUT(G(n)) of
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[David Roberts, U.S.]
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Inner automorphism (n + 1)-Groups

Every n-group G(n) has an (n + 1)-group AUT(G(n)) of
automorphisms.

This sits inside an exact sequence
1→ Z (G(n))→ INN(G(n))→ AUT(G(n))→ OUT(G(n))→ 1

and INN0 plays the role of the universal G(n)-bundle
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[David Roberts, U.S.]

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

Inner automorphisms (n + 1)-groups

Inner automorphism (n + 1)-Groups

Every n-group G(n) has an (n + 1)-group AUT(G(n)) of
automorphisms.

This sits inside an exact sequence
1→ Z (G(n))→ INN(G(n))→ AUT(G(n))→ OUT(G(n))→ 1

and INN0 plays the role of the universal G(n)-bundle
G(n) → INN0(G(n))→ ΣG(n)

[David Roberts, U.S.]
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Inner automorphisms (n + 1)-groups

Inner automorphism (n + 1)-Groups

Every n-group G(n) has an (n + 1)-group AUT(G(n)) of
automorphisms.

This sits inside an exact sequence
1→ Z (G(n))→ INN(G(n))→ AUT(G(n))→ OUT(G(n))→ 1

and INN0 plays the role of the universal G(n)-bundle
G(n) → INN0(G(n))→ ΣG(n)

[David Roberts, U.S.]
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Universal n-bundles in terms of n-groupoids

Observation

Given a cover Y → X and a G -coycle g : Y [2] → ΣG its pullback

Y [2] ×g INN(G ) //

��

INN(G )

��
Y [2]

g // ΣG

plays the role of the total space of the G -bundle clasified by g .

Analogous statements hold for n > 1.
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Mapping cones

Mapping Cones
The notion of tangent categories generalizes to a notion of
mapping cones of n-categories.
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Mapping cones

Definition

The Gray groupoid which we denote either TΣG(2) and address it
as the tangent 2-groupoid of ΣG(2), or INN0(G(2)) and address it
as the inner automorphism 2-groupoid of ΣG(2) or simply

( G(2)
Id // G(2) ) and address it as the mapping cone of IdG(2)

or

as the 2-crossed module induced by IdG(2)
.

This 2-groupoid TΣG(2) is defined to be the the strict pullback

TΣG(2)

��

// (ΣG(2))
2

dom
��

{•} // ΣG(2)
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Mapping cones

An object of TΣG(2) is a morphism

• q // •

in ΣG(2), hence an object of G(2).
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Mapping cones

A 1-morphism in TΣG(2) is a filled triangle

•

f

��

•

q //

q′ // •

F

��

in ΣG(2).
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Mapping cones

Finally, a 2-morphism in T tΣG(2) looks like

•

f ′

��

f

��

•

q //

q′ // •

F

��

F ′

�


L +3 .
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Mapping cones

The monoidal structure on TΣG(2) is that induced from the
embedding

TΣG(2) := INN0(ΣG(2)) ↪→ AUT(G(2))

discussion in [RobertsSchreiber:2007].
This canonically sits in the sequence

G(2)
� � // TΣG(2) // // ΣG(2) .

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

Mapping cones

Mapping cone of a faithful morphism

This has an obvious generalization to non-identity but faithful
morphisms:
Let G(2) and H(2) be strict 2-groups and write ΣG(2) and ΣH(2) be
the corresponding strict one object 2-groupoids.
Let

t : H(2) ↪→ G(2)

be a morphism of strict 2-groups, faithful as a functor of the
underlying 1-groupoids. This means we have a strict 2-functor

Σt : ΣH(2) ↪→ ΣG(2) .
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Mapping cones

Definition

The morphism t defines a strict 2-groupoid with a weak monoidal
structure that makes it a Gray groupoid, which we denote either
T tΣG(2) and address it as the tangent 2-groupoid of ΣG(2) relative
to t, or INNt

0(G(2)) and address it as the inner automorphism

2-groupoid of ΣG(2) relative to t or simply ( H(2)
t // G(2) ) and

address it as the mapping cone of t or as the 2-crossed module
induced by t.
This 2-groupoid T tΣG(2) is defined to be the the strict pullback

T tΣG(2)

uukkkkkkkkkkkkkkkkkk

�� ))TTTTTTTTTTTTTTTTTT

{•}

""E
EEEEEEE

(ΣG(2))
2

dom
uuu

u

zzuuu
u codom

III
I

$$II
II

ΣH(2)

Σt

{{ww
ww

ww
ww

w

ΣG(2) ΣG(2)
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Mapping cones

Here
2 := { • ' // ◦ }

is the fat point.
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Mapping cones

Equivalently this means that T tΣG(2) is the strict pullback

T tΣG(2)
//

��

ΣG(2)

=

��
ΣH(2)

Σt // ΣG(2)

.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

Mapping cones

An object of T tΣG(2) is a morphism

• q // •

in ΣG(2), hence an object of G(2).

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

Mapping cones

A 1-morphism in T tΣG(2) is a filled triangle

•

t(f )

��

•

q //

q′ // •

F

��

in ΣG(2), with f a morphism in ΣH(2), hence an object of H(2).
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Mapping cones

Finally, a 2-morphism in T tΣG(2) looks like

•

t(f ′)

��

t(f )

��

•

q //

q′ // •

F

��

F ′

�


t(L) +3

with

•

f

��

f

CC•L

��

a 2-morphism in ΣH(2), hence a morphism in H(2).
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Mapping cones

The monoidal structure on T tΣG(2) is that induced from the
embedding

T tΣG(2) ↪→ TΣG(2) .
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Mapping cones

Proposition

The 2-groupoid T tΣG(2) is codiscrete at top level. Therefore it is
equivalent to its quotient by its 2-morphisms

T tΣG(2) ' π1(T
tΣG(2)) .

This quotient is isomorphic to what in [CarrascoGarzónVitale:2006]
is called (p. 595) the quotient pointed groupoid: G(2)/〈H(2), t〉:

π1(T
tΣG(2)) ' G(2)/〈H(2), t〉 .

[CarrascoGarzónVitale:2006] prove that G(2)/〈H(2), t〉 is indeed the
cokernel of t. See the last paragraph on p. 595 and item 2 on p.
596.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

G(n)-bundles with connection

G(n)-bundles with connection
from universal

INN0(G(n))-bundles

The following presents the arrow-theory of universal n-bundles and
their pullbacks and connections (explicitly only for n = 1) in a way
that shows how the definition of bundles with g(n)-connection
arises.
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G(n)-bundles with connection

G

INN(G )

ΣG

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

The universal G 1-bundle.
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G(n)-bundles with connection

G

INN(G )

ΣG

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

The universal G 1-bundle. Now suppose that G = U(1) .
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G(n)-bundles with connection

G

INN(G )

ΣG

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

The universal G 1-bundle. Then ΣG is itself a 2-group.
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G(n)-bundles with connection

G

INN(G )

ΣG

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

The universal G 1-bundle. And what used to be the classifying
space for G 1-bundles. . .
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G(n)-bundles with connection

G

INN(G )

ΣG ΣINN(G ) ΣΣG
� � // // //

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

. . . becomes the fiber of the universal ΣG 2-bundle.
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G(n)-bundles with connection

G

INN(G )

ΣG ΣINN(G ) ΣΣG
� � // // //

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

Given a space X , let Π2(X ) be its fundamental 2-groupoid.
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G(n)-bundles with connection

G

INN(G )

ΣG ΣINN(G ) ΣΣG

Π2(X )

� � // // //

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

Given a space X , let Π2(X ) be its fundamental 2-groupoid.
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G(n)-bundles with connection

G

INN(G )

ΣG ΣINN(G ) ΣΣG

Π2(X )

� � // // //

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

Given a space X , let Π2(X ) be its fundamental 2-groupoid.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

G(n)-bundles with connection

G

INN(G )

ΣG ΣINN(G ) ΣΣG

Π2(X )

� � // // //

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

Then a (smooth) morphism from Π2(X ) to ΣΣG
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G(n)-bundles with connection

G

INN(G )

ΣG ΣINN(G ) ΣΣG

Π2(X )

K

��1
11

11
11

11
1

� � // // //
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Is a choice of 2-form K ∈ Ω2(X ) on X .
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This we may regard as a trivial Σ2G 2-bundle with connection on
X .
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Hence we may ask if we can lift the structure 2-group
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Hence we may ask if we can lift the structure 2-group through
ΣINN(G )→ ΣΣG .

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

G(n)-bundles with connection

G

INN(G )

ΣG ΣINN(G ) ΣΣG

Π2(X )

K

��1
11

11
11

11
1

� � // // //

��
��
��
��
��
��
��
��

{ [

��
��
��
��
��
��

Hence we may ask if we can lift the structure 2-group through
ΣINN(G )→ ΣΣG . We can, if we can form
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Hence we may ask if we can lift the structure 2-group through
ΣINN(G )→ ΣΣG . We can, if we can form this.
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Here π : Y → X is a choice of cover of X .
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And C2(Y ) is generated from Π2(Y ) and from Y [2], modulo an
obvious relation.
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Hence g : Y [2] → ΣG is the classifying map of a G 1-bundle.
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While the smooth parallel transport 2-functor
(tra, curv) : Π2(Y )→ ΣINN(G ) encodes a compatible connection
1-form A and its curvature 2-form FA.
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Requiring the left square to commute is the gluing condition on a
G -bundle with connection.
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Requiring the right square to commute says that the 2-form
K = FA is the curvature 2-form of this connection.
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Requiring the right square to commute up to natural isomorphism
says that K represents the Chern class of g .

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

G(n)-bundles with connection

G

INN(G )

ΣG ΣINN(G ) ΣΣG

Y [2] C2(Y ) Π2(X )

g

��1
11

11
11

11
1

(g ,tra,curv)

11
11

��1
11

1 K

��1
11

11
11

11
1

� � // // //

� � // // //��
��
��

��
��
��
��

{ [

��
��
��
��
��
��

Finally, we obtain the total “space” of the G -bundle thus classified
by pulling back g along INN(G )→ ΣG .
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Finally, we obtain the total space of the G -bundle thus classified by
pulling back g along INN(G )→ ΣG .
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There is in fact an entire lattice of universal n-bundles in the
background.
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Where the middle row and column give the universal INN(G )
2-bundle.
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Notice that, since INN(G ) is trivializable, that universal 2-bundle
admits a canonical 2-section e.
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Notice that, since INN(G ) is trivializable, that universal 2-bundle
admits a canonical 2-section e.
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We can further pull back our data along this lattice, for instance in
the middle.
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We can further pull back our data along this lattice, for instance in
the middle.
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This yields essentially the Atiyah groupoid
C2(Y )×g INN(INN(G )).
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And we find that the choice (g , tra, curv) lifts the canonical
section e to a splitting of the Atiyah groupoid projection.

Urs Schreiber On String- and Chern-Simons n-Transport



On String- and Chern-Simons n-Transport

n-Categorical background

G(n)-bundles with connection

G INN(G) ΣG

INN(G ) INN(INN(G )) ΣINN(G )

ΣG ΣINN(G ) ΣΣG

Y [2] C2(Y ) Π2(X )

Y [2] ×ΣG INN(G ) C2(Y )×g INN(INN(G ))

g

��1
11

11
11

11
1

(g ,tra,curv)

11
11

��1
11

1 K

��1
11

11
11

11
1

� � // // //

� � // // //

��3
33

33
33

3

��
��
��

��
��
��
��

� � // // //

��
��
��

��
��
��
��
�

��
��
��
��
��
��
��

xxx
xx

xxx
xx

'

x� xx
xx

xx
xx

xx
x

xx
xx

xx
xx

xx
x

{ [

��
�

��
��
��

{ [

��
�

��
��
��

� � // // //
| \

��
��
��
��
��
�

��
��
��
��
��
��
��
��
�

'

v~ vvvvvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvvvvv

��
��
��
��
��
��
��

��.
..

..
..

.

-

e

ZZ

�+

[[

�+

[[

�+

[[

And we find that the choice (g , tra, curv) lifts the canonical section
e to a splitting of the Atiyah groupoid projection.
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We should probably read this as follows:
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We should probably read this as follows:
ΣINN(G ) plays the role of the fundamental 2-groupoid of BG .
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We should probably read this as follows:
The section e of the INN(G ) 2-bundle plays the role of the
universal connection on the universal G -bundle.
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We should probably read this as follows:
The choice (g , tra, curv) pulls back the universal connection.
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Finally, recall that we assumed G to be abelian.
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The reason is that otherwise the 2-groupoid ΣΣG does not exist.
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But we shall pass to the differential picture now,. . .
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. . . and find that for nonabelian G , ΣΣG may be thought of as
being replaced by an r -groupoid. . .
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. . . for r the degree of the highest generator of the algebra of
invariant polynomials of g = Lie(G ).
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To get there, we first suppress everything except for the front face
of our diagram. . .
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. . . and then restrict attention to the special case where we take
the cover Y to be the total space P of the G -bundle P → X itself,
Y = P.
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Then the cocycle data g : Y [2] → ΣG is canonically given as
g : (p, p · g1) 7→ g1.
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This way we should arrive at the following differential
formulation. . .
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