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Abstract

Ordinary Lie algebra cohomology of a Lie algebra g has a nice reformu-
lation in terms of the Koszul dual differential algebra of the Lie 2-algebra
of inner derivations of g. For every transgressive degree n element in g-
cohomology there is a short exact sequence of Lie n-algebras. These are
characterized by the fact that n-connections taking values in them come
from the corresponding Chern-Simons forms and characteristic classes.

A straightforward generalization of this construction yields a notion
of cohomology, invariant polynomials and transgression elements for arbi-
trary Lie n-algebras. And in turn, each such element of degree d induces
a new Lie max(n, d)-algebra.

From the invariant polynomials of a Lie n-algebra one obtains charac-
teristic classes of the corresponding n-bundles.
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1 Introduction

URS: This is part of the stuff in collaboration with Jim Stashaeff which I am
currently polishing. All mistakes and imperfections are mine. In particular, the
last section about Lie n-algebra cohomology is a more recent contribution of
mine, which still needs to be scrutinized. This addresses an issue I knew should
have a nice answer based on the other stuff, but didn’t seriously start looking
into before John Baez highlighted the related issue of characteristic classes of
String 2-bundles a while ago.

2 Lie algebra cohomology and inn(g)∗

Lie algebra cohomology, invariant polynomials and Chern-Simons elements can
all be conveniently conceived in terms of the quasi-free differential graded alge-
bra corresponding to the Lie 2-algebra

inn(g)

of inner derivations of the Lie algebra g. This is nothing but the well-known
Weil algebra. But by regarding it as a Lie n-algebra we can use it to build other
Lie n-algebras.

The relation to the more common formulation of these phenomena in terms
of the cohomology of the universal G-bundle comes from the fact that this
universal bundle is the realization of the nerve of INN(G) [4].

2.1 Formulation in terms of the cohomlogy of EG

Let G be a compact, simply connected simple Lie group.
The classical formulation of

• Lie algebra cocycles

• invariant polynomials

• transgression induced by Chern-Simons elements

is the following.
Consider the fibration corresponding to the universal principal G-bundle:

G // EG
p // BG .

• A Lie algebra (2n + 1)-cocycle µ (with values in a trivial module) is an
element

µ ∈ H2n+1(g, R) .

By compactness of G, this is the same as an element in de Rham coho-
mology of G:

µ ∈ H2n+1(G, R) .
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• An invariant polynomial k of degree n + 1 represents an element in

k ∈ H2n+2(BG, R) .

• A transgression form mediating between µ and k is a cochain cs ∈ Ω2n+1(EG)
such that

cs|G = µ

and
d cs = p∗k .

cocycle Chern-Simons inv. polynomial

G // EG
p // BG

0

0 p∗k
_

d

OO

k
�

p∗
oo

µ
_

d

OO

c�
·|G

oo _
d

OO

Figure 1: Lie algebra cocycles, invariant polynomials and transgression
forms in terms of cohomology of the universal G-bundle.

2.2 Formulation in terms of the cohomology of inn(g)∗

The universal G-bundle may be obtained from the sequence of groupoids

Disc(G)→ INN(G)→ ΣG

by taking geometric realizations of nerves:

Disc(G) //
_
|·|

��

INN(G) //
_
|·|

��

ΣG_

|·|
��

G // EG // BG

.

Disc(G) and INN(G) are strict 2-groups, coming from the crossed modules

Disc(G) = (1→ G)

and
INN(G) = (Id : G→ G) .

On the other hand, ΣG is a 2-group only if G is abelian.
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2.2.1 Cocycles, invariant polynomials and Chern-Simons elements

Differentially, this corresponds to the sequence

Disc(G) //
_

Lie

��

INN(G)
p //

_

Lie

��

ΣG_

��∧•
sg∗

∧•(sg∗ ⊕ ssg∗)oo ∧•(ssg∗)
p∗oo

.

In terms of this, we have

• A Lie algebra (2n + 1)-cocycle µ (with values in a trivial module) is an
element

µ ∈
∧(2n+1)(sg∗)

dgµ = 0 .

• An invariant polynomial k of degree n + 1 is an element

k ∈
∧n+1(ssg∗)

dinn(g)k = 0 .

• A transgression form cs inducing a transgession between a (2n+1)-cocycle
µ and a degree (n + 1)-invariant polynomial is a degree (2n + 1)-element

cs ∈
∧

(sg∗ ⊕ ssg∗)

such that
cs|∧•

(sg∗)
= µ

and
dinn(g)cs = p∗k .

2.2.2 Formulation in terms of components

In parts of the literature it is standard to express all these phenomena in com-
ponents. Compare for instance [1] Then they read as follows.

For the given Lie algebra g choose a basis {ta}. Let {ta} be the corresponding
basis of sg∗ and {ra} that of ssg∗.

• A Lie (n)-cocylce is a completely antisymmetric tensor

µ = µ(t) = µa1···an
ta1 ∧ · · · ∧ tan

such that
n∑

i=1

(−1)iµ[a1···ai···an
Cai

bc] = 0 .
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cocycle Chern-Simons inv. polynomial

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))
i∗oooo (

∧•(ssg)∗)_?
p∗oo

0

0 p∗k
_

dinn(g)

OO

k
�

p∗
oo

µ
_

dg

OO

cs�i∗oo _
dinn(g)

OO

Figure 2: Lie algebra cocycles, invariant polynomials and transgression
elements in terms of cohomology of inn(g).

• A degree n+1 symmetric invariant polynomial is a completely symmetric
tensor

k = k(r) = ka1···an+1r
a1 ∧ · · · ∧ ran+1

such that
n+1∑
i=1

k(a1···ai−1,ai,ai+1···an+1C
ai
|b|c) = 0 .

One finds, either by following Chern and Simons [3] or by using our homo-
topy operator for inn(g) as described in 2.2.4, that the restriction of a transgres-
sion element corresponding to the invariant polynomial k to g has components
proportional to

k[a1|b2···bn|C
b2

a2a3C
b3

a4a5 · · ·Cbn
a2na2n+1] .

2.2.3 Transgression and the trivializability of inn(g)

It is important that
EG is contractible

⇔ INN(G) is trivializable
⇔ the cohomology of inn(g)∗ = (

∧•(sg∗ ⊕ ssg∗), dinn(g)) is trivial
⇔ there is a homotopy τ : 0→ Idinn(g), i.e. [dinn(g), τ ] = Idinn(g) .

This implies that if
cs

is to be a transgression element mediating between µ and k, then we have

cs = τ(p∗k) + dinn(g)q .

6



So for every invariant polynomial k

dinn(g)k = 0

a “potential” cs does exist. The nontrivial condition is then that cs restricted
to g is a cocyle.

cocycle Chern-Simons inv. polynomial

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))
i∗oooo (

∧•(ssg)∗)? _
p∗oo

0

0 p∗k
_

dinn(g)

OO

τ

��

k
�

p∗
oo

µ
_

dg

OO

cs�i∗oo _
dinn(g)

OO

Figure 3: The homotopy operator τ exists due to the trivializability of
inn(g).

2.2.4 Computation of transgression elements

Using the fact that inn(g) is equivalent to the trivial Lie n-algebra, in that there
is a 2-morphism

0

""FF
FF

FF
FF

F

inn(g)∗
Id

//

<<xxxxxxxxx
inn(g)∗

τ
��

,

hence a chain homotopy τ satisfying

Id = [dinn(g), τ ] ,

and using the fact that we have an explicit formula for these chain homotopies,
we obtain an explicit algorithm for computing

cs := τ(p∗k) .

To indicate how this works, we spell out the computation for the standard
case where g is a Lie algebra with an invariant symmetric bilinear form 〈·, ·〉.
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Choose a basis {ta} of sg∗ and let {ra} be the corresponding basis of ssg∗.
Let the bilinear form in question have the components kab with respect to this
basis. Then the dinn(g)-closed element in ∧2(ssg∗) whose transgression element
we want to compute is

k = kabr
a ∧ rb .

In order to compute
τ(kabr

a ∧ rb)

we need to first express k in terms of dta and Ca
bct

b ∧ tc as

ra = dta +
1
2
Ca

bct
b ∧ tc .

This yields

k = kabdta ∧ dtb + kabdta ∧ Ca
bct

b ∧ tc + habcdt
a ∧ tb ∧ tc ∧ td ,

where the precise form of the last term does not matter for the following since
it will be annihilated by τ .

The chain homotopy τ is fixed on these generators as

τ : ta 7→ 0

and
τ : dta 7→ ta

and then extended to a chain homotopy by the formula for 2-morphisms of Lie
n-algebras.

Using this formula, we obtain

τ : k 7→ kabt
a ∧ dtb +

1
3
Cabct

a ∧ tb ∧ tc .

And indeed, this is the familiar transgression element associated to the Chern-
Simons form. This is maybe more familar as we push it forward along any
morphism

inn(g)∗ → Ω•(X)

coming from a connection 1-form A ∈ Ω1(X, g) on some space X, in which case
the above transgression element becomes

CS〈·,·〉(A) := 〈A ∧ dA〉+ 1
3
〈A ∧ [A ∧A]〉 .

2.2.5 Cocycles with values in arbitrary modules

The above discussion applies to Lie algebra cocycles and invariant polynomials
with values in the trivial g-module. More generally, one considers Lie algebra
cohomology with values in arbitrary modules.
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Remarkably, discussing this more general cohomology in terms of inn(g) is
already essentially tantamount to considering the families of Lie n-algebras to
be discussed below.

Notice, however, that by Whitehead’s lemma (compare [1]) the only non-
trivial Lie algebra cohomology for finite-dimensional semisimple Lie algebras on
finite dimensional modules does occur for the trivial module.

3 Lie n-algebras from cocycles and from invari-
ant polynomials

Using the relation between Lie algebra cohomology and inn(g), we shall describe
Lie n-algebras whose existence reflects the existence of Lie algebra cocycles,
invariant polynomials and transgression elements.

• For each Lie algebra (n + 1)-cocycle µ there is a Lie n-algebras gµ, known
from [2].

• For each degree n + 1 invariant polynomial k on g there is a Lie (2n + 1)-
algebra chk(g) which we call a Chern Lie (2n + 1)-algebra.

• For each transgression element relating a degree (n + 1) invariant polyno-
mial k and a (2n+1) Lie algebra cocycle µk there is a Lie (2n+1)-algebras
csk(g) which we call a Chern-Simons Lie (2n + 1)-algebra.

3.1 Baez-Crans Lie n-algebras gµ from Lie algebra cocycles
µ

Definition 1 Let µ be an (n+1)-cocycle on g as in 2.2. Then the Lie n-algebra

gµ

is that dual to the qfDGCA whose underlying algebra is∧•((sg)∗ ⊕ (snR)∗)

and whose differential d is defined by the fact that

d|∧•
sg∗

= dg

and
db = −µ

for b the canonical basis of snR∗.

The property d2 = 0 is equivalent to the Jacobi identity on g and the cocycle
porperty of µ.

This has an obvious generalization to the case that the cocycle takes values
in a Lie algebra module V .
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Definition 2 Let µ be an (n + 1)-cocycle on g taking values in V . Let

ρ : g⊗ V → V

be the Lie action on that module.
Then the Lie n-algebra

gµ

is that dual to the qfDGCA whose underlying algebra is∧•((sg)∗ ⊕ (snV )∗) .

and whose differential d is defined by the fact that

d|∧•
sg∗

= dg

and
dbi = −µi − ρi

ajt
a ∧ bj ,

for {bi} any basis of snV ∗ and {ta} a basis for sg∗.

Now the property d2 = 0 is equivalent to the Jacobi identity on g, the cocycle
porperty of µ and the action property of ρ.

We may reformulate this equivalently in L∞-language:
Baez-Crans showed [2] that Lie n-algebras which are concentrated in top

and bottom degree are all equivalent to Lie n-algebras of the following form.

Definition 3 For g any Lie algebra, V any g-module and

µ ∈ Hn+1(g, V )

a Lie algebra (n+1)-cocycle for g with values in m, the semistrict Lie n-algebra

gµ

is defined to be the L∞-algebra on

Sc(sg⊕ snV )

with codifferential
D = d1 + d2 + dn+1

defined by
d2(sX ∨ sY ) = s[X, Y ]

d1(sX ∨ snB) = snX(B)

dn+1(sX1 ∨ · · · ∨ sXn+1) = snµ(X1, · · · , Xn+1) ,

for all X, Y,Xi ∈ g and all B ∈ m.

10



We find that D2(sX ∨ sY ) = 0 is the Jacobi identity on g, as before, and
D2(sX ∨ sY ∨B) = 0 is the Lie module property of V . Finally

D2(sX1 ∨ · · · ∨ sXn+2) = D

 ∑
σ∈Sh(1,n+1)

ε(σ)sXσ(1) ∨ snµ(Xσ(2), · · · , Xσ(n+2))

+
∑

σ∈Sh(2,n)

ε(σ)s[Xσ(1), Xσ(2)] ∨ sXσ(3) ∨ · · · ∨ sXσ(n+2)


= sn

∑
σ∈Sh(1,n+1)

ε(σ)Xσ(1)

(
µ(Xσ(2), · · · , Xσ(n+2))

)
+sn

∑
σ∈Sh(2,n)

ε(σ)µ([Xσ(1), Xσ(2)], Xσ(3), · · ·Xσ(n+2))

= 0

is precisely the Lie cocycle property of µ.
URS: I think I have the signs right here, but should be checked again.

Remark. For g simple and k = 〈·, ·〉 (a multiple of) the Killing form and

µ = 〈·, [·, ·]〉

(a multiple of) the canonical 3-cocycle, the Baez-Crans Lie 2-algebra gµ is the
skeletal semistrict version of the String Lie 2-algebra.

3.2 Chern Lie (2n + 1)-algebra csk(g) from invariant poly-
nomials k.

Definition 4 Let k be an invariant polynomial of degree (n + 1) on g. Then
the Lie (2n + 1)-algebra

chk(g)

is defined dually by a qfDGCA on∧•((sg)∗ ⊕ (ssg)∗ ⊕ (s2n+1R)∗)

whose differential d is fixed by demanding

d|∧•
(sg∗⊕ssg∗)

= dinn(g)

and
dc = k

for {c} the canonical basis of s2n+1R∗.

The property d2 = 0 is nothing but the invariance property of k.
Again, we can generalize this to the the case where k takes values in an

arbitrary g-module V .
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Definition 5 Let k be an invariant polynomial of degree (n + 1) on g taking
values in the Lie algebra module V . Then the Lie (2n + 1)-algebra

chk(g)

is defined dually by a qfDGCA on∧•((sg)∗ ⊕ (ssg)∗ ⊕ (s2n+1V )∗)

whose differential d is fixed by demanding

d|∧•
(sg∗⊕ssg∗)

= dinn(g)

and
dci = ki − ρi

ajt
a ∧ cj

for {ci} a basis of s2n+1V ∗.

Now d2 = 0 is equivalent to the invariance of k together with the action
property of ρ.

3.3 Chern-Simons Lie (2n + 1)-algebras csk(g) from invari-
ant polynomials k

Definition 6 Let k be an invariant polynomial of degree n + 1 which is related
by a transgression element cs to a degree (2n + 1) cocycle µk. Then the Lie
(2n + 1)-algebra

csk(g)

is defined dually on the free graded commutative algbra∧•(sg∗ ⊕ ssg∗ ⊕ s2nR∗ ⊕ s2n+1R∗)

equipped with a differential d defined by

d|∧•
(sg∗⊕ssg∗)

= dinn(g)

and
db = c− cs

dc = k ,

for {b} the canonical basis of s2nR∗ and {c} the canonical basis of s2n+1R∗.

Here d2 = 0 is the invariance of k together with the fact that dinn(g)cs = k.
The generalization to arbitrary g-modules is again obvious:
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Definition 7 Let k be an invariant polynomial of degree n+1 with values in the
g-module V , which is related by a transgression element cs to a degree (2n + 1)
cocycle µk with values in V . Then the Lie (2n + 1)-algebra

csk(g)

is defined dually on the free graded commutative algbra∧•(sg∗ ⊕ ssg∗ ⊕ s2nV ∗ ⊕ s2n+1V ∗)

equipped with a differential d defined by

d|∧•
(sg∗⊕ssg∗)

= dinn(g)

and
dbi = ci − csi − ρi

ajt
a ∧ bj

dci = ki − ρi
ajt

a ∧ cj .

Nilpotency d2 = 0 is due to the invariance of k, the defining property of the
transgression element cs and the action property of ρ.

3.4 Lie n-algebras of invariant polynomials

Definition 8 For g any Lie algebra, let

inv(g) := ker(d|inn(g))|∧•
ssg∗

be the graded-commutative algebra of invariant polynomials of g. We may think
of this as still equpped with the differential dinn(g), hence with a trivial differen-
tial. The abelian Lie n-algebra obtained this way, where n is the degree of the
highest rank generator of inv(g) we also denote

bg .

3.5 Morphisms

We exhibit some important Lie n-algebra morphisms involving Baez-Crans,
Chern and Chern-Simons Lie n-algebras.

3.5.1 Higher connections and Chern-Simons forms

The Chern-Simons Lie (2n + 1)-algebras are characterized by the property that
(2n+1)-connections taking values in them are given by degree (2n+1) differential
forms which are constrained to be the respective Chern-Simons form coming
from some Lie-algebra valued 1-form.

Proposition 1 (Chern and Chern-Simons forms) Connections with values
in Chern and Chern-Simons Lie (2n + 1)-algebras encode the corresponding de-
gree (2n + 1) differential forms.
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• (2n+1)-Connections with values in the Chern Lie (2n+1)-algebras chk(g),
i.e. morhisms

chk(g)∗ → Ω•(X)

are in bijective correspondence with tuples

(A,C) ∈ Ω1(X, g)× Ω2n+1(X)

such that
dC = k(FA ∧ · · · ∧ FA) .

• (2n+1)-Connections with values in the Chern-Simons Lie (2n+1)-algebras
csk(g), i.e. morphisms

chk(g)∗ → Ω•(X) ,

are in bijective correspondence with tuples

(A,B,C) ∈ Ω1(X, g)× Ω2n(X)× Ω2n+1(X)

such that
C = dB + kCSk(A) .

Here CSk(A) is the k-Chern-Simons form, such that

dC = k(FA ∧ · · · ∧ FA) .

3.5.2 The isomorphism inn(gµk
) ' csk(g)

Proposition 2 We have an equivalence (even an isomorphism)

inn(gµk
) ' csk(g)

whenever the latter exists.

Proof. One checks that the assignments

ta 7→ ta

ra 7→ ra

b 7→ b

c 7→ c± (cs− µ)

in our standard basis define morphisms between the two Lie (2n + 1)-algebras.
These are clearly strict inverses of each other. �
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3.5.3 The exact sequence 0→ gµk
→ csk(g)→ chk(g)→ 0

Suppose that the degree n + 1 invariant polynomial k admits a Chern-Simons
potential, i.e. such that all three Lie (2n + 1)-algebras

• gµk
– 3.1

• csk(g) – 3.3

• chk(g) – 3.2 .

Then we have the following morphisms between these.

Proposition 3 We have a canonical surjection

i : csk(g) // // chk(g) .

Proof. One checks that the canonical inclusion of vector spaces∧•(sg∗ ⊕ ssg∗ ⊕ s2n+1R∗) ↪→
∧•(sg∗ ⊕ ssg∗ ⊕ s2nR∗ ⊕ s2n+1R∗)

gives a monomorphic qfDGCA-morphism

chk(g)∗ → csk(g)∗

hence defines an epimorphic dual morphism. �

Proposition 4 We have a canonical injection

i : gµk
� � // csk(g) .

Proof. One checks that the canonical surjection of vector spaces∧•(sg∗ ⊕ ssg∗ ⊕ s2nR∗)→
∧•(sg∗ ⊕ s2n+1R∗)

gives an epimorphic qfDGCA-morphism

csk(g)∗ → g∗µk

hence defines a monomorphic dual morphism. �

Remark. It is the existence of this morphism which corresponds to the fact
that the transgression element cs has the property that it restricts to the cocycle
µ on

∧•(sg∗).

Proposition 5 The composite morphism

gµk
� � // csk(g) // // chk(g)

is homotopic to the zero-morphism.
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Proof. By the above, the dual morphism is the identity on the generators of
(sg)∗

f∗ : ta 7→ ta

and sends everything else to zero. But we have

f∗ = [dτ ]

with τ given on generators as
τ : ta 7→ 0

τ : ra 7→ ta

τ : c 7→ 0

and then extended as a 2-morphism. �

In summary this gives

Corollary 1 Whenever the (2n + 1)-cocycle µk on g and the invariant degree
(n + 1)-polynomial k are related by transgression, we have an exact sequence of
Lie (2n + 1)-algebras

0→ gµk
→ csk(g)→ chk(g)→ 0 .

3.5.4 Other useful morphisms

Definition 9 For any chk(g) we have a canonical morphism

chk(g)∗ → inn(g)∗ .

It sends the generator c of sn−1R∗ to τ(k), where τ is the trivializing homotopy
of inn(g).

c 7→ τ(k) .

Definition 10 For any chk(g) we have a canonical morphism

Lie(ΣnU(1))∗ → chk(g)∗

which sends the single generator of Lie(ΣnU(1))∗ to k.
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G // EG // BG top. spaces

Disc(G) � � i //
_
|·|

OO

_

Lie

��

INN(G)
p // //

_
|·|

OO

_

Lie

��

ΣG
_
|·|

OO

_

��

Lie groupoids

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))oooo (
∧•(ssg)∗)? _oo free graded comm.

algebras

g � � //

∼(·)∗

inn(g)

∼(·)∗

Lie 2-algebras

elements in
cohomology

��

cocycle
Chern-Simons

element inv. polynomial

0

0 p∗kF

τ

��

_
dinn(g)

OO

k
�p∗oo

µ
_

dg

OO

cs�i∗oo _
dinn(g)

OO

g � � // inn(g) = // inn(g)

gµ
� � //

OOOO

csk(g) // //

OOOO

chk(g)

OOOO

Lie (2n + 1)-algebras

inn(gµ)

∼

Baez-Crans Chern-Simons Chern

Figure 4: Chern Lie (2n + 1)-algebras: for each Lie algebra (2n + 1) cocycle
µ which is related by transgression to an invariant polynomial k we obtain an
exact sequence of Lie (2n + 1)-algebras.

17



4 Lie n-algebra cohomology

Above we described families of Lie n-algebras induced from the cohomology of
ordinary Lie algebras. There is a rather obvious generalization of the entire
discussion to what should be the cohomology of Lie n-algebras themselves.

4.1 Lie n-algebra cohomology

Let g(n) be any Lie n-algebra and let inn(g(n)) be the corresponding Lie (n+1)-
algebra of inner derivations.

Write (
∧•(sg∗(n)), dg(n)) and (

∧•(sg∗(n) ⊕ ssg∗(n)), dinn(g(n)
)) for the corre-

sponding dual qDGCAs, respectively.
Recalling that we have a canonical inclusion

i : g(n) → inn(g(n))

of Lie (n + 1)-algbras and a canonical inclusion∧•(sg∗(n) ⊕ ssg∗(n))←
∧•(ssg∗(n))

of graded-commutative algebras such that

(
∧•(sg∗(n)), dg(n)) (

∧•(sg∗(n) ⊕ ssg∗(n)), dinn(g(n)
))oooo

∧•(ssg∗(n))? _oo

can be thought of as differential forms on a universal G(n)-bundle [4]

G(n) → INN0(G(n))→ ΣG(n)

we make the following definition, which is the obvious and straightforward gen-
eralization of 2.2.1.

Definition 11 For the above setup, we say

• A g(n) cocycle µ is a dg(n)-closed element of
∧•(sg∗(n))

dg(n)µ = 0 .

• A g(n) invariant polynomial k is a dinn(g(n))-closed element in
∧•(ssg∗(n))

dinn(g(n))k = 0 .

• A g(n) transgression element cs for a given g(n) cocycle µ and a given g(n)

invariant polynomial k is an element cs in
∧•(sg∗(n) ⊕ ssg∗(n)) such that

cs|∧•
sg∗(n)

= µ

and
dinn(g(n))cs = k .
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We address these cocycles, invariant polynomials and transgression elements
as being of degree d whenever the respective elements have degree r in

∧•(sg∗(n)⊕
ssg∗(n)). Notice that following this convention an ordinary degree n invariant
polynomial is now addressed as having degree 2n. Which indeed is the more
natural counting.

Definition 12 A Lie n-algebra cocycle is a Lie algebra coboundary simply if
it is a dg(n) coboundary. An invariant polynomial k is a coboundary if it is
dinn(g(n))-coboundary

k = dinn(g(n))λ

with the property that λ vanishes when restricted to
∧•(sg∗(n)) .

Remark. This can be read as saying that an invariant polynomial is regarded
as trivializable if it is in transgression with the trivial Lie algebra cocycle.

4.2 Lie max(n, d)-algebras from Lie n-algebra cohomology

Definition 13 For g(n) any Lie n-algebra and µ a degree (d + 1) cocycle on it,
we obtain a Lie max(n, d)-algebra (g(n))µ on∧•(sg∗(n) ⊕ sdR∗)

dy defining a differential d by

d(g(n))µ
|∧•

sg(n)∗
= dg(n)

and
d(g(n))µ

b = −µ

for {b} the canonical basis of sdR∗.

Definition 14 For g(n) any Lie n-algebra and k a degree (d + 1) invariant
polynomial on it, we obtain a Lie max(n, d)-algebra chk(g(n)) on∧•(sg∗(n) ⊕ ssg∗(n) ⊕ sdR∗)

dy defining a differential d by

d(g(n))µ
|∧•

sg(n)∗⊕ssg∗(n)
= dinn(g(n))

and
dchk(g(n))c = k

for {c} the canonical basis of sdR∗.
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Definition 15 For g(n) any Lie n-algebra and cs a degree d transgression ele-
ment interpolating between a degree d + 1 invariant polynomial k and a degree
d cocycle µ on g(n) we obtain a Lie max(n, d)-algebra csk(g(n)) on∧•(sg∗(n) ⊕ sd−1R∗ ⊕ sdR∗)

dy defining a differential d by

d(g(n))µ
|∧•

sg(n)∗⊕ssg∗(n)
= dinn(g(n))

and
dcsk(g(n))b = cs− c

dcsk(g(n))c = k

for {b} the canonical basis of sd−1R∗ and {c} the canonical basis of sdR∗.

All these differentials square to 0, d2 = 0 by exactly the same (simple)
reasoning as in 3. And in fact, all the remaining discussion goes through just
as before. So we get

Corollary 2 Whenever for g(n) any Lie n-algebra the d-cocycle µk on g(n) and
the invariant degree (d + 1) polynomial k are related by transgression, we have
an exact sequence of Lie max(n, d)-algebras

0→ (g(n))µk
→ csk(g(n))→ chk(g(n))→ 0 .

4.3 Invariant polynomials of Baez-Crans type Lie n-algebras

Proposition 6 The cohomology classes of invariant polynomials of a Lie n-
algebra gµ of Baez-Crans type arising from an ordinary Lie algebra g and a
degree (n + 1)-cocycle µk on it which is in transgression with an invariant poly-
nomial k are those of g itself modulo k:

inv(gµk
) ' inv(g)/k .

Proof. By inspection one finds that gµ has no invariant polynomials above those
coming from g. But precisely k becomes a coboundary of invariant polynomials
now, since

k = dτ(k) = d((cs− µ) + µ) = d((cs− µ) + c) ,

where c is the top degree generator of inn(gµ). But (cs − µ) + c manifestly
vanishes when restricted to

∧•(sg∗µ). Hence, by definition 12, k is a coboundary
of invariant polynomials. �
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5 Characteristic classes of n-bundles

5.1 Lie n-algebra valued connections

Apart from being natural in itself, our definition of Lie n-algebra cohomology
and of invariant polynomials on Lie n-algebras justifies itself in that it does give
the right framework for the description of representatives of Chern classes of
n-bundles.

Definition 16 For g(n) any Lie n-algebra and X a space, a connection on the
trivial g(n)-n-bundle over X is a morphism

(A,FA) : Ω•(X) inn(g(n))∗oo

of differential graded commutative algebras. Following our general discussion
of higher morphisms of Lie n-algebras, we define higher morphisms of such
connections to be those homotopies

Ω•(X) inn(g(n))∗

(A′,FA′ )

bb

(A,FA)

||

��

which vanish when pulled back along the canonical morphisms of graded algebras

inn(g(n))∗ ssg∗(n)
oo ,

i.e. such that

Ω•(X) inn(g(n))∗

(A′,FA′ )

bb

(A,FA)

||
ssg∗(n)

oo

��

is the vanishing homotopy.

Here Ω•(X) is the deRham complex of X and inn(g(n))∗ is shorthand for
the Koszul dual corresponding to inn(g(n)).

Remark. The condition on the (k > 1)-morphisms simply means that the
component maps of the higher chain homotopies, which are maps∧•(sg∗(n) ⊕ ssg∗(n))→ Ω•−(k−1)(X)
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vanish on the generators in ssg∗(n). This makes the n-category of connections on
the trivial g(n)-bundle contain interesting information, even though inn(g(n)) is
equivalent, when all higher morphisms are admitted, to the trivial Lie n-algebra.

There are various ways to understand this condition. While these will be
discussed in detail elsewhere, the following consideration indicates what is going
on:

Suppose G(n) is some Lie n-group, to be thought of as integrating our Lie
n-algebra g(n). Let Y → X be a good cover of base space X and Y [2] the corre-
sponding groupoid. Then G(n)-bundles on X are classified by pseudo functors

Y [2]

��
ΣG(n)

.

These encode precisely a nonabelian G(n)-cocycle, hence the transition data of a
locally trivialized G(n)-bundle. Equipping this G(n)-bundle with a connections
amounts to extending this morphism along the canonical inclusion

Y [2]

g

��
ΣG(n) // ΣINN0(G(n))

to a square

Y [2]

g

��

// Cn(Y )

(g,tra,curv)

��
ΣG(n) // ΣINN0(G(n))

,

where (tra, curv) is the integrated version of the morphism (A,FA) appearing
above, describing an integrated connection on the trivial G(n) bundle over Y
obtained by locally trivializing a general G(n)-bundle on X. The point is that the
horizontal arrows imply that while the connection takes values in INN0(G(n)),
its transition morphisms (the descent gluing data), take values only in G(n).
This is the integrated analog of our condition that higher morphisms of g(n)-
connections are restricted higher morphisms between 1-morphisms on inn(g)(n).

We now first define Chern classes for trivial g(n)-bundles and then discuss
their descent to Chern classes of possibly nontrivial g(n)-bundles.

Definition 17 (Chern classes for Lie n-algebras) Given a g(n)-connection

(A,FA) : Ω•(X) inn(g(n))∗oo

on a trivial g(n)-n-bundle over X, for any choice of degree r Lie n-algebra
invariant polynomial k of g(n) we obtain an r-form

k(FA) : Ω•(X) inn(g(n))∗
(A,FA)oo chk(g(n))∗oo Lie(Σ(r−1)U(1))∗oo ,
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where the two morphisms on the right are the canonical ones described in 3.5.4.
This is the k-Chern-form of the connection (A,FA).

Remark. The r form k(FA) is nothing but the image of of k under (A,FA).
This, in turn, is nothing but the invariant polynomial k with the concrete cur-
vature FA substituted for the respective generators of ssg∗(n). But it is useful to
restate this – simple but component-dependent – statement more intrinsically
in terms of the above morphisms.

Example. For g an ordinary simple Lie 1-algebra and k = 〈·, ·〉 the Killing
form, and for (A,FA) a g-connection, we have

k(FA) = 〈FA ∧ FA〉

as one would expect.

5.2 n-Bundles with structure Lie n-algebra

For g(n) any Lie n-algebra, the sequence

g∗(n)

inn(g(n))∗

OO

bg∗(n)

OO

with bg as in definition 8 plays the role of the universal G(n)-n-bundle

G(n)

��
EG(n)

��
BG(n)
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in that it comes from its Lie n-groupoid realization

G(n)

i

��
INN0(G(n))

p

��
ΣG(n)

as described in [4].
Accordingly, we say that, for X a space, a qDGCA morphism

Ω•(X) bg∗(n)

{Ki}oo

is a classifying map for a g(n)-n-bundle: this morphism is nothing but a choice
of a closed r-form Ki on X for each g(n) invariant polynomial ki ∈ inv(g)(n) of
degree r.

Then, completing the cone

inn(g(n))∗

Ω•(X) bg∗(n)

{Ki}oo

OO

to a square

Ω•(P ) inn(g(n))∗
(A,FA)oo

Ω•(X)

p∗

OO

bg∗(n)

{Ki=ki(FA)}oo

OO

amounts to choosing a total space p : P → X over X with a g(n)-connection cho-
sen on it that does induce the previoulsy chosen characteristic classes. Further
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requiring that the pushout of

g∗(n)

Ω•(P ) inn(g(n))∗
(A,FA)oo

OO

Ω•(X)

p∗

OO

bg∗(n)

{Ki=ki(FA)}oo

OO

exists
Ω•

li(|G(n)|) g∗(n)
'oo

Ω•(P )

i∗

OO

inn(g(n))∗
(A,FA)oo

OO

Ω•(X)

p∗

OO

bg∗(n)

{Ki=ki(FA)}oo

OO

says that the fibers of P have to admit a basis of differential forms that mimics
the qDGCA of g∗(n). For n = 1 this just says that the fibers have to look like
the group G and that the connection A restricts to the canonical 1-form θ on
G, i∗A = θ. Hence the top square is the first condition on a Cartan connection
A.

(URS: I suspect that requiring the lower square to be a pushout is the second
Cartan condition (equivariance of A). But I am not sure yet how to see this.)

For n > 1 our notation Ω•
li(|G(n)|) indicates what one expects this statement

to generalize to, though realizing an n-group G(n) integrating the Lie n-algebra
g(n) as well as its nerve |G(n)| internal to smooth spaces is a currently unsolved
problem.

Hence constructing smooth spaces P with the above properties is an issue
beyond our present scope here. Nevertheless, we can proceed and study the
properties P would have.
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5.3 Characteristic classes of g(n)-n-Bundles

Ω•
li(G(n)) g∗(n)

oo

Ω•(P )

i∗

OO

inn(g(n))∗
(A,p∗FA)oo

OO

chk(g(n))∗

OO

Ω•(X)

p∗

OO0

BB

Lie(Σ(r−1)U(1))∗

OO

0

\\

p∗k(FA)IIIIIIIIII

ddIIIIIIIIIII

k(FA)
oo

Figure 5: Characteristic classes on g(n)-n-bundles. Given the g(n) connection
(A,FA) : Ω•(P )← inn(g(n))∗ on the total space P the assumption that the top
square exists as a pushout amounts to the assumption that p : P → X has fibers
that look like the n-group integrating g(n). Each characteristic class of degree r,
manifested in the existence of the Chern Lie (r+1) algebra chk(g(n)), leads to a
differential r-form on P as indicated. By construction/definition this descends
to the r-form representative k(FA) of the characteristic class as indicated.

Proposition 7 The images of invariant polynomials k ∈
∧•(ssg∗(n)) of a Lie

n-algebra g(n) under a choice of g(n)-connection

(A,FA) : Ω•(X) inn(g(n))oo

are invariant under morphisms of g(n)-connections: if

k(FA), k(FA′) ∈ Ω•(X)

are the images of k under (A,FA) and (A′, FA′), respectively and if there exists
a morphism (A,FA)→ (A′, FA′) then in fact

k(FA) = k(FA′) .

Proof. The existence of the morphism

Ω•(X) inn(g(n))∗

(A′,FA′ )

bb

(A,FA)

||
η

��
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implies that
k(FA′)− k(FA) = [d, η](k) .

But
d(η(k)) = 0

since, by definition of invariant polynomials of Lie n-algebras, k ∈
∧•(ssg(n)),

which, by definition of morphisms of g(n)-connection, implies that η(k) = 0.
And

η(dk) = 0

since, by definition of invariant polynomials of Lie n-algebras,

dk = dinn(g(n))k = 0 .

Hence
k(FA′)− k(FA) = dη(k) + η(dk) = 0 .

�

Using the more intrinsic formulation of characteristic classes from definition
17 we may restate the above proposition concisely as

Corollary 3 Morphisms of g(n) connections

Ω•(X) inn(g(n))∗

(A′,FA′ )

bb

(A,FA)

||

��

act trivially on the corresponding characteristic classes in that

Ω•(X) inn(g(n))∗

(A′,FA′ )

bb

(A,FA)

||
chk(g(n))∗oo Lie(Σr−1U(1))∗oo

��

=

Ω•(X) inn(g(n))∗
(A,FA)oo chk(g(n))∗oo Lie(Σr−1U(1))∗oo

for all k ∈ inv(g(n)), or equivalently

Ω•(X) inn(g(n))∗

(A′,FA′ )

bb

(A,FA)

||
bg∗(n)

oo

��

= Ω•(X) inn(g(n))∗
(A,FA)oo bg∗(n)

oo .
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