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Abstract

Some tentative remarks on generalizations of Chevalley-Eilenberg al-
gebras from Lie algebras and their modules to Lie ∞-algebras and their
modules, with an eye towards understanding the Batalin-Vilkovisky com-
plex.
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1 Introduction

The Chevalley-Eilenberg algebra of a Lie ∞-algebra g is a cochain complex in
non-negative degree.

An ω-vector space B is a cochain complex in non-positive degree.
The Batalin-Vilkovisky complex is a complex in arbitrary, positive and neg-

ative, degree, which contains as a subcomplex in non-negative degree the CE-
algebra of an L∞-algebra, and as a subcomplex in non-positive degree an ω-
vector space.

Under duality in cochain complexes, negative and positive degrees are inter-
changed. Hence

g∗ ⊕B

is in arbitrary degree.
Compare table 3.
In the case that g is just an ordinary Lie algebra (in degree 1) and B just an

ordinary module for it, g∗ ⊕ B would support the structure of a Lie-Rinehart
pair.

We propose the obvious generalization of this to a structure on arbitrarily
graded g∗⊕B, which we think of as a Lie-Rinehart ∞-pair. Then we show that
the BV-complex is indeed a special case of this.

This we do for a simplified special case, compare table 5.

Main point The main point is this:
As is well known, a dual L∞ structure on a positively graded cochain complex

g∗ of vector space is an extension of the differential of g∗ to one on

Λg∗

which makes Λg∗ into a monoid internal to chain complexes under the obvious
tensor product.

Then let A be a commutative algebra and B be a non-positively graded
cochain complex of A-modules, B ∈ Ch•(A) which is A in degree 0. Assume
that g∗ is also a complex of A-modules, g ∈ Ch•(A). Then we first form the
graded-symmetric tensor algebra

∧∞A (g∗ ⊕B)

over A, then forget the A-module structure and just remember the underlying
vector space structure over our ground field K, thus obtaining

F (∧∞A (g∗ ⊕B)) ∈ Ch•(K)

which remembers the fact that it comes from A-modules by having a canonical
monoid structure induced from that. This makes it a “free-over-A” graded
commutative differerential algebra.

The (dual) Lie-Rinehart ∞-pair structure is essentially an extension of the
differential on F (∧∞(g∗⊕B)) such that this monoid structure remains respected.
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Warning. Careful with these unfinished notes.

Discussion. I talked about this stuff a lot with Zoran Škoda and with Danny
Stevenson. Of course all imperfections in the following are mine. With Zoran
I am involved in a project on Lie-Rinehart 2-pairs, and the following thoughts
pertain to that, but don’t include the main point of that project, which is to find
the right definition of a Lie-Rinehart n-pair such that its Chevalley-Eilenberg
algebra is the one - probably - I consider here. Danny was most helpful with
providing help at various points.

Much of my thinking about these matters is influenced in one way or another
by interaction with Jim Stasheff. I am also thankful for some comments by
Johannes Huebschmann. Possibly what I am trying to say here has already
been said by him or somebody else, and it’s just me being slow.
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Plan.

1. basics on chain complexes

2. the Koszul complex

3. the Tate construction

4. examples in the BV context

2 Cochain complexes

The objects that we shall be concerned with here are differential graded
algebras (dg-algebras). The right way to think of a dg-algebra is as a monoid
in a category of cochain complexes.

dg-algebra monoid in Ch•(A)
wedge product tensor product

graded-commutativity nontrivial symmetric braiding

Table 1: Realizing dg-algebras as monoids in chain complexes.

We recall very basic facts about the category of chain complexes and the
homological algebra one can do with it.

2.1 A-modules

A module is for an algebra precisely what a representation is for a group.

Definition 1 For A any algebra over k, a module N for A is a k-vector space
N together with an action of A on N by linear operators, namely an algebra
homomorphism

ρ : A → EndVectk
(N) .

Examples.

• A module for the ground field k regarded as an algebra over itself is nothing
but an ordinary k-vector space.

• A module for the polynomial algebra k[X] over a single variable is a vector
space with one singled out endomorphism ρ(X) ∈ End(N) of it.

• The space of sections of a k-vector bundle E → X over some space X is
a module over the algebra of k-valued functions on X.

The last example is the crucial one in the context of the BV formalism.
Therefore we recall the statement underlying it in full detail.
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Definition 2 (special properties of modules) The following special prop-
erties of A-modules are important.

• An A-module N is finitely generated if it is spanned, over A, by finitely
many of its elements.

• An A-module N is free of rank n ∈ N if it is of the form N ' An := A⊕n.

• An A-module N is projective if any of the following equivalent conditions
hold

– N is a direct summand of a free module, i.e. there exists another
module N ′ such that N ⊕N ′ is free.

– N is the image N ' im(P ) of a projection P ∈ End(An) on some
free module.

– N satisfies the lifting property

∀g, f :

M ′

����
N

g //

∃h

==

M

Fact 1 (Swan’s theorem) For X a real manifold and A = C(X) the algebra
of real functions on X, the sections of vector bundles on X are precisely the
finitely-generated projective modules over A = C(X):

VectBun(X) '→ AModfin,proj

(E → X) 7→ Γ(E) .

We will come back to this special case.
There is an obvious notion of homomorphisms of A-modules.

Definition 3 Given two A-modules N and N ′, an A-module homomorphism

f : N → N ′

between them is a linear map that preseves the A action:

A⊗N
ρ⊗Id //

IdA⊗f

��

End(N)⊗N
ev // N

f

��
A⊗N ′ ρ′⊗Id // End(N ′)⊗N ′ev // N ′

.

Definition 4 (the category of A-modules) We write AMod for the cate-
gory whose objects are A-modules and whose morphisms are A-module homo-
morphisms.
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Structures and properties of AMod.

• AMod is an abelian category, hence we can do homological algebra
inside AMod.

Recall that this is equivalent to saying that that

– it has a zero-object – this is the 0-dimensional A-module;

– and it has all pullbacks and pushouts;

– and all monomorphisms and epimorphisms are normal.

• AMod is symmetric monoidal. The tensor product

⊗A : AMod×AMod → AMod

is the ordinary tensor product of A-modules over A. The tensor unit is
I = A and the symmetric braiding is the obious one.

• AMod is closed with respect to the above monoidal structure. The inter-
nal hom

hom : AModop ×AMod → AMod

sends any two A-modules to the vector space of A-module homomorphisms
between them, equipped with an A-module structure in the obvious way.

• AMod has duals. The dual

(−)∗ : AMod → AModop

is
(−)∗ = hom(−, A) .

The A-module V is of finite rank if (V ∗)∗ ' V .

The full subcategory of finite rank modules we denote

AModfin .

• AModfin is compact closed, meaning that the internal hom exists and is

hom(V,W ) ' V ∗ ⊗A W .

Example. In the context of Swan’s theorem, consider modules of function
algebras given by sections Γ(E) of vector bundles E → X over some space X.

Then:

• The dual module V ∗ ' Γ(E∗) is the space of sections of the dual bundle.

• The tensor product V ⊗A W corresponds, under to the ordinary fiberwise
tensor product of vector bundles:

Γ(E)⊗C(X) Γ(E′) ' Γ(E ⊗VectBun E′) .
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2.2 Categorical motivation: chain complexes as internal
ω-categories.

One combinatorial model for higher dimensional homotopies are ω-categories
(strict, globular or cubical). The nerve of an ω-category internal to AMod is a
simplicial A-module.

The famous Dold-Kan correspondence says that by forgetting lots of face
maps except one, and restricting it to the kernel of some of the other face maps,
one obtains from a simplicial A-module a non-negatively graded chain complex
of A-modules without loosing information.

Fact 2 (Dold-Kan correspondence) Forming the normalized chain complex
from a simplicial A-module is an equivalence of categories

AMod∆op ' // Ch+
• (AMod) .

This equivalence is just the first in a longer list.

Fact 3 (Brown and Higgins [1]) Let A be an abelian category. Then the
following categories, internal to A, are all equivalent:

• simplicial objects

• chain complexes

• crossed complexes

• cubical sets with connections

• cubical ω-groupoids with connections

• globular ω-groupoids.

Remark. There are one or two sign conventions that need to be fixed once and
for all before dealing with complexes. With an eye towards maximal harmony
with applications to the BV complex, we shall adopt the following convention

• All our complexes will be cochain complexes, meaning that the differentials
increase the degree by one, with in general no restriction on the sign of
the degree.

• Ordinary chain complexes are then recovered as cochain complexes of non-
positive degree.
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degree + 0 -
ordinary

vector space
interpretation ︸ ︷︷ ︸

ω−vector space︸ ︷︷ ︸
ω−covector space

Table 2: The interpretation of cochain complexes in terms of higher order
vector spaces.

2.3 Cochain complexes of A-modules

Definition 5 We denote by Ch•(A) the category of A cochain complexes in
AMod.

Objects V are cochain complexes of A-modules

V • = ( · · · // V −2
d−1

V // V −1
d0

V // V 0
d1

V // V 1
d2

V // V 2 // · · · ) ,

dk+1
V ◦ dk

V = 0 ∀k ∈ Z .

Morphisms f• : V • → W • are cochain maps

· · · // V −2
d−1

V //

f−2

��

V −1
d0

V //

f−1

��

V 0
d1

V //

f0

��

V 1
d2

V //

f1

��

V 2 //

f1

��

· · ·

· · · // W−2
d−1

W // W−1
d0

W // W 0
d1

W // W 1
d2

W // W 2 // · · ·

.

We assume all chain complexes to be nontrivial only in finitely many degrees.
It is useful to distinguish the full subcategories

• Ch−(A) of cochain complexes concentrated in non-positive degree;

• Ch+(A) of cochain complexes concentrated in non-negative degree.

One may think of Ch−(A) as ω-vector spaces and of Ch+(A) as ω-co-vector
spaces.

Using the notation
Vn := V −n

we can neatly switch back and forth between the two pictures.
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Remark.

• If we forget the differentials, i.e. if we look at cochain complexes with
all differentials trivial (the 0-maps), then these are the same as Z-graded
A-modules.

• When we have nontrivial differentials, their nilpotency, d2 = 0, necessarily
imposes, as discussed below, on these graded vector spaces the structure of
supervector spaces: the symmetric braiding is the nontrivial Z2-grading
that introduces a sign whenever two odd-graded components are inter-
changed.

Structure and properties and of Ch•(A). We list some useful facts about
Ch•(A).

• Ch•(A) is symmetric monoidal with the tensor product

⊗ : Ch•(A)×Ch•(A) → Ch•(A)

defined by

V •⊗W • = (· · · // (V • ⊗W •)n
dn+1

V •⊗W• // (V • ⊗W •)n+1 // · · ·)

(· · · // (
⊕
k∈Z

V k ⊗A Wn−k)
L

k∈Z
(dk+1

V ⊗AId
W n−k+(−1)kId

V k⊗Adn−k+1
W )

// (
⊕
k∈Z

V k ⊗A Wn−k+1) // · · ·)

.

Remark. The signs appearing here are crucial. Their nature is fixed en-
tirely by the requirement that the tensor product is again a chain complex,
i.e. by the requirement that (dV⊗W )2 = 0. As we will see in the following,
this will also imply that our modules are subject to the nontrivial symmet-
ric braiding which introduces a sign whenever two odd-graded modules are
interchanged. All this follows just from the nilpotency condition d2 = 0.
One way to understand the precise nature of the signs above is to note that
when forming the tensor product V ⊗W , we obtain the double complex

...
dm

W

��

...
dm

W

��
· · ·

dn
V // V n ⊗Wm

dn+1
V //

dm+1
W

��

V n+1 ⊗Wm

dm+1
W

��

// · · ·

· · ·
dn

V// V n ⊗Wm+1
dn+1

V //

��

V n+1 ⊗Wm+1 //

��

· · ·

...
...
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as an intermediate step. The squares commute, meaning that dV and dW

commute. So we form
d̃W := (−1)degV dW

and then the nilpotent differential

dV⊕W := dV + d̃W .

The tensor unit is

I• := ( · · ·
d−1

I // 0
d0

I // A
d1

I // 0
d2

I // · · ·

· · · 0 // 0
0 // A

0 // 0 // · · ·

)

The symmetric braiding

Ch•(A)×Ch•(A)
⊗ //

σ
))SSSSSSSSSSSSSSS

Ch•(A)⊗Ch•(A)

Ch•(A)×Ch•(A)

⊗

55kkkkkkkkkkkkkkk
b

��

with
σ : Ch•(A)×Ch•(A) → Ch•(A)×Ch•(A)

the exchange of factors is

bn
V •,W• : (

⊕
k

V k ⊗A Wn−k)
L

k

(−1)k(n−k)

// (
⊕
k

Wn−k ⊗A V k) .

The signs here ensure the required naturality

(
⊕
k

V k ⊗A Wn−k)
L

k

(−1)k(n−k)

//

dV ⊗AId+(−1)kId⊗AdW

��

(
⊕
k

Wn−k ⊗A V k)

dW⊗AId+(−1)n−kId⊗AdV

��
(
⊕
k

V k ⊗A Wn−k+1)
L

k

(−1)k(n−k+1)

// (
⊕
k

Wn−k+1 ⊗A V k)

• Ch•(A) is enriched over AMod

Hom : Ch•(A)op × Ch•(A)op → AMod
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• Ch•(A) is closed. So for all V ∈ Ch•(A) there is an internal hom functor

hom(V,−) : Ch•(A) → Ch•(A)

right adjoint to
−⊗ V : Ch•(A) → Ch•(A)

meaning that

Hom(U ⊗ V,W ) ' Hom(U,hom(V,W ))

naturally in U and W .

This internal hom-complex hom(V,W ) looks as follows:

hom(V,W ) := (· · · // hom(V,W )n
dn+1
hom(V,W ) // hom(V,W )n+1 // · · ·)

= (· · · //
⊕
k

homAMod(V k,W k+n)
L

k
((dk+n+1

W ◦−)−(−1)n(−◦dk
V ))

//
⊕
k

homAMod(V k,W k+n+1) // · · ·)

The differential dhom(V,W ) here can be understood from looking at the
evaluation map

ev : hom(V,W )⊗ V → W

which exists by general nonsense on internal homs. Let f ∈ ⊕kHom(V k,W k+n)
be any homogeneous element in the internal hom and x ∈ V m. Write f(x)
for ev(f, x). Then the fact that ev is a cochain morphism says that

dW (f(v)) = (dhom(V,W )f)(x) + (−1)nf(dV x) .

Solving this for dhom(V,W )f yields the action of the differential as given
above.

Remark. Notice that it is the space of cocycles in degree 0 of hom(V,W )
that corresponds to the external Hom(V,W ):

Z0(hom(V,W )) ' Hom(V,W ) = ker((dW ◦ −)− (− ◦ dV )) .

The nature of this differential in the internal hom complex will have strong
significance in the context of applications to the BV formalism. There we
will find, for par and tar the “parameter space” and the “target space” of
an n-particle (an (n− 1)-brane), respectively:

– hom(par, tar)0 is the space of all “worldvolume fields”

– Z0(hom(par, tar)) is the space of all fields that solve the “classical
equations of motion”

– B0(hom(par, tar)) is the space of all fields that are gauge trivial.
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Notice how the additional information obtained by passing from the ex-
ternal Hom to the internal matches with important physical information.

• Ch•(A) has duals. Since we have a tensor unit I and an internal hom,
we have duality

(·)∗ : Ch•(A) → Ch•(A)op

given by
V ∗ := hom(V, I) .

Using the above one finds

V ∗ = (· · · // (V ∗)n
dn+1

V ∗ // (V ∗)n+1 // · · ·)

= (· · · // (V −n)∗
−(−1)n(d−n

V )∗// (V −n−1)∗ // · · ·)

.

The unit i : I → V ⊗ V ∗ is

· · · // 0 //

0

��

A //

L

k

i
V k

��

0 //

��

· · ·

· · · //
⊕
k

V k ⊗A (V k+1)∗ //
⊕
k

V k ⊗A (V k)∗ //
⊕
k

V k ⊗A (V k−1)∗ // · · ·

,

while the counit e : V ∗ ⊗ V → I is

· · · //
⊕
k

V k ⊗A (V k+1)∗ //

0

��

⊕
k

V k ⊗A (V k)∗ //

L

k

e
V k

��

⊕
k

V k ⊗A (V k−1)∗ //

0

��

· · ·

· · · // 0 // A // 0 // · · ·

.

�

• Let Ch•fin(A) be the full subcategory on those chain complexes that are
bounded (only finitely many entries are nonvanishing) and all whose en-
tries satisfy homAMod(V k,W l) ' (V k)∗ ⊗A W l.

Then: Ch•fin(A) is compact closed meaning that the internal hom is
isomorphic to a tensor product

hom(V,W ) ' W ⊗ V ∗ .
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Just for the fun of it, we now check that in detail.

By the finiteness assumption we have

homAMod(V k,W k−n) ' (V k)∗ ⊗A W k−n .

Then we compute
(V ⊗W ∗)∗ :=

(· · · // ((V ⊗W ∗)∗)n
dn+1
(V⊗W∗)∗ // ((V ⊗W ∗)∗)n+1 // · · ·)

= (· · · // ((V ⊗W ∗)−n)∗
(−1)n+1(d−n

V⊗W∗ )∗

// (V ⊗W ∗)−n−1)∗ // · · ·)

= (· · · //
⊕
k

(V k ⊗A (W ∗)−n−k)∗
L

k

(−1)n+1(dk
V ⊗AId(W∗)−n−k+(−1)kId

V k⊗Ad−n−k
W∗ )∗

//
⊕
k

(V k ⊗A (W ∗)−n−k−1)∗ // · · ·)

= (· · · //
⊕
k

(V k ⊗A (Wn+k)∗)∗
L

k

(−1)n+1(dk
V ⊗AId(W n+k)∗+(−1)n+1Id

V k⊗A(dn+k+1
W )∗)∗

//
⊕
k

(V k ⊗A (Wn+k+1)∗)∗ // · · ·)

= (· · · //
⊕
k

(V k)∗ ⊗A Wn+k

L

k
(Id(V k)∗⊗Adn+k+1

W +(−1)n+1(dk
V )∗⊗AId

W n+k)
//
⊕
k

(V k)∗ ⊗A Wn+k+1 // · · ·)

' (· · · //
⊕
k

homAMod(V k,W k+n) [d,−] //
⊕
k

homAMod(V k,W k+n+1) // · · ·)

= hom(V,W ) .

By the symmetry of Ch•(A), we have of course W ⊗ V ∗ ' V ∗ ⊗W .
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Computing the latter directly yields

V ∗⊗W := (· · · // (V ∗ ⊗W )n
dn+1

V ∗⊗W // (V ∗ ⊗W )n+1 // · · ·)

= (· · · //
⊕
k

(V ∗)k ⊗A Wn−k

L

k
(dk+1

V ∗ ⊗AId
W n−k+(−1)kId(V ∗)k⊗Adn−k+1

W )
//
⊕
k

(V ∗)k ⊗A W (n−k+1) // · · ·)

= (· · · //
⊕
k

(V −k)∗ ⊗A Wn−k

L

k

(−1)k(−(d−k
V )∗⊗AId

W n−k+Id(V−k)∗⊗Adn−k+1
W )

//
⊕
k

(V −k)∗ ⊗A W (n−k+1) // · · ·)

= (· · · //
⊕
k

(V k)∗ ⊗A Wn+k

L

k

(−1)k(−(dk
V )∗⊗AId

W k+n+Id(V k)∗⊗Adk+n+1
W )

//
⊕
k

(V k)∗ ⊗A W (k+n+1) // · · ·)

= (· · · //
⊕
k

homAMod(V k,W k+n)
L

k

(−1)k((dk+n+1
W ◦−)−(−◦dk

V ))
//
⊕
k

homAMod(V k,W k+n+1) // · · ·)

.

The differential here looks superficially different from the one of hom(V,W ).
But the complex is indeed isomorphic to hom(V,W ), as it should be:

let f : V k → W k+n be a map of degree n. We find

f
� (−1)k((dW ◦−)−(−◦dV )) //

_

(−1)k(k+n)

��

(−1)k(dW ◦ f − f ◦ dV )
_

(−1)k(k+n+1)⊕(−1)(k−1)(k+n)

��
(−1)(k+kn)f

� (dW ◦−)−(−1)n(−◦dV ) // (−1)k+kn(dW ◦ f)− (−1)kn+n+kf ◦ dV

,

where the vertical arrows come from the braiding isomorphism bV ∗⊗V .

• Ch•(A) has plenty of other nice structures. In particular, it naturally is
a model category.

2.4 dg-Algebras and dg-coalgebras

The crucial (but simple) fact underlying most of what we are doing here is:

Observation 1 Monoids in Ch•(A), i.e. cochain complexes V equipped with a
product morphism

µ : V ⊗ V → V
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and a unit morphism
i : I → V

such that µ is associative

V ⊗ V ⊗ V
µ⊗IdV //

IdV ⊗µ

��

V ⊗ V

µ

��
V ⊗ V

µ // V

and unital
I ⊗ V //

i⊗IdV $$JJJJJJJJJ V

V ⊗ V

µ

<<xxxxxxxxx

are precisely differential graded algebras (dg-algebras).

Definition 6 (dg-algebra) A dg-algebra is an associative graded algebra (V, ·)
equipped with a graded derivation

d : V → V

of degree +1 that squares to 0,
d2 = 0 .

Of ocurse this has a co-version:

Observation 2 Comonoids in Ch•(A), i.e. cochain complexes V equipped with
a coproduct morphism

δ : V → V ⊗ V

and a counit morphism
e : V → I

such that δ is coassociative

V ⊗ V ⊗ V V ⊗ V
δ⊗IdVoo

V ⊗ V

IdV ⊗δ

OO

V

δ

OO

δ
oo
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and counital
I ⊗ V oo

dd

i⊗IdV JJJJJJJJJ V

V ⊗ V
||

µ

xxxxxxxxx

are precisely codifferential graded coalgebras (cdg-coalgebras).

Definition 7 (cdg-coalgebra) A cdg-coalgebra is a coassociative graded coal-
gebra (V, ·) equipped with a graded coderivation

D : V → V

of degree +1 that squares to 0,
D2 = 0 .

Definition 8 We write
Monoids(Ch•(A))

for the category of monoids internal to Ch•(A) and

CoMonoids(Ch•(A))

for the category of comonoids internal to Ch•(A).
We write

ComMonoids(Ch•(A))

for the category of commutative monoids internal to Ch•(A) and

CoComMonoids(Ch•(A))

for the category of cocommutative comonoids internal to Ch•(A).

2.4.1 The internal hom in dg-(co)algebras

We had seen that the internal hom homCh•(A)(X, Y ) in cochain complexes,
between two positively graded cochain complexes X and Y is itself, in general,
no longer positively graded. A similar statement applies to the hom internal to
(co)monoids in Ch•(A).

As discussed in 5, important examples of arbitrarily graded dg-(co)algebras
arise by forming the internal hom betwen dg-(co)algebras with degrees of definite
sign.

The closed structure on dg-coalgebras which I shall describe now I learned
from Todd Trimble, who learned it from Jim Dolan. Todd tells me that the
result may also have been known to Thomas Fox in the 80s.

17



Fact 4 (well known) Let C be a symmetric monoidal category. Then the cat-
egory CoComMonoids(C) has cartesian products given by the tensor product in
C. For X and Y comonoids, the projections

X ⊗ Y
pX

{{ww
ww

ww
ww

w
pY

##GG
GG

GG
GG

G

X Y

:=

X ⊗ Y
eX⊗Y

{{ww
ww

ww
ww

w
X⊗eY

##GG
GG

GG
GG

G

X Y

are obtained using the counit and the diagonal

X
δX // X ⊗X

is simply the coproduct.

Theorem 1 (Dolan) If C is symmetric monoidal closed such that CoComMonoids(C)
has equalizers und such that the forgetful functor

U : CoComMonoids(C) → C

has a right adjoint,

Cofree : C → CoComMonoids(C)

then CoComMonoids(C) is cartesian closed.

Proof. The strategy is to show that the internal homCoComMonoids(C)(X, Y ) has
to be the equalizer

homCoComMonoids(C)(X, Y ) � � // Cofree(homC(X, Y ))
Ψ //
Φ

// Cofree(homC(X, Y ⊗ Y ))⊗ Cofree(homC(X, I))

in CoComMonoids(C) of two morphisms Φ and Ψ. Then it exists by the as-
sumption that C is such that CoComMonoids(C) has equalizers.

The two morphisms in question are, on the first tensor factor

Ψ1 := Cofree(Hom(X, δY ))

and

Cofree(homC(X, Y ⊗ Y ))

π

��
Cofree(homC(X, Y )) δ //

Φ1

00bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
Cofree(homC(X, Y ))⊗2 π⊗π // homC(X, Y )⊗2 ⊗1 // homC(Y ⊗ Y )X⊗X

homC(δX ,Z⊗Z) // homC(X, Y ⊗ Y )

�

18



2.4.2 Quasi-free dg-(co)algebras

We shall mainly be interested in dg-algebras that are free in a certain sense.
These come from symmetric tensor powers.

Definition 9 The symmetric tensor prodct of an object V in Ch•(A) with
itself is

V ∧ V := ker(IdV⊗V − bV,V )

= im(
1
2
(IdV⊗V + bV,V )) ,

where bV,W is the component of the symmetric braiding, described above.
Similarly the nth symmetric tensor power

∧nV

is defined by symmetrizing, using bV,V , over all n! permutations.

Remark.

• Notice that for chain complexes concentrated in degree 0, the symmet-
ric tensor product coincides with the usual symmetric tensor product of
plain A-modules. For chain complexes with all differentials vanishing it
corresponds to the graded symmetric product of the corresponding graded
A-modules.

• The definition of V ∧ V in terms of the image of the projector

sym :=
1
2
(IdV⊗V + bV,V )

is convenient (see below), but does need to assume that we are working
over a field not of characteristic 2.

Observation 3 A graded-commutative dg-algebra is a monoid (V, µ) in
Ch•(A) whose product factors through V ∧ V .

V ⊗ V
µ //

1
2 (IdV⊗V +bV,V )

��

V

V ∧ V
� � // V ⊗ V

µ

<<xxxxxxxxx

Definition 10 The tensor algebra over a complex V is the complex

TV :=
⊕
n∈N

V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

:= I ⊕ V ⊕ (V ⊗ V )⊕ · · · .

equipped with the tautological monoid structure
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The symmetric tensor algebra over a complex V is the complex

Λ•V :=
⊕
n∈N

∧nV = I ⊕ V ⊕ (V ∧ V )⊕ · · · .

The monoid structure · : ΛV⊗ΛV → ΛV on this is the one from above, composed
with the graded symmetrization projector

µ : V ∧k ⊗ V ∧l
sym // V ∧(k+l) .

Here the infinite sum is defined to be the direct limit

⊕
n∈V

∧nV := lim
→

(
k⊕

n=0

∧nV

)
.

Example. Let V be an ordinary vector space, regarded as a chain complex
concentrated in degree 0, with A = k the ground field. Then

TV

is the ordinary tensor algebra over V ,

ΛV

is the free symmetric tensor algebra (the bosonic Fock space over V ) and

Λ(V [1])

is the (free graded-commutative) Grassmann algebra over V (the fermionic
Fock space over V ).

Example. Let (g, [·, ·]) a finite dimensional Lie algebra over our ground field.
Then the Chevalley-Eilenberg algebra CE(g) of that Lie algebra is the
graded commutative dg-algebra obtained by equipping

Λ(g∗[1])

with the differential

d : Λ(g∗[1]) → (Λ(g∗[1]) ∧ Λ(g∗[1]))[−1]

defined by
d|g∗[1] := [·, ·]∗ .

The cohomology of the corresponding complex is, by definition, the Lie algebra
cohomology of g (with values in the trivial module).
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Example. Let (g, [·, ·]) a finite dimensional Lie algebra over our ground field.
Then the Weil algebra W (g) of that Lie algebra is the graded commutative
dg-algebra obtained by equipping

Λ(g∗[1]⊕ g∗[2])

with the differential

d : Λ(g∗[1]) → (Λ(g∗[1]) ∧ Λ(g∗[1]))[−1]

defined by
d|g∗[1] := [·, ·]∗ + s∗

and
d(s∗(x)) := s∗dx

for all x ∈ g∗[1] and with s : g[2] → g[1] the canonical isomorphism. The closed
elements in Λg∗[2] ⊂ Λ(g∗[1] ⊕ g∗[2]) are the symmetric invariant polynomials
on g.

Remark. In order to put this into perspective, I make the following remark,
without, at this point, trying to actually describe or explain any of these state-
ments.

The Weil algebra W (g) arises from CE(g) in a universal way. All of the
following are synonymous:

• W (g) is the mapping cone of the identity map on CE(g). .

• W (g) is the homotopy quotient of the identity map on CE(g).

• W (g) is the weak cokernel of the identity map on CE(g).

Moreover

• CE(g) plays the role of differential forms on G.

• W (g) plays the role of differential forms on EG.

• inv(g), the graded commutative algebra of closed elements in W (g)|∧g∗[2],
plays the role of differential forms on BG.

And we have a canonical sequence

G
� � // EG // // BG

CE(g) W (g)oooo inv(g)? _oo

The following fact will be of importance:
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Proposition 1
ΛV = ∧∞(I ⊕ V )

In particular

Corollary 1 If V ∈ bfCh•(A) contains in degree 0 just the tensor unit

V 0 = A

then
∧∞V

naturally is a monoid in Ch•(A).

Remark. We shall be dealing with dg-algebras which are obtained from a
complex V by forming ∧∞V and then extendending the differential on that
from being co-unary to having higher co-arities.

(** This still sounds a little mysterious. It’s really just supposed to convey
the basic construction well familiar to dg-practitioners, but I hope to eventually
say it in a nice abstract manner .**)

2.5 Various concepts from homological algebra

We will need the following standard constructions in homological algebra.

• The functor
H• : Ch•(X) → Ch•(X)

maps each cochain complex to its cohomology

H( · · ·
dn

V // V n
dV

n+1 // V n+1 // · · · ) := ( · · · 0 // Hn(V ) 0 // Hn+1(V ) // · · · )

• The shift functors
[n] : Ch•(A) → Ch•(A)

for all n ∈ Z give a Z-action on Ch•(A).

Notice the trivial but useful fact that for every complex V there is a
canonical morphism

V
dV // V [−1] .

• The mapping cone of a morphism

f : V → W

of chain complexes is the chain complex

(V
f→ W ) :=

(
V [1]⊕W,d =

(
dV [1] 0
f [1] dW

))
.

The mapping cone is the “weak cokernel” of f , or “homotopy quotient”:
at behaves like W modulo the image of f .
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• Behaviour of cohomologies under the tensor product

Let V and W be objects in Ch•(A) with cohomologies H(V ) and H(W ),
respectively. Then, in general, the cohomology of their tensor product is
not the tensor products of their cohomologies

H(V ⊗W ) 6'i.g. H(V )⊗H(W ) .

The failure of this isomorphism to exist is measured by

Tor•(V,W ) .

The Künneth formula says that we have an exact sequence of complexes

0 → H(V )⊗H(W ) → H(V ⊗W ) → Tor1(H(V ),H(W ))[−1] → 0 .

Here Torn
1 (H(V ),H(W )) is the n-th cohomology group of any projective

resolution PH(V ) of H(V ) tensor H(W ):

Torn
1 (H(V ),H(W )) := Hn(PH(V ) ⊗H(W )) .

(** hope I got this right **)

• long exact sequences in cohomology

Let
0 → A → B → C → 0

be a short exact sequence in Ch•(A). Then we get a connecting homo-
morphism of cohomologies

H(C) → H(A)[−1]

and hence a long exact sequence in cohomology

· · ·A → B → C → A[−1] → B[−1] → C[−1] → A[−2] → · · · ,

also known as a triangle

A // B

��~~
~~

~~
~

C

δ[1]

__@@@@@@@

as follows:

Consider the square of component maps of the above exact sequence of
complexes.

An � � //

dn+1
A

��

Bn

dn+1
B

��

// // Cn

dn+1
A

��
An+1 � � //

dn+2
A

��

Bn+1

dn+2
B

��

�� // // Cn+1

An+2 � � // Bn+2

.
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Let cn in Cn be closed. It comes from some element bn in Bn. bn need
not be closed itself, but dbn has to be in the kernel of the map to Cn+1.
Therefore there is a preimage an+1 of dbn in An+1. Since dbn is closed
and the map from A to B is an injection, also an+1 needs to be closed.
Its cohomology class is defined to be the image under the connecting
homomorphism of the class of cn.
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3 Lie ∞-modules and their Chevalley-Eilenberg
algebras

We recall ordinary Lie-Rinehart pairs and Lie∞-algebras and their dual Chevalley-
Eilenberg algebras. We formulate the Chevalley-Eilenberg algebra of a Lie-
Rinehart pair in a suggetsive way and the propose the obvious generalization of
that to be a Lie-Rinehart ∞-pair.

3.1 Lie-Rinehart pairs

Definition 11 An ordinary Lie-Rinehart pair (g, B) is a Lie algebra g together
with an associative algebra B such that both are modules over each other

ρ : g → Der(A)

µ : A⊗K g → g

in a compatible way mimicking that of the archetypical Lie-Rinehart pair which
is(g = Γ(TX), B = C∞(X)) for X some smooth manifold.

Remark. Lie-Rinehart pairs (g, A) for which A = C∞(X) for some smooth
manifold X are precisely equivalent to Lie algebroids E → X over X. The
Lie algebra g = Γ(E) is that on the sections of E and the Lie action of g on
A is that coming from the anchor map of the Lie algebroid. The archetypical
Lie-Rinehart pair (Γ(TX), C∞(X)) corresponds to the tangent algebroid of
X, which is the differential version of the fundamental groupoid of X.

Definition 12 (The Chevalley-Eilenberg algebra of a Lie-Rinehart pair)
Let

g∗ := HomAMod(g, A)[1]

be the dual, over A, of the Lie algebra of a Lie-Rinehart pair (g, A), regarded as
being in degree 1. Let

V := (0 // V 0
d1

V // V 1 // 0)

(0 // A
ρ(·)(·) // g∗ // 0)

in Ch•(X) and form

∧∞V = (A⊕HomAMod(g, A)[1]⊕ ∧2
AHomAMod(g, A)[1]⊕ · · · , ΛdV )

in Ch•(A).
Let

F : Ch•(A) → Ch•(K)
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be the forgetful functor from complexes of A-modules to mere complexes of vector
spaces. The image F (∧∞V ) remembers the fact that it comes from complexes
of A-modules in that there is a canonical monoid structure

µ : F (∧∞V )⊗Ch•(k) F (∧∞V ) → F (∧∞V )

defined componentwise by forming the wedge product over A

µ : V k ⊗k V l
symA // V k ∧A V l .

The differential induced by the Lie bracket [·, ·] : g⊗K g → g which acts as

d(g,A) : g∗[1]
[·,·]∗ // (g∗[1] ∧A g∗[1])[−1]

extends to a differential

d(g,A) : F (∧∞V ) → F (∧∞V )[−1]

which extends the differential on V in that we have a morphism

(F (∧∞V ), d(g,A))

����
V

in Ch•(k). The complex (F (∧∞V ), d(g,A)) is the Chevalley-Eilenberg complex
of the Lie-Rinehart pair (g, A).

Remark. One point here deserves emphasis:
While it is crucial that g is an A-module, the differential

d(g,A) : g∗[1]
[·,·]∗ // (g∗[1] ∧A g∗[1])[−1]

is not an A-module homomorphism. Rather, it is an A-module derivation. It is
this fact which is encoded in the statement that d(g,A) is actually a differential
not on ΛV , but on F (ΛV ). That frees it from having to be an A-module
homomorphism. But then the condition that we have the obvious monoidal
structure on F (ΛV ) forces it to be an A-module derivation.

We think of the monoidal structure

· : F (ΛV )⊗Ch•(K) F (Λ(V )) → F (Λ(V ))

as being the free graded commutative over A.
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Example (the tangent algebroid). Let X be a smooth manifold and A =
C∞(X) the algebra of smooth functions on X.

Let g∗ = Ω1(X), naturally regarded as being in degree 1, and B = C∞(X)
be two objects in Ch•(C∞(X)) and form

∧∞(g∗ ⊕B) = ∧∞(Ω1(X)⊕ C∞(X)) .

Notice that due to
Ω1(X) ∧C∞(X) Ω1(X) = Ω2(X)

this is nothing but Γ(Λ•T ∗X).
g∗ is equipped with the structure (dual to) a Lie 1-algebra where the co-

binary differential
d : g∗ → (g∗ ⊗ g∗)[−1] = Ω2(X)

is just the deRham differential.
Hence

(∧∞Ω1(X)), ddR)

����

(C(X) ddR→ Ω1(x))

is the deRham complex with the degree 0 part truncated. To get a Lie-Rinehart
pair we need to find an extension of the differential

3.2 L∞-algebras

Definition 13 Let V be a positively graded vector space. An L∞-algebra over
V is a codifferential

D : Sc(V ) → Sc(V )

on the free graded-commutative coalgebra over Sc(V ) V such that

• the degree of D is -1

• D2 = 0.

If V is finite dimensional, then this is, dually, the same as a differential d :
ΛV ∗ → ΛV ∗ defined by

dω = ω(D(·))

for all ω ∈ V ∗. This satisfies

• the degree of d is +1

• d2 = 0.
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Hence this is a graded-commutative dg-algebra, which is free as a graded
commutative algebra. It generalizes the Chevalley-Eilenberg algebra from Lie
algebras to L∞-algebras.

We can try to say this entirely internal to the category of cochain complexes:
Let V ∗ ∈ Ch•(K) be a positively graded cochain complexes. Then (the dual

of an) L∞-structure on V ∗ is a complex

(ΛV ∗, d)

which is equipped with an epimorphism

(ΛV ∗, d)

p

����
V ∗

.

Notice that d can be decomposed into is components of homogeneous co-
arity:

d = d0 + d1 + d2 + · · ·

with
dk : V ∗ → (∧kV ∗)[−1] .

The above projection is

p =
{

Id on ∧1V ∗

0 else .

Hence the co-unary component d0 of d has to be the original differential on V ∗.

Example. For each Lie algebra g with a degree (n + 1)-cocycle µ, we get an
L∞-algebra structure (dually)

(gµ)∗ := (Λ(g∗[1]⊕ u(1)[n]), d)

by setting
d|g∗[1] = dCE(g)

and
db = µ

for b the canonical basis of u(1)[n].
For g semisiple and µ = 〈·, [·, ·]〉 the canonical 3-cocycle on it, this is (the

CE-alegebra dual to) the String Lie 2-algebra.
Similarly, one obtains L∞-algebras chk(g) for each invariant polynomial k

on g and csk(g) for each transgression element interpolating between µ and k.
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3.3 Lie-Rinehart ∞-pairs

We now give the obvious generalization of our definition of the Chevalley-
Eilenberg algebra of a Lie-Rinehart pair.

Definition 14 Let A be a commutative algebra and g∗ a positively graded object
and

B = (· · · // B−2
d−1

B // B−1
d0

B // B0 // 0)

(· · · // B−2
d−1

B // B−1
d0

B // A // 0)

a non-positively graded object in Ch•(A).
A Lie-Rinehart ∞-pair structure on g∗ and B is a differential

(F (∧∞A (g∗ ⊕B)), d(g,B))

����
g∗ ⊕B

,

respecting the free graded-commutative product over A

µ : F (∧∞A (g∗ ⊕B))⊗Ch•(K) F (∧∞A (g∗ ⊕B)) → F (∧∞A (g∗ ⊕B))

defined above.

Remark. Notice that

• An ω-vector B space is a non-positive cochain complex.

• The CE algebra g∗ of a Lie ∞-algebra is a positively graded cochain com-
plex.

• The cochain complex
g∗ ⊕B

of a Lie-Rinehart ∞-pair is hence in arbitrary degree.

Example. Our main example for this shall be the BV complex which we turn
to in the following.

Example. (Lie ∞-algebra acting on itself) One crucial consistency check
on our definitions is: every Lie ∞-algebra should be a module over itself. Com-
pare the definition in [2].

So, given the cochain complex g in non-positive degree with a Lie∞-structure

d2 : g∗ → g∗ ∧ g∗
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LR-∞ Λ( g∗ ⊕ A ⊕ B )

degree + 0 −

physics
name ghosts fields

anti-ghosts
anti-fields

Table 3: Lie-Rinehart ∞ pairs interpreted in the language of BV-
complexes

d3 : g∗ → g∗ ∧ g∗ ∧ g∗

etc, we want to naturally extend the differential to

Λ(g∗ ⊕ g) .

And we can indeed to so by defining

d2 : g → g⊗ g∗

d3 : g → g⊗ g∗ ∧ g∗

etc. by dualizing on the input and on one output.
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4 The BV-complex

The ordinary BV-complex is a Lie-Rinehart∞-pair (g, B) where g is an ordinary
Lie algebra (“of local symmetries”) acting on a space X and where B is a
Koszul-Tate resolution of functions on a quotient of X.

4.1 The Koszul complex

Definition 15 (dual Koszul complex) For

f : M → A

a morphism of A-modules with M of rank n, let

V := (0 // V −1
d0

V // V 0 // 0)

(0 // M
f // A // 0)

in Ch•(A) be the corresponding cochain complex in degree -1 and 0. Then

K[f ] := ∧nV

is the (dual) Koszul complex defined by f .

Example. The main example of interest in the BV context is this: Let A =
C(X) for X some manifold. Let TX be the tangent bundle over X and M =
Γ(TX) its space of sections. Let S ∈ C(X) be any function on X and set
f = dS(·).

V := (0 // V −1
d0

V // V 0 // 0)

(0 // Γ(TX)
dS(·) // C(X) // 0)

.

In the special case that M happens to be a free A-module M = An (e.g.
sections of a trivial vector bundle in the above example), any tuple (Ea ∈ A)n

a=1

of elements in A provides a morphism

E : An → A

by matrix multiplication

E :

 a1

...
an

 7→ [E1, · · · , En] ·

 a1

...
an

 =
n∑

k=1

akEk

we can give the following equivalent definition of the (dual) Koszul complex.
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Definition 16 For E1, · · · , En ∈ A a sequence of elements of A, let

K[Ea] := (0 // K[Ea]−1
d0

K[Ea] // K[Ea]0 // 0)

(0 // A
·Ea // A // 0)

.

The complex
K[E1, · · · , En] := K[E1]⊗ · · · ⊗K[En]

is the (dual) Koszul complex associated with the (Ei).

Example. For two elements K[E1, E2] looks as follows.

K[E1, E2] = K[E1]⊗K[E2] := (0 // A

�
−E2
E1

�
// A2

[E1,E2]// A // 0) .

Notice that the left A factor arises as A⊗A A.

Remarks.

•
K[E1, · · · , En] := (· · · // A⊕n

Pn
a=1 ·Ek // A // 0)

• The cohomology of the Koszul complex in degree 0 is the quotient K[E1, · · · , En]
form the quotient

A/(E1, · · · , En)A, .

Therefore, in the case that all other cohomology groups of the Koszul com-
plex vanish, it provides a resolution of this quotient. Since all A-modules
appearing in the Koszul complex are free, this resolution is necessarily pro-
jective.

• Therefore the cohomologies of the Koszul complex in non-vanishing degree
measure the interdependency of the Ea. In particular, cohomology in
degree -1 contains the relations among the Ea, namely tuples of elements
v ∈ A⊕n such that

vaEa = 0

modulo the trivial relations.

The idea that the Koszul complex measures the independency of the elements
(E1, · · · , En) is made precise by the following standard definition and fact.

Definition 17 (Regular sequence) An element E ∈ A is called regular if
it is not a zero-divisor and if A/EA 6= 0. For M an A-module, E is called
M-regular if it is not a zero-divisor and M/EM is nonzero.

A sequence of elements (E1, · · · , En ∈ A) is M -regular if Ek is M/(E1, · · · , Ek−1)M -
regular.
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Example. Let A = C∞(X) for some manifold X. Then a function E ∈ A is
regular, if there is no open set on which it vanishes. Let E → X be a vector
bundle and M = Γ(E) be its module of sections. Then, again, E is M -regular
if it is just regular.

Fact 5 For A a local ring and M a finitely generated module, any sequence
(E1, · · · , En ∈ A) is M -regular precisely if the Koszul complex K[E1, · · · , En] is
a resolution of M/(E1, · · · , En).

If the Koszul complex K[E1, · · · , En] is not a resolution, we can read off from
its failure of acyclicity the maximal regular sequence inside (E1, · · · , En).

Fact 6 If precisely the highest r cohomology groups of K[E1, · · · , E2] vanish,
then the maximal regular sequence inside (E1, · · · , E2) has length r.

More precisely, if
H−n+j(K[E1, · · · , En]) = 0

for all j < r, while
H−n+r(K[E1, · · · , En]) 6= 0

then every maximal regular sequence inside (E1, · · · , En) has length r.

Remark. The local rings of relevance in the BV context are formal power
series K[[X1, · · · , Xn]].

Example. Let A = K[[x1, x2]] be a power series in two variables. Then (x1)
is a regular sequence and A/(x1)A ' K[[x2]]. Compare this with the example
2 below.

Example. Continue the example f = dS(·) from above. Let X ⊂ Rn such
that TX = Rn ×X. Sections of TX are simply n-tuples of functions

s =

 s1

...
sn

 ∈ Mn×1(C(X)) .

Then for S ∈ C(X) any function we have globally

dS = [dS1, · · · , dSn] ∈ M1×n(C(X)) .
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4.2 The Tate construction: killing of cohomology groups

In practice it is often useful to resolve quotients A/(E1, · · · , En) where the
(E1, · · · , En) do not form a regular sequence.

There is a canonical procedure, going back to John Tate (and used through-
out rational homotopy theory, see the example below), to systematically “kill”
all unwanted cohomology groups by introducing further generators.

Example. Let again
f : M → A

be a morphism of A-modules with nontrivial kernel

ker(f) � � // M .

Then instead of using the 2-term complex

V := (0 // V −1
d0

V // V 0 // 0)

(0 // M
f // A // 0)

consider the 3-term complex

W := (0 // W−2
d−1

W // W−1
d0

W // W 0 // 0)

(0 // ker(f) � � // M
f // A // 0)

anti
ghosts

anti
fields fields

.

The introduction of the new term in degree -2 “kills” all unwanted cohomology
in degree -1. Therefore, by construction, the cohomology of W is concentrated
in degree 0

H(W ) := (0 // H(W )−2
d−1

H(W ) // H(W )−1
d0

H(W ) // H(W )0 // 0)

(0 // 0 // 0 // A/im(f) // 0)

.

It might seem that forming now ∧nW instead of ∧nV produces a dg-algebra
with no cohomology away from degree 0.
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However, the Künneth formula tells us, for the cohomology of the tensor
product of two complexes X and Y , that

0 →

( ⊕
p+q=n

H(X)p ⊗Hq(q)

)
→ Hn(X⊗Y ) →

( ⊕
p+q=n+1

Tor(Hp(X),Hq(Y ))

)
→ 0

is exact. This implies that even if the cohomologies of X and Y are both
concentrated in degree 0, we get

H−1(X ⊗ Y ) ' Tor(H0(X),H0(Y )) ,

which may be nontrivial.

Example. Suppose that the non-positively graded complex V is a projec-
tive resolution of A/I in degree 0, H0(V ) = A/I, H−n<0(V ) = 0 for I =
(E1, · · · , En) some ideal generated by a regular sequence. For instance take
V = K[E1, · · · , En] to be the Koszul complex of that regular sequence.

Or, in our standard example, consider

V = (0 // V −2
d−1

V−1 // V −1
d0

V // V 0 // 0)

(0 // ker(dS(·)) � � // Γ(TX)
dS(·) // C(X) // 0)

and assume that ker(dS(·)) is projective, i.e. sections of a vector bundle over
X.

Then the following is true (see [Loday:Cyclic Homology, 3.4.7])

Fact 7 The first Tor-algebra is

Tor−1(A/I,A/I) ' I/I2 .

The higher Tor-algebras are the exterior powers of this:

Tor−•(A/I,A/I) ' ∧•A/I(I/I/2)

Remark. If A = C(X), then ∧•(I/I2) is the algebra of differential forms on
X restricted the vanishing set of (E1, · · · , En).

So we find in this case that even though the cohomology of V is concentrated
in degree 0, the cohomology of V ⊗ V can be nontrivial in degree -1.

The Tate construction Let (V, ·) be monoid in Ch•(A), hence a dg-algebra
over A, concentrated in either non-positive or non-negative degree. Let us as-
sume V is in non-positive degree for definiteness, as in our applications.
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There is a systematic way to create from (V, ·) a new dg-algebra (V ′, ·)
extending it

(V ′, ·) // // (V, ·)

with the property that the cohomology of V ′ vanishes everywhere except in
degree 0, where it coincides with the cohomology of V .

The procedure works by induction over the degree of the cohomology groups:

• Let (V−k, ·) // // (V, ·) be a dg-algebra extending V such that

H−k<d<0(V−k) = 0 .

• add an addition generator etc [need to rewrite this]

Using this procedure, one obtains the following

Fact 8 (Tate) For I any ideal in A there exists a free acyclic dg-algebra X
such that H0(X) = A/I .

In other words: we can always find some resolution of a quotient A/I by a
dg-algebra.

Remark. In the context of the BV formalism, it is for this reason that one is
actually not primarily interested in Koszul complexes themselves: even if they
fail to provide a resolution, using the Tate construction (“incorporating (possibly
higher order)antighosts”), one always forms a resolution of the “shell”.

Example (rational homotopy groups of spheres). Let A = R be the field
of real numbers.

1. Suppose we want to build a graded-commutative dg algebra V with the
only nontrivial cohomology group being H2n+1(V ) = A. Clearly, this is
simply achieved by letting V be generated from a single degree 2n + 1
generator ω

V = V 2n+1 = 〈ω〉

with dω = 0. Since,
ω ∧ ω = 0

due to the fact that 2n + 1 is odd, this choice is consistent and no further
generators need to be introduced.

2. But now consider the same situation for even degree: suppose the graded-
commutative dg-algebra V has a single non-exact degree 2n-generator ω
with dω = 0. Then the cohomology in degree 2n is again A. But now also
all elements of the form ω ∧ ω ∧ · · ·ω are non-vanishing and closed. In
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order to remove the unwanted cohomology generated by these, we throw
in another generator, λ, in degree 4n− 1, and set

dλ = ω ∧ ω .

This removes all the superfluous cohomologies: now all troublesome ele-
ments are exact.

ω ∧ ω ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸
k∈N

= d(λ ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸
k

) .

Notice that

• the nontrivial homology groups of the n-sphere are

Hk(Sn, Z) =
{

Z k = n, 0
0 else

• the rational homotopy groups of the n-sphere are

πk(S2n+1) =
{

Q k = 2n + 1
0 else

πk(S2n) =
{

Q k = 2n, k = 4n− 1
0 else

.

This matches the pattern which we found for complexes with cohomology in
a single degree, under the identification

quasi-free dg algebra rational top. space
degree k cohomology degree k chomology
degree n generators rational homotopy group in degree n

Table 4: The relation between dg-algebra and topological spaces in
terms of rational cohomology and homotopy groups.
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4.3 The BV complex for the (-1)-brane

In practice the BV complex is applied in the context of local functions on some
jet space.

But here we want to get rid of inessential technicalities as far as possible
and try to extract the pure relevant structure. For that reason we study the
BV complex in a setup where we are dealing with ordinary functions on some
manifold.

Mathematically, this amounts to studying the critical points of an ordinary
function by cohomological means. Physically it can fruitfully be thought of as
the standard BV formalism applied to what is called a (-1)-brane: an object
whose worldvolume is a single point.

Remark: the algebra of functions Some of the crucial statements about
the cohomologies of the complexes we are about to consider depend sensitively
on the precise nature of the function algebras over which we work.

For X a (real) manifold, we shall write C(X) for an unspeified class of
functions on X as long as it does not matter. When it matters, we will choose
from

C(X) ///o/o/o

{
Cω(X) real analytic functions
C∞(X) smooth functions

4.3.1 The ingredients

Definition 18 Let X be a smooth manifold and S ∈ C∞(X) a smooth function
on it. Denote by Γ(TX) the space of smooth vector fields on X.

Consider the 3-term chain complex

ker(dS(·)) � � // Γ(TX)
dS(·) // C∞(X)

−2 −1 0

with the degrees as indicated. The corresponding 3-vector space we denote

WC(Σ) ∈ 3Vect .

The physics terminology. The entities in the above definition are known in
the physics literature under the following names.

• The space X is the configuration space or the space of histories (the
difference need not concern us here).

• An point x ∈ X is a field configuration.

• The function S is the action.

• The condition dS = 0 is the equations of motion.

38



• The space of critical points Σ := {x ∈ X | (dS)x = 0} is the shell.

• The elements of the space ker(dS(·)) are the Noether identities.

The notation WC(Σ) is for smooth functions on the “weak shell”. By con-
struction, the cohomology of WC(Σ) is concentrated in degree 0, where it is
C(X)/im(dS(·)). Following the situation in physical examples, we assume that
im(dS(·)) is the space of all smooth functions on X that vanish on Σ. (** When
is this assumption satisfied?? **)

Observation 4 Hence the above chain complex is a resolution for the space
of on-shell functions, which is the way it is usually thought of. Passing from
homotopical to n-categorical language this means: the 3-vector space WC(Σ) is
equivalent, as a 3-vector space, to the 1-vector space of on-shell functions.

4.3.2 Symmetries and Noether identities

We are now going to give what is supposed to be the standard definition of
symmetries and Noether identities as they appear in physics, adapted to the
toy example we are looking at, where X is a mere manifold.

Definition 19 Given S ∈ C(X) as above, we say

• A (local) symmetry of S is a vector field v ∈ Γ(TX) such that the Lie
derivative

LεvdS = 0

for all ε ∈ C(X).

• A Noether identity of S is a vector field v such that

LvS = 0 .

Remark. To see the connection of this definition to the definitions one might
find in most of the physics literature notice that

• The above says that a local symmetry preserves the equations of motion.
This corresponds to the more common requirement that the local sym-
metry preserves the Lagrangian up to a divergence. Compare with p.7 of
[KazinskiLyakhovichSharapov:1993].

• To see that a Noether identity can be regarded as a vector preserving the
action in our context, take the usual defintion and truncate jet space at
0th order everywhere. Compare with [StasheffFulpLada:2002].

In the same vein, the following plays the role of Noether’s second theorem
in the context of our toy example.

Proposition 2 (toy version of Noether’s second theorem) The space of
local symmetries is isomorphic to that of Noether identities.
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Proof. Using Cartan’s “magic formula” we have

LεvdS = εLvdS + dε ∧ v(S)
= εd(v(S)) + v(S)dε .

Clearly, every Noether identity v is hence also a local symmetry. Conversely, if
v is a local symmetry then from LvdS = 0 and using LεvdS = 0 in the above
formula for all ε ∈ C(X) it follows that v is a Noether identity. �

chain
complex V = ker(dS(·)) � � // Γ(TX)

dS(·) // C(X)
dρ // C(X)⊗ g∗

C(X)⊗ g

degree −2 −1 0 1

� � ass. 3-algebra _? � � Lie 1-algebra _?

Noether’s
second thm.

Noether
identities

local
symmetries

math
guys Tate Koszul

Chevalley-
Eilenberg

physics
names antighosts antifields fields ghosts

antifield
number =

ω-vector
space dimension 2 1 0

ghost
number =

ω-covector
space dimension 1

Table 5: The structure of the BV complex for the simple case where
the action functional S is a mere function on a manifold. From the complex
V ∈ Ch•(C(X)) shown the full BV complex is obtained following def 14 by
giving an extension of the differential on F (ΛV ) compatible with the one on
ΛV induced by the one shown above.
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4.3.3 Local symmetry Lie algebras

We now make the assumption that we have a “Lie algebra of local gauge sym-
metries”.

Definition 20 In the case that the space of local symmetries of S is of the form

C(X)⊗ g

with g a finite-dimensional Lie algebra equipped with an action

ρ : g → Γ(TX)

we say that g is the gauge Lie algebra of S and that ρ are the gauge trans-
formations of the fields.

In that case we can extend our 3-term complex WC(Σ) by the map

C(X)
dρ // C(X)⊗ g∗

by setting
dρ : f 7→ ρ(·)(f) .

Remark. Notice that dρ is the differential of the Chevalley-Eilenberg complex
that computes the Lie algebra cohomology of g with values in the Lie module
C(X) restricted to degree 0.

Example 1 (the case where X is a principal bundle)

In the more well-behaved situations the local symmetries will act freely on our
space X, and X will be a principal G-bundle.

So assume that the Lie group G acts on X such that p : X → X/G is a
principal G-bundle. Let

S ∈ C(X)

be the pullback of a smooth function SG ∈ C(X/G) downstairs

S := p∗SG

which has the property that it is not annihilated by any nontrivial vector field
on X/G.

Then the local symmetries of S are precisely the vertical vector fields on the
G-bundle X, namely sections

Γvert(P ) := Γ(Vert(X)) ' C(X)⊗R g

of the vector bundle of vertical vector fields

Vert(TX) := ker(dp) ' P × g .
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So in this case our complex is

(0 // B−2 // B−1 // C(X) // A⊗ g // 0)

(0 // Γvert(TX) � � // Γ(TX)
dS(·) // C(X)

dρ // C(X)⊗R g // 0)

.

As a simple special case, consider the following example, which models essen-
tially the harmonic oscillator with a circle worth of gauge degeneracies thrown
in.

Example 2 (invariant function on the trivial circle bundle)

Let
X = R× S1

the cylinder, thought of as the trivial circle bundle

p : X → R

and let the action S ∈ Cω(X) be

S = p∗(x 7→ x2) .

Then
ker(dS) = ker(dp)

are the analytic vertical vector fields on S1.
Since dS is just multiplication of (component) functions by x, we find that

the on-shell functions are indeed precisely the quotient

Cω(Σ) ' coker(dS(·)) = Cω(X)/im(dS(·)) .

Since furthermore
ker(dρ) ' Cω(X/G)

we find that the cohomology of the above complex in degree 0 is precisely that
of gauge-invariant on-shell functions

Cω(Σ/G) = Cω({0}) = R .

4.3.4 Extending to the full BV complex

With our complex V ∈ Ch•(C(X)) given,

V = ( 0 // ker(dS(·)) � � // Γ(TX)
dS(·) // C(X)

dρ // C(X)⊗ g∗ // 0 )

we now form
∧∞V
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and extend the differential on
F (∧∞V )

such that the result is still a monoid in Ch•(K) with respect to the canonical
monoidal structure induced from the fact that V comes from Ch•(C(X)).

This “free-over-C(X)”differential graded-commutative algebra (F (∧∞V ), d)
is then the BV complex describing our (−1)-brane.

In positive degree we require it to cover

(F (∧∞V ), d)

����
(F (Λg∗), dCE(g))

the Chevalley-Eilenberg algebra of our Lie algebra, such that we can address it
as a Lie-Rinehart pair (g, B) for g the ordinary Lie algebra and B our Koszul-
Tate resolution of on-shell functions.

Etc.

4.3.5 The dual complex and distribution-valued fields

We have addressed C(X) as the space of fields. But more precisely it is the
dual to the space of fields, since X is to be interpreted as the space of field
configurations.

What should really be addressed as a physical field is hence an element dual
to C(X), hence a linear functional, a distribution, on C(X).

Then we obtain the following statements

• A delta-distribution field

φ(x) : C(X) → k

φ(x) : f 7→ f(x)

is closed precisely when x ∈ X is a solution of the equations of motion,
dSx = 0. Because for all v ∈ Γ(TX)

(d∗φ(x))(v) = φ(x)(dS(v)) = dSx(v)

and hence
d∗φ(x) = 0 ⇔ dSx = 0 .

• A derivative of a delta-distribtion field

v(φ(x)) : f 7→ (v(f))(x) v ∈ Γ(TX)

is exact precisely when v ∈ Γ(TX) is a local symmetry. Because let t ∈ g
such that

t⊗ δx : C∞(X)⊗ g∗ → k ,

then for f ∈ C(X)

d∗(t⊗ δx) = (t⊗ δx)(df) = (t⊗ δx)(ρ(·)(f)) = ρ(t)(f)|x .
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dual complex D0(X)⊗C(X) Ω1(X) D0(X)d∗oo D0(X)⊗ g
d∗oo

mathematical
objects

distribution-valued
1-forms

distribution-valued
functions

distribution-
and Lie algebra-

valued
functions

physical
interpretation antifields fields ghosts

cohomology
cycles: Z0 = on shell

boundaries: B0 = pure gauge

Table 6: The dual complex knows about distribution-valued physical fields.
Here Dp(X) := Homk(Ωp(X), k) is the space of p-currents. (For p = 0 these are
just distributions.)

4.4 Formulation as a Lie-Rinehart ∞-pair

We now make explicit the fact that the BV-complex is the CE-algebra of a
Lie-Rinehart ∞-pair using our definition.

(** I haven’t really stated that definition yet here, but it goes something like
this

Definition 21 A Lie-Rinehart ∞-pair over an (ordinary) algebra A is an L∞-
algebra structure on an ω-vector space g which is in fact a complex of A-modules
g ∈ Ch•n(A), together with an ω-vector space B ∈ Ch•−(A) which is such that
in degree 0 it contains the tensor unit in Ch•(A),

B0 = A ,

together with an L∞-map
ρ : g → End(B) .

**)

4.4.1 The Lie 3-algebroid structure

We now show that
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• The 3-vector space of weakly on-shell functions, WC∞(Σ), naturally car-
ries the structure of an associative 3-algebra.

• The action of the symmetries (the ghosts) on the fields, antifields and
antighosts is actually an action of the Lie 1-algebra g of symmetries on
that associative 3-algebra by 3-algebra derivations.

Together with the obvious action of WC∞(Σ) on g, this gives the structure
of a Lie-Rinehart 3-pair which “resolves” the Lie-Rinehart 1-pair of on-shell
functions acted on by gauge symmetries.

Thinking of Lie-Rinehart n-pairs as Lie n-algebroids, this means that we
obtain a Lie 3-algebroid structure.

Definition 22 Define a monoidal structure

µ : WC∞(Σ)⊗WC∞(Σ) → WC∞(Σ)

on the 3-vector space

WC∞(Σ) :=

C∞(X)⊗ g� _

��
Γ(TX)

dS(·)
��

C∞(X)

by

(Γ(TX)⊗ Γ(TX))⊕ 3(C∞(X)⊗ C∞(X)⊗ g)

��

0⊕µ0 // C∞(X)⊗ g

��
2(C∞(X)⊗ Γ(TX))

��

l0 // Γ(TX)

��
C∞(X)⊗ C∞(X)

µ0 // C∞(X)

,

where µ0 is the ordinary product of functions and l0 denotes the obvious left
action of functions on sections.

Proposition 3 This turns WC∞(Σ) into a symmetric associative 3-algebra.

Definition 23 For each t ∈ g, define an endomorphism

δt : WC∞(Σ) → WC∞(Σ)
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Γ(TX)
δt
1 //

dS(·)

��

Γ(TX)

dS(·)

��
C∞(X)

δt
0 // C∞(X)

as
δt
0 : f 7→ ρ(t)(f)

and
δt
1 : v 7→ [ρ(t), v] .

Proposition 4 This is indeed a morphism of 3-vector spaces and in fact a
derivation with respect to the associative 3-algebra structure on WC∞(Σ).

Proof. The respect for the 3-vector space structure means that the above square
indeed commutes, as it does: for every v ∈ Γ(TX) we have

v � δt
1 //_

dS(·)

��

[ρ(t), v]
_

dS(·)

��
v(S) � δt

0 //[ρ(t), v](S) = ρ(t)(v(S))

.

Notice that this makes crucial use of the fact that ρ(t) is a local symmetry,
which implies that v(ρ(t)(S)) = 0.

It is clear that δt
0 is a derivation on C∞(X). The derivation condition on δt

1

is the commutativity of

Γ(TX)⊗ C∞(X)
δt
1⊗Id+Id⊗δt

0 //

r

��

Γ(TX)⊗ C∞(X)

r

��
Γ(TX)

δt
1 // Γ(TX)

.
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One checks in components that, indeed, for all (v ⊗ f) ∈ Γ(TX) ⊗ C∞(X) we
have

(v ⊗ f) � δt
1⊗Id+Id⊗δt

0 //
_

r

��

([ρ(t), v]⊗ f) + (v ⊗ ρ(t)(f))
_

r

��
fv

� δt
1 // f [ρ(t), v] + ρ(t)(f)v

I am too tired to write out the corresponding statements in degree 2.
�
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5 Transgression and quantization

One of crucial points of [3], nicely reviewed in [4] is that the BV cochain complex
with its generators in positive and negative degrees, should be thought of as
coming from forming the internal hom between non-negatively graded cochain
complexes in the world of arbitrary graded cochain complexes.

par⊗ conf

par⊗ hom(par, tar)
p1

ttiiiiiiiiiiiiiiiiiiii
ev

**TTTTTTTTTTTTTTTTTTT

par ∈ Ch•(A) tar tra // phas

∈ Ch•+(A)

kkkkkkkkkkkkkkkkkk parameter
space ⊗ configuration

space

vvmmmmmmmmmmmmm
evaluate
field on

some point

PP

((PPPP

∈ Ch•+(A)

RRRRRRRRRRRRRRRRR

parameter
space

target
space

background

field
// space of

phases

Table 7: The setup of QFT after passing from Lie∞-groupoids to dg-algebras,
using the Lie functor Lie : ∞Grpd → ∞LieAlg. This step suggests that the
configuration space of fields needs to be formed using the internal hom in ar-
bitrarily graded cochain complexes. As noticed by AKSZ, this induces the BV
field-antifield formalism.

Slogan.

(AKSZ-)BV-formalism =̂

when forming the space of fields
φ : par → tar

of the n-particle
par

propagating on target space
tar

replace the non-negatively graded hom
homCh•(A)+(par, tar)

by the arbitrarily graded hom
conf := homCh•(A)(par, tar)
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