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Abstract

From the data of any semisimple modular tensor category C the prescription [2]
constructs a 3-dimensional TFT by encoding 3-manifolds in terms of string diagrams
in C. From the additional data of a certain Frobenius algebra object internal to C,
the presciption [18, 4] obtains (the combinatorial aspect of) the corresponding full
boundary CFT by decorating triangulations of surfaces with objects and morphisms
in C.

We show that these decoration prescriptions are “quantum differential cocycles”
on the worldvolume for a 3-functorial extended QFT. The boundary CFT arises from
a morphism between two chiral copies of the (locally trivialized) TFT 3-functor.

The crucial observation is that all 3-dimensional string diagrams in [18] are Poincaré-
dual to cylinders in BBimod(C) which arise as components of a lax-natural transfor-
mation between two 3-functors that factor through BBC ↪→ BBimod(C).

This exhibits the “holographic” relation between 3d TFT and 2d CFT as the hom-
adjunction in 3Cat, which says that a transformation between two 3-functors is itself,
in components, a 2-functor.
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1 Preface

The general problem of quantum field theories of the kinds known as Σ-models and gauge
theories is this:

On a target space X a differential cocycle encoding a higher bundle with connection
is given. This comes with its parallel transport map ∇ : Πω(X) → T which sends k-
dimensional volume elements to the “phase” obtained by parallel transport over them.
This assignment is the (interaction part of) the classical action functional.

Picking a“worldvolume” Σ, one wants to quantize this classical action functional by
transgressing∇ to the mapping space, the space of fields or space of paths hom(Πω(Σ),Πω(X))
and then in some way integrate the result over that space. This (problematic) procedure
is known as the path integral.

Whatever the procedure is, the result is supposed to be, in the Schrödinger picture,
a linear representation of a category of n-dimensional cobordisms – a functor from that
category to vector spaces –, which assigns spaces of states to codimension one manifolds
and linear maps, the correlators or evolution operators, to cobordisms. One can take this
to be part of the definition of what we are willing to address as a path integral. The
functoriality of the cobordism respresentation is nothing but the famous gluing property
supposed to be satisfied by the path integral.

Given the elegant definition of a quantum field theory as a cobordism representation,
which emerged with the work of Atiyah and Segal, one can study these structures without
worrying about whether or not – and how – these representations are obtained from path
integrals over classical action functionals. This fact has lead – and is leading to – a
large body of work on the entirely algebraic aspects of quantum field theory, concerned,
essentially, with nothing but the classification of cobordism representations.

Among the most detailed results in this algebraic approach is the work [2] and [18]
which characterizes all those 3-dimensional topological and all those 2-dimensional con-
formal quantum field theories whose algebraic structure is entirely encoded in the data
provided by the choice of a modular tensor category C.

Even though the quantum field theories constructed from this data are not manifestly
obtained by a quantization procedure of a classical action functional, for most of them
it is clear, from plenty of circumstantial evidence, which action functional they must
be the correct quantization of: they correspond notably to 3-dimensional Chern-Simons
theories and to 2-dimensional Wess-Zumino-Witten theories which are systems determined
by higher bundles with connection associated to groups and their classifying spaces.

These particular higher bundles with connection are comparatively well understood.
In particular, it is known how they are encoded entirely in terms of their parallel transport
n-functors [1, 21, 23] – nonabelian differential cocycles –, which send pieces of target space
to the corresponding parallel transport morphisms over them.

And there is a striking similarity: the diagrammatic formulas for this higher dimen-
sional parallel transport in terms of local data assigned to small patches has, if one simply
subjects it to Poincaré duality, an appearance entirely analogous to the decorated diagrams
which [2] and [18] use to construct their 3-dimensional and 2-dimensional QFTs.

This suggests two things:

• The combinatorial prescription of [2] and [18] of 3-dimensional TFT and 2-dimensional
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CFT is, secretly, itself the data of a differential cocycle on the worldvolume: the local
data defining a “parallel transport” n-functor – only that the “phases” assigned by
this parallel transport are now thought of as correlators.

• Quantization of Σ-models and of gauge theories in general, and the path integral
in particular, should be an operation on the space of all differential cocycles (of all
transport n-functors) if these are conceived suitably: it sends differential cocycles on
a target space X, whose parallel transport computes classical phases, to differential
cocycles on worldvolumes, whose parallel transport computes correlators.

Our aim here is to demonstrate the first point.

1.1 Statement of the main result

We demonstrate that the decoration presciption of [18] of triangulated surfaces with ob-
jects and morphisms in a modular tensor category C is the expression of surface holonomy
in local data obtained from a parallel transport 2-functor with values in

Cyl(BBimod(C))

locally trivialized along the inclusion

Cyl(BBC) ↪→ Cyl(BBimod(C)) .

Here BBimod(C) is the 3-category with a single object, with algebras internal to C as
morphisms, bimodules for these algebras as 2-morphisms and bimodule homomorphisms
as 3-morphisms.

Cyl(BBimod(C)) ⊂ (BBimod(C))I is the full sub2-category of the 2-category of cylin-
ders in BBimod(C) whose top and bottom face factor through the inclusion BC ↪→
Bimod(C).

Such a parallel transport 2-functor is therefore the component map of a pseudonatural
transformation between two 3-functors with values in BBC ↪→ BBimod(C).

We indicate how this can be understood as defining a morphism between two “chiral
copies” of TFT 3-functors which are gauge trivial when restrited to the 2-dimensional
boundary that the CFT lives on.

Outline

• In 2 we describe the 3- and 2-categories which our differential cocycles take values
in.

• In 3 we describe Frobenius algebras as the cocycles which arise from local trivializa-
tion by means of special ambidextrous adjunctions.

• In 4 we describe the local trivialization of 2-functors by special ambidextrous ad-
junctions and derive the structure of the corresponding differential cocycles which
express them in terms of local data.

• In 5 we describe the main result, showing how the various diagrams describing RCFT
correlators according to [18] arise from local differential cocycle data of parallel 2-
transport.
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1.2 Differential cocycles and cobordism representations

The Schrödinger picture of quantum field theory was originally formalized in terms of linear
representations of cobordism categories: functors QFT : nCobS → Vect on n-dimensional
cobordisms equipped with S-structure (for instance, conformal, or Riemannian structure)
which send (n − 1)-dimensional manifolds to vector spaces “of states” and cobordisms
between these to linear maps. More recently, e.g. [28] and [Hopkins et al.], it was noticed
that this picture deserves refinement: one wants to assign k-categorical data to codimen-
sion (k + 1)-manifolds in a way compatible under all possible gluing. This is known as
extended QFT.

n-dimensional QFT n-category of “spaces of states”

quantum mechanics 1-category of Hilbert spaces

2d RCFT 2-category Bimod(C) of algebras and bimodules

3d CS TFT 3-category BBimod(C)

Table 1: The dimension of quantum field theories is reflected by the categorical
degree of their “spaces of states” assigned to 0-dimensional manifolds.

Here we realize this extended picture in a way adapted to the notion of nonabelian
differential cocycles: for any cobordism Σ we consider a representation of an n-category
of (glubular) k-paths in Σ. Obtaining from such a piecewise representation a represen-
tation of the full cobordism in the original sense is then a matter of taking traces. This
is completely analogous to how (higher) holonomies are obtained from (higher) parallel
transport.

parallel transport � tracing // holonomy

representation of
paths in cobordisms

� tracing // representation of
cobordisms

Table 2: From parallel transport to cobordism representations.

1.3 List of notions

Quantum field theory notions

• By RT 3d TFT functor we refer to the functor from 3-dimensional cobordisms to
vector spaces which can be cosntructed from a modular tensor category C as in [2].

• combinatorial CFT shall be our term for the description of 2-dimensional rational
conformal field theory correlators as developed in [18].
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In the existing literature this is often addressed as “the TFT approach”, since in its
last step it makes use of the 3D RT functor to define the 2d CFT correlators.

From our point of view here, however, it is, while important, not the crucial aspect
of [18] that it exploits the (familiar) relation between 2d CFT and 3d TFT. What
is crucial is that the approach does so using combinatorial data can be interpreted
as descent data for parallel 2-transport.

The n-categories that appear

• pt := {•} – the terminal 2-category, which is also the tensor unit with respect to the
(Gray) tensor product.

• I := { • // ◦ } for the 2-category with 2-objects, one nontrivial 1-morphism and
no nontrivial 2-morphism.

• C – a braided monoidal category

• Bimod(C) – the bicategory whose objects are algebras and whose morphisms are
bimodules internal to C. This is a proarrow equipment and hence a framed bicategory
in the sense of [26] (appendix C), the framing given by the inclusion

Algebras(C) � � // Bimod(C) .

Since C is braided, Bimod(C) is monoidal.

• BBimod(C) – the one-object 3-category corresponding to the monoidal 2-category
Bimod(C)

• Cyl(BBimod(C)) := (BBimod(C))I – the 2-category of cylinder in BBimod(C)

• TwBimodules(C) – the 2-category of algebras and twisted bimodules in C, being the
restriction of Cyl(Bim(C)) to cylinders whose top and bottom face lie in BC:

TwBimodules(C) //

��

(BBimod(C))I

dom×codom

��
BC ×BC � � // Bimod(C)× Bimod(C)

We will be dealing with monoidal weak 2-categories (bicategories) regarded as weak
3-categories (tricategories) with a single object. However, since the bicategory in question
is framed or proarrow equipped in the sense of [26] it turns out that we can get away
with behaving essentially as if we were dealing with strict 3-categories. We shall therefore
mostly suppress, notationally, all structure morphisms such as compositors, associators,
pentagonators, etc.
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1.4 The FRS prescription for rational conformal fied theory

In this section we deal with a rational conformal field theory (RCFT) with chiral algebra
V, a rational conformal vertex algebra. We demand that we can consistently assign corre-
lators of our theory to any compact oriented two-dimensional manifold with Riemannian
metric, in particular we allow surfaces both with and without boundary, and refer to such
a theory as an open/closed RCFT. We use string-inspired notation, and call the surfaces
on which the RCFT is defined world sheets. By solving the theory we mean, as is conven-
tional, to assign a consistent correlator to any allowed world sheet.

The main reason why RCFT is (at least in principle) solvable, is the fact that solving a
theory can be done in a two-stage process, the first of which is complex analytic in nature,
and the second of which is an algebraic/combinatorial problem.

The first step is better known as constructing a chiral CFT, a gadget that lives on
complex curves with marked points labelled by representations of a rational conformal
vertex algebra. Given a complex curve Y of genus g with m marked points labelled by
representations λ1, . . . , λm of V, one defines the subspace

BY(λ1, . . . , λm) ⊂ (λ1 ⊗C λ2 ⊗C · · · ⊗C λm)∗

of invariants with respect to a certain action of V [25]. The vector spaces BY(λ1, . . . , λm),
called spaces of conformal blocks, turn out to be finite dimensional, and combine to finite
rank vector bundles Eg~λ over the moduli spaces Mg,m of m-pointed curves of genus g.
Furthermore, the action of V provides this bundle with a projectively flat connection. The
chiral correlators {〈(v1, p1), . . . , (vm, pm)〉α}dim(BY(λ1,...,λm))

α=1 , also called conformal blocks,
are obtained by inserting elements v1 ∈ λ1, . . . , vm ∈ λm in (a basis of) flat sections of Eg~λ,
thus leading to the conventional appearance of conformal blocks as multivalued functions
on Mg,m.
The assignment of spaces of conformal blocks to every complex curve with a finite number
of marked points is conveniently described as a modular functor from a suitably defined ge-
ometric category ExtRepV of ”RepV -extended” complex curves to VectC. This is a modular
functor of the type compatible with gluing of surfaces along boundary circles or, alter-
natively, extended to compactifications of Mg,n corresponding to including curves with
double point singularities. It is worth mentioning that although it is known for any ratio-
nal conformal vertex algebra how to construct the spaces of conformal blocks, to actually
carry this out explicitly is a highly non-trivial problem. Chiral correlators are therefore
known in detail only for a few cases.

The second step amounts to choosing, for each world sheet X, (i) a suitable complex
curve X̂ with marked points, and (ii) an element Cor(X) ∈ BbX. As a complex curve, X̂
is taken to be the complex double of X. If the world sheet X has p field insertions in the
interior and q field insertions on the boundary, the curve X̂ will have 2p+q marked points,
labelled by elements in representations of V specified by the corresponding field insertions.
The elements Cor(X) are required to satisfy two types of constraints: sewing constraints
relating correlation functions on curves of different genus, and invariance under the map-
ping class group of X. Given these elements Cor(X) one finally obtains the correlation
functions by inserting vectors specified by the field insertions, and letting insertion points
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and complex structure vary such that one gets a chiral corrrelator on X̂. The constraint of
invariance under the mapping class group implies that these chiral correlators are genuine
functions on Mg,2p+q, thus deserving the name correlation functions.

As already indicated above, although the first step is understood in principle, there
are significant technical obstacles to overcome before it is feasible to attack the second
problem in any generality. However, a similar structure to that described above is ob-
tained by forgetting the vertex algebra V and retaining only the combinatorial data of
its representation category, i.e. an abstract modular tensor category1, while at the same
time forgetting the complex structure of the complex curves, retaining only the structure
of oriented topological surfaces (with marked points). Given any modular category C, one
obtains a modular functor on a certain category of C-extended topological surfaces via
3-dimensional TQFT as constructed by Reshetikhin and Turaev [16, 17]. In this case,
elements in the vector spaces associated to surfaces (which we will continue to call spaces
of conformal blocks) have concrete interpretations in terms of C-coloured ribbon graphs in
3-manifolds, and properties of C make calculations amenable. In this simplified situation
we can consider the same two-step procedure to construct correlators. The first step is
immediately given by the TQFT, and the second step has been solved in a series of pa-
pers [6, 7, 8, 3, 4] (see also [15] for previous work). The solution turns out to be given in
terms of a symmetric special Frobenius algebra in C (the result only depends on the Morita
class of the algebra, but the methods used require the choice of a particular representative).

We proceed by summarize the prescription given in [3] for obtaining RCFT correlators
through a TQFT based on a modular category C (there is a slightly more sofisticated
verson given in [4], defined similarly to a modular functor). Due to the simplified setting
as compared to a genuine conformal field theory, the assignment of correlators will in the
present paper be referred to as a combinatorial CFT, reflecting that we retain only the
combinatorial data of the representations of the chiral algebra of a RCFT. It is worth
stressing that although we are using a 3-dimensional TQFT to construct correlators on
topological world sheets, the resulting combinatorial CFT is not a topological field theory.
At the end of this section we sketch how it is in principle possible to obtain correlation
functions of a RCFT from the correlators of a combinatorial CFT.

To define a combinatorial CFT we first define the relevant class of (topological) world
sheets such a theory is defined on, and then use 3-d TQFT to construct the assignment of
a correlator to any world sheet. Fix for this purpose a modular tensor category C and a
symmetric special Frobenius algebra A in C. We denote by {Ui}i∈I a set of representatives
of simple objects in C, and the two (left and right respectively) α-induced bimodules on
the object U are denoted A ⊗± U resp. U ⊗± A, where + refers to using the braiding −
to its inverse.

By a world sheet is meant a tuple (X, or2(X), {Φs}ms=1, {Ψt}nt=1, {Mu}pu=1) where

• X is a compact 2-dimensional topological manifold with orientation or2(X), where
1See the recent proof [27] that the representation category of any rational conformal vertex algebra

satisfying the C2-cofiniteness condition, is modular.
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the (possibly empty) boundary ∂X is equipepd with an orientation or1(∂X) obtained
from or2(X) by the inward pointing normal.

• There are m ≥ 0 marked points in the interior X\∂X. An interior marked point is
a bulk insertion Φ = (i, j, φ, p, [γ]) where i, j ∈ I, φ ∈ HomA|A(Ui ⊗+ A,A ⊗− Uj),
p ∈ X\∂X, and [γ] is an arc-germ with γ(0) = p. For any two bulk insertions Φ1 and
Φ2 we require p1 6= p2.

• There are n ≥ 0 marked points on ∂X. A marked point on the boundary is a
boundary insertion Ψ = (M,N, V, ψ, p, [γ]) where M and N are left A modules,
V ∈ Obj(C), ψ ∈ HomA(M ⊗ V,N), p ∈ ∂X, and [γ] is an arc-germ with γ(0) = p
such that every representative has a restriction to ∂X. For any two distinct boundary
insertions Ψ1 and Ψ2 we require p1 6= p2. Further, if Ψ1 = (M1, N1, V1, ψ1, p1, [γ1])
and Ψ2 = (M2, N2, V2, ψ2, p2, [γ2]) are adjacent on the same conncted component of
∂X, and p1 is located after p2 by following or1(∂X), it is required that N1 = M2.

• Each of the p ≥ 0 connected components of ∂X that contains no marked point is
labelled by a left A-module Mu, u = 1, . . . , p.

The correlator of a world sheet X is an element in the finite dimensional vector space
H(X̂) associated by the TQFT based on C to the marked double X̂ of the world sheet X.
The marked double of (X, or2(X), {Φs}ms=1, {Ψt}nt=1, {Mu}pu=1) is a tuple (X̂, {Wq}2m+n

q=1 , λ),
where

• The topological double X̂ is a closed oriented surface obtained from the total space
of the orientation bundle over X as X̂ := Or(X)/ ∼ where (p, or2) ∼ (p,−or2) for
p ∈ ∂X, equipped with the natural orientation.

• There are 2m + n marked points Wq = (p̃q, [γ̃q], Yq,+), q = 1, . . . 2m + n. For
q ∈ {1, . . . , 2m} we define p̃2s := (ps, or2(X)), resp. p̃2s−1 := (ps,−or2(X). [γ̃2s] :=
[(γs, or2(X))], [γ̃2s−1] := [(γs,−or2(X))]. Y2s := Uis , Y2s−1 := U∨js . Here, ps, [γs] Uis ,
Ujs are parts of the bulk insertion data of the world sheet.
For q ∈ {2m + 1, . . . , 2m + n} we define p̃2m+t := [pt,±or2(X)], [γ̃2m+t] := [γt],
Y2m+t := Vt, where the data now comes from the boundary insertion data of the
world sheet.

• The last datum, λ ⊂ H1(X̂,R) is a Lagrangian subspace defined in the following
way. First, define the connecting manifold MX of X as MX :=

(
X̂× [−1, 1]

)
/ ∼,

where ([p, or2], t) ∼ ([p,−or2],−t). MX is a 3-manifold such that there is a natural
identification ∂MX

∼= X̂. We can think of this identification as an inclusion f : X̂ ↪→
MX, and define λ := Ker(f∗).

The final step is to equip the connecting manifold MX with a ribbon graph R to get an
extended cobordism MX[R]. Note that there is a natural embedding of X into MX given
by

ιX : p 7→ [p,±or2(X), 0]. (1)

The ribbon graph RT,A ⊂ MX is constructed in the following manner.
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• Choose a dual triangulation T of X with only two-valent and tri-valent vertices, such
that

1. any connected component of ∂X is contained in T

2. the two-valent vertices are located precisely at the marked points of X
3. for any bulk insertion, there must be a representative γ of [γ] that is contained

in T

• On every trivalent vertex of T in ιX(X\∂X), place the following graph with three
out-going A-ribbons

such that the pictured 2-orientation matches or2(X). There are three possible ways
to place this graph, choose one possibility.

• On every edge of T in ιX(X\∂X), place the following piece of ribbon graph connecting

the graphs covering two adjacent vertices, in such a way that the depicted 2-orientations
match or2(X).

• Every connected component of ιX(∂X), cover the edges of T by left A-modules
according to the labelling of the world sheet. The orientation and core-orientation
of such a ribbon is taken to be opposite of or2(X) and the orientation of ιX(∂X)
induced from or2(X) respectively.

• On a two-valent vertex of T in ιX(∂X) corresponding to the boundary insertion
(M,N, V, ψ, p, [γ]), place the ribbon graph

such that the depicted orientation coincides with or2(X). Note that the ribbons
labelled M resp. N are covering ιX(∂X), and the rightmost part of the boundary is
therefore indicating a horisontal section of the boundary of MX.
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• On every trivalent vertex of T in ιX(∂X), place the following graph

such that the indicated bulk and boundary orientations match or2(X) and or(∂X)
respectively.

• On a two-valent vertex in the interior of the embedded world sheet corresponding to
the bulk insertion (i, j, φ, p, [γ]), place the following ribbon graph where the indicated

orientations are to match the orientations of MX, ιX(X), and f(X̂) respectively.

Denote the resulting extended cobordism by MX[RT,A].

Definition 1 The combinatorial CFT given by the modular category C and the symmetric
special Frobenius algebra A in C is given by the assignment X 7→ CorA(X) defined as

CorA(X) := Z(MX[RT,A]). (2)

As indicated, there are various choices involved in constructing the ribbon graph. We refer
to [3] for references to various parts of the proof that the correlators, for a given algebra
A, are independent of all arbitrary choices.

It is known for the case where C is equivalent to the representation category of the
conformal vertex algebra associated to an untwisted affine Lie algebra ĝ at positive integral
level k, that the spaces of conformal blocks of the corresponding chiral CFT are naturally
isomorphic to the vector spaces given by the modular functor associated to the TQFT
based on C, which we will also refer to as spaces of conformal blocks. Accepting the
conjecture that this
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2 The coefficients for BC-descent

Given a braided monoidal category C, we canonically have an inclusion of (weak) 3-
categories

BBC � � i // BBimod(C) .

We say a 3-functor
F : S → BBimod(C)

is i-trivial if it factors through this inclusion i. For F and G two such i-trivial 3-functors,
a transformation

F
η +3 G

2.1 BBimod(C)

2.1.1 The monoidal structure on Bimod(C)

For A and A′ two algebras, their tensor product A⊗A′ is the algebra which is A⊗A′ as
an object in C and equipped with the product obtained by using the braiding to exchange
A with A′:

A A′ A A′

A A’

4444444







			

��

4444444










��

.

Accordingly, the left A-module N and the left A′-module N ′ are tensored to form the
A⊗A′-module N ⊗N ′ with the action given by using the braiding:

A A′ N N ′

N N’

EEEEEEEEEE

��

EEEEEEEEEE

��

.

Similarly, if N is a right B-module and N ′ is a right A′-module, the right action of B⊗B′
on N ⊗N ′ is

N N ′ B B′

N N’

xxxxx

yyyy

��

yyyyyyyyyy

��

.

A simple special case of this turns out to be interesting in applications. The tensor
unit 11 of C with the trivial algebra structure on it is always an algebra internal to C. Any
object of C is a 11-11 bimodule. This yields a canonical inclusion

B(C) ⊂ // Bimod(C) .

13



This means that for any A-B bimodule N , and any object U in C, we may consider
N ⊗ U as another A-B bimodule, with the obvious left action and with the right action
given by

N U B

N U
��

ssss

tttt

��
.

Similarly, for V any object of C, we obtain the A-B bimodule V ⊗ N with the obvious
right action and the left action given by

V NA

V N

JJJJJJJJ

����
.

Quite literally, we can think of the tensor structure on Bim(C) as obtained from ar-
ranging bimodules in front of each other.

2.1.2 The 3-category structure

The formal expression of this geometric intuition is that from the monoidal 2-category
Bim(C) we can form the suspension, Σ(Bim(C)), which is the 3-category with a single
object •, such that End(•) = Bim(C), and such that composition across that single object
is the tensor product on Bim(C).

If

A

N

��

N ′

@@Bρ
��

is a 2-morphism in Bim(C), we draw the corresponding 3-morphism in Σ(Bim(C)) as

A B

•

•

N

��

N′

D
M

>>
q

z

'' ss

ρ
��

�
�

�
�

.

Since C is braided, by assumption, it can itself be regarded as a 3-category with a single
object and a single morphism. This is the double suspension Σ(Σ(C)) of C. As before, we
have a canonical inclusion

B(B(C)) ⊂ // B(Bimod(C)) .

14



2.2 Twisted bimodules in C

Consider a clyinder in BBimod(C), i.e. a 2-morphism in (BBimod(C))I , whose top and
bottom face are labelled by the trivial algebra.

11 11

•

•

11 11

•

•

U //

&& ss

V__ //__

l
y




N
;

+

&& ss

A

��

B

�
�
�
�
�

���
�
�
�
�

N
}}

N ′
��

�
�!

ρ
�
�

�
�

��
�
�

�
�

in Σ(Bim(C)).

Figure 1: The fundamental diagram in combinatorial CFT has A-B bimodules N
and N ′ running on the worldsheet, interpolating between the A and the B-phase of the
CFT. Where they tranform into each other a bulk field, labelled by objects U, V ∈ C may
be inserted. The insertion point is labelled by a homomorphism of induced bimodules.
The figure indicates how the Poincaré-dual of the corresponding string diagram in C is
precisely a cylinder in BBimod(C), hence a 2-morphism in TwBim(C).

15



Cutting this open, this is a 3-morphism ρ from

•

11

��
11 //

B

��

•

A

��
•

11
// •

U��

N
{� ���� ,

to
• 11 //

B

��

•

A

��
• 11 //

11

EE•
V��

N ′
{� ���� .

In other words, ρ is a morphism from the A ⊗ 11-B ⊗ 11-bimodule N ⊗ U to the 11 ⊗ A-
11⊗B-bimodule V ⊗N ′:

N U

V N ′

ρ
�����

���������

All tin cans ρ in Σ(Bim(C)) of this kind, with top and bottom a 11-11 bimodule, form
a 2-category in the obvious way. We will address this as

Definition 2 The 2-category TwBim(C) of twisted bimodules is the 2-category of tin
cans in B(TwBim(C)) whose top and bottom are 11-11-bimodules,

TwBimod(C) :=

 A

N

��

N ′

@@BV ρ
U

��

 .

16



Here the 2-morphism is to be regarded as a “squashed cylinder” in BBimod(C).

NN ′

A

B

V ρ
Uks

'' ss

:=

11 11

•

•

11 11

•

•

U //

&& ss

V__ //__

l
y




N
;

+

&& ss

B

��

A

�
�
�
�
�

���
�
�
�
�

N ′
��

�
�!

N
}}ρ

�
�

�
�

��
�
�

�
�

.

Figure 2: Horizontal composition of 2-morphisms in TwBimod(C). Each 2-
morphism is really a cylinder in BBimod(C), as displayed. A, B and C are algebras
in C and M , N , K L are bimodules in C. The top and bottom rims are restricted to be
labelled with the trivial algebra 11, so that U , W , V , Z are 11-bimodules and hence can be
identified with plain objects in C, under the inclusion BC ↪→ Bimod(C).

2.2.1 The definition of TwBimod(C)

Write
A

N // B

17



for an object N of C with the structure of an A-B bimodule, for A and B algebra objects
internal to C.

If we assume that all algebras are special Frobenius, then the relations we need for
checking the exchange law below are easily obtained.

Write

A

N

��

N

BBBIdU��

for the twisted or induced bimodule object N ⊗ U whose action is that of N combined
with braiding under U

N U B

N U
��

ssss

tttt

��
.

Similarly, write

A

N

��

N

BBBV
Id
��

for the bimodule obtained by braiding over V

V NA

V N

JJJJJJJJ

����
.

Write

A

N

��

N ′

BBBV
ρU
��

for a morphism
N U

ρ

V N ′

;;;;
����

������
��;;;;

of such induced bimodules.
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Write

A

N1

��

N ′1

BBB
N2 // CV

ρU
��

for
N1 ⊗B N2 U

N1 N2 U

U N2N1

ρ

V N ′1 N2

N ′1 ⊗B N2V




 444

����@@
DD

11
��

��� 111

777
���

����

.

Write

A
N1 // B

N2

��

N ′2

BBCV
ρU
��

for

N1 ⊗B N ′2V

N ′2N1V

VN1 N ′2

ρ

UN2N1

N1 ⊗B N2 U

��





444

��

��
}}BBBBB

11��

���
111

777���

.

Write

A

N

��
N ′ //

N ′′

DDB

V
ρU��

V ′ρ
′U′

��

19



for
N U U ′

ρ

V N ′ U ′

ρ′

V V ′ N ′′

333
���

��� 333

333
���

��� 333

.

Write

N N ′

A

B

V
ρU

��

V ′ρ
′U′

D
M

>>
q

z

'' ss

(f,g)
��

�
�

�
�

for

N U

ρ

V N ′

N U

V N ′

;;;;
����

���� ;;;;

�� ��

=

N U ′

ρ′

V ′ N ′

N U

V N ′

;;;;
����

���� ;;;;

f

g
�� ��

.

Proposition 1 From the above definitions it follows that horizontal composition with
identity 2-morphisms satisfies the exchange law strictly:

A

N1

��
N ′1

//

N ′′1

DDB
N2 // C

V
ρU��

V ′ρ
′U′

��

=
A

N1

��
N ′1

// B
N2 // C

A N ′1
//

N ′′1

DDB N2

// C

V
ρU��

V ′ρ
′U′

��

20



and

A
N1 // B

N2

��
N ′2

//

N ′′2

DDC

V
ρU��

V ′ρ
′U′

��

=
A

N1 // B

N2

��
N ′2

// C

A
N1

// B N ′2
//

N ′′2

DDC

V
ρU��

V ′ρ
′U′

��

Proof.

N1 ⊗B N ′2V

N ′2N1V

VN1 N ′2

ρ

UN2N1

N1 ⊗B N2 U U ′





444

��
}}BBBBB

11��

���
111

777���

N1 ⊗B N ′2V ′

N ′2N1V ′

V ′N1 N ′2

ρ′

U ′N ′2N1

U ′

V
��





444

��

��
}}BBBBB

11��

���
111

777���

��

=

V

N ′2N1V

VN1 N ′2

ρ

UN2N1

N1 ⊗B N2 U U ′

��
}}BBBBB

11��

���
111

777���

N1 ⊗B N ′2V ′

N ′2N1V ′

V ′N1 N ′2

ρ′

U ′N ′2N1

U ′

V
��





444

��

��
}}BBBBB

11��

���
111

��

.

�

Proposition 2 The composition

A

N1

��

N ′1

BBB

N2

��
CV1

ρ
U1
1��

A

N ′1

BBB

N2

��

N ′2

BBCV2
ρ
U2
2��

21



is isomorphic to

A

N1

��
B

N2

��

N ′2

BBCV2
ρ
U2
2��

A

N1

��

N ′1

BBB

N ′2

BBCV1
ρ
U1
1��

.

The isomorphism is is given by the braiding on U1 ⊗ U2 and V1 ⊗ V2, respectively. It is
unique.

Proof.

N1 ⊗B N2 U1

N1 N2 U1

U1 N2N1

ρ1

V1 N ′1 N2

N ′1 ⊗B N2V1

U2




 444

����@@
DD

11
��

��� 111

777
���

��

N1 ⊗B N2V2

N2N ′1V2

V2N ′1 N ′2

ρ2

U2N2N ′1

N ′1 ⊗B N2 U2

V1

��





444

��

��
}}BBBBB

11��

���
111

777���

��

=

N1 ⊗B N2 U1

N1 N2 U1

U1 N2N1

ρ1

V1 N ′1 N2

V1

U2




 444

����@@
DD

11
��

��� 111

N1 ⊗B N2V2

N2N ′1V2

V2N ′1 N ′2

ρ2

U2N2N ′1

U2

V1

��





444

��

��
}}BBBBB

11��

���
111

��

=
U1

N1 N ′2 U1

U1 N ′2N1

ρ1

V1 N ′1 N ′2

N ′1 ⊗B N ′2V1V2

V1 V2 N ′1 ⊗B N2




 444

����@@
DD

11
��

��� 111

777
���

��������:::

��:::
��

N1 ⊗B N ′2V2

N ′2N1V2

V2N1 N ′2

ρ2

U2N2N1

N1 ⊗B N2 U2 U1

U2U1N1 ⊗B N2

��





444

��

��
}}BBBBB

11��

���
111

777���

::::::
���

���

�

Definition 3 Given the above, there are different but isomorphic ways to define the hor-
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izontal composition of 2-morphisms. For definiteness, we set

A

N1

��

N ′1

BBB

N2

��

N ′2

BBCV1
ρ
U1
1�� V2

ρ
U2
2��

:=
A

N1

��

N ′1

BBB

N2

��
CV1

ρ
U1
1��

A

N ′1

BBB

N2

��

N ′2

BBCV2
ρ
U2
2��

Proposition 3 Composition of 2-morphisms satisfies the exchange law up to isomor-
phism.
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Proof.

��// ��//

BB// BB//

=

��// ��

// ��//

BB// //

BB BB//

'

��// ��

// ��//

// BB//

BB// BB

=
��// ��

// ��
BB//

BB// BB

'
��// ��

BB//
��

BB
��
BB//

=
��
BB//

��

BB
��
BB//

= ��
BB//

��
BB//24



�

3 Frobenius Algebras and Adjunctions

3.1 Adjunctions

In a 2-categorical context invertibility of morphisms is in general replaced by equivalence,
i.e. by invertibility up to 2-isomorphism. In some situations however, even the notion
of equivalence is too strong, and one is left merely with adjunctions. For applications as
those to be presented in the following, an ambidextrous adjunction which satisfies a bubble
move equation will be seen to provide sufficiently many features of a true equivalence to
admit the inversion operations needed here.

Definition 4 An adjunction

A

L

��
B

R

\\

i +3

e
+3

in a 2-category K is a collection of

1. 1-morphisms A
L // B and B

R // A in Mor1 (K)

2. 2-morphisms

A

Id

""

L ,,

A

B R

LL
i
��

i

A
B

A
L

��
R

��

and
A L

��
B

Id

<<

R
11

B

e
��

e

B
A

BR
##

L
{{

in Mor2 (K)

25



satisfying the zig-zag idenities, which look like

A L //

Id

��
B R //

Id

DDA L // B

i��

e��

i

e

A B A B

L

��

L

��

R

��

R
%%

L
yy

L

��

= A
L // B = A BL

��

and

B R //

Id

DDA L //

Id

��
B R // A

i��

e��
e

i

B A B A

R

��

R
##

L
{{

L

��
R

��

R

��

= B
R // A = B AR

��

Definition 5 ([12, 13]) A pair of adjunctions

A

L

��
B

R

\\

ks i +3

ks
e
+3

≡ A

L

��
B

R

��

R

\\

i +3

e
+3 A

L

\\

ĩ +3

ẽ
+3

is called an ambidextrous adjunction.
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Definition 6 We call an ambidextrous adjunction special iff

A L //

Id

��

Id

DDB R // A

i��

ẽ��

and

B R //

Id

��

Id

DDA L // B

ĩ��

e��

.

both are 2-isomorphisms.
A special ambidextrous adjunction is hence similar to an equivalence, but weaker.
We will mostly be interested in special cases where all the 1-morphisms sets are vector

spaces. (More precisely, we will be intersted in the case where our 2-category K is the
2-category of biomodules of a modular tensor category C.) In this case we shall be more
specific about the precise nature of the above 2-isomorphisms.

Definition 7 When the 2-morphism sets of K are vector spaces, we call an ambidextrous
adjunction in K special iff

A L //

Id

��

Id

DDB R // A

i��

ẽ��

= βLR ·
(
A

Id // A

)

and

B R //

Id

��

Id

DDA L // B

ĩ��

e��

= βRL ·
(
B

Id // B

)
.

for βLR and βRL elements of the ground field.

Remark. Below we will see (prop. 14) how speciality of ambidextrous adjunctions
translates into speciality of the Frobenius algebras that they give rise to. Speciality for
Frobenius algebras is an established concept (def. 9 below) which hence motivated our
choice of the term special for the above property of ambidextrous adjunctions.
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3.2 Frobenius Algebras

Definition 8 A Frobenius algebra in a monoidal category C is an object A ∈ Obj(C)
togther with morphisms

1. product

A⊗A m // A

2. unit

11 i // A

3. coproduct

A
∆ // A⊗A

4. counit
A

e // 11

such that (m, i) is an algebra, (∆, e) is a coalgebra and such that product and coproduct
satisfy the Frobenius property

A A

A A

∆

m

��

��''OOOOOOOOOO

�� ��

=

A A

A A

m

∆

��?????

�������

��

�������
��?????

=

A A

A A

m

∆

��

��

wwoooooooooo

�� ��

.

Remark. For manipulations of diagrams as in the following it is often helpful to think
of the Frobenius property as saying that, with A regarded as a bimodule over itself, the
coproduct is a bimodule homomorphism form A(A)A to A(A⊗A)A

We will be interested in Frobenius algebras with additional properties. The Frobenius
algebras of relevance here are

• special (def. 9)

• symmetric (def. 10) .

Unfortunately, while standard, the terms “special” and “symmetric” are rather unsugges-
tive of the phenomena they are suppposed to describe.

1. Speciality says that the two “bubble diagrams” in a Frobenius algebra are propor-
tional to identity morphisms.

2. Symmetry of a Frobenius algebra says that the two obvious isomorphisms of A with
its dual object A∨ are equal.
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The reader should in particular be warned that symmetry, in this sense, of a Frobenius
algebra is not directly related to whether or not that algebra is (braided) commutative.
(But in modular tensor categories braided commutativity together with triviality of the
twist implies symmetry.)

Definition 9 ([6], def. 3.4) Let A be a Frobenius algebra object in an abelian tensor
category. A is special precisely if

11

β11·Id

��

i

��???????

A

e
���������

11

and
A

βA·Id

��

∆

##FFFFFFFFF

A⊗A

m
{{xxxxxxxxx

A

for some constants β11 and βA

In terms of string diagrams in the suspension of C these two conditions look like

i

e

A

��

= β11 · Id
�
�
�
�
�
�

�
�
�
�
�
�

and

∆

m

A

��

A

��

A

��

A

��

= βA · Id

A

��

A

��

.
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Speciality of Frobenius algebras will be related to speciality of ambidextrous adjunc-
tions in prop. 14 on p. 14.

Definition 10 ([6], (3.33)) A Frobenius algebra is called symmetric if the following
two isomorphisms of A with its dual, A∨, are equal:

A∨

e

A

m

OO

��

����
=

A∨

e

A

m

OO

��

�� ��

Proposition 4 ([6], (3.35)) The morphisms in (10) are indeed isomorphisms.

Proof. Using the Frobenius property, one checks that the inverse morphisms are

A∨

i

A

∆

OO

��

�� ��

=

A∨

i

A

∆

OO

��

����

�
Hence we have in particular

A∨

i

A

∆

A∨

e

A

m

OO

��

�� ��

OO

��

�� ��

=

A∨

A∨

OO .

Using relations like this we frequently pass back and forth between diagrams with or
without occurence of the dual A∨ of A.

Example 1
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When dealing with FRS diagrams for disk correlators (§??) one encounters the following

situation. Let A
f // A be any morphism. Then

i

A

∆

e

A

m

f

��

�� ��

��

�� ��

zig-zag
=

A∨

i

A

∆

A∨

e

A

m

A

A

f

OO��

�� ��

OO

��

�� ��

��

^^

��

prop. 4
=

A∨

A∨

A

A

f

OO
��

VV
��

.

3.3 Bimodules

We can define bimodules in any abelian monoidal category.

Definition 11 An abelian category C is a category with the following properties:

1. The hom-spaces Hom(a, b) are abelian groups for all a, b ∈ Obj(C).
The abelian group operation ‘+’ distributes over composition of morphisms.
This means that for every diagram

a
f // b

g1
''

g2

77 c
h // d

we have

a
f // b ◦

 b

g1
''
c

+
b

g2

77 c

 ◦ c h // d =
a

f // b

g1
''
c h // d

+
a

f
// b

g2

77 c
h
// d

.

2. C contains a zero-object 0, (an object which is both initial and terminal).

3. For all a, b ∈ Obj(C) the direct product a× b exists.

4. Every morphism f in C has kernel and cokernel ker(f), coker(f) in C.

5. coker(ker(f)) = f for every f ∈ Mor(C)

6. ker(coker(f)) = f for every f ∈ Mor(C)
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Definition 12 Let C be any monoidal category and let A and B be algebra objects in C.
An A-B bimodule in C is an object ANB ∈ Obj(C) together with commuting left and
right action morphisms

A⊗ ANB
` // A

and
ANB ⊗B

r // A

satisfying

1. compatibility with the product

A⊗A⊗ ANB
m⊗ANB //

A⊗`

��

A⊗ ANB

`

��
A⊗ ANB `

//
ANB

ANB ⊗B ⊗B
ANB⊗m //

r⊗B

��

ANB ⊗B

r

��
ANB ⊗B r

//
ANB

2. compatibility with the unit

11⊗ ANB
//

iA⊗ANB ''NNNNNNNNNNN ANB

A⊗ ANB

`

99ssssssssss

ANB ⊗ 11 //

ANB⊗iB ''NNNNNNNNNNN ANB

A⊗ ANB

r

99ssssssssss

Definition 13 Let C be an abelian monoidal category. Let AMB and BNC be bimodules
in C. Then the bimodule tensor product is the cokernel

AMB ⊗ BNC
⊗B(M,N) //

AMB ⊗B BNC ≡ coker
(
AMB ⊗B ⊗ BNC

r⊗N−M⊗` //
AMB ⊗ BNC

)
.

Example 2
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Let A ∈ Obj(C) be a special Frobenius algebra. Let AAA be A but regarded as a bimodule
over itself with ` = m = r.

Set

AAA ⊗ AAA
⊗B(M,N) //

AAA ⊗A AAA = AAA ⊗ AAA
m //

AAA .

We have that

AAA ⊗A⊗ AAA
m⊗A−A⊗m //

AAA ⊗ AAA
m //

AAA

is the 0-arrow, due to the associativity of m. Given any other arrow φ with this property
we have

AAA ⊗A⊗ AAA
m⊗A−A⊗m //

AAA ⊗ AAA

φ

��

m //
AAA

∆◦φ

zzu
u

u
u

u
u

u
u

u
u

AAA

.

The fact that the morphism ∆ ◦ φ makes this diagram commute depends on the special
Frobenius property of A as well as on the fact that (m⊗A−A⊗m) ◦ φ = 0.

Definition 14 Let C be any monoidal category. The 2-category of (Frobenius) alge-
bra bi-modules internal to C, denoted BiMod(C), is defined as follows:

1. objects are all (Frobenius) algebras A internal to C

2. 1-morphisms A
AMB // B are all internal A−B bimodules AMB

3. 2-morphisms

A

AMB

!!

ANB

==Bφ
��

are all internal bimodule homomorphisms (intertwiners) AMB
φ //

ANB .

Horizontal composition in BiMod(C) is the tensor product of bimodules. Vertical compo-
sition is the composition of bimodule homomorphisms.

Remark.

1. BiMod(C) is really a weak 2-category (a bicategory) with nontrivial associator.
As usual, we here consider its strictification and suppress all appearances of the
associator.

2. The tensor unit 11 ∈ C equipped with the trivial (co)product is always a (Frobenius)
algebra internal to C. The sub-2-category Hom(11, 11) of BiMod(C) is C itself:

HomBiMod(C) (11, 11) ' C .
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3.3.1 Left-induced Bimodules

A particularly important role for our construction is played by left-induced bimodules.

Definition 15 A left-induced bimodule in BiMod(C) is a bimodule of the form

ANB ≡ A
m //___ A⊗ V B

φ◦moo_ _ _

for V ∈ Obj(C), where the left action by A comes from the action of A on itself and where
the right action by B comes from composing the morphism

V ⊗B
φ // A⊗ V ∈ Mor1 (C)

with the right action of A on itself. φ is required to make the following diagrams commute:

1. compatibility with the product

V ⊗B ⊗B
V⊗m

��

φ⊗B // A⊗ V ⊗B
A⊗φ // A⊗A⊗ V

m⊗V
��

V ⊗B
φ

// A⊗ V

2. compatibility with the unit

V
V⊗iB

{{wwwwwwwww
iA⊗V

##GGGGGGGGG

V ⊗B
φ

// A⊗ V

When we discuss trivializability of 2-functors with values in left-induced bimodules,
we will be focusing on those which satisfy in addition the following two conditions:

1. compatibility with the coproduct

V ⊗B ⊗B
φ⊗B // A⊗ V ⊗B

A⊗φ // A⊗A⊗ V

V ⊗B

V⊗∆

OO

φ
// A⊗ V

∆⊗V

OO

2. compatibility with the counit

V

V ⊗B

V⊗eB
;;wwwwwwwww

φ
// A⊗ V

eA⊗V
ccGGGGGGGGG
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Proposition 5 For special Frobenius algebras the four conditions in def 15 may not be
independent. For A and B special Frobenius algebras

• compatibility with the coproduct is implied by compatibility with the product if βA =
βB

• compatibility with the counit is implied by compatibility with the product if the con-
stants β11 agree.

Proof. From the commuting diagram describing the compatibility with the product

V ⊗B
φ // A⊗ V

V ⊗B ⊗B

V⊗m

OO

φ⊗B
// A⊗ V ⊗B

A⊗φ
// A⊗A⊗ V

m⊗V

OO

we obtain, by definition 9, the commuting diagram

V ⊗B
φ // A⊗ V

1
βA
·Id

zz

V ⊗B ⊗B

V⊗m

OO

φ⊗B
// A⊗ V ⊗B

A⊗φ
// A⊗A⊗ V

m⊗V

OO

V ⊗B

V⊗∆

OOβB ·Id

::

A⊗ V

∆⊗V

OO

.

This immediately implies the diagram which expresses compatibility with the coproduct
iff βA = βB.

Similarly, from the commuting diagram describing the compatibility with the unit

V
V⊗iB

{{wwwwwwwww
iA⊗V

##GGGGGGGGG

V ⊗B
φ

// A⊗ V

we obtain, by definition 9, the commuting diagram

V

V⊗iB
wwww

{{www iA⊗V
GGGG

##GGG

V ⊗B
V⊗eB
��

φ
// A⊗ V

eA⊗V
��

V

1
(β11)B

·Id
--

V

1
(β11)A

·Id
qq .

This immediately implies the diagram which expresses compatibility with the counit if
(β11)A = (β11)B.

�
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Example 3 We get a left-induced A−A bimodule (A⊗ V, φ = c±A,V ), where

V ⊗A
φ // A⊗ V = V ⊗A

c±A,V // A⊗ V

is the left or right braiding in C. This is the crucial example for the application to FRS
formalism, where modules of this form describe field insertions with V being interpreted
as the chiral data of the field.

Proposition 6 A morphism of left-induced bimodules

A

A(A⊗V1,φ1)B

!!

A(A⊗V2,φ2)B

==B
ρ

��

is specified by a morphism
V1

ρ

��
A⊗ V2

as
A⊗ V1

A⊗ρ
��

A⊗A⊗ V2

m⊗V2

��
A⊗ V2

.

This ρ has to make the diagrams

V1 ⊗B
φ1 //

ρ⊗B
��

A⊗ V1

A⊗ρ
��

A⊗ V2 ⊗B
A⊗φ2 // A⊗A⊗ V2

commute.

Remark. Note that, in general, ρ is not unique.

Definition 16 We denote the sub-2-category of left-induced bimodules by

LFBiMod(C) ⊂ BiMod(C) .

Proposition 7 The bimodule tensor product A
ANB // B

BN
′
C // C of two left-induced bi-

modules is the left-induced bimodule

ANB ⊗B BN
′
C ≡ A

m //___ A⊗ V ⊗ V ′ C
φ′◦φ◦moo_ _ _ _ _ _ .
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Proof.
We claim that the map

A⊗ V ⊗ B ⊗ V ′
f //

A⊗φ⊗V ′

%%KKKKKKKKKKKKKKKKKKKKK A⊗ V ⊗ V ′

A⊗A⊗ V ⊗ V ′

mA⊗V⊗V ′

;;vvvvvvvvvvvvvvvvvvv

is a cokernel for

A⊗ V ⊗ B ⊗ B ⊗ V ′
r⊗(B⊗V ′)−(A⊗V )⊗` // A⊗ V ⊗ B ⊗ V ′ .

Consider the sequence

A⊗ V ⊗B ⊗B ⊗ V ′
r⊗(B⊗V ′)−(A⊗V )⊗`// (A⊗ V )⊗ (B ⊗ V ′)

λ

��

f // (A⊗ V ⊗ V ′)

g

wwo o o o o o o o o o o o

A⊗ V ⊗ V ′

,

and set
A⊗ V ⊗ V ′

g //

∆⊗V⊗V ′

��

A⊗ V ⊗ V ′

A⊗A⊗ V ⊗ V ′
A⊗φ̄⊗V ′

// (A⊗ V )⊗ (B ⊗ V ′)

λ

OO

.

One sees that g really makes the diagram commute by the following computation.

A V B V ′

m

φ

∆

φ̄

A V B V ′

λ

A⊗ V ⊗ V ′

��

%% �����

��

Ass

A

��

V

��

����

A
  

��

%%JJJJJJJJJJJ

��+
+++++

���������

wwpppppppppppppp

��

Frob.=

A V B V ′

m

φ

∆

φ̄

A V B V ′

λ

A⊗ V ⊗ V ′

��

%% �����

��

A
((

A

 V

��

��

A
��

A

�� ��

%%JJJJJJJJJJJ

��+
+++++

���������

wwpppppppppppppp

��
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=

A V B V ′

m

φ

∆

φ̄

A V B V ′

λ

A⊗ V ⊗ V ′

��

%% �����

��

V

��

A

��

A

||

A

��

A

�� ��

%%JJJJJJJJJJJ

��+
+++++

���������

wwpppppppppppppp

��

spec.
=

A V B V ′

φ

φ̄

A V B V ′

λ

A⊗ V ⊗ V ′

%% �����

��

A V

��

���� ��

%%JJJJJJJJJJJ

��+
+++++

���������

wwpppppppppppppp

��

.

In the first step we have used the Frobenius property of A, in the second the compatibility
of φ with the product and of λ with the left and right action. Finally, in the third step we
have used speciality of A, assuming that βA = 1. The resulting morphism is clearly equal
to λ.

(UNIQUENESS OF g REMAINS TO BE SHOWN) �

Proposition 8 Every algebra homomorphism B
ρ // A defines a left-induced bimodule

AρB ≡ A
m //___ A⊗ 11 B

ρ◦moo_ _ _ .

Proposition 9 The bimodule tensor product of bimodules coming from algebra homomor-
phisms corresponds to the composition of the respective morphisms. More precisely, given

algebra homomorphisms C
ρ′ // B

ρ // A we have

AρB ⊗B Bρ
′
C = A

m //___ A⊗ 11 C
ρ′◦ρ◦moo_ _ _ _ _ _ .

Proposition 10

1. The bimodule tensor product of left-induced bimodules A(A⊗ V1, φ1)B and B(C ⊗ V2, φ2)C
is

A(A⊗ V1, φ1)B ⊗B B(B ⊗ V2, φ2)C = A(A⊗ V1 ⊗ V2, φ2 ◦ φ1)C

2. The horizontal product in LFBiMod(C) is given by the following expression:

A

A(A⊗V1,φ1)B

!!

A(A⊗V2,φ2)B

==B

B(B⊗V ′1 ,φ′1)C

!!

B(B⊗V ′2 ,φ′2)C

== C
ρ

��
ρ′

��
= A

A(A⊗V1⊗V ′1 ,φ′1◦φ1)B

  

A(A⊗V2⊗V ′2 ,φ′2◦φ2)B

>>Cρ·ρ′
��

,
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where
V1 ⊗ V ′1

ρ·ρ′

��

ρ⊗ρ′ // A⊗ V2 ⊗B ⊗ V ′2

A⊗φ⊗V ′2

��
A⊗ V2 ⊗ V ′2 A⊗A⊗ V2 ⊗ V ′2m⊗V2⊗V ′2oo

.

3.3.2 Conjugation of Bimodules

There are three kinds of conjugation operations on bimodules.

Proposition 11 ([7], prop. 2.10) Let ANB be a bimodule with action

N

N

`

r

A B

��

--

yy

.

1.

3.4 Expressing Frobenius Algebras in Terms of Adjunctions

Every Frobenius algebra object in C can be expressed in terms of an adjunction in
BiMod(C).

In the literature one can find (at least) two slightly different realizations of this fact.

• From the general perspective of Eilenberg-Moore objects (and actually in more gen-
erality than we need here) in [12] (extending a similar construction in [14]) a con-
struction using left-induced bimodules is given, where the two units and and counits
of the ambijunction are built directly from the action of the Frobenius algebra’s
(co)product and (co)unit.

• In def. 2.12 of [7] a construction in terms of left A modules and their duals is given,
where, implicitly, the units and counits of the ambijunction are constructed from
the unit and counit of the duality on objects, composed with a projection operation.

Both these sources do not make all the details explicit that we will need. For instance
[7] does not mention adjunctions at all. Therefore we spell out the details in the following
two subsections.
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3.4.1 Adjunctions using left-induced Bimodules

The algebra A may trivially be taken as a left, right or a bimodule over itself. We write
AA11, 11AA and AAA, respectively, for the object A equipped with an A-module structure
this way.

All three of these are left-induced bimodules. In order to be able to make full use of
the rules for tensor products of left-induced bimodules, the following definition spells out
the left-induced bimodule structure on

AL11 ≡ AA11

and
11RA ≡ 11AA

according to def. 15.

Definition 17 Given a Frobenius algebra A in C, we define the following left-induced
bimodules.

1.

11LA ≡ 11(11⊗A, φ)A ≡ 11 m //___ 11⊗A A
φ◦moo_ _ _

with

A⊗A
φ //

m
##FFFFFFFFF 11⊗A

A

<<xxxxxxxxx

2.

AR11 ≡ A(A⊗ 11, φ)11 ≡ A
m //___ A⊗ 11 11

φ◦moo_ _ _

with

11⊗ 11
φ //

��

A⊗ 11

11
i

// A

OO

and the following bimodule morphisms

1. left unit

11

11

""

11LA ,,

11

A AR11

LL
i
��

given by
11

i
��

11⊗A

and hence inducing 11 i // A
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2. left counit

11
11LA

��
A

A

<<

AR11
11

A
e
�� given by

A

��
A⊗ 11

and hence inducing A⊗A m // A

3. right unit

A

A

""

AR11 --

A

11 11LA

LL
ĩ��

given by

11

i
��
A

∆
��

A⊗A

and hence inducing A
∆ // A⊗A

4. right counit

A
AR11

��
11

11

<<

11LA
22

11
ẽ
�� given by

A

e

��
11⊗ 11

and hence inducing A
e // 11

Proposition 12 For A a special Frobenius algebra, this defines a special ambidextrous
adjunction Adj(A).

Proof. Using the rules for horizontal and vertical composition of left-induced bimodules
given in §3.3.1 one straightforwardly checks the required zig-zag identities as well as the
specialty property. �

Proposition 13 The Frobenius algebra Frob(Adj(A)) obtained from this ambidextrous
adjunction is A itself

Frob(Adj(A)) = A .

Proof. Applying the rules for horizontal and vertical composition of left-induced bimod-
ules yields the following identities.

1. product

11

A

��

A

DDL // A

A

CCR // 11

A

��
L // A R // 11

Id
��

Id
��

e
��

Id
��

= 11

A

��

A

FF11

A

��
11

m
��
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2. coproduct

11

A

��

A

DDL // A

A

CCR // 11

A

��
L // A R // 11

Id

KS
Id

KS

ĩ

KS

Id

KS

= 11

A

��

A

FF11

A

��
11

∆

KS

3. unit

11

11

��

A

DDL // A R // 11
i��

Id��

= 11

11

��

A

EE11i
��

4. counit

11

A

��

11

DDL // A R // 11
Id��

ẽ��

= 11

A

��

11

EE11e
��

�

Proposition 14 Under the relation of Frobenius algebras with ambidextrous adjunctions
(prop. 12 and 13) special Frobenius algebras (def. 9) correspond to special ambijunctions
(def. 7). The constants are related by

β11 = βLR

βA = βRL .
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Proof. We have

i

e

A

��

= 11 L //

Id

��

Id

EEA R // 11

i��

ẽ��

def. 7= βLR ·
(

11 Id // 11
)

= β11 · Id
�
�
�
�
�
�

�
�
�
�
�
�

and

∆

m

A

��

A

��

A

��

A

��

=

A

R

��
11 L //

L

11

L

--

A R //

Id

��

Id

DD11 L // A

ĩ��

e��

Id��

Id��

R // 11

A

R

KK

def. 7= βRL ·



A

R

��
11 L //

L

11

L

--

A Id // A

Id��

Id��

R // 11

A

R

KK



= βA · Id

A

��

A

��

�

3.4.2 Adjunctions using Duality and Projection

Due to the extra structure present on Frobenius algebras, bimodules for Frobenius algebras
are easier to handle than general bimodules. Using the coproduct one can built the
following projector, which sends objects in the ordinary tensor product of two bimodules
to their images in the bimodule tensor product.
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Definition 18 ([7], (2.45)) Let A, B, C be special, symmetric Frobenius algebras in the
rigid (meaning that all duals exist) monoidal category C. For every pair ANB, BN

′
C of

bimodules, let N ⊗N ′
PN,N′ // N ⊗N ′ be given by

N ⊗N ′

N⊗i⊗N ′

��

PN,N′ // N ⊗N ′

N ⊗B ⊗N ′
∆

// N ⊗B ⊗B ⊗N ′

`N⊗rN′

OO .

Note that the tensor product ‘⊗’ is that of C. The bimodule tensor product (over B, say),
will be denoted ⊗B.

In string diagrams PN,N ′ looks like

N N ′

N N ′

i

∆

`N rN ′

����

B
��

B
��

���� B
??

��??

.

Using associativity and the Frobenius property, one readily checks that PN,N ′ is a projector
and, when C is abelian, that it annihilates elements that vanish in the bimodule tensor
product.

Hence the image of PN,N ′ is indeed the bimodule tensor product of N with N ′,

N ⊗B N ′ = im
(
PN,N ′

)
.

More precisely, we have the following general definition of images

Definition 19 (compare [7], def. 2.12) The object im
(
PN,N ′

)
∈ Obj(C) is called the

image of N ⊗N ′
PN,N′ // N ⊗N ′ if there are morphisms

im
(
PN,N ′

) e // N ⊗N ′

(the injection of the image into the domain) and

N ⊗N ′ r // im
(
PN,N ′

)
(the projection of the domain onto the image) such that

N ⊗N ′
PN,N′ //

r &&MMMMMMMMMM N ⊗N ′

im
(
PN,N ′

) e

88qqqqqqqqqq
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and
im
(
PN,N ′

) Id //

e
&&MMMMMMMMMM

im
(
PN,N ′

)

N ⊗N ′
r

88qqqqqqqqqq
.

In the cases of interest here, where C is abelian and semisimple, such morphisms e and r
do exist for every projector.

Next we construct ambijunctions, using left A-modules N and the projector PN∨,N ,
along the lines of [7], prop. 2.13

1. left unit

11

11

""

N∨ ,,

11

A N

LL
i
��

given by

11

��
N∨ ⊗N

r

��
N∨ ⊗A N

2. left counit

11 N∨

��
A

A

<<

N
11

A
e
�� given by

N ⊗N∨

��
A⊗A N ⊗N∨ ⊗A A

e⊗e
��

A⊗N ⊗N∨ ⊗A
A⊗b⊗A
��

11

3. right unit
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A

A

""

N --

A

11 N∨

LL
ĩ��

given by

A

��
A⊗A A

e

��
A⊗A

��
A⊗N ⊗N∨ ⊗A

r⊗r
��

N ⊗N∨

r

��
N ⊗A N∨

4. right counit

A N

��
11

11

<<

N∨
22

11
ẽ
�� given by

N∨ ⊗A N
e

��
N∨ ⊗N

��
11

[. . . ]

3.4.3 Relation between the two Constructions

The two constructions described above are closely related whenever the left A module N
is A itself, regarded as a left module over itself, i.e. whenever

AN11 = AR11 ,

where AR11 was defined in def. 17.
Here we will relate the construction of special ambidextrous adjunctions from §3.4.1

to the constructions used in [7], section 2.4.
What relates the two constructions is the isomorphism between a special symmetric

Frobenius algebra A and its dual from def. 10.
We need this simple
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Proposition 15 The morphism

A

A∨

Φ−1

��

=

A∨

e

A

m

OO

��

�� ��

is in particular also a morphism of right A-modules.

Proof. Attach an A-line to the incoming A-line, use associativity to pass it past the prod-
uct, observe that the result is the right A-action on A∨. �

Let 11LA be, as before, A regarded as a right A-module over itself, and let N∨ = A∨ be
A∨ regarded as a right A-module. This means we have isomorphisms of 11−A bimodules

11

11LA

��

N∨

@@AΦ−1

��

and

11

11LA

@@

N∨

��
AΦ

��
.

By pasting these 2-cells wherever appropriate, we can transform the diagrams correspond-
ing to the adjunction on 11LA and AR11 to those of the adjunction in N and N∨, where
N = A as a right A-module over itself. And vice versa.
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3.5 Opposite Algebras

3.5.1 Definitions

We recall some facts and definitions on opposite algebras in ribbon categories from section
3.5 of [6] and section 2.1 of [7].

In the following, let C be a ribbon category. Denote its braiding morphisms by

U ⊗ V
cU,V

'
// V ⊗ U

and its twist morphisms by

U
θU
'

// U .

Definition 20 Let A be an algebra with product

A⊗A m // A

internal to some ribbon category C.
The opposite algebra Aop is the internal algebra based on the same object, Aop = A,

but with product mop given by

A⊗A

cA,A

��;;;;;;;;;;;;;;;
mop // A

A⊗A

m

DD��������������

.

Remark. In general (Aop)op is not isomorphic to A. We write

A = A(0)

and
A(n+1) ≡ (A(n))op .

Definition 21 A morphism
A

σ // A

is called an algebra antihomomorphism if regarded as a morphism

A
σ // Aop

it is an ordinary algebra homomorphism.

Hence σ is an algebra antihomomorphism iff

A⊗A σ⊗σ //

m

��

A⊗A
mop

��
A σ

// A
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and
11 i //

i ��??????? A

A

σ

??~~~~~~~

commute.

Definition 22 An algebra antihomomorphism is called a reversion if it squares to the
twist, i.e. if

A
θ //

σ
��@@@@@@@ A

A

σ

??~~~~~~~

Definition 23 If A is also a coalgebra we let the coproduct ∆op on Aop be given by

A
∆op

//

∆

��66666666666666 A⊗A

A⊗A

c̄AA

AA���������������

.

An antihomomorphism of coalgebras then has to satisfy

A
σ //

∆op

��

A

∆
��

A⊗A
σ⊗σ

// A⊗A

.

Proposition 16 An algebra A with reversion is Morita equivalent to its opposite algebra
Aop. If A is special Frobenius then so is Aop, and we have

βA = βAop

(β11)A = (β11)Aop .

Proof. A reversion is an algebra homomorphism and hence induces invertible left-induced
bimodules

ANσAop = A
m //___ A Aopm◦σoo_ _ _

and

AopNσA = Aop mop
//___ Aop A

m◦σ̄oo_ _ _

whose product is, according to prop. 9 (p. 38),

ANσAop ⊗Aop AopNσA = AAA

and
AopNσA ⊗A ANσAop = AopAop

Aop .
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The fact that Aop is special with the same constants as A follows from the commutativity
of the diagram

A⊗A
mop

""FFFFFFFFF

cAA
��

A ∆ //

∆op
<<xxxxxxxxx

βA·Id

<<A⊗A

c̄AA

CC

m // A
.

That the β11 coincide is trivial, since unit and counit of A and Aop coincide. �

Example 4

Consider a bimodule which relates an A-phase with an Aop-phase

A-phase

A

Id

��

(A,σ) // Aop

Id

��
A

(A,σ)
// Aop

Id
{� ����

Aop-phase

According to §18, local trivialization turns this defect locally into

11 11 //

11LA

��

11

11LAop

��
A

Id

��

(A,σ) // Aop

Id

��
A

AR11

��

(A,σ) // Aop

AopR11

��
11

11
// 11

σ{� �
���

Id
{� ����

Id
{� ����

=

11

A

~~

A

  
11

σ
ks = σAoo A .
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On the left we have here the 2-morphism in Σ(C) which is obtained from the above 2-
morphism in BiMod(C) by the trivialization procedure described in §18. In the middle
the same 2-morphism is depicted, now with the products of bimodules explicitly evaluated.
On the right the Poincaé-dual string diagram of this 2-morphism is given. This is simply
an A-line with a reversion. Compare section 3 of [7].

3.5.2 The Half-Twist in terms of Adjunctions

We would like to understand how the reversion

A
σ // A

looks like in terms of the ambidextrous adjunction that A is made of. Using the formalism
from [7], section 2 (def. 19) we can resolve A as the image of the map L⊗R→ L⊗AR and
push σ through to the right A-module 11LA = (A,m) and the left module AR11 = (A,m).

Doing so, one finds

Proposition 17

L R
•

∆

m m

L R

m

A

σ

A

L R

m
∆

•

�� ��zztttttttt

$$JJJJJJJJ

�� ��

((PPPPPPP

vvnnnnnnn

zztttttttt
��

��

wwoooo

��*
******

=

L R

σ σ

∆

•

m m

L R

���� vvnnnnnnn
((PPPPPPP

�� ��

.

Proof. Use the defining properties of σ as an (invertible) algebra antihomomorphism. �

Notice how both L and R are, as objects, nothing but A itself.
If we think of two lines, one labelled by L, one by R, as the boundary of a ribbon

which is decorated by L⊗A A ' A, then the above proposition says that a reversion acts
on these ribbons by acting as σ on L and R and by performing a half-twist of that ribbon.
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3.5.3 Vect1

C σ // Cop

V ⊗ Cσ ' Vσ

vc ' (v, 1)c = (v, c̄) = (vc̄, 1) = c̄(v, 1) ' c̄v

Cσ ⊗ V ' σV

cv ' c(1, v) = (c, v) = (1c̄, v) = (1, c̄v) = (1, v)c̄ ' vc̄

3.5.4 Involutions

For any real vector space V with complex structure, let V̄ be the same real vector space,
but with opposite complex structure.

Denote by
σ : C → C

c 7→ c̄

the conjugation involution on C and by Cσ the C-C bimodule which, as an object, is C
itself, with the left C-action being multiplication in C and the right C action given by first
acting with σ and then multiplying in C:

C× Cσ
l→ Cσ

(c, d) 7→ cd

Cσ × C r→ Cσ

(d, c) 7→ c̄d
.

Similarly, for any complex vector space V , let

Vσ ' V ⊗ Cσ

and
σV ' Cσ ⊗ V

be the C-C-bimodule V , as an object, but with the left or right C action twisted, as
indicated.

Notice that we have the canonical isomorphism

σVσ ' V̄

and in particular the canonical identitfication

Cσ ⊗ Cσ ' C̄ ' C .

Denote by BiModC the 2-category of C-C-bimodules, with single object C, bimodules up
to canonical isomorphism as 1-morphisms and bimodule intertwiners as 2-morphisms.
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We write

•

V̄

��

W̄

AA •φ̄�� ≡ • Cσ // •

V

��

W

AA •
Cσ // •φ��

and find in particular

• Cσ // •

C

��

C

AA •
Cσ // •c�� = •

C

��

C

AA •c̄�� .

It follows that we obtain a representation of the automorphism 2-group Aut(U (1)) of
U (1), on BiModC by setting

ρ : Σ(Aut(U (1))) → BiModC

•

Id

��

Id

AA •g
�� 7→ •

C

��

C

AA •g
��

•

σ

��

σ

AA •g
�� 7→ •

Cσ

��

Cσ

AA •g
��

.

Here we have denoted the nontrivial element in the automorphism group Z2 of U (1) also
by σ.

We are interested in transition morphisms in Trans(P,BiModC). Consider the case
where such a morphism involves Cσ in its defining tin can equation as follows

• •

•

• •

p∗12L

BB���������

p∗23L

��999999999

p∗13L //

Cσ

��

Cσ

��

p∗13L
′

//

f��

Id
{� ����

=
• •

•

•

• •

p∗12L

BB���������

p∗23L

��999999999

Cσ

��

p∗12L
′

���

BB���
p∗23L

′
999

��999
Cσ

��

Cσ

��

p∗13L
′

//
f ′��

Id
{� ����

Id
{� ����

.

The existence of the identity-2-morphisms here says that the transition line bundles are
related by L′ = L̄.
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When we equivalently rewrite this equation as

• •

•
p∗12L

′
BB���������

p∗23L
′

��999999999

p∗13L
′ //

f ′��
=

• •

•

• •

p∗12L

BB���������

p∗23L

��999999999

p∗13L //Cσ // Cσ //

f��
,

which says that
f ′ = f̄ .

4 Differential cocycles and local trivialization

Fix once and for all some monoidal category C. We are interested in 2-functors

tra : P2 → BiMod(C)

from some geometric 2-category P2 to the 2-category of algebra bimodules (of special
symmetric Frobenius algebras) internal to C (def. 14). In the context of the present
discussion these 2-functors shall be called transport 2-functors.

There is a general theory of transport 2-functors and in particular of local trivialization
of 2-transport. All of the following constructions are just special instances of that general
theory. For more details see [?].

4.1 Trivial 2-Transport

Definition 24 We say a transport 2-functor tra : P2 → BiMod(C) is trivial precisely
if it takes values only in C ' HomBiMod(C) (11, 11) ⊂ BiMod(C).

We write
tra11 : P2 → C ⊂ BiMod(C)

for a trivial transport 2-functor tra11.

Remark. The terminology “trivial” here is motivated from a similar condition on 2-
transport in 2-bundles. It is not supposed to suggest that a trivial transport 2-functor
encodes no interesting information. Rather, one should think of a general transport 2-
functor as defining an algebra-bundle over the space of objects of P2. For a trivial transport
2-functor this bundle is trivial in that all its fibers are identified with the (trivial) algebra
11.

Definition 25 A trivialization of a transport 2-functor

tra : P2 (X)→ BiMod(C)

is a choice of a trivial transport 2-functor

tra11 : P2 → C ⊂ BiMod(C)
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together with a choice of special ambidextrous adjunction (defs. 4, 5, 7)

tra11

t̄

��
tra

t

^^

ks i +3

ks
e
+3

A transport 2-functor is called trivializable if it admits a trivialization.
The most general condition under which a transport 2-functor is trivializable is not

investigated here. We shall be content with showing that all transport 2-functors of the
following form are trivializable.

Theorem 1 Transport 2-functors to left-induced bimodules

tra : P2 → LFBiMod(C) ⊂ BiMod(C)

are trivializable if every 2-morphism

tra

 x

γ1

  

γ2

>> yS
��

 = Ax

(Ax⊗Vγ1 ,φγ1 )

""

(Ax⊗Vγ2 ,φγ2 )

<<
Aytra(S)

��
∈ Mor2 (LFBiMod(C))

for all S ∈ Mor2 (P2) is of the form

Ax ⊗ Vγ1

tra(S)

��
Ax ⊗ Vγ2

=

Ax ⊗ Vγ1

Ax⊗λS

��
Ax ⊗ Vγ2

for some λS ∈ Mor(C).

For the proof of prop. 15 below it is crucial to note by prop. 6 (p. 36) tra(S) being a
morphism of bimodules implies that λS is such that the diagrams

Vγ1 ⊗Ay
λs⊗Ay

��

φγ1 // Ax ⊗ Vγ1
Ax⊗λS
��

Vγ2 ⊗Ay
φγ2 // Ax ⊗ Vγ2

(3)

commute.
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Remark. In the application to the FRS formalism tra(S) plays the role of the mor-
phism which connects the field insertions on the connecting 3-manifold. Hence the curious
restriction on the nature of tra(S), which is crucial for the above theorem to be true, is
precisely the property that tra(S) is assumed to have in FRS formalism.

The proof of proposition 1 amounts to constructing a trivialization and checking its
properties. This is the content of the following subsection.

4.2 Trivialization of trivializable 2-Transport

In order to prove theorem 1 we need to construct a trivial transport 2-functor as well as
all ingredients of a special ambidextrous adjunction such that all the required conditions
are satisfied.

1. the trivial transport functor

Define
tra11 : P2 → C

by

tra

 x

γ1

  

γ2

>> yS
��

 = 11

Vγ1

  

Vγ2

>> 11λS��
∈ Mor2 (C)

for all S ∈ Mor2 (P2).

2. the trivialization morphism

Define the pseuodnatural transformation tra t // tra11 to be that given by the map

x
γ // y 7→

tra(x) tra(γ) //

t(x)

��

tra(y)

t(y)

��
tra(x) tra(γ) // trai (y)

t(γ){� ����
����

≡

Ax
(Ax⊗Vγ ,φγ) //

AxR11

��

Ay

AyR11

��
11 Vγ // 11

Id{� ����
����

.

That we really have an identity 2-morphism on the right hand side follows from def
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17. This is readily seen to satisfy the required tin can equation

Ax

(Ax⊗Vγ1 ,φγ1 )

��

(Ax⊗Vγ2 ,φγ2 )
//

AxR11

��

Ay

AyR11

��
11 Vγ // 11

Id{� ����
����

tra(S)
��

=

Ax
(Ax⊗Vγ1 ,φγ1 )

//

AxR11

��

Ay

AyR11

��
11

Vγ2

@@
Vγ1 // 11

Id{� ����
����

λS��

.

The functoriality condition

Ax (Ax⊗Vγ1◦γ2 ,φγ1◦γ2 ) //

AxR11

��

Az

AzR11

��
11 Vγ1◦γ2

// 11

Id{� ����
����

=

Ax
(Ax⊗Vγ1 ,φγ1 )

//

AxR11

��

Ay
(Ay⊗Vγ2 ,φγ2 )

//

AzR11

��

Az

AzR11

��
11 Vγ1

// 11 Vγ2
// 11

Id{� ����
����

Id{� ����
����

follows from the functoriality of tra.

3. the adjoint of the trivialization morphism

Define the pseudonatural transformation tra11
t̄ // tra to be that given by

x
γ // y 7→

tra(x) tra(γ) //

t̄(x)

��

tra(y)

t̄(y)

��
tra(x) tra(γ) // tra(y)

t̄(γ){� ����
����

≡

11 Vγ //

11LAx

��

11

11LAy

��
Ax (Ax⊗Vγ ,φγ) // Ay

φγ{� ����
����

.

This is well defined (i.e. this 2-morphism really gives a morphism of bimodules

Vγ ⊗11 11LAy
φγ //

11LAx ⊗Ax (Ax ⊗ Vγ , φγ) ) due to the fact that φγ is compatible

with the product (see def. 15).
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The required tin can equation

11

Vγ1

��

Vγ2

//

11LAx

��

11

11LAy

��
Ax

(Ax⊗Vγ2 ,φγ2 )
// Ay

φγ2
{� ����

����

λS��

=

11
Vγ1 //

11LAx

��

11

11LAy

��
Ax

(Ax⊗Vγ2 ,φγ2 )

@@

(Ax⊗Vγ1 ,φγ1 )
// Ay

φγ1
{� ����

����

tra(S)
��

holds by assumption on tra(S) (namely using the commutativity of the diagram (3),
on p. 55).

The functoriality condition

11 Vγ1◦γ2
//

11LAx

��

11

11LAz

��
Ax (Ax⊗Vγ1◦γ2 ,φγ1◦γ2 ) // Ay

φγ1◦γ2
{� ����

����
=

11 Vγ1
//

11LAx

��

11 Vγ2
//

11LAz

��

11

11LAz

��
Ax

(Ax⊗Vγ1 ,φγ1 )
// Ay

(Ay⊗Vγ2 ,φγ2 )
// Az

φγ1
{� ����

����
φγ2

{� ����
����

again follows from the functoriality of tra.

4. the left unit

Define the modification

tra11

Id

%%

t̄ --

tra11

tra t

JJi
��

to be that given by the map

Obj(P2) 3 x 7→ 11

11

""

11LAx ,,

11

Ax AxR11

LL
i
��

∈ Mor2 (BiMod(C))
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The required tin can equation

11 Vγ //

11LAx

��

11

11LAy

��
11

��

Ax (Ax⊗Vγ ,φγ) //

AxR11

��

Ay

AyR11

��
11 Vγ // 11

φγ

{� ����
����

Id

{� ����
����

iAyks =

11 Vγ //

11

��

11LAx
������

��������

11

11

��

Ax

AxR11

222222

��2
22222

11 Vγ // 11

Id

{� ����
����

iAxks

follows from the compatibility of φ with the unit (see def. 15).

5. the left counit

Define the modification
tra11 t̄

��
tra

Id

99

t
22

tra
e
��

to be that given by the map

Obj(P2) 3 x 7→

11 11LAx

��
Ax

Id

;;

AxR11
11

Ax

e
�� ∈ Mor2 (BiMod(C)) .

The required tin can equation

Ax
(Ax⊗Vγ ,φγ) //

AxR11

��
11

��

Ay

AyR11

��
11 Vγ //

11LAx

��

11

11LAy

��
Ax

(Ax⊗Vγ ,φ)
// Ay

Id

{� ����
����

φγ

{� ����
����

eAxks =

Ax
(Ax⊗Vγ ,φγ) //

Ax

��

Ay

Ay

��

AyR11

222222

��2
22222

11

11LAy
������

��������

Ax
(Ax⊗Vγ ,φγ)

// Ay

Id

{� ����
����

ẽAyks

holds due to the compatibility of φγ with the counit.
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6. the right unit

Define the modification

tra

A

%%

t ,,

tra

tra11
t̄

JJ
ĩ��

to be that given by the map

Obj(P2) 3 x 7→ Ax

Ax

##

AxR11 --

Ax

11 11LAx

KK
ĩ��

∈ Mor2 (BiMod(C))

The required tin can equation

Ax (Ax⊗Vγ ,φγ) //

AxR11

��

Ay

AyR11

��
Ay

��

11 Vγ //

11LAx

��

11

11LAy

��
Ax Vγ // Ay

Id

{� ����
����

φγ

{� ����
����

ĩAyks =

Ax (Ax⊗Vγ ,φγ) //

Ax

��

AxR11
������

��������

Ay

Ay

��

11

11LAx

222222

��2
22222

Ax (Ax⊗Vγ ,φγ) // Ay

Id

{� ����
����

ĩAxks

holds due to the compatibility of φγ with the coproduct.

Notice at this point that all these statements are straightforward to check, but require
a careful application of all the definitions governing composition of morphisms of
left free bimodules. The truth of the above statement for instance involves the
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commutativity of the diagram

Vγ

eAy
�� eAx

##HHHHHHHHHHHHHHHHHHHHHHH

Vγ ⊗Ay
φγ

SSSSSSS

))SSSSSSSVγ⊗∆Ay

��
Vγ ⊗Ay ⊗Ay

φγ⊗Ay
��

Ax ⊗ Vγ

∆Ax⊗Vγ

{{vvvvvvvvvvvvvvvvvvvvvv

Ax ⊗ Vγ ⊗Ay
Ax⊗φγ
��

Ax ⊗Ax ⊗ Vγ

which holds due to compatibility with counit (upper part) and coproduct (lower
part).

7. the right counit Define the modification

tra t

��
tra11

Id

99

t̄
11

tra11

ẽ
��

to be that given by the map

Obj(P2) 3 x 7→

Ax AxR11

��
11

Id

<<

11LAx
22

11
ẽ
�� .

The required tin can equation

11
Vγ //

11LAx

��
11

��

11

11LAy

��
Ax (Ax⊗Vγ ,φγ) //

AxR11

��

Ay

AyR11

��
11

Vγ
// 11

φγ

{� ����
����

Id

{� ����
����

ẽAxks =

11
Vγ //

Ax

��

11

Ay

��

11LAy

222222

��2
22222

Ay

AyR11
������

��������

11
Vγ

// 11

Id

{� ����
����

ẽAyks
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holds due to the compatibility of φγ with the the counit.

Finally, we need to check that the zig-zag identities are satisfied. But this is automatic,
since the composition of modifications of pseudonatural transformations corresponds to
the compositon of the respective 2-morphisms in the target 2-category. But these 2-
morphisms, as defined above, are precisely those of the underlying ambijunction itself.

This then completes the proof. �

4.3 Expressing 2-Transport in Terms of Trivial 2-Transport

The crucial aspect of a trivialization of a 2-transport 2-functor is that it allows to express
tra completely in terms of tra11, t and t̄.

This involves two proposition, which are stated and proven in this section

1. Trivializable 2-transport is expressible completely in terms of trivial 2-transport
(prop. 18).

2. Possibly non-trivializable 2-transport gives rise to transitions between trivializable
2-transport (prop. 19).

4.3.1 Trivializable 2-Transport

Proposition 18 The image of a trivializable 2-transport tra trvialized by

tra11

t̄

��
tra

t

^^

ks i +3

ks
e
+3

can be expressed in terms of the trivialization as follows:

tra

 x

γ1

  

γ1

>> yS
��

 =
1
βA

Ax tra(γ1) //

t(x)

��
Ax

��

Ay

t(y)

��
Ay

��

11

tra11(γ1)

��

tra11(γ2)

@@

t̄(x)

��

11

t̄(y)

��
Ax tra(γ2) // Ay

t(γ1)

{� ������

t̄(γ2)

{� ������

iAyks
ẽAxks

tra11(S)
��

(4)

for all S ∈ Mor2 (P2).
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Proof. Use the tin can equation for the pseudonatural transformation

tra t // tra11

which reads

Ax

t(x)

��

tra(γ2) //

tra(γ1)

��
Ay

t(y)

��
11 tra(γ2) // 11

t(γ2){� �����
�����

tra(S)
��

=

Ax

t(x)

��

tra(γ1) // Ay

t(y)

��
11

tra11(γ2)

EEtra11(γ1) // 11

t(γ1)�� 










tra11(S)
��

,

as well as the tin can equation for the modification tra

t ))

Id

!!
tra

tra11
t̄

GGi
�� , which reads

Ax tra(γ) //

t(x)

��

Ay

t(y)

��
tra(y)

��

11 tra11(γ) //

t̄(x)

��

11

t̄(y)

��
Ax tra(γ) // Ay

t(γ)

{� ����
����

t̄(γ)

{� ����
����

eAyks =

Ax tra(γ) //

tra(x)

��

t(x)
������

��������

Ay

tra(y)

��

11

t̄(x)

222222

��2
22222

Ax tra(γ) // Ay

Id

{� ����
����

eAxks .

Finally, use the condition that the adjunction is special. �

Remark. It is precisely the above construction which makes us want to consider special
ambidextrous adjunctios. In the following we will assume that we have arranged that

βAx = βAy = 1 ,

which can always be done.
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By contracting the identity morphisms in (4) to a point, we can redraw this diagram
more suggestively as

tra

 x

γ1

��

γ2

BB yS
��

 = Ax

t(x)
&&

tra(γ1)

��

tra(γ2)

AA11
t̄(x)

gg

tra11(γ1)

��

tra11(γ2)

@@ 11
t̄(y)

77 Ay

t(y)
xx

e(x)ks ĩ(y)ks

t(γ1)��

t(γ2)��

tra11

��
.

Often it is helpful to use transport over bigons which have a square-like appearance. Using
the functoriality of pseudonatural transformations we can write

tra

x z

γ1��

??���� γ2
????

��??

γ′1

??

��??? γ′2���

??��
S
��

 = Ax Ay11 11

tra(γ1)

??���������������������������

tra(γ2)

��???????????????????????????

tra(γ′1)

��???????????????????????????

tra(γ′2)

??���������������������������

tra11(γ1)
�����

??������
tra11(γ2)

??????

��?????

tra11(γ′1)
?????

��?????? tra11(γ′2)������

??�����

t(x) ##

t̄(z)

::

t(y)

��

t̄(y′)

��

t(z)
~~

t̄(x)
bb tra11(S)

��

t(γ1)
����

��
t(γ2)em RRRRRR

t̄(γ1)
lt bbbbbb

t̄(γ2)�� �
��

���

ĩ(z)kse(x)ks

4.3.2 Not-necessarily trivializable 2-transport

Definition 26 We can use the trivialization morphism and its adjoint as defined in def.
4.2 to assign to every 2-morphism

A

(A⊗V1,φ1)

��

(A⊗V2,φ2)

@@B
ρ

��
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in LFBiMod(C) the 2-morphism

11

V1⊗B

��

A⊗V2

@@ 11ρ̃
��

≡

11
V1 //

11LA

��

11

11LB

��
A

(A⊗V1,φ1)

��

(A⊗V2,φ2)

@@

AR11

��

B

BR11

��
11

V2

// 11

ρ

��

φ1

{� ������

Id
{� ������

in Σ(C).

Definition 27 We make

11
V1⊗B // 11 = 11

V1 // 11
11LB // B

BR11 // 11

into an internal A-B-bimodule by using the obvious right action by B and left action by
A. More precisely, the left A-action is that given by

A

V1 ⊗B
A⊗ V1 ⊗B

V1 ⊗B ⊗B

V1 ⊗B

  AAAAAAAAA

rrffffff

φ̄1⊗B
���

�����

V1⊗mB
���

�����

=

11 A 11

11

B

11

11 B

A

  

V1⊗B

��

V1⊗B

77

11LA //
AR11

//

V1

??

��??

11LB

??

��??

BR11

??

��??

V1

??

��??

11LB //
BR11

//

Id 11

(A⊗V1,φ1)
??

��??

Id��

φ̄1
{� ����

Id
{� ����

Id
z� ||||||

eB
�� ������

Id
�	 �

��
���

We make

11
A⊗V2 // 11 = 11

11LA // A
AR11 // 11

V1 // 11

into an internal A-B-bimodule by using the obvious right action by B and left action by
A. More precisely, the right B-action is that given by [. . . ].

Proposition 19 With the A-B-bimodule structure on V1⊗B and A⊗V2 as defined above,

11

V1⊗B

��

A⊗V2

@@ 11ρ̃
��

(def. 26) is indeed a bimodule homomorphism.
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Proof. We need the equality

A
11RA //

Id

��???????????????? 11
V1 //

AL11

��

11

BL11

��
A

(A⊗V1,φ1)
// B

e{� �
���

φ1
{� ���� =

A
11RA //

(A⊗V1,φ1)

��

11

V1

��
B 11RB //

Id
@@@@@@@

��@@@@@@@

11

11LB

��
B

Id
{� ����

e{� �
���

which is readily seen to be equivalent to the tin can equation in item 5 on p. 59. Using
this equation, we get

11
11LA // A

AR11 //

Id

��???????????????? 11
V1 //

11LA

��

11

11LB

��
A

(A⊗V1,φ1)

��

(A⊗V2,φ2)

@@

AR11

��

B

BR11

��
11

V2

// 11

ρ

��

φ1

{� ������

Id
{� ������

e
y� {{{{{{

=

11 A 11

11

B

11

11 B

A

11

11LA //
AR11

//

V1

2222

��2
222

11LB

??

��??

BR11

��

V1

2222

��2
222

11LB //
BR11

//

Id 11

(A⊗V1,φ1)

2222

��2
222

φ̄1
{� ����

Id
{� ����

eB
�� ������

11LA

��

AR11

��

V2

//

(A⊗V2,φ2)

77(A⊗V1,φ1)

>>
φ1

{� ����

ρ
��

///
///

Id{� �
�����

,

where in the top left corner we have inserted the identity 2-morphism

A

(A⊗V1,φ1)

��@@@@@@@@@@@@@@@@

11 V1
//

11LA

??����������������

11LA

��???????????????? 11 11LB // B

A

(A⊗V1,φ1)

??����������������

φ̄1��

φ1��

= 11
11LA // 11

(A⊗V1,φ1) // B .

But according to the definition def. 27 of the left A-action on V1 ⊗ B this says nothing
but that ρ̃ respects the left A-action.

A precisely analogous argument applies to the right B-action. �
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Remark. By the very definition of BiMod(C), the 2-morphism

A

(A⊗V1,φ1)

��

(A⊗V2,φ2)

@@B
ρ

��

is an internal homomorphism of bimodules internal to C. Above we have constructed (def.
26) a 2-morphism

11

V1⊗B

��

A⊗V2

@@ 11ρ̃
��

in Σ(C) by composing ρ with the trivialization data obtained in §4.2. Remarkably, ρ̃ is not
quite the same internal bimodule homomorphism as ρ, it does not even relate the same
internal bimodules. But the difference between the two is small. The source bimodule of
ρ̃ is obtained from the source bimodule of ρ by acting with the isomorphism φ̄1. This is a
direct consequence of the fact that our trivialization data had to contain this isomorphism
in order to constitute a trivialization of the transport 2-functors in theorem refproposition
on trivializations of 2-transport.

This has the following interesting consequence. Recall that we used only left-induced
bimodules in BiMod(C), because LFBiMod(C) is precisely large enough to accomodate
an ambidextrous adjunction realizing every Frobenius algebra in C. But by sending these
left-induced bimodules and their homomorphisms to C by means of our trivialization,
some right-free bimodules appear automatically. In particular, all homomorphisms of left-
induced bimodules become, as shown above, homomorphism between one right-free and
one left-induced bimdoule.

This is important, because precisely these latter types of bimodule homomorphisms
do appear in FRS formalism (e.g. p.5 of [6]), where they encode the insertion of bulk
fields. We will see in example §?? that this is precisely reproduced by locally trivialized
2-transport.

4.4 Boundary Trivialization of 2-Transport

Precisely at the boundary of the surface whose 2-transport we want to compute there is
another possibility to express it in terms of trivial 2-transport.

Suppose we are given an adjunction

tra11

b̄

��
tra

b

^^

i +3

e
+3

not necessarily a special ambedextrous one.
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The pseudonatural transformation b gives rise to a tin can equation

Ax

Axb(x)11

��

tra(γ2) //

tra(γ1)

��
Ay

Ay b(y)11

��
11 tra(γ2) // 11

b(γ2){� �����
�����

tra(S)
��

=

Ax

Axb(x)11

��

tra(γ1) // Ay

Ay b(y)11

��
11

tra11(γ2)

EEtra11(γ1) // 11

b(γ1)�� 










tra11(S)
��

.

An analogous statement holds for non-invertible morphism

tra11
b̄ // tra .

Therefore, assigning 1-sided A-modules to the boundaries of a surface allows to completely
express the surface transport, which originally takes values in BiMod(C), in terms of 2-
morphisms in C.

4.5 Defect lines from trivialized bimodules

A defect line in 2-dimensional quantum field theory is a line labeled by an object in a
monoidal category C which is equipped with the structure of an internal bimodule.

For our purposes it is crucial to carefully distinguish the defect line itself from the
bimodule object K̇ it is labeled by, and to distinguish that object, in turn, from the
corresponding morphism K in the category Bim(C).

We now discuss how the defect line is to be thought of as arising from the ( ΣC � � // Bim(C)) -
trivialization of the functor which assigns the bimodule K to edges.

Proposition 20 Let D = par2 be the 1-categorical interval

par2 := { •1 // •2 }

and let C be any monoidal category. Then a sufficient condition for a 2-functor

traq : D → Bim(C)

to be ( ΣC � � i // Bim(C) )-trivializable is that it sends •1 and •2 to special Frobenius algebra
objects in C.

Proof. Write
traq( •1 // •2 ) = A

N // B
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for the value of our 2-functor on the edge. Choose two special ambidextrous adjunctions

11 LA //

Id

��

Id

??A RA // 11
��

��

= 11 Id // 11

and

11 LB //

Id

��

Id

??B RB // 11
��

��

= 11 Id // 11

corresponding to the special Frobenius algebras A and B, respectively. We write

K̇A,B := K̇ := 11
LA // A

K // B
RB // 11 ,

for the corresponding object part of K relative to these chosen ambijunctions.
Let the i-trivial 2-functor be given by

trivq : ( •1 // •2 ) 7→ 11 K̇ // 11 .

Take the component map of t : traq → trivq to be

A
K //

RA

��

B

RB

��
11

K̇

// 11

t(•1→•2)
�������

�������

}� ������

������
:=

A
Id //

RA

��

A
K // B

RB

��
11

K̇

//

LA

FF

11

=

�� �
�����������

������������

�� �
����

�����

and that of t̃ : trivq → traq to be

11 K̇ //

LA

��

11

LB

��
A

K
// B

t̃(•1→•2)
�������

�������

}� ������

������
:=

11 K̇ //

LA

��

11

LB

��
A

K
// B

Id
//

RB

FF

B
�� �

���������

����������

=

�� �
�����������

������������

.
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Then we have

A
Id //

RA

��

A
K // B

RB

��
Id

��

11 K̇ //

LA

FF

LA

��

11

LB

��
A

K
// B

Id
//

RB

FF

B

=

�� �
�����������

������������

�� �
����

�����

�� �
���������

����������

=

�� �
�����������

������������
ks =

A
K //

Id

��

LA

��
B

Id

��

11

LA

��1
111111111111

A
K

// B

=

�� �
�������������������������

��������������������������

ks

and
A

Id //

RA

��
Id

��

A
K // B

RB

��
11 K̇ //

LA

FF

LA

��

11

LB

��
A

K
// B

Id
//

RB

FF

B

=

�� �
�����������

������������

�� �
����

�����

�� �
���������

����������

=

�� �
�����������

������������
ks =

A
K //

Id

��

B

Id

��

Rb

��1
111111111111

11

LB

��

A
K

// B

=

�� �
�������������������������

��������������������������

ks

�

Corollary 1 The identity on K may be re-expressed as

A
K //

Id

��

B

Id

��
A

K
// B

=

�� �
������������������������

�������������������������

=

A
Id //

RA

��
Id

��

A
K // B

RB

��
Id

��

11 K̇ //

LA

FF

LA

��

11

LB

��
A

K
// B

Id
//

RB

FF

B

=

�� �
�����������

������������

�� �
����

�����

�� �
���������

����������

=

�� �
�����������

������������
ksks .
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5 Correlators from differential BC-cocycles

5.1 Field Insertions passing Triangulation Lines

When locally trivializing transport 2-functors one frequently encounters 2-morphisms of
the form

11 U //

L
��

11

L
��

A

R
��

(A⊗U,φ) // A

R
��

11
U

// 11

φ
{� ����

Id
{� ����

.

These come from the tin can faces of the pseudonatural transformations tra t // tra11

and tra11
t̄ // tra which have been introduced in items 2 and 3 of §4.2.

Assume that φ is the braiding
φ = cU,A

with U passing beneath A. Then the Poincaré dual to this diagram looks as follows (when
rotated by π/2)

A

11

11

11

11
L

��

R

��

U /o/o/o ///o/o .

Here the bimodules L ≡ 11LA and R ≡ AR11 (introduced in def. 17) combine to yield the
algebra objectA regarded as a 11−11-bimodule, as described in §3.4. We shall often suppress
the symbol “11” from string diagrams, such that all unlabelled regions are implicitly to be
thought of as labelled by 11:

A
L

��

R

��

U /o/o/o ///o/o .

Here the U -line is supposed to pass beneath the A-line, depicting the braiding morphism

U ⊗A
cU,A

��
A⊗ U

.

That this does indeed represent the above globular diagram follows by applying the
rules for horizontal and vertical compositon of morphism of left-induced bimodules.

5.2 Traces

Of particular interest is n-transport over n-paths of nontrivial topology, those which
are not isomorphic to an n-disk. Describing transport tra : P → T over such n-paths in
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terms of n-morphisms of a geometric n-category requires certain structure at least on the
codomain T , possibly also on the domain P.

The structure needed on T is the existence of partial traces which implement the
gluing of n-paths along (n− 1)-paths. This gluing may, or may not, be already present in
P.

In Segal’s description of n-dimensional QFT in terms of 1-functors on 1-categories
of n-cobordisms this is not a seperate issue, since the cobordisms may have arbitrary
topology. The n-categorical refinement which we are considering here, however, requires
a framework which allows to construct topologically nontrivial n-cobordisms by gluing
topologically trivial n-morphisms.

Dimension n = 2. Let P be some geometric 2-category. Assume that P has the follow-
ing special properties

1. Every 1-morphism x
γ .. y is part of an ambidextrous adjunction.

2. All the monoidal 1-categories HomP (x, x) are braided.

5.2.1 Sphere

Consider a 2-morphism

x x

y

y

A����

??����

A
????

��????

B
????

��????

B����

??����

S
��

in P. Glue the two copies of A and the two copies of B by composing with unit and counit
of the respective adjunctions.

x x

y

y

y y

A����

??����

A
????

��????

B
????

��????

B����

??����

Ā // B̄ //

Id
00

Id ..

Id

��

Id

@@S
��

��
4444

�� 





�� 



 ��
4444

The Poincaré-dual string diagram is

x x

y

y

y yS

??

��

��
??

// //

00

..

��
@@ .
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5.2.2 Torus

Consider a 2-morphism

x x

x

x

A����

??����

B
????

��????

B
????

��????

A����

??����

S
��

in P. In order to be able to glue A with A and B with B, first move them on the same
side by composing with a braiding

x x

x

x

x

Attt

::ttt

B
????

��????

B
JJJ

$$JJJ

A����

??����

B�������

EE�������
A

2222222

��2
222222

S
��

��

.

Then glue by composing with unit and counit of the respective adjunctions.

x x

x

x

x

x x

Attt

::ttt

B
????

��????

B
JJJ

$$JJJ

A����

??����

B�������

EE�������
A

2222222

��2
222222

B̄ // Ā //

Id

44

Id ..

Id

��

Id

@@S
��

��
4444

�� 





�� 



 ��
4444

��

The Poincaré-dual string diagram is

x x

x

x

x

x x
S

::

��

$$
??

EE

��
// //

44

..

��
@@ .

73



5.2.3 Trinion (Pair of Pants)

Consider the pair of pants

x

x

w

w

z

z

w

z z

γ1

??�������������

A

��?????????????

B

??�������������

γ2

��?????????????

A

��?????????????

C

��
//

B

??�������������

C̄

OO

??������������� ��?????????????

//

�� ��

��

��

.

With the structure described above we cannot do the required braiding in order to contract
identitfied boundaries. But we may consider the image under some 2-transport of this 2-
morphism in a braided tensor category (possibly obtained by first locally trivializing) and
then braid and trace in that image. For instance, for a trivialization as in [?] this yields

11

11

11

11

11

11

11

11 11

m m

∆ ∆

m

∆

∆

??

��

??

��

��

��
//

??

OO

??

��
//

// //

;;

A
????????

��????????

IIIIII

uuuuuu

uuuuuu

IIIIIIIIIII

A
��������

����������

IIIIII

uuuuuu

uuuuuuuuuuu
IIIIII

�������

???eeeeeeee
eeeeeeeee

A

.
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5.3 The disk

the structure of a boundary field insertion in combi-
natorial CFT, as a string diagram in C:

• A and B are Frobenius algebras labelling the
“phases” of the CFT;

• U ∈ C labels the boundary field;

• the left B-module N and the left A-module N ′

label the boundary conditions (“D-branes”);

• M is a defect line interpolating between a B-
and an A-phase;

• the yellow coupon is a module homomorphism
from the left A-module M ⊗B N ⊗U to the left
A-module N ′

noticing that a left B-module is a B-11 bimodule and
passing to the Poincaré-dual of the above diagram ex-
hibits it is a 2-morphism in Bimod(C) ⊂ TwBimod(C).

Figure 3: A boundary field insertion as a string diagram in C and as a 2-morphism
in TwBimod(C).

5.3.1 Quantum n-Particle concept formation

We establish some terminology, useful for describing the situation which we want to look
at.

The open 2-particle is the 2-category par2 = { •1 // •2 }. A 2-functor

traq : par2 → Bim(C) ⊂ 2VectC

is a 2-space of states of the 2-particle, where the algebras

A := traq(•1)

and
B := traq(•2)

are to be thought of, under the embedding Bim(C) ↪→ 2VectC as the 2-vector space of
states over the endpoints of the string.
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• the black line in the center plane is a transition
line labelled by a Forbenius algebra A;

• U and V are the two chiral labels of a bulk field
insertion;

• the yellow coupon is a homomorphism of induced
A-A bimodules;

• the red line, encoding the boundary condition
at the boundary of the disk (the “D-brane”) is
labelled by an A-module.Figure 4: The disk correlator as a string diagram in C.

A morphism
U : traq → traq

or, more generally
U : traq → tra′q

is a propagator of the 2-particle over a strip (“time evolution operator”).
We shall concentrate on a propagator whose component map is a bigon

U( •1 // •2 ) := A

K

��

K′

BBB
ρ

��

in Bim(C) with A and B special Frobenius algebras.

For I : par2 → Bim(C) an ( ΣC � � i // Bim(C) )-trivial transport, a (Schrö)dinger state
of a the 2-particle is a morphism

|ψ〉 : I → traq .

Its component map is hence a 2-cell in Bim(C) of the form

|ψ〉( •1 // •2 ) =

11 H //

NA

��

11

NB

��
A K // B

ψ

z� ||||||||||||||

||||||||||||||

.

The modules NA and NB are called the D-branes to which the endpoints of the 2-particle
in this state are attached.

We assume C to be rigid and hence to have duals on objects. Then the state of the
2-particle has an adjoint state

〈ψ| : traq → I
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U

V

X

Y

Figure 5: The disk correlator schematically as a pasting diagram of cylinders in
BBimod(C) which we may interpret as a pasting diagram of 2-morphism in TwBimod(C)
by projecting the cylinders onto their equatorial plane.
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given by the component map

〈ψ|( •1 // •2 ) =

A
K //

N∨A

��

B

N∨B

��
11

H∨
// 11

ψ†

z� ||||||||||||||

||||||||||||||

.

A Heisenberg state is a functor

φ : End(traq)→ End(I)

which sends operators on the space of states to correlators.
The Hom-functor sends Schrödinger states to the corresponding Heisenberg states.

Hom


11

|ψ1〉
��

traq

,

11

traq

〈ψ2|

OO

 : End(traq)→ End(I) .

(Here we are, for simplicity, ignoring some details, like the freedom to have different traq
and I and the issue of whether and how to identify H ' H∨).

We take
End0(I) � � j // End(I)

to be the sub-category whose objects are bigons (instead of rectangles) and demand that
the Hom-pairing has a j-trivialization

End(traq)
= //

corr(ψ1,ψ2)

��

End(traq)

Hom(ψ1,ψ2)

��
End0(I) � � j // End(I)

b

t| qqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqq

allowing to solve corr(ψ1, ψ2) for Hom(ψ1, ψ2). The trivializing morphism here is the
boundary condition on the 2-particle.
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5.3.2 The disk correlator from a pairing of 2-states

This way the correlator of two 2-states of the 2-particle over the strip in the above setup
is a 2-cell in Bimod(C) of the form

corr(ψ1, ψ2) := 〈ψ2|U |ψ1〉b :=

11 H //

NA

��
Id

��

11

NB

��
Id

��

A

K

��

K′

BB

N∨A

��

B

N∨B

��
11

H
// 11

ρ

��

φ1

w� wwwwwwwwwwwww

wwwwwwwwwwwww

φ∗2

y� ||||||||||||||

||||||||||||||

ksks
. (5)

5.3.3 The local trivialization of the disk correlator

We now use local ( BC � � // Bimod(C) )-trivialization of the correlator (5) to rewrite it
identically such that its interior becomes a pasting diagram entirely in ΣC. The string
diagram Poincaré-dual to this globular pasting diagram is the FRS disk diagram for a disk
correlator with a bulk field insertion, two boundary field insertions and a defect line.

Given any morphism of bimodules

A

K

��

K′

BBB
ρ

��
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we may, using corollary 1, identically rewrite it as

A

K

��

K′

BBB
ρ

��

=

A
Id //

RA

��Id

��

A
K // B

RB

��
Id

��

11 K̇ //

LA

FF

LA

��

11

LB

��
A

Id //

RA

��
Id

��

A

K

��

K′

@@B Id
//

RB

FF

RB

��

B

Id

~~

11 K̇ //

LA

FF

LA

��

11

LB

��
A

K
// B

Id
//

RB

FF

B

=

�� �
������

��������� �
����

�����

�� �
���������

����������

=

�� �
�����������

������������ ks
ks

=

�� �
�����������

������������

�� �
����

�����

�� �
���������

����������
=

�� �
������

�������
ks

ks

ρ

��

After performing the same operation inside the correlator (5), one can merge the
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incoming and outgoing states each with one half of the inserted identity 2-cells:

11 H //

NA

��
Id

��

11

NB

��
Id

��

A

K

��

K′

BB

N∨A

��

B

N∨B

��
11

H
// 11

ρ

��

φ1

w� wwwwwwwwwwwww

wwwwwwwwwwwww

φ∗2

y� ||||||||||||||

||||||||||||||

ksks

=

11 H //

NA

��

Id

��

11

NB

��

Id

}}

A
Id //

RA

��Id

��

A
K // B

RB

��
Id

��

11 K̇ //

LA

FF

LA

��

11

LB

��
A

Id //

RA

��
Id

��

A

K

��

K′

@@B Id
//

RB

FF

RB

��

B

Id

~~

11 K̇ //

LA

FF

LA

��

11

LB

��
A

K
//

N∨A

��

B
Id
//

RB

FF

B

N∨B

��
11

H
// 11

=

�� �
������

��������� �
����

�����

�� �
���������

����������

=

�� �
�����������

������������ ks
ks

=

�� �
�����������

������������

�� �
����

�����

�� �
���������

����������
=

�� �
������

�������
ks

ks

ρ

��

φ1

rz mmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmm

φ∗2

s{ ooooooooooooooooooooo

ooooooooooooooooooooo

ks

ks
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11 H //

NA

��

Id

��

11

NB

��

Id

}}

A

RA

��Id

��

B

RB

��
Id

��

11 K̇ //

LA


��

11

LB

��
A

RA

��
Id

��

B

RB


��

Id

~~

11 K̇′ //

LA

��

11

LB

��
A

N∨A

��

B

N∨B

��
11

H
// 11

ks
ks

ks
ks

Φ1

~� ������������������������������

������������������������������

Φ∗2

�� ������������������������������

������������������������������

ks

ks
ρ̃

�� �
�������������������������

��������������������������

.

This way a pasting diagram entirely internal to ΣC is obtained. Accordingly, its
Poincaré-dual string diagram is a tangle diagram in C. This is shown in figure 6. The
Poncaré-dual string diagram obtained this way is just the one, shown in figure 3, that
encodes the disk correlator in combinatorial CFT,

5.4 The torus

5.5 The sphere
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Figure 6: The disk correlator as the locally (BC i
↪→ TwBimod(C))-trivialized of the disk

holonomy of a TwBim(C)-valued 2-functor. The thin black lines indicate the 2-morphisms
in TwBimod(C). The coloring indicates the Poincaré-dual string diagram in C, which
reproduces the string diagram shown in figure 3.
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Figure 7: Components of the torus partition function. The torus is cut open to a
polygon, the 2-dimensional cylinder-valued parallel transport is applied to it and paired
with an incoming (from the 3d TFT perspective) and an outgoing state containing nothing
but a “defect line” labelled by Ui, Uj ∈ C. The result is then traced as in 5.2.2, yielding
the component Zij of the torus partition function.
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A Morphisms of 2-Functors

Definition 28 Let S
F1 // T and S

F2 // T be two 2-functors. A pseudonatural
transformation

S

F1

""

F2

<< T
ρ

��

is a map

Mor1 (S) 3 x
γ // y 7→

F1 (x)

ρ(x)

��

F1(γ) // F1 (y)

ρ(y)

��
F2 (x)

F2(γ)
// F2 (y)

ρ(γ){� �����
����� ∈ Mor2 (T )

which is functorial in the sense that

F1 (x)

ρ(x)

��

F1(γ1) // F1 (y)
F1(γ2) //

ρ(y)

��

F1 (z)

ρ(z)

��
F2 (x)

F2(γ1)
// F2 (y)

F2(γ2)
// F2 (z)

ρ(γ1){� �����
�����

ρ(γ2){� �����
����� =

F1 (x)

ρ(x)

��

F1(γ1·γ2) // F1 (z)

ρ(z)

��
F2 (x)

F2(γ1·γ2)
// F2 (z)

ρ(γ1·γ2){� �����
�����

and which makes the pseudonaturality tin can 2-commute

F1 (x)

ρ(x)

��

F1(γ1) // F1 (y)

ρ(y)

��
F2 (x)

F2(γ2)

BB
F2(γ1) // F2 (y)

ρ(γ1){� �����
�����

F2(S)
��

=

F1 (x)

ρ(x)

��

F1(γ2) //

F1(γ1)

��
F1 (y)

ρ(y)

��
F2 (x) F2(γ2) // F2 (y)

ρ(γ2){� �����
�����

F2(S)
��

for all x

γ1

!!

γ2

== yS
��

∈ Mor2 (S).
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Definition 29 The vertical composition of pseudonatural transformations

S

F1

��

F3

CCT
ρ

��
≡ S

F1

��

F3

CCF2
// T

ρ1��

ρ2��

is given by

F1 (x)

ρ(x)

��

F1(γ) // F1 (y)

ρ(y)

��
F3 (x) F3(γ) // F3 (y)

ρ(γ){� �����
�����

≡

F1 (x)

ρ1(x)

��

F1(γ) // F1 (y)

ρ1(y)

��
F2 (x)

ρ2(x)

��

F2(γ) // F2 (y)

ρ2(y)

��

ρ1(γ){� �����
�����

F3 (x) F3(γ) // F3 (y)

ρ2(γ){� �����
�����

Definition 30 Let F1
ρ1 // F2 F1

ρ2 // F2 be two pseudonatural transfor-
mations. A modification (of pseudonatural transformations)

F1

ρ1

##

ρ2

;; F2A
��

is a map

Obj(S) 3 x 7→ F1 (x)

ρ1(x)

%%

ρ2(x)

99
F2 (x)A(x)

��
∈ Mor2 (T )

such that

F1 (x)

ρ1(x)

��

ρ2(x)

##

F1(γ) // F1 (y)

ρ1(y)

��
F2 (x)

F2(γ)
// F2 (y)

ρ1(γ){� �����
�����

A(x)
ks =

F1 (x)

ρ2(x)

��

F1(γ) // F1 (y)

ρ2(y)

��

ρ1(y)

{{
F2 (x)

F2(γ)
// F2 (y)

ρ2(γ){� �����
�����

A(y)
ks

for all x
γ // y ∈ Mor1 (S).
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Definition 31 The horizontal and vertical composite of modifications is, respectively,
given by the horizontal and vertical composites of the maps to 2-morphisms in Mor2 (T ).

Definition 32 Let S and T be two 2-categories. The 2-functor 2-category TS is the
2-category

1. whose objects are functors F : S → T

2. whose 1-morphisms are pseudonatural transformations F1
ρ // F2

3. whose 2-morphisms are modifications

F1

ρ1

##

ρ2

;; F2A
��

.

B Morphisms of 3-Functors

We shall regard 3-categories as special categories internal to 2Cat. From this point of
view, a 3-category has a 2-category of objects S, each of which looks like

γ1 γ2

x

y

S //

'' ss

.

In a general category internal to 2Cat, we similarly have a 2-category of morphisms

S1
V // S2 , that look like

γ1 γ2

x

y

γ1 γ2

x

y

S1
//

'' ss

S2
___ //___

l
y




N
;

+

'' ss��

���
�
�
�
�
�
�
�
�

F2}}

F1
��

�
�!

V

�
�

�
�

��
�
�

�
�

.
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We shall restrict attention to the special case where the vertical faces here are identities.
Then the above shape looks like

γ1 γ2

x

y

S1

��

S2

D
M

>>
q

z

'' ss

V
��

�
�

�
�

.

Instead of saying that V is a morphism of a category internal to 2Cat, we say V is a
3-morphism. Similarly, S1, S2 are 2-morphisms, γ1, γ2 are 1-morphisms and x and y are
objects.

We would have arrived at the same picture had we regarded categories enriched over
2Cat. However, we find that thinking of 3-morphisms as morphisms of a category internal
to 2Cat facilitates handling morphisms of 3-functors, to which we now turn.

A 3-functor F : S → T between 3-categories S and T is a functor internal to 2Cat,
hence a map

F : γ1 γ2

x

y

S1

��

S2

D
M

>>
q

z

'' ss

V
��

�
�

�
�

7→ F (γ1) F (γ2)

F (x)

F (y)

F (S1)

��

F (S2)

D
M

>>
q

z

"" uu

F (V )
��

that respects vertical composition strictly and is 2-functorial up to coherent 3-isomorphisms
with respect to the composition perpendicular to that.

A 1-morphism F1
η // F2 between two such 3-functors is a natural transformation

internal to 2Cat, hence a 2-functor from the object 2-category to the morphism 2-category,
hence a 2-functorial assignment

η :
γ1 γ2

x

y

S //

'' ss

7→

F1(γ1) F1(γ2)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F1(S) //

## uu

F2(S)__ //__

l
y




N
;

+

  uu��

���
�
�
�
�
�
�
�
�

η(γ2)
}}

η(γ1)
��

�
�!

η(S)

�
�

�
�

��
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that satisfies the naturality condition

F1(γ1) F2(γ2)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F1(S1)

��

F1(S2)

J
Q

;;
m

t

## vv

F1(V )

��

F2(S2)

J
Q

;;
m

t

o
y

�

K
;

-

## vv��

���
�
�
�
�
�
�
�
�
�
�
�

η(γ2)
��

η(γ1)

��

�
�

�

η(S2)

�
�

�
�

��

=

F1(γ1) F2(γ2)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F1(S1)

��

## vv

F2(S1)

z
q M

D

F2(S2)

J
Q

;;
m

t

o
y

�

K
;

-

## vv

V
��

��

���
�
�
�
�
�
�
�
�
�
�
�

η(γ2)
��

η(γ1)

��

�
�

�
η(S1)

�
�

�
�

��

.

Accordingly, 2-morphisms and 3-morphisms of our 3-functors are 1-morphisms and 2-
morphisms of these 2-functors η.

Hence a 2-morphism η
ρ // η′ of our 3-functors is a 1-functorial assignment

ρ :

x

y

γ

���������������

7→

F1(x)

F1(y)

F1(x)

F1(y)

F2(x)

F2(y)

F2(x)

F2(y)

F1(γ)

���������������

F1(γ)

���������������

F2(γ)
�

�

���
�

�
�

�
F2(γ)

���

�����������

ρ1(x) //

ρ1(y)
//

ρ2(x) //__________

ρ2(y)
//

η1(y)

��

η1(x)

�
�
�
�
�

���
�
�
�
�

η2(y)

��

η2(x)

��ρ(γ)

�
�

�
�

��
�
�

�
�

89



such that

F1(γ1) F1(γ2)

F1(x)

F1(y)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F2(x)

F2(y)

F1(S) //

## uu

F2(S)__ //__

l
y




N
;

+

  uu��

���
�
�
�
�
�
�
�
�

η(γ2)
}}

&

�
|

η(γ1)
��

�
�!

η(S)

�
�

�
�

��

ρ1(y) //

ρ1(x) //

ρ2(y) //

ρ2(x)______ //___

F1(γ2)

���������������

F2(γ2)

��������������

η2(y)

��

η2(x)

��
ρ(γ2)

�
�

�
�

��
�
�

�
�

=

F1(γ1) F1(γ2)

F1(x)

F1(y)

F1(x)

F1(y)

F2(γ1) F2(γ2)

F2(x)

F2(y)

F2(x)

F2(y)

F1(S) //

## uu

F2(S)__ //__

l
y




N
;

+

  uu��

���
�
�
�
�
�
�
�
�

η′(γ2)
}}

η′(γ1)
��

�
�!

η′(S)

�
�

�
�

��

ρ′
1(y) //

ρ′1(x)oo

ρ′
2(y) //

ρ′2(x)______ //___

F1(γ2)

���������������

F2(γ2)

��������������

η2(y)

��

η2(x)

��
ρ′(γ2)

�
�

�
�

��
�
�

�
�

.

We want to restrict attention to those ρ for which the horizontal 1-morphisms ρ1(x),
ρ2(x), etc. are identities.

ρ :

x

y

γ

���������������

7→

F1(x)

F1(y)

F2(x)

F2(y)

F1(γ)

���������������

F2(γ)
�

�
�

���
�

�

η2(y)

zz

η2(x)

J
F

;
-

yy

�
�

x
t

η1(y)

$$

η1(x)

t
x

�
�

%%

-
;

F
J

ρ(γ)

��
�
�
�
�

�
�
�
�

η2(γ)
�������η1(γ)



�
�

�

ρ(y)
//

ρ(x) //____

Proceeding this way, a modification λ : ρ1 → ρ2 of transformations ρ gives us a 3-
morphisms of 3-functors. This now is a map

λ : x 7→

F1(x)

F2(x)

η2(x)

zz

η1(x)

$$

ρ2(x)

BB

ρ1(x)

~
o

��
O

@
λ(x)
��

�
�

�
�
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such that

F1(x)

F1(y)

F2(x)

F2(y)

F1(γ)
��

�����������

F2(γ)
�

�
�

���
�

�

η2(y)

zz

η2(x)

J
F

;
-

yy

�
�

x
t

η1(y)

$$

η1(x)

t
x

�
�

%%

-
;

F
Jρ2(γ)
��

�
�

�
� η2(γ)

�������η1(γ)



�
�

�

ρ2(y)
//

ρ2(x)

:
B

L
_ r

BB�

ρ1(x)

~
o _

��@
λ(x)
��

�
�

�
�

=

F1(x)

F1(y)

F2(x)

F2(y)

F1(γ)
��

�����������

���
�

�
�

�
�

η2(y)

zz

η2(x)

J
F

;
-

yy

�
�

x
t

η1(y)

$$

η1(x)

t
x

�
�

%%

-
;

F
Jρ1(γ)
��

�
�

�
� η2(γ)

�������η1(γ)



�
�

�

ρ1(x) //____

ρ2(x)

BB
ρ1(x)

~
o _

��@
λ(y)
��

�
�

�
�

.

We thus get a 3-category of 3-morphisms of 3-functors.
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